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ABSTRACT 

Attributes reduction methods based approach traditional rough 

sets perform on the decision tables with discrete attribute 

value domain. In fact the data is usually the real values or 

symbols should be reduced attributes of traditional rough sets 

proved ineffective because of its failure to preserve the 

difference of data on original objects. This problem is solved 

with the attributes reduction methods based approach fuzzy 

rough set to overcome the limitations of the method according 

to previous rough set approach. This paper improves, analyzes 

and evaluates two methods of attribute reduction based on the 

degree of dependence between attributes and discernibility 

matrix of fuzzy rough set 
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1. INTRODUCTION 
Attributes reduction is important problems in data 

preprocessing steps aimed at reducing the dimensionality of 

data (number of attributes) in order to increase the efficiency 

of data mining algorithms and machine learning. Rough set 

theory proposed by Pawlak [5] is seen as effective tools to 

solve the problem of reduced attributes. Attributes reduction 

methods based approach traditional rough sets perform on the 

decision tables with discrete attribute value domain. In fact, 

the attribute value domain of decision table is often 

continuously for containing the real values (real-valued) or 

symbols (symbolic). To solve this problem, rough set theory 

using discrete methods of data before performing the 

attributes reduction methods. However, the degree of 

dependence of the discrete values is not considered. For 

example, two initial attribute values of temperature 39.5 and 

39,6 are converted to the same value "high temperature" but 

does not show the temperature deviation is 0.1. Thus, the 

discrete method does not preserve semantics of the original 

data. To solve this problem, D. Dubois and colleagues 

propose fuzzy rough set model [3] combines rough set theory 

[5] and fuzzy set theory [4]. Fuzzy set theory serves to 

preserve semantics of the data, while the rough set theory 

preserve not distinguish data. Similar to the traditional model 

of rough set, fuzzy rough set models using fuzzy similarity 

relation to approximate the fuzzy sets into sets of lower 

approximation and upper approximation [2]. So far, many 

works have studied this issue, focusing mainly on the 

construction of the lower approximation, upper approximation 

and attributes reduction [2], [3], [8], [9]. The results of 

attribute reduction using fuzzy rough set model is an 

extension of the traditional rough set, mainly focused on two 

directions is reduced attributes based on fuzzy partition and 

fuzzy similarity relations.  

Based on approach attributes reduction methods of traditional 

rough set theory [1], [6], this paper improves, analyzes 

attributes reduction methods in decision table (system) using 

the degree of dependency between attributes in fuzzy rough 

set model, analyze advantages and disadvantages of the 

methods. In the next part, we present attributes reduction 

method based on discernibility matrix by fuzzy rough set 

approach and analyze advantages and disadvantages of the 

method. Two illustrative examples of methods used on the 

same set of data shows the feasibility of the method according 

to the fuzzy rough set approach in practice [2], [7], [10] 

compared to the corresponding method in the way to 

traditional rough set approach. The structure of paper as 

follows. Section 2 presents some basic concepts and attributes 

reduction methods used the degree of dependency between 

attributes in the model of fuzzy rough set, this is a typical 

method of research attributes reduction as assigned fuzzy 

partition. Section 3 presents some basic concepts in fuzzy 

rough set model and an attribute reduction method based on 

discernibility matrix, the typical method of research attributes 

reduction based on fuzzy similarity relations. Finally 

conclusions and development trend continued. 

2. ATTRIBUTE REDUCTION BASED 

ON THE DEPENDENCE BETWEEN 

ATTRIBUTES  
Model of fuzzy rough set is based on a combination of rough 

set theory and fuzzy set theory to approximate the fuzzy sets 

use fuzzy similarity relation [3], [8], [9]. A fuzzy similarity 

relation S on Universe U satisfying three properties: reflexive 

(  , 1S x x  ), symmetry (    , ,S Sx y y x  ) and 

transitivity (      , , ,S S Sx z x y y z    ). Similarly in the 

traditional rough set theory based on fuzzy similarity relation, 

each set of attributes in P A  defining a fuzzy partition as 

follows:  

      
   / : /U P a P U IND a                                (1) 

Where 

 : , ,A B X Y X A Y B X Y        
 

Each element in /U P  is a fuzzy equivalence class  
P

x  

where 
     , .

P
x P

y x y   

Example: Suppose that  ,P a b , 

    / , ,a aU IND a N Z
 

    / ,b bU IND b N Z  Then 

 / , , ,a b a b a b a bU P N N N Z Z N Z Z       
 
 

The membership of the objects in equivalence classes are 

defined based on fuzzy rough set theory [2], [3]:  
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        
1 1 2

...
, , ...,

n n
F F F F F

x min x x x   
 


   

(2) 

Based on fuzzy equivalence classes, the concepts of lower 

approximation and upper approximation are expanded into 

fuzzy lower approximation and fuzzy upper approximation. 

With attribute sets P A , the membership of the objects 

belonging to the fuzzy lower approximation and fuzzy  upper 

approximation are defined [8], [9]: 

         
/

sup ,inf 1 ,PX F F X
y UF U P

x min x max y y   


  (3) 

        
/

sup ,sup ,F F XPX
F U P y U

x min x min y y   
 

 
  

   

(4)
 

Where inf X, sup X respectively is the lower right and upper 

right of the set X. F is the fuzzy equivalence classes of fuzzy 

partition. ,PX PX  called a fuzzy rough set. 

Decision table (system) is a special kind of information 

systems, which include a set of attributes A separates two 

subsets: the set of conditional attributes C and decision 

attributes D. Thus, decision table is an information system 

 ,DS U C D   with C D  . Decision table DS is 

called consistent if and only if ( )
C

POS D U , contrary DS 

is inconsistent [1]. 

Attributes reduction is the process of selecting the smallest 

subset of attributes conditions that preserve information 

classification decision table, called the collection of reduct 

(reduct). According to the traditional rough set approach, 

Pawlak [6] launched a collective set concepts based on 

positive region and constructive heuristic algorithm to find the 

best set of decision tables based on the evaluation criteria of 

importance attribute. 

Definition 1. [6] Let  ,DS U C D   be the decision table 

and R C . If 

1) ( ) ( )
R C

POS D POS D  

 2) , ( ) ( )
R r C

r R POS D POS D


    

then R is the collection of C base on positive region. 

Definition 2. [1] Let  ,DS U C D   be the decision 

table, B C and .b C B   The importance degree of 

attribute b which respect to attribute set B is defined by: 

       
     BB b

B BB b

POS D POS D
SIG b D D

U
 






  

    (5) 

Suppose that   0POS D  . It is easy to see that 

     BB b
POS D POS D


  lead to    0.BSIG b   

 BSIG b is calculated by the amount of change in the 

dependence of B into D when adding attribute b to B and the 

greater
 

 BSIG b  is, the more amount of change is, as 

important attribute b and vice versa. The importance degree of 

this attribute is the attribute selection criteria in heuristic 

algorithm to find the collection of decision table. Fuzzy 

decision table is the decision table which conditional 

attributes receive fuzzy values. 

From Definition 1 combined with the definition of the degree 

of dependency between the attributes in the formula (5), 

attribute sets R C  called collective reduction of C based on 

positive region if ( ) ( )R CD D   and 

 , ( ) ( )CR r
r R D D 


   . 

In traditional rough set theory, the concept of positive region 

is defined as the intersection of all lower approximation sets. 

With , ,P Q A
 
the membership of objects in fuzzy positive 

region of fuzzy rough set model is defined [8], [9]  

        
     

/

sup
p

PXPOS Q
X U Q

x x 




                     

(6) 

Based on the concept of fuzzy positive region, the fuzzy 

membership perform the degree of dependence between 

attributes is defined [7]: 

     

 
   

   
' P P

POS Q POS Qx U

P

x x
Q

U U

 
  



    

(7) 

The importance of attributes using fuzzy membership in the 

formula (7) is described as follows: 

            
       ' '

B BB b
SIG b D D 


 

                 
(8) 

Similar attributes reduction algorithm using the degree of 

dependence between the attributes in traditional rough set [1], 

attributes reduction algorithm in fuzzy decision table using 

membership in the formula (7) are described as follows:
 

Algorithm 1. Heuristic algorithm finds a minimal reduct set  

using membership functions. 

Input: A decision table  ,DS U C D   

Output: A minimal reduct R 

1. R  ; 

2.  ' 0D  ; 

3. While    ' '

R CD D   do 

4. Begin 

5. For c C R   calculate  

                   ' '

R RR c
SIG c D D 


  ; 

6. Select  
mc C R   so that 

                 R m R
c C R

SIG c Max SIG c
 

 ;   

7.  mR R c  ; 

8. End; 

9. Return R ; 

Example 1. Suppose that the decision table 

  ,DS U C d   is described in table 1. 
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Table 1. Decision table describe in example 1 

Object a b c d 

1 -0.4 -0.3 -0.5 No 

2 -0.4 0.2 -0.1 Yes 

3 -0.3 -0.4 -0.3 No 

4 0.3 -0.3 0 Yes 

5 0.2 -0.3 0 Yes 

6 0.2 0 0 No 

Assume that the value of the attribute a, b and c are 

represented by two fuzzy sets Fuzzy sets N and Z. N fuzzy 

trapezoidal shaped square, is determined the membership 

function  as follows: 

1)   0N x   with 1x    

2)   1N x   with 1 0.5x     

3)  
0.5

N

u
x


  with 0.5 0x    

4)   0
N

x   with 0x   

Z fuzzy triangular shape, the membership function is 

determined as follows: 

1)   0
Z

x   with 0.5x    

2)  
0.5

0.5
Z

x
x


  with 0.5 0x    

3)  
0.5

0.5
Z

x
x


  with 0 0.5x   

4)   0Z x   with 0.5x   

Thus, the decision table in Example 1 combines with two 

fuzzy N and Z gives us the new decision table 

  ' ',DS U C d  with attributes 

       , , ,A a B b C c D d    . The equivalence 

classes derived from attributes A, B, C, respectively: 

 / ,a aU A N Z ,  / ,b bU B N Z ,  / ,c cU C N Z , 

    / 1,3,6 , 2,4,5U D  ; where ,a aN Z  is two fuzzy 

sets defined on the attributes a; ,b bN Z  is two fuzzy sets 

defined on the attributes b; ,c cN Z  is two fuzzy sets defined 

on the attributes c 

Table 2. Decision table described Example 1  

Object 

A B C 

d Na Za Nb Zb Nc Zc 

C1 C2 C3 C4 C5 C6 

1 0.8 0.2 0.6 0.4 1 0 No 

2 0.8 0.2 0 0.6 0.2 0.8 Yes 

3 0.6 0.4 0.8 0.2 0.6 0.4 No 

4 0 0.4 0.6 0.4 0 1 Yes 

5 0 0.6 0.6 0.4 0 1 Yes 

6 0 0.6 0 1 0 1 No 

Apply steps of the algorithm 1 finds reductive set of decision 

table had provided, first steps we must calculate the lower 

approximation set for the attributes A, B and C. Considering 

the attributes A, with equivalent classes 

    1,3,6
1,3,6 ,

A
X x  is calculated: 

             1,3,6 1,3,6
/

sup ,inf 1 ,F FA
y UF U A

x min x max y y   


 

Considering the fuzzy equivalence class aN  on attribute A: 

         1,3,6
, inf 1 ,

a aN N
y U

min x max y y  


  

Object 1 is calculated: 

  0.8,inf 1,0.2,1,0.4,1,1 0.2min   

Similarly for aZ  

  0.2, inf 1,0.8,1,0.6,0.4,1 0.2min   

Thus 
   1,3,6

1 0.2
A

  . Calculate A-approximately the 

lower of  1,3,6X  for other objects in the same way we 

have: 
   1,3,6

1 0.2
A

  , 
   1,3,6

2 0.2
A

  , 

   1,3,6
3 0.4

A
  , 

   1,3,6
4 0.4

A
 

    1,3,6
5 0.4

A
  , 

   1,3,6
6 0.4

A
  . 

Similarity with equivalence classes 

    2,4,5
2,4,5 ,

A
X x , fuzzy positive region for 

objects is calculated by the formula: 

     
/

sup
A

AXPOS Q
X U Q

x x 


  

We obtained: 
   1 0.2

APOS Q
  , 

   2 0.2
APOS Q

  , 

   3 0.4
APOS Q

  , 
   4 0.4

APOS Q
  , 

   5 0.4
APOS Q

  , 
   6 0.4

APOS Q
  . Since then, the 

membership of Q on A is calculated: 

     
' 2 / 6APOS Qx U

A

x
Q

U


  


 

Similar to attribute B and C, we have:  ' 2.4 / 6B Q  , 

 ' 1.6 / 6C Q  . Attribute B has the largest membership 

functions  included the reductive set R and  R B . 



International Journal of Computer Applications (0975 – 8887) 

Volume 132 – No.4, December2015 

35 

Perform the next loop with two attributes, we have 

       ' '

, ,
3.4 / 6, 3.2 / 6

A B B C
Q Q   .So

       ' '

,
3.4 / 6 2.4 / 6 1/ 6B BB A

SIG A D D     

       ' '

,
3.2 / 6 2.4 / 6 0.8 / 6B BB C

SIG C D D     

 Attribute A is selected to add to collective set and we have 

 ,R A B . Finally, included in the attributes C and 

caculated 
   '

, ,
3.4 / 6

A B C
Q  . This result does not change 

the dependency function, it means that 

       ' '

, , ,A B C A B
Q Q  . Thus, algorithm stopped and 

 ,R A B is a minimal collection of decision table DS’, it 

means that  ,R a b
 
is a minimal reduction set of decision 

table. With this data set, performing reduction approach of 

traditional rough set using heuristic algorithm obtained results 

 , , .R A B C  

Algorithm 1 shows immediately minimal reduction, the 

accuracy of classification stability than the rough set approach 

on the same data set, preserving the positive region, this issue 

published by the authors Jensen and Q. Shen [7] do not 

sastify, belong to NP-hard problem. The computational 

complexity large. Computational complexity layered fuzzy 

equivalent of the attributes is exponential ( )
A

O U c , 

which U is the cardinality  of universe, A is number  of  

attributes, c is the number of linguistic terms describing each 

attribute. Therefore, Algorithm 1 only academic, not feasible to 

deploy realistic. 

3. ATTRIBUTES REDUCTION BASED 

ON THE DISCERNIBLITY MATRIX  
In this section, we introduce the algorithm finds all reductions 

of fuzzy decision table based on discernibility matrix. 

Suppose the fuzzy decision table  ,DS U C D   which 

 1,..., nU x x is a finite set of objects,  1,..., mC c c

is a set of conditional attributes, D is the set of decision 

attributes. kR
 
is a fuzzy similarity relation which define on 

elements of condition attributes ,kc C k=1..m, the fuzzy 

relational matrix of conditional attributes kc
 

is 

ij( ) ( , ) [c ]k

k k i j nxnM R R x x   . Denote that R is the 

family of  fuzzy similarity of relations, the fuzzy decision 

table is rewritten in the form of fuzzy similar relationship 

 ,DS U R D  , denote 

ij

1..

M(R) = {M( ) : } min{c }k

k k

k m

R R R


  , M( )R
 
is also 

a fuzzy relational matrix. 
k

R
 
is dispensable relative to D in R 

if 
M( ) (M( )Pos Pos -{R}D DR R

, otherwise 
k

R  is indispensable 

relative to D. P R  is a reduct of  R  relative to  D   if 

M( ) M( )
Pos PosD D

R P
. The collection of all the indispensable 

elements relative D in R is called the core of R, denoted as 

or ( )
D

C e R .  

Denoted 
*

R A  is R-lower approximation of the A where A is a 

fuzzy set on U and R is really a fuzzy similarity relation. 

Lower approximation of all objects x U  is caculated [3], 

[10]: 

        

inf max{1 ( , ), ( )}
*

y U

R A(x) R x y A y


 
          

(9) 

In fuzzy sets, a fuzzy point x is defined as  

                 

( )
0

x z








z x

z x




, z U                  (10) 

Fuzzy set is union of fuzzy points.We define equivalence 

classes for all fuzzy x  as the basic granule, as follows: 

( )
0

x z








 
1 ( , )

1 ( , )

R x z

R x z





 

 
 ,  

                             ,z U ,x U (0,1] 
             

(11) 

*R A is expressed through the equivalent class 

       {( ) : ( ) , [0,1]}
* R R

R A x x A
 

          (12) 

Let 
*( ) ([ ] )( )DM R x x 

 
denote ( )M R - lower approximation 

of [ ]
D

x , x U . According to the nature of the positive region, 

P R  is a reduct of R if 
( )( ) [x]M Dx 
P

where 

*( ) ([ ] )( )DM R x x    [1], [2], [10]. 

Discernibility matrix  ,
D

M U R  of  ,U R D is a n n  

matrix ( )ijc  . Like this: 

1) if 
j i   then  ,:1 ( )ij k k i j ic R R x x    , where 

*( ) ([ ] )( )i i D iM R x x  , 
*( ) ([ ] )( )j i D jM R x x       (13) 

2)
ijc  , otherwise                                                              (13) 

A discernibility function  ,
D

f U R
 

for  ,U R D is a 

boolean function of m Boolean variable 
1
, ...,

m
R R corresponding 

to the fuzzy attributes 1,..., mR R , respectively is defined as 

follows [2, 10]: 

      
  1, ( ,..., ) { ( ) : }D m ij ijf U R R R c c    

   
(14) 

Algorithm 2. The algorithm finds all reductions for fuzzy 

decision system as follows: 

Suppose  1,..., ,nU x x  1/ ,..., sU D D D
 

1.  Calculate M(R)  

2.  Calculate 
*M( ) ( )kR D with all /kD U D  

3.  Calculate 
ijc  :  If 

j i
   then 

 ,:1 ( )ij k k i j ic R R x x    , otherwise 
ijc   
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4.  Calculate Core ( )D R  of single element 
ijc  

5.  Delete those 
ijc   or 

ijc Core    

6.  Define  , { ( )D ijf U R c   with 
ijc collect from step 5 

7.  Calculate   1 l, ( ) ... ( )Dg U R R R      with 

 , { ( )D ijf U R c   

8.  All reductions: ( ) { ( )D ijCore R c   

Applies Algorithm 2 for  table 2, with all the attributes defined by 

fuzzy similarity relations as follows: 

min{ ( ), ( ))},
( , )

1,

k i k j

k i j

c x c x
R x x


 


( ) ( )

( ) ( )

k i k j

k i k j

c x c x

c x c x




(15) 

The results were fuzzy similarity matrix 
1( )( , )i jM R x x ,

2( )( , )i jM R x x ,
3( )( , )i jM R x x ,

4( )( , )i jM R x x , 

5( )( , )i jM R x x ,
6( )( , )i jM R x x . 

Caculate  

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
M( )( , )

0 0 0 1 0.4 0

0 0 0 0.4 1 0

0 0 0 0 0 1

i jR x x

 
 
 
 

  
 
 
 
 

 

Partition of decision attribute D={d} is 
1 1 3 6{ , , },D x x x

2 2 4 5{ , , }D x x x  

          

1

2

3

* 1

4

5

6

1,

0,

1,
( ) ( ( ))

0,

0,

1,

x x

x x

x x
M R D x

x x

x x

x x






 

 


 




           

 

1

2

3

* 2

4

5

6

0,

1,

0,
( ) ( ( ))

1,

1,

0,

x x

x x

x x
M R D x

x x

x x

x x






 

 


 




 

Calculated 
ijc by Algorithm 2 through ( , ),k i jR x x  ,i  ,j

(i, j, 

k) =1..6 , a discernibility matrix obtained: 

{3,6} {1,5,6} {1,5,6}

{3,6} {3} {1,5}

{3} {1,5} {1,5}
( , )

{1,5,6} {1,5} {3}

{1,5,6} {1,5} {3}

{1,5} {3} {3}

D ijM U R c

  

  

  

  

  

  

 
 
 
 

   
 
 
 
 

 

Core ( )D R
 

= {3},  , (1 5)Df U R   , 
1 {1,3}R  , 

2 {3,5}R  . All reducts are  
1 { , }R a b , 

2 { , }R b c  

Algorithm 2 finds all reductions of conditional attributes but not 

know the minimal subset, this issue was mentioned in the 

publication of the group Eric C.C Tsang, Chen Degang [10] but 

not accurate in the process of finding reduction,  belong  NP-hard 

problem. Implementation time is faster than Algorithm 1 in the 

same dataset. The computational complexity of indiscernibility 

relation M(R)  and lower approximation 

*(M(R) ( ) , / )k kD D U D   is 2
(( ) )O A D U  , where 

U denotes the size of universe; A denotes the number of 

attributes; D denotes the number of decision classes. Algorithm 

2 needs more memory space to store to calculate similarity 

relations and lower approximation 
2

( )O U  and 
2

( )O U D . 

Thus, Algorithm 2 is feasible in practical application when 

finding all reductions of fuzzy decision table. 

4. CONCLUSIONS 
Model of fuzzy rough set by D. Dubois and colleagues suggested 

that the combination of rough set theory and fuzzy set theory. 

Rough set theory preserves vagueness in data while fuzzy set 

theory preserves semantics (fuzziness) in data. Therefore, fuzzy 

rough set tools is considered more effective in rough set tools of 

attributes reduction and extracted law on information systems 

which have continued or semantic values attribute value domain. 

In this paper, based on attributes reduction method using the 

dependency function between attributes in rough set theory, we 

improved attribute reduction methods in decision table using 

fuzzy the degree of dependency between attributes, discernibility 

matrix approach fuzzy rough set and assess the advantages and 

disadvantages of each method, overcome the limitations and 

mistakes of the authors studied the issue. Two illustrative 

examples on the same dataset demonstrate that fuzzy rough set 

approach is more effective than traditional rough set theory. Our 

oriented research is constructed an effective attribute reduction 

methods in fuzzy decision table according to fuzzy rough set 

approach and experimental methods with the actual problem 
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