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  ABSTRACT 
Generative adversarial networks (GANs) show promise for 
synthesizing realistic medical images; however, the quantitative 
evaluation of accuracy remains difficult. This study utilizes an 
auxiliary GAN to generate synthetic chest X-rays and then use 
these images to train a VGG-16 convolutional neural network 
(CNN) classifier. The CNN's performance in classifying real X-
rays was evaluated to assess the efficacy of GAN-generated 
training data. The auxiliary GAN was trained on real X-rays and 
then used to synthesize images modeled after the original data 
distribution. The VGG-16 model was trained on a synthetic 
dataset and tested on reserved real X-rays, which had not been 
seen during model development. Its performance was compared 
with classifiers trained solely on real data. The results analyze the 
VGG-16 testing accuracy between synthetic and real training data 
to quantify how effectively the auxiliary GAN captured the visual 
features critical for high CNN performance. Techniques for 
evaluating GAN-generated content as part of the clinical adoption 
of generative models are discussed. This study presents a 
methodology for assessing GANs in the production of synthetic 
medical training data while preserving vital information for 
analysis. 
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1. INTRODUCTION 
Generative adversarial networks (GANs) are an encouraging 

approach for generating synthetic medical images that can serve as 

training data for downstream applications. In particular, auxiliary 

GANs have been shown to be effective in synthesizing realistic 

chest X-rays. However, a rigorous evaluation of the accuracy of 

GAN-derived synthetic data remains a key challenge. This study 

employs an auxiliary GAN model to generate synthetic chest X-

ray images and uses these images to train a deep convolutional 

neural network (CNN) classifier based on the VGG-16 

architecture. Then the model’s performance was evaluated in 

classifying real chest X-ray images from the original dataset. The 

goal is to assess whether an auxiliary GAN can generate 

sufficiently realistic X-ray images such that a deep learning model 

trained on these data can accurately classify real X-ray images at 

scale. 

Specifically, an auxiliary GAN was trained on a dataset of real 

patient chest X-rays to capture the underlying data, patterns and 

disease signatures. Then the trained model was used to generate a 

synthetic dataset of chest X-ray images modeled after the 

characteristics of the training set. The VGG-16 model was then 

trained and validated on GAN-generated synthetic images. 

Finally, the performance of the VGG-16 model was assessed on 

the original reserved patient dataset of real chest X-rays. By 

comparing the classification accuracy between the real and 

synthetic test sets, it was quantitatively evaluated how precisely 

the auxiliary GAN-replicated features are essential for accurate 

VGG-16 classification. 

The study’s methods and evaluation approach provide insights 

into the efficacy of auxiliary GANs in producing generalizable 

and useful synthetic medical training data. More broadly, the 

study contributes techniques to precisely analyze the generative 

model performance for clinical applications. 

2. RELATED WORK 
The use of generative models, such as generative adversarial 
networks (GANs), has rapidly grown to synthesize realistic 
medical images that can serve as training data for downstream 
applications. Prior studies have developed GANs for generating 
synthetic chest X-rays specifically to augment small real-world 
radiology datasets. For example, Madani et al. built a deep 
convolutional GAN able to generate 128x128 thoracic disease 
images shown to fool radiologists at a high rate.[1] Similarly, 
Guibas et al. developed a progressively growing GAN to output 
256 × 256 chest X-rays with high fidelity. [2] These studies 
demonstrate chest X-ray synthesis as a valuable expansion of the 
limited medical imaging data. 

A major challenge is the evaluation of the accuracy of GAN-
generated medical images, which is critical for clinical 
applicability. Recent research has focused on improving the 
evaluation and quantification of the GAN performance for 
medical data. Salehinejad et al. evaluated chest X-ray GAN 
models by assessing generated images using a centroid distance 
metric against segmented lungs from real data.[3] However, few 
studies have examined downstream model performance using 
GAN-generated data as a proxy for precision and usefulness. This 
work addresses this gap by evaluating the classification fidelity 
of a common deep learning model, VGG-16, using synthesized 
X-ray data. 

More broadly, prior literature has established deep CNNs like 
VGG-16 as highly effective for natural and medical image 
classification with proper tuning and training.[4] VGG-16 
represents a strong deep CNN architecture validated for 
radiographic thoracic diagnosis.[5] Building on these works, this 
study employed VGG-16 as a reliable benchmark CNN for 
assessing chest X-ray data quality and features through our GAN 
evaluation approach. This study aimed to provide additional 
techniques for the precise analysis of GAN performance in 
healthcare contexts. 

3. DATASET 
In this research, the dataset played a pivotal role in training a 

Generative Adversarial Network (GAN) for conditional image 

generation focused on medical images, specifically chest X-rays 

for pneumonia detection. The dataset, sourced from the Kaggle 

Chest X-ray Pneumonia dataset [6], consists of two classes: 
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‘NORMAL’ for healthy individuals and ‘PNEUMONIA’ for 

those with pneumonia. This dataset was further divided into 

training (88 percent), testing (11 percent), and validation (1 

percent) datasets. To enhance dataset preprocessing, a custom 

Python class named ‘ReadDataset’ was implemented. This class 

not only organizes the dataset path, labels, and desired image 

shape, but also provides methods to retrieve and read the images 

efficiently. 

Preprocessing involves resizing the images to a specified 

dimension (64x64 pixels), converting them to the RGB color 

space, and normalizing pixel values between 0 and 1. In addition, 

the class employs Pathlib and OpenCV libraries to handle file 

paths and image reading. The resulting dataset, comprising 5216 

images with corresponding labels, forms the foundation for 

training GAN. The utilization of Mean Squared Error (MSE) loss 

function in GAN architecture is crucial for addressing cognitive 

quality concerns and guiding the generator to focus on capturing 

distinctive features of both healthy and pneumonia-afflicted 

individuals. For testing, covid pneumonia normal chest Xray 

images, pneumonia Xray images, chest Xray pneumonia datasets 

sourced from Kaggle were utilized. 

 

Figure 1: Pipeline for data pre processing 

 

4. IMPLEMENTATION 
To ensure the veracity of the generated medical images, a 

meticulous evaluation process was employed. This involves the 

creation of a substantial dataset comprising 30,000 samples 

enriched with random noise and diverse labels simulating various 

pathological conditions using the generator network. 

Subsequently, a neural network trained on this newly generated 

dataset was applied to assess the original dataset to accurately 

distinguish between healthy and pathological instances. This 

validation mechanism ensures that the generator not only 

produces visually accurate images but also captures nuanced 

pathological features aligned with real-world medical conditions. 

Furthermore, to achieve robust image classification, A pretrained 

VGG16 model was utilized as a feature extractor and 

subsequently fine-tuned for binary classification. The compiled 

model utilized binary cross-entropy loss and Adam optimizer, 

undergoing 60 epochs of training with a batch size of 64. By 

incorporating validation on a subset (20%) of the generated 

images and implementing an early stopping callback to prevent 

overfitting, these measures contribute to the reliability and 

diagnostic accuracy of the generated medical images in a formal 

and rigorous manner. 

4.1 Generative Adversarial Network 
Generative adversarial networks (GANs) are deep-learning 

architectures that are widely used in various machine-learning 

tasks, mainly for synthetic data generation. GANs consist of two 

neural networks that compete with each other using deep learning 

methods to artificially create data similar to the original dataset. 

GANs use a cooperative zero-sum game framework for learning, 

where one person’s loss is the other person’s gain. GANs consist 

of two components: a generator and a discriminator. The aim of 

the generator is to produce data that can be easily mistaken for the 

actual data. The discriminator uses the data produced by the 

generator as input. The goal of the discriminator is to distinguish 

between the data produced by the generator and actual data. 

4.1.1 Generator.     
In our pursuit of advancing Generative Adversarial Networks 

(GANs) for medical image synthesis, the crux lies in the 

intricacies of the generator architecture. This architectural 

structure serves as a force that translates random noise and 

essential diagnostic information into coherent visual 

representations. 
The generator begins its orchestration with a concatenation of 

input noise and labeled data, creating a hybrid input that guides 

the creative process. A dense layer of 1024 units acts as the 

inception point, fostering a deep understanding of the information 

at hand. The subsequent dense layer, equipped with kernel 

regularization, unfolds into a three-dimensional space (8 × 8 × 

256), setting the stage for detailed feature extraction. 

A symphony of Conv2DTranspose layers follows, progressively 

upsampling the input to craft realistic and intricate medical 

images. Here, LayerNormalization is strategically incorporated to 

maintain stability and diversity in the generated images, a crucial 

step to avoid common pitfalls like mode collapse. ReLU 

activations infuse vitality into the model, allowing it to capture 

complex patterns and subtle nuances within the medical imagery. 

The final crescendo involves a Conv2DTranspose layer generating 

a three-channel output (representing RGB) and an activation using 

the sigmoid function. This carefully designed architecture not only 

ensures the creation of visually authentic medical images but also 

contributes to a balanced and dynamic interplay between the 

generator and discriminator. 

4.1.2 Discriminator.    
 In the pursuit of refining GANs for medical image synthesis, the 
focus was also on the discriminator architecture. This crucial 
component not only authenticates the generated images but also 
classifies them based on distinct health conditions. 

The discriminator unfolds through the convolutional 2D layers by 
employing Leaky ReLU activation for feature extraction. Varying 
the filter sizes and strides captured both the local and global image 
patterns. Flattening precedes dense layers, outputting judgments 
on image authenticity and branching into an auxiliary 
classification pathway for health conditions. Regularization 
techniques, such as kernel regularization and dropout, enhance 
robustness, with Softmax activation providing meaningful 
probability distributions. This discriminator, which is pivotal in 
the Auxiliary GAN framework, excels in discernment and health 
classification. Its integration ensures the synthesis of contextually 
relevant medical images, marking a significant stride in the GAN 
capabilities for medical applications. 

4.1.3 Auxiliary GAN.     
In this research on Generative Adversarial Networks (GANs) for 

medical image synthesis, we adopt Auxiliary Classifier GAN 

(ACGAN) with carefully selected parameters. The ACGAN is 

configured with a learning rate (eta) of 0.0001, trained over 2000 

epochs, and processed in batches of 16 samples. The generator, 

working with a latent space of 100, combines random noise and 

diagnostic information to create medical images. Simultaneously, 

the discriminator, with a convolutional kernel of size 5, evaluates 

the authenticity of generated images and provides auxiliary 

classifications related to specific health conditions. The interaction 

between these components, driven by the set parameters, reflects 

our commitment to developing a robust framework for generating 

coherent and clinically relevant medical images over an extended 

training period. The regularization technique, represented by a 

weight decay of 6e-9, contributes to the model's stability, 

emphasizing our approach to advancing GAN applications in 

medical imaging. 
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Figure 2: Architecture of the Generator 

 

 
Figure 3: Architecture of the Discriminator 

 
Figure 4: Auxiliary GAN architecture 

 

Given our focus on a pathological condition, employing a larger 

kernel size proves instrumental in examining the interplay 

between core regions and their surroundings. This approach 

enhances the ability to detect gradients that signify the presence of 

either a pathological or healthy condition. Essentially, it aids in 

assessing whether a specific area, based on its location, can serve 

as a reliable criterion for identifying pneumonia. Additionally, 
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opting for LayerNormalization instead of BatchNormalization 

proves advantageous in preventing mode collapse during image 

generation by diversifying the generated images. 

 

LayerNormalization's nuanced normalization at the filter level 

within the layer contributes to the stability of the generator, 

ensuring a richer and more varied set of generated images 

4.2 EPOCH-WISE EVOLUTION OF GAN OUTPUTS 

 
Figure 5: Outputs from epoch 0 of the GAN 

 
Figure 6: Outputs from epoch 1000 of the GAN

 

Figure 7: Outputs from epoch 1900 of the GAN 
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4.3 CLASSIFIER  
To ensure the fidelity of the generated images, a meticulous 

evaluation process is implemented. A substantial dataset, 

comprising 30,000 samples, is generated using the generator 

network. This dataset is enriched with random noise and 

corresponding labels to simulate diverse pathological 

conditions. Leveraging this newly generated dataset, a neural 

network is employed to classify the images, effectively 

discerning between healthy and pathological instances. 

Subsequently, the trained classification neural network is 

applied to evaluate the fundamental images present in the 

original dataset. This evaluative step is crucial as it gauges the 

effectiveness of the learned characteristics from the generated 

images in accurately classifying the inherent pathology within 

the baseline dataset. In essence, this approach serves as a 

validation mechanism, ensuring that the generator not only 

produces visually accurate images but also captures the 

nuanced pathological features that align with real-world 

medical conditions. 

 
Figure 8: Synthetic data from the generator 

In pursuit of robust image classification for the generated 

dataset, a pre-trained VGG16 model is leveraged as a feature 

extractor. The base VGG16 model, initialized without pre-

trained weights, processes input images of size (64, 64, 3) and 

employs max-pooling for spatial down-sampling while 

excluding the top classification layer. Subsequent to the 

feature extraction, additional layers are appended to fine-tune 

the model for binary classification. A dropout layer with a rate 

of 0.4 is introduced to decrease overfitting, followed by 

densely connected layers for feature refinement. Batch 

normalization ensures a stable and accelerated convergence 

during training, while Leaky ReLU activations with a modest 

negative slope of 0.2 introduce non-linearity to the model. The 

final dense layer, activated by the sigmoid function, yields 

binary classification results. 

The model is compiled using binary cross-entropy loss and 

Adam optimizer with a learning rate of 0.00001. During 

training, the model is validated on a subset (20%) of the 

generated images to assess its generalization capabilities. The 

training process spans 60 epochs with a batch size of 64, and 

an early-stopping callback halts training if the validation loss 

fails to improve for two consecutive epochs, thereby 

preventing overfitting. This comprehensive classification 

model, built on top of the VGG16 feature extractor, is 

instrumental in evaluating the quality of generated images and 

validating the learned characteristics against the original 

dataset. 

5. RESULTS 
The plotted metrics depict the training dynamics and 

generalization of our neural network on images generated by 

GAN. The descending training loss reflects parameter 

optimization on the training set, while the validation loss 

gauges the model’s ability to generalize to unseen data. 

Minimal divergence from the training loss curve indicates a 

robust generalization. These metrics offer insights into model 

convergence, potential overfitting, and the network’s 

effectiveness in capturing underlying patterns within the 

generated medical images. 

 
Figure 9: The results obtained from the classifier 

Following training on images generated by the generator, the 

neural network undergoes rigorous testing on the fundamental 

images within the dataset. Multiple evaluation metrics are 

employed to assess the generative adversarial network’s 

efficacy in capturing intrinsic features characteristic of each 

class. This scrutiny also extends to the secondary classification 

network, examining its capability to extract features present in 

the generated images. The pivotal question revolves around 

the transferability of attributes extracted from generated 

images to the original dataset. This assessment serves as a 

pivotal step in scrutinizing the authenticity of the generated 

images and verifying whether the focus indeed encapsulates 

the specific cases indicative of pneumonia or its absence, as 

discerned from the X-ray images. 

Table 1. The results of the evaluation metrics 

 

 precision recall f1-score support 

0 0.99 0.64 0.78 2069 

1 0.81 1.00 0.89 3147 

accuracy   0.85 5216 

macro avg 0.90 0.82 0.83 5216 

weighted avg 0.88 0.85 0.85 5216 
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Figure 10: A confusion matrix of classifier’s output 

Table 2. Comparison of results across different datasets 

Dataset GAN accuracy 
GAN + RL 

Accuracy 

Paul Mooney’s 

Chest X-Ray 

Images 

(Pneumonia) 

74.2906 89.8773 

Covid-

pneumonia-

normal-chest-

xray-images 

76.0966 87.0905 

Pneumonia-xray-

images 
84.5900 89.4306 

6. FUTURE WORKS 
In paving the way for future advancements, the seamless 

integration of the classifier into a reinforcement learning 

framework becomes a paramount consideration. A key 

contribution lies in the formulation of the ‘model fn’ function, 

strategically designed to process observations using the 

classifier model. Within the domain of Deep Q Networks 

(DQN), an integral component, the Q-network, is meticulously 

crafted with specific layer configurations. Emphasizing 

efficiency in training, Adam optimizer, wielding a learning 

rate of 0.001, is employed to propel the learning dynamics. 

Looking ahead, the initialization and training loop of the agent 

mark essential facets of the research framework. The DQN 

agent is primed with a robust architecture, comprising the Q-

network, Adam optimizer, and a time step counter to monitor 

learning progress. The training trajectory unfolds across a 

predefined number of iterations, currently set at 100 for 

illustrative purposes. After each iteration, the environment 

undergoes a reset, prompting the agent to engage in action 

selection based on its evolving policy. These trajectories are 

systematically cataloged in the agent’s replay buffer, laying 

the groundwork for subsequent training endeavors. 

 

7. CONCLUSION 
This study explores the application of Generative Adversarial 

Networks (GANs) in synthesizing realistic medical images, with 

a focus on chest X-rays. Utilizing an auxiliary GAN, synthetic 

chest X-rays are generated and employed to train a VGG-16 

Convolutional Neural Network (CNN) classifier. The main 

objective is to evaluate the ability of auxiliary GAN to produce 

realistic images, allowing the trained CNN to accurately classify 

real X-ray images at scale. The methodology involves training 

auxiliary GAN on real patient chest X-rays, generating a 

synthetic dataset that mimics the original training set. The 

subsequent training and validation of the VGG-16 model on 

these GAN-generated images enable a quantitative analysis of 

classification accuracy, providing insights into GAN's efficacy 

in replicating features essential for accurate CNN performance. 

In addition to classifier results, the study includes a detailed 

analysis of training dynamics and generalization of the neural 

network on GAN-generated images. Plotted metrics, such as 

training and validation loss, offer indicators of model 

convergence, potential overfitting, and the network's 

effectiveness in capturing underlying patterns within the 

synthetic medical images. This comprehensive approach 

contributes insights into the precise analysis of generative model 

performance, addressing the challenge of quantitative evaluation 

in the context of synthetic medical training data, and providing 

valuable implications for clinician applications in medical image 

synthesis and diagnostics. 
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