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SpeakQL:  SQL Generation from Natural Language 

ABSTRACT 
In recent years, there has been growing interest in the 

complex task of converting natural language into SQL 

queries. This challenge typically involves using sequence-

tosequence models, which require the serialization of SQL 

queries. However, a fundamental issue arises as a single SQL 

query can have multiple valid serializations, leading to the 

‘order matters’ problem and making it difficult to train such 

models effectively. While existing state-of-the-art methods 

turn to reinforcement learning to address this issue, their 

success is limited. This paper presents SpeakQL, a novel 

approach tailored to scenarios where query order is not 

critical. SpeakQL adopts a sketchbased strategy, incorporating 

a dependency graph into its model architecture to consider the 

influence of prior predictions on current ones. Furthermore, 

SpeakQL utilizes GloVe embeddings and a column attention 

mechanism to enhance contextual comprehension, ultimately 

improving the query generation and result retrieval process. 

Keywords 
Machine Learning, Deep Learning, Recurrent Neural 

Networks (RNN), Long Short-Term Memory (LSTMs), 
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1. INTRODUCTION  
In today’s landscape, relational databases house a wealth of 

information, and SQL query proficiency is essential for 

database navigation. NLP stands at the intersection of Human-

Computer Interaction and AI, serving tasks like information 

retrieval and language analysis. NLP aims to enable seamless 

communication between humans and computers by 

eliminating the need for memorizing complex commands. 

Accessing data in databases via natural language offers a 

convenient solution, especially for users unfamiliar with SQL. 

This system addresses challenges in handling natural language 

text and speech, allowing users to articulate queries in plain 

language. NLP plays a pivotal role, striving to make 

computers understand and generate natural language. Our goal 

is to enhance decision-making through data use, simplifying 

interactions by converting natural language into SQL, much 

like Google Translate does for languages. 

The Natural Language Interface (NLI), bridging natural 

language processing (NLP) and human-computer interaction, 

enables conversational interactions with computers. Our focus 

is on the automatic generation of structured query language 

(SQL) queries for relational databases. While SQL is the 

standard language for interacting with databases, it poses 

challenges due to its complexity. Our work introduces a 

natural language interface for relational databases, allowing 

users to communicate with databases in plain language, rather 

than relying on SQL. 

In proposed approach, the objective is to use the disciplined 

approach to handle the problem of creating string sets. Our 

approach avoids the ‘higher order’ problems in the sequential 

model and thus eliminates the need to use reinforcement 

learning algorithms to handle the problem of sequential 

generation limited to some extent. To achieve a better 

performance than existing sequence-to sequence-based 

approaches using sketch-based approach and column attention 

and incorporate the ability to accept any kind of natural 

language input requiring some database related information 

from the user and provide output consisting of the user’s 

required information with maximum accuracy. 

2. LITERATURE REVIEW 
Victor Zhong and his colleagues [1] employed a seq2seq 

(encoder-decoder) methodology, coupled with reinforcement 

learning, to provide incentives to the model based on its 

generated output. This augmented pointer network operates in 

a token-by-token manner, assembling the SQL query by 

selecting tokens from a concatenated input sequence. This 

input sequence comprises the column names essential for 

specifying the selection and condition columns within the 

query, the question pertinent to the query’s conditions, and the 

restricted SQL language vocabulary, encompassing keywords 

like SELECT, COUNT, and so forth. The SQL query is 

constructed through the execution of three distinct functions: • 

[1] Aggregate Operation - The aggregation operation depends 

on the Question [2] Select Column - Depends on the Table 

Columns and Question Input and the generation of the 

SELECT [3] Where Clause - Augmented Pointer Network is 

used to train and generate the WHERE clause depending on 

the input question. Cross entropy loss is used to train the 

network but it fails to optimize in case of conditions being 

swapped and yet it generates the same result. This review 

encompasses various implementations involving the 

utilization of the WikiSQL dataset for natural language query 

processing. In the work by Tao Yu et al. [2] they present a 

type-aware model that categorizes words into entity types 

such as knowledge graph, column, or number. This approach 

treats the task as slot filling, grouping slots logically and 

capturing attribute relationships. Their model employs a two-

bidirectional LSTM input encoder and operates on the 

WikiSQL dataset, comprising 87,673 examples from 26,521 

tables. In practical scenarios, natural language queries often 

include rare, database-specific entities and numbers that lack 

accurate embeddings in pre-trained word embedding models. 

Furthermore, this model assumes exact column names and 

user query entries, which introduces privacy and security 

concerns. Yibo Sun et al. [3] focus on semantic parsing, 

translating natural language expressions into executable 

computer programs. They employ pointer networks to convert 

questions into continuous vectors, facilitating SQL query 

generation through three channels. This model determines 

when to generate column names, cells, or SQL keywords and 

incorporates column-cell relationships to enhance query 

structure. Pointer networks, originally introduced by Vinyals 
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et al. [4], have found success in various applications like 

reading comprehension, machine translation, and text 

summarization. However, the use of bidirectional RNNs with 

GRU units for question processing and column-cell 

relationship exploitation raises security and privacy 

considerations. Huang et al. [5] introduce a unique meta-

learning approach for generating SQL queries from natural 

language inputs. Meta-learning leverages metadata from 

machine learning experiments and departs from traditional 

supervised training in NLP by advocating for task-specific 

models for groups of similar examples. To transition from 

conventional supervised learning to few-shot meta-learning, 

they introduce a relevance function that clusters examples into 

pseudo-tasks. This problem-specific function is explained 

within the context of the semantic parsing problem, 

accompanied by an algorithm outline. Their work also 

leverages the WikiSQL dataset. Tong Guo et al. [6] adopt a 

distinct perspective by shifting their focus from SQL query 

generation to the extraction of data as answers to natural 

language questions. They employ semantic parsing within 

database-based question-answering systems, implementing 

this with BERT (Bidirectional Encoder Representations from 

Transformers). BERT, a contemporary language model, is 

pre-trained on extensive text data, rendering it adaptable for 

various tasks with the addition of just one output layer. This 

approach aims to directly retrieve answers from databases, 

thereby reducing the need for labor-intensive semantic 

parsing. Their implementation utilizing a BERT-based model 

produces baseline experimental results. 

2.1 Standard Approaches Analysis 

In natural language to SQL query conversion, a prevalent 

approach involves sequence-to-sequence models with 

reinforcement learning. An ongoing challenge is the 

importance of query order. To illustrate, consider sorting a set 

of random numbers by a specified criterion, generating n! 

valid permutations. When training with these uniformly 

selected permutations, the mapping assigns equal probability 

to all n! output configurations for a given input vector X, 

resulting in reduced statistical efficiency. Hence, constraining 

the output order as much as possible consistently yields better 

outcomes. 

                Fig 1. Seq-2-Seq with Column Attention  

          Fig 2. Seq2Seq with Reinforcement Learning 

2.2 Sketch Based Approach Analysis 

To address order-related challenges in sequence-to-sequence 

models, reinforcement learning is commonly used, but its 

impact can be limited. This study adopts a sketch-based 

approach to generate SQL queries, particularly focusing on 

the WHERE clause. This approach introduces two 

mechanisms: sequence-to-set prediction to handle unordered 

constraints and column attention to capture dependencies 

defined in the sketch during prediction.  

 
                    Fig 3. Encoder – Decoder Architecture 

3.  DESIGN AND IMPLEMENTATION 

The design and implementation define the requirements along 

with the use case, architecture, functionality, techniques and 

the components.  

3.1 Functional Requirements  

Functional requirements encompass calculations, technical 

details, data processing, and other specific functionalities that 

delineate a system’s objectives. Behavioral requirements, 

delineating system utilization based on these functional 

aspects, are encapsulated within use cases.  [1] Dynamic 

Nature - The system must handle diverse, complex natural 

language statements, proficiently identifying the keywords. It 

should extract and store pertinent information to generate 

queries based on input statements. [2] Output Generation - 

The system should discern keywords in statements and 

endeavor to generate corresponding SQL queries and outputs. 

[3] Functionalities - The classifier must adeptly employ both 

local and global discriminators for keyword classification. 

Model training should not only facilitate query generation but 

also optimize the output.  
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3.2 Non - Functional Requirements  

Non-functional requirements encompass aspects beyond 

system functionalities, addressing its overall performance and 

behavior. [1] Performance Requirements - Instead of 

sequentially generating column names, the model predicts the 

appearance of column names within a specified subset, 

computed as the probability Pwherecol [2] Reliability - 

Ensuring High Success Rate in Query Generation is 

imperative. The system must produce realistic outputs, even in 

complex inputs and adverse conditions, necessitating 

appropriate model training. [3] Security - Given the 

confidentiality of organizational data, stringent security 

measures must be in place. Data should be stored securely, 

adhering to principles of Confidentiality, Integrity, and 

Availability. [4] Scalability- The system must handle diverse 

inputs efficiently, including improper ones, while 

accommodating large datasets. 

3.3 Design Architecture  

System architecture defines the structure, behavior, and 

perspectives of a system. An architectural specification 

formalizes this, aiding understanding. It outlines the system’s 

flow, from raw input to module output. 

The system’s model processes user input, extracting keywords 

for query formation. GloVe embeddings, trained using the 

Stanford NLP core library, map these keywords to 

corresponding column names. Subsequently, employing a 

sketch-based slot filling approach, the application generates 

the pertinent query. The ODBC library is utilized to construct 

the final query for execution against the database. The raw 

query is also provided as output for user and developer 

verification of query accuracy.  

  

Fig 7. Architecture System Design 

3.4 Sketch Based Approach Components 

SpeakQL primarily focuses on slot filling within the sketch, 

eliminating the need to predict both output grammar and 

content. The sketch closely aligns with SQL grammar, and 

slot value prediction depends only on relevant slot values 

through directed dependencies in the sketch. Our model can 

be conceptualized as a graphical model based on this 

dependency graph, treating query synthesis as an interface 

problem on the graph. To handle more intricate SQL queries, 

we employ sketches supporting richer syntax.  

3.4.1 Sequence-to-set 

Our approach predicts the presence of column names in a 

subset, calculating the probability Pwherecol. It utilizes 

separate LSTMs for encoding column names and questions, 

with matching dimensions for vectors and embeddings.  

3.4.2 Column Attention 

In essence, deciding which column best fits the prediction of 

the actual column. For instance, the token "player" is more 

significant to predicting the column "player," but "number" is 

more relevant to predicting the column "no. 

Fig 8. Encoder – Decoder with Column Attention 

Architecture 

3.4.3 Selection of Column Slots 

After calculating column inclusion probabilities, SpeakQL 

selects the top-K columns with the highest probabilities for 

the WHERE clause and classifies the operator slot for each 

column, choosing from =, ¡, ¿ with column attention. 

3.4.4 Selection of Value Slots 

In this scenario, we employ a sequence-to-sequence 

architecture to generate the Substring, and the order of tokens 

within the VALUE slot holds significant importance. The 

procedure for selecting the column slot in the SELECT clause 

mirrors that of the WHERE clause, with the distinction that 

there is only one column to be chosen. 

3.5 Input Encoding Details  

In this process, the column name and the natural language 

description are regarded as a tokenized string. Every 

individual token is mapped to a distinct vector, which is then 

incorporated into a word embedding vector before being 

inputted into the bidirectional LSTM model. In this context, 

we make use of GloVe integration for word embeddings.  

3.6 Training Details  

The training details encompasses the input and the weight 

sharing details of the word integration.  

3.6.1 Input Encoding Model Details 

Column names and natural language descriptions undergo 

tokenization using the Stanford CoreNLP tokenizer, breaking 

them down into a sequence of tokens. Each token is then 

transformed into a one-hot vector before being passed through 

a word embedding vector and subsequently into the bi-

directional LSTM. The ‘GloVe’ word embedding is employed 

in this process.  

3.6.2 Weight Sharing Details 

 

Only word integration is shared by SQL Net components. In 

order to forecast various positions in the sketch, the model 

additionally includes numerous LSTMs. Better performance 

can be achieved by using different LSTMs to predict distinct 
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time slots at the same time. Training with word embeddings 

produces better results.  

3.7 Word Embedding Techniques 
In NLP, extracting valuable information from text using 

machine and deep learning techniques involves converting 

words and sentences into numerical vectors, known as Word 

Embeddings or Word Vectorization. This process maps 

vocabulary words or phrases to real-number vectors, 

facilitating tasks like word predictions and semantic analysis. 

Word Embeddings play a vital role in various NLP 

applications.  

[1] Compute similar words  

[2] Text classifications  

[3] Document clustering/grouping  

[4] Feature extraction for text classifications  

[5] Natural language processing.  

 

There are two Embedding techniques which are of interest to 

in order to accomplish the task of mapping related words: 

3.7.1 Word2Vector 
Word2vec consists of a family of shallow neural network 

models designed for generating word embeddings. These 

models analyze large text corpora and create high-

dimensional vector spaces where each word corresponds to a 

unique vector. The vectors are organized so that words with 

similar contextual usage in the corpus are positioned close 

together in the space.  

3.7.2 GloVe Embeddings 
GloVe, short for Global Vectors, is a model for word 

representation that transforms words into vectors based on 

their semantic relationships. This unsupervised learning 

approach uses co-occurrence statistics from a corpus to map 

words into a vector space, revealing meaningful linear 

structures. 

Developed as an open-source project at Stanford, GloVe 

combines global matrix factorization and local context 

window methods for word representation learning.  

 
Fig 9. GloVe Word Embedding 

3.8 Recurrent Neural Networks (RNN) 

Recurrent neural networks (RNNs) preserve information 

through loops, considering past outputs up to ‘t-1’ in the 

current decision. This memory feature is beneficial for tasks 

requiring recollection of previous experiences. In the context 

of query interpretation, two notable networks are relevant. 

3.8.1 Long Short-Term Memory Network  
LSTMs track long-term dependencies by retaining contextual 

information for extended durations through input, forget, and 

output gates.  

[1] Input Gate: The amount of information that we store in 

the current state is regulated by the input gate.  

[2] Forget Gate: The amount of information (memory from 

the past experience) that we discard is regulated by the forget 

gate.  

[3] Output Gate: The amount of information that should be 

exposed to the next state is regulated by the output gate.  

3.8.2 Gated Recurrent Units (GRUs) Network 
By storing contextual data for shorter periods of time and 

enabling information to go from one state to the next via the 

reset and update gates, the GRUs achieve the task of tracking 

long-term dependencies.  

[1] Reset Gate: This mechanism controls how much of our 

stored memories (from prior experiences) are erased.  

[2] Update Gate: The update gate controls how much data is 

revealed to the following state.  

 

LSTMs and GRUs differ in information flow control. LSTMs 

excel with extensive sequential data requiring selective 

information exposure, while GRUs are faster for shorter 

sequences. GRUs are preferred for speed and shorter data, 

while LSTMs are accurate for lengthy sequences. In image 

captioning, GRUs suit the task due to limited information 

exposure. However, in visual dialog tasks, LSTMs are favored 

for retaining lengthy dialog histories. 

4. RESULTS AND DISCUSSIONS  
The results and testing strategies along with current loopholes 

are discussed below. This comprises of Evaluation Dilemma 

and strategy adopted for testing.  

4.1 Testing  

The database currently used comprises three tables: students, 

marks, subjects, with a provided schema. The system extracts 

query keywords and maps them to columns to generate SQL 

queries using a slot-based approach. It handles added 

complexities like comparisons, multiple conditions, and 

structured clauses, as well as aggregate functions (SUM, 

AVG, MAX, MIN). It can handle one layer of complexity for 

joins and nested queries and incorporates the ’distinct’ 

keyword for refined output.  

4.1.1 Blackbox Testing 

Black-box testing focuses on meeting standards while hiding 

an application's internal workings. When used in machine 

learning, it functions without regard to model specifics. 

Finding an appropriate test oracle for result validation is the 

main obstacle. The steps involved in black box testing are as 

follows: [1] First, requirements and specifications are 

reviewed [2] Testers identify valid and invalid inputs to 

evaluate accuracy [3] They create test cases using the selected 

inputs [4] The test cases are run, and the software testers 

compare the expected and actual outputs. [5] Any flaws are 

rectified and retested.  
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                          Fig 10. Testing Output 

4.2 Evaluation Strategies 
Three metrics are available to us for assessing our model's 

performance:  

[1] Logical-form accuracy: To see if the generated SQL 

query and the ground truth match, we compare them.  

[2] Query-match accuracy: We create a canonical 

representation from the synthesized SQL query and the 

ground truth, then we compare if two SQL queries match 

exactly. The ordering problem can be resolved by using this 

metric to remove false negatives.  

[3] Execution accuracy: The degree to which the outcomes 

of the synthesis query and the ground truth query match.  

4.3 Evaluation Dilemma  

Due to the nuances in the nature of SQL queries, it is very 

common to witness two queries resulting in the same output.  

Moreover, the use of aliases further makes it difficult to 

evaluate the correctness of a query syntax.  

Lastly, complexities like JOIN A.id on B.id being as correct 

as JOIN B.id on A.id makes it difficult Thus, we stick 

evaluate the effectiveness of our model based on the 

correctness of the final set of tuples generated. 

5. CONCLUSION 
In conclusion, our innovative approach marks a significant 

stride toward democratizing database usage, bridging the gap 

for those unfamiliar with the intricacies of database queries. 

Leveraging processes like tokenization, parsing, and 

semantics, we seamlessly translate natural language queries 

into equivalent SQL commands. This predictive system not 

only discerns the user’s intent but also rigorously validates 

and executes the resulting query. To maintain peak 

performance, continuous updates to the system’s data 

dictionary, tailored to the specific domain, are imperative. Our 

system exhibits remarkable versatility, accommodating both 

straightforward and intricate queries. While it is a powerful 

tool for novice users to effectively manage databases, it’s 

worth noting that further development is necessary to 

encompass the entire spectrum of SQL query types. With our 

solution, navigating the world of databases becomes 

accessible and effortless for users of all backgrounds. 

6. FUTURE WORK 
Some upgrades to this working project can be inclusion of 

insert and update statements. To implement these features, 

more focus must be given on the schema of all tables to 

maintain consistency throughout the database. In addition to 

that, the project can be made updated to work with NoSQL 

databases. In RDBMS the integrity of systems is of prime 

importance, and a well-defined schema is provided 

beforehand to the model. However, in case of NoSQL 

databases, the extreme flexibility in the structure can make it 

difficult to create well defined constraints while training the 

model. While handling of such databases is beyond the scope 

of this project, it definitely opens the door for future research 

opportunities for others to explore further down this path. Last 

but not least, developing standardized universal metrics which 

can handle the complexity brought in by the subjective nature 

of SQL queries would also prove to be helpful for several 

such related projects. In sum, the above-mentioned areas can 

be tapped upon by the community for further research.  
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