
International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

EAR-ABAC: An Extended AR-ABAC Access Control
Model for SDN-Integrated Cloud Computing

Khaled Riad
School of Computer and Communication Engineering

University of Science and Technology Beijing
P.O. Box 100083, Beijing, China &

Mathematics Department, Zagazig University
P.O. Box 44519, Zagazig, Egypt

Zhu Yan
School of Computer and Communication Engineering

University of Science and Technology Beijing
P.O. Box 100083, Beijing, China

ABSTRACT
Due to the distinguished nature of cloud computing, it needs an
effective access control model, that can cope with its broad net-
work access, on-demand self-service, and so on. When thinking
in integrating the Software-defined Networking (SDN) with the
cloud computing environment, to let SDN serve, secure, and con-
trol the cloud environment. The authors must think about a per-
fect access control model to secure access to the SDN-integrated
cloud environment. This paper proposes an extended access con-
trol model for the SDN-integrated cloud computing. Where the
author’s AR-ABAC access control model [15] is extended to suit
the SDN-integrated cloud environment distinguished nature. The
extended model can make the election process about the num-
ber of attributes considered for making access decisions. In ad-
dition it can perfectly deal with the SDN software controllers
(OpenDaylight controller). Finally the model ensures secure re-
source sharing among potential untrusted tenants and supports dif-
ferent access permissions to the same user at the same session.

General Terms
Security, Theory, Access Control Models

Keywords
cloud computing security, software defined networking, attribute
based access control

1. INTRODUCTION
Although the cloud computing paradigm fosters significant growth
in business productivity with new online services while reducing
costs, minimizing risks, and increasing agility; security issues have
impacted the cloud wide adoption for enterprises and organizations.
Significant innovations in Virtualization and distributed computing,
as well as improved access to high-speed Internet and a weak econ-
omy, have accelerated interest in cloud computing. Consequently,
such trends elevate concerns on cloud security.
The recent rise of the Software-defined Networking (SDN), which
is an emerging network architecture where network control is de-
coupled from forwarding and is directly programmable as defined
by the ONF [13]. Multiple network applications have already been

proposed and evaluated by the SDN research community. They can
be grouped in the areas of network management and traffic engi-
neering, application server load balancing and network access con-
trol, SDN security, network Virtualization and inter-domain rout-
ing. In this paper the authors are interested in access control based
on the SDN-integrated cloud computing environment.
Access control is an essential mechanism that controls what op-
erations the user may or may not be able to do. Also access con-
trol may monitor and record all attempts made to access a system
and identify users with unauthorized attempts to access the system.
The basic goal of any access control system is to restrict a user
to exactly what s/he should be able to do and protect information
from unauthorized access. Cloud computing can be distinguished
from other traditional computing models by some major character-
istics [9]. Hence the robust access control model has to cope with
some basic issues due to the special nature of the SDN-integrarted
cloud computing environment, such as:

• On-demand self-service by supporting a pay-as-you-go model;
• Broad network access, where the cloud resources are available

to be accessed over multiple device types;
• Pooling the cloud resources to serve a large number of users with

different classifications that can handle diverse permissions asso-
ciated with the same cloud user;

• Giving the user the ability to use multiple services with respect
to authentication and login time;

• Transferring users’ credentials across layers to access services
and resources;

• Using multi-tenancy where different resources are dynamically
allocated and de-allocated on demand while the location of each
resource is being unknown; and

• Programming and managing the forwarding plane using a cen-
tralized software controller, while keeping in mind the software
differences.

Since a cloud environment involves multiple resources belonging
to multiple clients interacting in complex manners, proper access
control to these resources is very important. These facts clearly in-
dicate the necessity of an effective access control model for the
SDN-integrated cloud computing.
Thinking about the pure Attribute Based Access Control (ABAC)
model [1], Where the basic idea is to use characteristics or attributes

9



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

of the access requesters as a basis for access decision. Since cloud
environments unlike traditional organizations are not static. They
are elastic and constantly evolve in response to various factors in-
cluding the need to support a pay-as-you-go model. This dynamic
nature implies that their access control policies need to be adaptable
to changing circumstances. Often operational needs may arise that
require access be granted under less than ideal security situations.
So the pure ABAC cannot adequately model this dynamism.
Motivation: the authors motivation is to extend the AR-ABAC ac-
cess control model proposed by them earlier [15] in this paper.
Hence the extended AR-ABAC can be integrated with the SDN-
integrated cloud computing environments. Their extended model
ensures secure resource sharing among potential untrusted ten-
ants and supports different access permissions to the same user
at the same session. Also, it is flexible enough to support a set
of constraints that represent the basic requirements for the SDN-
integrated cloud computing access control model. Finally, com-
pared with existing cloud access control models, the extended
model has enough flexibility to cope with different access permis-
sions for the same user. Specifically in this paper:

• The AR-ABAC access control model [15] is extended to be inte-
grated with the SDN-integrated cloud computing environment;
• The extended AR-ABAC is a new access control model for the

SDN-integrated cloud computing, this model has a set of fea-
tures that distinguish it from other traditional and current models
proposed for cloud computing:
i. The model can do a dynamic election process to choose

the attributes should be used and specify the number of at-
tributes should be taken into account for making access de-
cisions;

ii. It provides four different ways to access Infrastructure-as-a-
Service (IaaS), as described in Subsection 4.2; and

iii. It can deal with the SDN OpenDaylight [12] controller, and
also have the ability to work with other types of controllers
such as Floodlight [5].

• The extended AR-ABAC provides the basic operations for the
cloud root user and the tenant root user;
• A complete comparison between the extended model, traditional,

and proposed access control models, is provided to check the
support of the basic requirements for any access control model
to be applied for the cloud computing environment; and
• The authors validate proposed model through experiments with

an open-source OpenStack cloud platform and the OpenDaylight
controller as elaborated in Section 4.

The rest of this paper is organized as follows: Section 2 provides an
overview for the traditional access control models and their ability
to be applied for the SDN-integrated cloud environment. Section 3
presents an overview about the AR-ABAC access control model
proposed by the authors earlier [15]. The extended model imple-
mentation and analysis are presented in Section 4. The related cloud
based access control models are summarized in Section 5. This is
followed by the conclusion and future extensions in Section 6.

2. TRADITIONAL ACCESS CONTROL MODELS
AND THEIR ABILITIES TO BE APPLIED FOR
CLOUD COMPUTING

Each of the traditional access control models was proposed for a
specific environment with a set of basic requirements:
MAC Model [2]: Mandatory Access Control (MAC) model, where
a central authority is in command of giving access decisions to a

user/subject requesting access to objects. MAC provides protec-
tion against information flow and indirect information leakages,
but does not guarantee complete secrecy of the information. Also
this model is very expensive and difficult to deploy and does not
support: separation of duties, least privilege, and delegation or in-
heritance principles. Also dynamic activation of access rights for
certain tasks is not supported. Moreover, it does not support time
and location constraints.
DAC Model [8]: Discretionary Access Control (DAC) model grants
the owners of objects the ability to restrict access to their objects,
or information in the objects based upon users’ identities or a mem-
bership in certain groups. DAC model is generally less secure than
MAC model, so it is used in environments that do not require a
high level of protection [6]. DAC has many side-effects when it is
utilized in cloud computing, for example, it does not have the abil-
ity to control information flow or deal with Trojan horses that can
inherit access permissions [16]; a user may pass her rights to an-
other user, and that can violate the integrity and confidentiality of
objects; and finally, it is not scalable enough for cloud computing.
Hierarchical RBAC Model [17]: Role-Based Access Control
(RBAC) model is considered as a natural way to control access to
resources in organizations and enterprises. The motivation behind
RBAC comes from considering “a subject’s responsibility is more
important than whom the subject is”.
RBAC fails to cope with the following issues: the dynamic/random
behaviors of users; it also does not consider the time and location
constraints; it does not support active responsibilities as it does not
separate tasks form roles; it has to deal with a lack of sophisti-
cated semantic models to represent and communicate privileges;
and before utilizing the RBAC in cloud computing, it has to ensure
granting access decisions in a reasonable time.
ABAC Model [1]: Attribute Based Access Control (ABAC) model
relies on a set of attributes associated with a requester or a resource
to be accessed in order to make access decisions. There are many
ways to define or use attributes in this model. An attribute can be
a user’s work start date, a location of a user, a role of a user, or all
of them. Attributes may or may not be related to each other. How-
ever, reaching an agreement about what kind of attributes should
be used, and how many attributes are taken into account for mak-
ing access decisions is a complex task in cloud computing [7]. Fi-
nally, proposing a security policy that can work accurately with the
ABAC model is vital, because the security policy is responsible for
selecting appropriate attributes that are utilized to make correct ac-
cess decisions.
Risk-BAC Model [3]: Risk-Based Access Control (R-BAC) was
proposed by Brucker et al. to cope with multinational organizations
that face various kinds of policies and regulations. R-BAC uses dif-
ferent kinds of risk levels with environmental conditions and uti-
lizes the principle of ”operational need” to make access decisions.
However, R-BAC is difficult to be deployed in cloud computing
because of the amount of analysis required and the number of sys-
tems to be merged to compute risk levels. It needs expertise that can
deal with the model efficiently. Finally, security policies and envi-
ronmental conditions need to be standardized as they play a crucial
role on making access decisions.

3. ATTRIBUTE-RULES ABAC (AR-ABAC) ACCESS
CONTROL MODEL OVERVIEW

AR-ABAC is the backbone of this paper access control model that
is proposed by Riad et. al [15]. AR-ABAC uses the formal ABAC
definition and support the use of a new notion proposed by the au-
thors called the Attribute-Rules (AR), which consists of User-Rules

10



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

(UR) and Object-Rules (OR). AR can deal with the association be-
tween users and objects, as well as the capability for accessing ob-
jects based on their sensitivity levels. Also it can specify an agree-
ment that determines what kind of attributes should be used and
the number of attributes considered for making access decisions.
In addition, the AR-ABAC model ensures secure resource shar-
ing among potential untrusted tenants and supports different access
permissions to the same user at the same session. The model con-
sists of two parts: the users and subjects’ side and the objects side.

Users
(U)

User 
Attributes

Policy
(Po)

UAA SAA ARH

R1

.

.

.

.

.

.

Ri

Rn

Tasks 
(T)

User-Rules 
(UR)

Environment 
Conditions
(E-Cond)

Se
ss

io
n 

A

Constraints
(Cons)

Subjects
(Su)

P
erm

issio
n

s (P
)

Fig. 1. The attribute-rule attribute based access control (AR − ABAC)
model users and subjects’ side.

In the users and subjects’ side (Fig. 1), each user and subject is
assigned a set of user attributes using the User Attribute Assign-
ment (UAA) function and the Subject Attribute Assignment (SAA)
function respectively. Then there is a set of internal and dynamic
assignment functions, for assigning roles, tasks and permissions,
as follows:

• Role User Assignment (RUA) - it is a function used to assign
each user a set of roles, based on the possessed attributes by the
user and the user-rules (UR): ∀ui ∈ U → ∃{ri} ⊆ R that can
be assigned to ui.
• Task Role Assignment (TRA) - it is a function used to assign

each role a set of tasks, based on the user-rules (UR): ∀ri ∈
R→ ∃{ti} ⊆ T that can be assigned to each ri ∈ {ri}.
• Permission Task Assignment (PTA) - it is a function used to

assign each task a set of permissions, based on the user-rules
(UR), object-rules (OR): ∀ti ∈ T → ∃{pi} ⊆ P that can be
assigned to each ti ∈ {ti}.

It should be mentioned that the role user assignment (RUA), task
role assignment (TRA), and permission task assignment (PTA)
are done internally and dynamically using other helping factors
(user-rules (UR), policy (Po), constraints (Cons) and environment
conditions (E −Cond)) without the user or administrator interfer-
ence, so it is very fast and the possibility of error seems to be zero.

In the objects side (Fig. 2). each object (o ∈ O) can be assigned a
set of object attributes that represents its sensitivity level using the
Object Attribute Assignment (OAA) function:
∀oj ∈ O → ∃ a finite set of object attributes (ojA ⊆ OA), where
the sensitivity levels classification and assignment processes are de-
fined as follows:

Object-Rules (OR)

Object
 Attributes

Objects
(O)

OAA
SL

Policy
(Po)

Environment 
Conditions
(E-Cond)

L1

.

.

.

.

.

.

Li

Ln

Fig. 2. The attribute-rule attribute based access control (AR − ABAC)
model objects’ side.

• Sensitivity Levels (SL) - it is a function used to assign each ob-
ject a single sensitivity level from a set of security sensitivity
levels, based on the object-rules (OR), the model policy and the
environment conditions (E−Cond), then restrict object’s access
according to their sensitivity level: ∀oi ∈ O → ∃ a sensitivity
level senli ∈ SenL that can be assigned to oi.

• Object Attribute Assignment(OAA) - it is a function used to as-
sign the attribute name and value pairs for each object, based on
OR: ∀oi ∈ O → ∃ one or more ori ∈ OR that can be assigned
to oi.

It should be mentioned that the model object’s side is scalable
enough to deal with a large number of objects, by classifying them
using the sensitivity levels (SL) function, that can classify the ob-
jects into different sensitivity levels in a reasonable time.

4. IMPLEMENTATION AND ANALYSIS
4.1 Implementation on OpenStack and OpenDaylight
OpenStack is an open-source solution for creating and managing
cloud infrastructures [14]. OpenStack controls large pools of com-
pute, storage, and networking resources throughout a datacenter,
managed through a dashboard or via the OpenStack API. Open-
Stack works with popular enterprise and open source technologies
making it ideal for heterogeneous infrastructure. While OpenDay-
light (ODL) [12] is a highly available, modular, extensible, scal-
able and multi-protocol controller infrastructure built for SDN de-
ployments on modern heterogeneous multi-vendor networks. SDN-
ODL provides a model-driven service abstraction platform that al-
lows users to write apps that easily work across a wide variety of
hardware and south-bound protocols. Providing more details about
OpenStack and SDN-ODL is out of the scope of this paper.
The integration of OpenStack and SDN-OpenDaylight (SDN-
ODL) is a hot topic. SDN-ODL has driver for Neutron ML2 (Mod-
ular Layer 2) plugin to enable communication between OpenStack-
Neutron and SDN-ODL. On the SDN controller side, SDN-ODL
has northbound APIs to interact with Neutron and use OVSDB
(Open vSwitch Database Management Protocol) for southbound
configuration of vSwitches on compute nodes. Thus SDN-ODL can
manage network connectivity and initiate GRE or VXLAN tunnels
for compute nodes.
The author’s next motivation is to implement their extended access
control model based on their SDN-integrated private cloud envi-
ronment. Where their private cloud environment is based on the

11



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

1
7

2.1
6

.1
0

.3
1

1
7

2.1
6

.1
0

.2
1

10.0.10.21 10.0.10.31

10.0.10.11

V
LA

N
: 17

2.16
.10

.0/24

Controller Node

Network Node Compute Node

eth0 eth1 eth2

eth0

eth1

eth2 eth0

eth1

Keystone, Glance, Nova, 
Neutron, Horizon, Cinder 

Nova ComputeNeutron

Internet

222.28.78.244

eth2

VM Internet 
Access 

(10.0.10.101:

10.0.10.200)

VLAN: 10.0.10.0/24 EAR-ABAC

The Model Policy-Engine

The SDN-ODL Controller

10.0.10.100

10.0.10.50

Fig. 3. The author’s private cloud environment: OpenStack is installed on
three physical machines, the SDN-OpenDaylight controller virtual machine
and the EAR-ABAC policy engine virtual machine.

prominent IaaS platform OpenStack and the SDN-OpenDaylight
controller, as shown in Fig. 3.
In this figure the OpenStack is installed on three physical machines.
The authors install one controller node, one network node and
one compute node. The configuration of controller node and net-
work node is: 48 cores CPU, 128 GB RAM and 5 TB disk and
the configuration of the Nova compute node is: 24 cores CPU,
128 GB RAM and 2 TB disk. There are four networks in this
installation: (i) VLAN: 10.0.10.0/24 is the management network
which connects different components of OpenStack; (ii) VLAN:
172.16.10.0/24 is the instance tunnels network which connects
the Network and Compute1 nodes; (iii) The VM Internet Access
(10.0.10.101: 10.0.10.200) network which connects virtual ma-
chines with the Internet; and (iv) Controller node’s eth0 network
interface shows the access to the Internet which is only accessi-
ble by Controller node, where the Network and Compute node can
connect the Internet through the Controller node’s eth1 network
interface. According to the SDN-ODL controller, the SDN-ODL
controller has been implemented on a separate virtual machine con-
nected to VLAN: 10.0.10.0/24, which has dual core CPU, 8 GB
RAM, 80 GB disk and eth0 IP:10.0.10.100/24. Finally the EAR-
ABAC policy-engine has been implemented on a separate virtual
machine which has dual core CPU, 4 GB RAM, 20 GB disk and
eth0 IP:10.0.10.50/24.

4.2 Experimental Verification

In order to verify the EAR-ABAC access control model in the SDN-
integrated cloud IaaS, as shown in Fig. 4. The figure illustrates:
three types of users (cloud root user, tenant root user and normal
tenant users). The connection between cloud root user and the ten-
ant root user indicates that the extended model supports multiple
tenants and all are under full management by the cloud root user.
The connection between the tenant root user and the normal users,
indicates that each tenant has full management to it’s users. The
cloud IaaS service is represented in the Database server, the Email
server and the VM server as well as a set of virtual machines. Be-
tween the users and the IaaS there is a very important machine, that
represents EAR-ABAC policy-engine.
The formal description of the basic functions and operations for
both cloud root user and tenant root user is summarized in Table 1.
This table illustrates a set of basic operations (24 functions) and
its updates, where the cloud root user has three functions and the
tenant root user has six categories represented by 21 functions. The
API of EAR-ABAC model, that consists of these 24 functions, re-

Cloud 
Root User

Tenant 
Root User

Tenant 
Normal Users

The Model 
Policy-Engine

Email
Server

Database 
Server

EAR-
ABAC

VM1

VM2

VMi

VMn
The VM 
Server

IaaS

Fig. 4. The AR-ABAC in cloud IaaS, where EAR-ABAC policy-engine is
implemented on a separate machine.

alizes a bridge between the tenant root users and cloud IaaS. Since
these functions are easy to understand, the tenant root users could
interact with the model’s API interface in the simplest possible way.
The author’s extended model can have a considerable impact on
controlling access to IaaS. EAR-ABAC access policies define roles
and tasks needed for each role. Each task is assigned the required
permissions to accomplish its job. The EAR-ABAC can restrict ac-
cess to cloud IaaS by four different ways:

• Each object can have its own sensitivity level. Thus, any task
attempting to access this object has to have enough power that
equals or dominates the sensitivity level of the object to be ac-
cessed.

• By restricting access to a number of outlined roles. Therefore,
the object do not have sensitivity level and be accessed by the
defined roles’ members.

• By giving access to the object according to tasks. Therefore, the
object does not have sensitivity level and be accessed by the de-
fined tasks only.

• The easiest way is ignoring the object’s sensitivity level and al-
lowing access to any authenticated user.

It should be mentioned that the model has no restrictions about IaaS
access ways that can be supported.
Finally, the authors already completed the EAR-ABAC integra-
tion with the Keystone, Nova and Neutron services of OpenStack.
Also the integration with SDN-ODL is already done. It should be
mentioned that when activating the SDN-ODL controller to con-
trol the cloud computing environment (SDN-integrated cloud), the
communication will be between the model policy engine and the
SDN-ODL controller not the OpenStack-Neutron. By using differ-
ent numbers of attributes (0, 4, 8, 12, 16, 20 and 24). Where zero
attributes means that the original OpenStack state. By sending con-
current requests (100, 200, 300, 400, 500 and 600), the results can
be represented into four different parts:

• Part one: Represents the time spent in token (a signed user cre-
dential) generation in OpenStack, with and without additional
user attributes, as shown in Fig. 5. Where including user at-
tributes in the token instead of the role information, requires a
longer time for token generation. The figure illustrates the re-
sponse time for token generation using different numbers of at-
tributes and sending different concurrent requests to keystone
and measuring the average response time at the client side. The
results show that: (i) for the same concurrent request, the average
time of token generation increases according to the number of
used attributes; (ii) the keystone signing and transmission takes
longer time to finish, but the increase is not significant (about

12



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

Table 1. The basic operations for cloud root user and the tenant root user in the extended access control model.
User Operations Updates

createTenant(req : CRU, tenant : NAME) T ∪ = {tenant}
Cloud Root User deleteTenant(req : CRU, tenant : T ) T \ = {tenant}

createRootUser(req : CRU,u : NAME, tenant : T ) TRU = {u}
createUserAttr(req : TRU,ua : NAME, type : {atomic, set}) UA ∪ = {ua}|attType(ua) = type
createSubAttr(req : TRU, sua : NAME, type : {atomic, set}) SuA ∪ = {sua}|attType(sua) = type

addSubConstr(req : TRU, policy : POLICY ) SuConstr ∪ = {policy}
deleteSubConstr(req : TRU, policy : POLICY ) SuConstr \ = {policy}
UserAttrMod(req : TRU,ua : NAME, value : {atomic, set}) ua ← value
SubAttrMod(req : TRU, sua : NAME, value : {atomic, set}) sua ← value

UserAttrSync(req : TRU,ua : UA) UA 	= UA
SubAttrSync(req : TRU, sua : SuA) SuA 	= SuA
createObjAttr(req : TRU, oa : NAME, type : {atomic, set}) OA ∪ = {oa}|attType(oa) = type

Tenant Root User addObjConstr(req : TRU, policy : POLICY ) ObjConstr ∪ = {policy}
deleteObjConstr(req : TRU, policy : POLICY ) ObjConstr \ = {policy}
addAuthorization(req : TRU, policy : POLICY ) ObjConstr ∪ = {policy}
deleteAuthorization(req : TRU, policy : POLICY ) ObjConstr \ = {policy}
createAdminRole(req : TRU, role : NAME) AdminR ∪ = {role}
deleteAdminRole(req : TRU, role : NAME) AdminR \ = {role}
createAdminPolicy(req : TRU, policy : POLICY ) AdminP ∪ = {policy}
deleteAdminPolicy(req : TRU, policy : POLICY ) AdminP \ = {policy}
addAdminUser(req : TRU,u : NAME) TAU ∪ = {u}
deleteAdminUser(req : TRU,u : NAME) TAU \ = {u}
addAdminUserRole(req : TRU,u : TAU, r : AdminR) RUA ∪ = {(u, r)}
deleteAdminUserRole(req : TRU,u : TAU, r : AdminR) RUA \ = {(u, r)}

CRU - Cloud Root User, TRU - Tenant Root User, TAU - Tenant Admin Users and RUA - Role User Assignment.

0 4 8 12 16 20 24
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Used Attributes

K
ey

st
on

e 
R

es
po

ns
e 

T
im

e 
in

 S
ec

on
ds

 

 
100
200
300
400
500
600

Fig. 5. The average time for token generation in Keystone OpenStack,
including and excluding the user attributes.

25% with increasing the number of attributes from 0 to 24.); (iii)
finally because of the keystone internal scheduling mechanism,
at the same number of attributes, the time do not increase with
the concurrent requests.
• Part two: Represents the time spent by Nova service in com-

municating the EAR-ABAC Policy-Engine machine, as shown
in Fig. 6. The figure illustrates the network latency in commu-
nicating the EAR-ABAC Policy-Engine using different numbers
of attributes and sending different concurrent requests from the
Nova service to the EAR-ABAC Policy-Engine machine. The
results show that: (i) the latency increases with increasing the
number of concurrent requests at the same number of used at-
tributes, since there are too many requests have to be evaluated;
(ii) using 24 attributes, the average time for 600 concurrent re-
quests is around 1.9 times of the time of 100 concurrent requests.
While for zero attributes, the time for 600 concurrent requests is
around 1.38 times of the time for 100 concurrent requests.
• Part three: Represents the time spent by Neutron service

in communicating the EAR-ABAC Policy-Engine machine, as
shown in Fig. 7 The figure illustrates the network latency in com-

0 4 8 12 16 20 24
0

1

2

3

4

5

6

7
x 10

−3

Number of Used Attributes

N
ov

a 
R

es
po

ns
e 

T
im

e 
in

 S
ec

on
ds

 

 
100
200
300
400
500
600

Fig. 6. The average time for Nova communicating the EAR-ABAC
Policy-Engine machine, including and excluding the user attributes.

municating the EAR-ABAC Policy-Engine using different num-
bers of attributes and sending different concurrent requests from
the Neutron service to the EAR-ABAC Policy-Engine machine.
The results show that: (i) the latency increases with increasing
the number of concurrent requests at the same number of used
attributes, since there are too many requests have to be evalu-
ated; (iii) using 24 attributes, the average time for 600 concur-
rent requests is around 2.16 times of the time of 100 concurrent
requests. While for zero attributes, the time for 600 concurrent
requests is around 1.355 times of the time for 100 concurrent
requests.

• Part four: Represents the time spent by SDN-ODL controller
in communicating the EAR-ABAC Policy-Engine machine, as
shown in Fig. 8. The figure illustrates the network latency in
communicating the EAR-ABAC Policy-Engine using different
numbers of attributes and sending different concurrent requests
from the SDN-ODL controller to the EAR-ABAC Policy-Engine
machine. The results show that: (i) the latency increases with in-
creasing the number of concurrent requests at the same number
of used attributes; (ii) finally using 24 attributes, the average time

13



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

0 4 8 12 16 20 24
0

1

2

3

4

5

6

7
x 10

−3

Number of Used Attributes

N
eu

tr
on

 R
es

po
ns

e 
T

im
e 

in
 S

ec
on

ds

 

 
100
200
300
400
500
600

Fig. 7. The average time for Neutron communicating the EAR-ABAC
Policy-Engine machine, including and excluding the user attributes.

for 600 concurrent requests is around 2.04 times of the time of
100 concurrent requests. While for zero attributes, the time for
600 concurrent requests is around 1.357 times of the time for 100
concurrent requests.

0 4 8 12 16 20 24
0

1

2

3

4

5

6

7
x 10

−3

Number of Used Attributes

O
pe

nD
ay

lig
ht

 R
es

po
ns

e 
T

im
e 

in
 S

ec
on

ds

 

 
100
200
300
400
500
600

Fig. 8. The average time for SDN-ODL controller communicating the
EAR-ABAC Policy-Engine machine, including and excluding the user at-
tributes.

Finally the results indicate that the difference in average response
time between the normal OpenStack (Zero attributes used) state
and using the EAR-ABAC model attributes exist but it is too small.
Also the difference in average response time when communicat-
ing the SDN-OpenDaylight is smaller than that when communi-
cating the OpenStack Neutron service. So they can say that the
EAR-ABAC can be used faster with the SDN-integrated cloud than
when it is used with the normal cloud environment. This is related
to the different nature between the OpenDaylight controller and the
OpenStack-Neutron service.

4.3 Validation Analysis
In order to validate the extended model, the authors have to com-
pare it with the conventional and latest proposed access control
models for cloud computing. The comparison is based on a set
of security features that represents the basic requirements for a
cloud computing access control model and either the EAR-ABAC
or other models can support, as shown in Table 2. Where each fea-
ture can be motivated and supported by EAR-ABAC or other mod-
els as follows:

• Scalability: The EAR-ABAC is scalable enough to deal with
large numbers of users and also administrators. By using the
role and task principles, which can classify the users to a set
of roles each with it’s own power to be able to access different
objects based on the objects’ sensitivity level. There is only an
approach [11] which uses both principles, but it does not mention
how administrator scalability can be ensured, and also is based
on RBAC model. On the objects’ side, EAR-ABAC is also scal-
able enough to deal with large numbers of objects, by classifying

them based on the sensitivity levels (SL) function, that can clas-
sify the objects into different sensitivity levels.

• Heterogeneity: Since cloud services are delivered by a vast
number of diverse technologies and mechanisms, which can
cause heterogeneity threats [4]. Hence, heterogeneity in cloud
computing can come as a result of differences at various lev-
els, either software or hardware levels. Heterogeneity can also
happen due to different types of mechanisms, domains and poli-
cies being used. The policy (Po) in EAR-ABAC that represents
the attribute dominance relations, can cope with heterogeneity
caused by security policies [15]. It should be noted that Sun et
al. [18] used the ontology principle to deal with the heterogeneity
issue.

• Auditing: To secure cloud computing and access control sys-
tems used in it. In access control systems, audit has to monitor a
system’s current state, record any failure to formulate a decision
and report any attempt to violate the access policy or alteration
of privileges. Moreover, it has to track and keep records about
granted capabilities to subjects and any change applied to ob-
jects such as renaming, copying and deleting. the EAR-ABAC is
based on the attribute-rules [15] for both users/ subjects and ob-
jects, Hence any change for any value of the subject’s attributes
will be recorded because it will change the subject capabilities.
Also the same for the objects any change for any value of the
object’s attributes will be recorded, and change the object’s sen-
sitivity level. So the authors consider it as dynamic auditing.

• Assign and ease of privileges: Whenever, a small number of
steps are required to assign or ease privileges, a number of mis-
takes can be reduced due to either human or system errors.
In the extended model the role user assignment (RUA), task
role assignment (TRA), and permission task assignment (PTA)
are done internally and dynamically using other helping factors
without the user or administrator interference, so it is very quick
and the possibility of error seems to be zero.

• Flexibility in attribute management: Reaching an agreement
about what kind of attributes should be used, and how many at-
tributes should be taken into account for making access decision
is a complex task [7]. AR-ABAC [15] overcomes this issue using
the attribute-rules.

• Policy management: The extended model can support the pol-
icy (Po) that represents a set of partial ordering relations on all
user and object attributes, called the attribute hierarchies or at-
tribute dominance relations. It can regulate and organize the re-
lations between users.

• While: Least of permissions (LoP ), Delegation of capabili-
ties (DoC), Separation of duties (SoD), and File syncing and
sharing (FSS) are supported by the AR-ABAC list of con-
straints [15].

Also there are some important concerns for the SDN-integrated
cloud computing access control model, that should be taken into
account, such as:

• The service providers and users are likely to be in different secu-
rity domains.

• The dynamic and random behaviors of users are a big concern
and challenge for access control systems developers, as users
have no time or location restrictions.

The extended model as shown in Fig. 1 and Fig. 2 can deal with the
previous concerns by using the following concepts:

14



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

Table 2. The EAR-ABAC against the current access control models.
No. Access Control Requirements Current Access Control Models

M
A

C
[2]

D
A

C
[8]

R
B

A
C

[17]

R
-B

A
C

[3]

W
ang

etal.[21]

C
oR

B
A

C
[19]

O
-R

B
A

C
[20]

A
R

B
A

C
[10]

T-R
B

A
C

[11]

Sun
etal.[18]

A
B

A
C

[1]

A
C

3
[22]

E
A

R
-A

B
A

C

1. Scalability ? ? X • X X X X X X • X X
2. Heterogeneity ? ? ? X ? ? ? ? X X ? X X
3. Auditing X X X X X X X X X X X X X
4. Assign and ease of privileges ? ? ? ? X ? ? ? ? ? ? ? X
5. Flexibility in attribute management ? ? ? ? ? ? ? ? ? ? ? ? X
6. Least of permissions ? ? X X X X X X X X X X X
7. Delegation of capabilities ? X ? ? ? X ? ? ? ? ? X X
8. Separation of duties ? ? X • X X X X X X X X X
9. File syncing and sharing ? ? ? ? ? ? ? ? ? ? ? ? X
10. Policy management ? ? ? X ? ? X ? ? ? ? X X
X - Supported, ? - Unsupported, and • - Not applicable.

• Attribute-Rules, which can set an agreement about kind of at-
tributes should be used, and number of attributes considered for
making access decision, thorough sequence of steps [15].
• Task is another function used in AR-ABAC to restrict permis-

sions and access assigned to roles. Where each user within the
system is assigned a role; roles are given tasks that have permis-
sions, and the task inherits it’s power to access an object form the
assigned role. Finally the task can access an object if and only if
it’s power dominates or equal the object’s sensitivity level.
• Sensitivity levels are used in the extended model to classify

the objects according to the possessed object attributes, object-
rules, and environment conditions. Hence any task or process
employed by a task need enough power to access objects, as
there should be no access to any object without a power equal
or dominate to the objects’ sensitivity levels.

5. RELATED WORK
Since cloud computing has its own characteristics and features such
as mobility and on-demand services, the traditional access control
methods can not be used for cloud computing due to several chal-
lenges: access control must be dynamic to adapt to the dynamic
nature of cloud computing resources joining and leaving; access
control should inherit existing security policy among the clouds;
in an open cloud computing environment, each resource node may
not be familiar (even do not know) each other, identity-based se-
curity can not be used; and so on. Hence, cloud providers need
a strengthened access control system for controlling admission to
their resources with precisely monitoring who accesses them.
There are many access control models presented by researchers for
cloud computing. In this section, a brief discussion of various pro-
posed cloud access control models has been presented:
Wang et al. [21]: Suggested an adaptive access algorithm by intro-
ducing the trust into cloud computing to decide the access control
to the resources using an improved RBAC technique. The trust level
is updated and changed automatically by the trust management sys-
tem according to evolution done by clouds after each transaction.
Tianyi et al. [19]: Proposed coRBAC that is a specifically opti-
mized RBAC system for cloud computing. It inherits the existing
RBAC’s role model and distributed RBAC’s domain model, and op-
timizes and improves the access control system for services which
are hosted on the cloud computing platform. The coRBAC imple-

ments an internal RBAC in each organization, and there is only one
manager role in each internal RBAC.
Tsai and Shao [20]: Proposed an RBAC model using a role on-
tology for Multi-Tenancy Architecture (MTA) in clouds. The on-
tology is used to build up the role hierarchy for a specific domain.
In this approach, a subject can have multiple roles in different ses-
sions. Also, a role hierarchy is based on domain ontology and can
be transferred between various ontology domains.
Mon and Naing [10]: Proposed a privacy enhancement system
on academic-based private cloud system using Eucalyptus open
source cloud infrastructure. They attempted to guarantee privacy
of cloud’s users and security of the personal data, by combining
RBAC and ABAC together.
Narayanan and Giine [11]: Adapted Task-Role Based Access
Control (T-RBAC) with constraints such as least privilege, sepa-
ration of duty, delegation of tasks, and spatial and temporal access.
Permissions are activated or deactivated according to the current
task or process state.
Sun et al. [18]: Presented a semantic based access control model,
which considers semantic relations among different entities in
cloud computing. They extended the RBAC model using seman-
tic web environments and utilized the semantic scopes of subjects,
objects, actions and attributes to define the relations used in ontolo-
gies.
Younis et al. [22]: Proposed an access control model for cloud com-
puting called AC3. The AC3 has three different levels of security,
which can be used according to the level of trust. It supports vari-
ous sensitive levels of information in order to restrict who can read
and modify information in the cloud.

6. CONCLUSION AND FUTURE EXTENSIONS
In this paper, the authors have extended the AR-ABAC access
control model proposed by them earlier [15], to be used with the
SDN-integrated cloud computing environments. The extended AR-
ABAC is a new access control model for the SDN-integrated cloud
computing environments, this model has a set of features that dis-
tinguish it from other traditional and current models proposed for
cloud computing environments:

• The model can define an agreement on the attributes should be
used and number of attributes should be taken into account for
making access decisions;

15



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

• It provides four different ways to access the cloud IaaS;

• It has been integrated with the OpenStack Neutron service;

• The model has been integrated with the SDN-OpenDaylight con-
troller and can work well with it;

• The EAR-ABAC provides the basic operations for the cloud root
user and the tenant root user; and also have the ability to work
with other types of controllers such as Floodlight [5].

The experimental results have shown that the EAR-ABAC is suit-
able for the SDN-integrated cloud IaaS. Where the difference in av-
erage response time between the normal OpenStack (Zero attributes
used) state and using the EAR-ABAC model attributes exist but it
is too small. Also the difference in average response time when
communicating the SDN-OpenDaylight is smaller than that when
communicating the OpenStack-Neutron service. So the authors can
say that the extended EAR-ABAC can be used faster with the SDN-
integrated cloud than when it is used with the normal cloud envi-
ronment. This is related to the different nature between the Open-
Daylight.
Finally the future extensions for this work can be in two di-
rections. The first one is to integrate that model with the SDN-
FloodLight [5] controller. Although the SDN-OpenDaylight and
the SDN-FloodLight controllers both are Java-core, but there is big
differences between them. The second direction is to try integrating
this extended access control model with other OpenStack services
such as: Horizon and Swift.

Acknowledgment
The authors would like to thank the National Natural Foundation
of China for partly supporting this work (Grant No. 61472032 and
61170264).

7. REFERENCES

[1] M.A. Al-Kahtani and R. Sandhu. A model for attribute-based
user-role assignment. In 18th Annual Computer Security Ap-
plications Conference, 2002. Proceedings, pages 353–362,
2002.

[2] D. Bell and Len LaPadula. Secure computer systems: math-
ematical foundations. Bedford, MA. Retrieved February 04,
2013, from: Secure computer systems: mathematical founda-
tions; 1973.

[3] Achim D. Brucker, Lukas Brügger, Paul Kearney, and
Burkhart Wolffy. An approach to modular and testable secu-
rity models of real-world health-care applications. In SAC-
MAT’11. Proceedings of the 16th ACM symposium on Access
Control Models and Technologies, pages 133–142. SACMAT,
2011.

[4] S. Crago, K. Dunn, P. Eads, L. Hochstein, Dong-In Kang,
Mikyung Kang, D. Modium, K. Singh, Jinwoo Suh, and J. P.
Walters. Heterogeneous cloud computing. In 2011 IEEE In-
ternational Conference on: Cluster Computing (CLUSTER),
pages 378–385, September 2011.

[5] Project Floodlight: Open Source Software for Build-
ing Software-Defined Networks. Available online:
http://www.projectfloodlight.org/floodlight/. (accessed
on 6 December 2015).

[6] S. Harris. Mike meyers cissp(r) certification passport. first
edition. United States: McGraw-Hill, page 422, 2002.

[7] Xin Jin, Ram Krishnan, and Ravi Sandhu. Data and Appli-
cations Security and Privacy XXVI, volume 7371 of Lec-
ture Notes in Computer Science, chapter A Unified Attribute-
Based Access Control Model Covering DAC, MAC and
RBAC, pages 41–55. Springer Berlin Heidelberg, 2012.

[8] Butler W. Lampson and Palo Alto. Acm sigops operating sys-
tems review. SIGOPS ACM Special Interest Group on Oper-
ating Systems, ACM New York, NY, USA, 8(1):18–24, 1974.

[9] Peter Mell and Timothy Grance. The nist definition of cloud
computing. Special Publication 800-145, U.S. Department of
Commerce, October 2012. National Institute of Standards and
Technology.

[10] Ei Ei Mon and Thinn Thu Naing. The privacy-aware access
control system using attribute-and role-based access control
in private cloud. In 4th IEEE International Conference on:
Broadband Network and Multimedia Technology (IC-BNMT),
pages 447–451, October 2011.

[11] H. A. J. Narayanan and M. H. Giine. Ensuring access con-
trol in cloud provisioned healthcare systems. In Consumer
Communications and Networking Conference (CCNC), 2011
IEEE, pages 247–251, January 2011.

[12] OpenDaylight (ODL). Available online:
http://www.opendaylight.org/. (accessed on 6 December
2015).

[13] Open Networking Foundation (ONF). Available online:
https://www.opennetworking.org. (accessed on 6 December
2015).

[14] OpenStack. Available online: https://www.openstack.org/.
(accessed on 6 December 2015).

[15] Khaled Riad, Zhu Yan, Hongxin Hu, and Gail-Joon Ahn. Ar-
abac: A new attribute based access control model supporting
attribute-rules for cloud computing. In 2015 IEEE Interna-
tional Conference on Collaboration and Internet Computing
(CIC 2015), pages 28–35, October 2015.

[16] Pierangela Samarati and Sabrina Capitani de Vimercati. Foun-
dations of Security Analysis and Design, volume 2171 of
Lecture Notes in Computer Science, chapter Access Control:
Policies, Models, and Mechanisms, pages 137–196. Springer
Berlin Heidelberg, 2001.

[17] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model for
role-based access control: Towards a unified standard. In 5th
ACM Workshop on Role-Based Access Control, pages 47–63.
ACM, July 2000.

[18] Lili Sun, Hua Wang, Jianming Yong, and Guoxin Wu. Seman-
tic access control for cloud computing based on e-healthcare.
In 16th International Conference on: Computer Supported
Cooperative Work in Design (CSCWD), 2012 IEEE, pages
512–518, May 2012.

[19] Zhu Tianyi, Liu Weidong, and Song Jiaxing. An efficient role
based access control system for cloud computing. In 11th In-
ternational Conference on: Computer and Information Tech-
nology (CIT), 2011 IEEE, pages 97–102, Augest 2011.

[20] Wei-Tek Tsai and Qihong Shao. Role-based access-control
using reference ontology in clouds. In 10th International
Symposium on: Autonomous Decentralized Systems (ISADS),
pages 121–128, March 2011.

[21] Wenhui Wang, Jing Han, Meina Song, and Xiaohui Wang.
The design of a trust and role based access control model in

16



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

cloud computing. In 6th International Conference on: Perva-
sive Computing and Applications (ICPCA), pages 330–334,
October 2011.

[22] Younis A. Younis, Kashif Kifayat, and Madjid Merabti. An
access control model for cloud computing. Journal of Infor-
mation Security and Applications, 19(1):45 – 60, 2014.

17


	Introduction
	Traditional Access Control models and their Abilities to be Applied for Cloud Computing
	Attribute-Rules ABAC (AR-ABAC) Access Control Model Overview
	Implementation and Analysis
	Implementation on OpenStack and OpenDaylight
	Experimental Verification
	Validation Analysis

	Related Work
	Conclusion and Future Extensions
	References

