
International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

1

Multicore Transformation of Sequential Applications for
Achieving High Performance

Prabin R. Sahoo
Tata Consultancy Services Limited, Mumbai, India

ABSTRACT
Multicore processor [1] architecture brings a new dimension to

the computing arena. Though the proliferation of multicore

processor into the commodity market has promising effect on

addressing hardware scalability to address the heat and power

consumption, high performance computations, but with all these

benefits to its credit, there are challenges in adapting multicore

technology. In multicore processor architecture, CPU speed has

been reduced to accommodate additional cores. A sequential

application running in a higher CPU frequency needs to adjust

with the reduced CPU frequency in multicore architecture.

There are smart caching mechanisms which can speed up the

data access, however in order to fully exploit the power of

multicore requires a new way of program design and

development. Therefore the existing applications require

multicore transformation in order to be able to effectively utilize

multicore computation capabilities [14]. This research work

demonstrates why multicore transformation is required and how

SMPF [16] can be used for transforming sequential application

to achieve parallelism on a multicore architecture.

General Terms
Parallel Processing, Multicore Programming

Keywords
Parallelism, Multicore, Multithreading, Shared memory,

Synchronization, UML, Template

1. INTRODUCTION
Multicore processors have shown promising results. Processor

manufactures such as Intel®, AMD®, SUN® etc have started

releasing multicore processors in the form of dual core, quad

core, and processors with higher number of cores. The existing

Symmetric multiprocessors [2], Single core processors have hit

the bottleneck of scalability issues for achieving high

performance. Increasing CPU speed for achieving high

performance is no more a scalable solution at the cost of high

heat and power consumptions, especially when the world is

struggling to reduce global warming and reducing power

consumptions. Multicore processors are going to play a major

role in the IT computation. Though multicore processor

compromises with reduced CPU cycles, but with introduction of

multiple execution cores, it provides high computation ability.

Currently parallel programming frameworks such as openMP

[5], MPI [4], Cilk [3] etc are being revisited if these can be

reused. However, the challenge is big as most existing

applications are single threaded in nature, and requires code

changes which consequently add huge man power and cost to

redesign and implement. In addition learning parallel

programming techniques, developing applications with

multithreading programming models are complex to

comprehend. This leads to the apprehension that many existing

sequential applications may be deprived of fully utilizing the

multicore computation power. In this paper I have demonstrated

a case study, using SMPF how multicore programming can be

carried out transforming sequential applications to run in parallel

for achieving high performance in a multicore architecture.

2. LITERATURE REVIEW
Parallel processing methodologies [15] are being revisited if

these can be used in multicore transformation. Some of the

methodologies, frameworks such as Message passing interface

MPI [4][17] is being considered for multicore transformation.

However MPI is mainly used for massively parallel machines,

SMP clusters, workstation clusters and heterogeneous networks.

This framework is not easily adaptable for existing sequential

applications as it requires extensive code changes. Perl based

applications, single threaded C applications, Java applications

are not fully compatible with it, though C, Java applications can

be modified for compatibility. Even if changes are adapted for

an existing application per se a C application, running it in a

multicore server does not guarantee that performance would be

improved on a multicore processor. Further the code changes

involve the cost of development, testing would be high in such

cases. openMP [5] is another option for C/C++ based

application where openMP pragma are used for splitting a for

loop among several threads, but adapting this also not an easy

choice. For example if C/C++ based application uses embedded

SQL codes it is not easy to use openMP. Most legacy

applications use embedded SQL. Similarly perl and Java based

application cannot use openMP. This necessitates the need for

SMPF [16] framework as it is simple for programmers to adapt

and cost effective for business enterprises for easier

transformations.

3. MODEL AND ARCHITECTURE FOR

 MULTICORE TRANSFORMATION
Multicore processors are equipped with multiple execution units.

This architecture therefore provides a platform in which multiple

tasks can run in parallel. The experiments conducted for this

paper is based on Linux Cent OS. This model is based on SMPF

framework [16]. In figure 1.0, the application “A” is sequential

which requires transformation for exploiting multicore. SMPF

has been used to create multiple thread [6][7] objects which in

turn invokes the application instances A1, A2, and A3 which are

mapped to the execution core in multicore server using executor

functionality. Each thread object invokes its executor function

with the binary and supplied arguments to create process

instance. It’s components are described as follows.

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

2

3.1 Multicore Transformation Architecture

Figure 1.0 Multicore Transformation Architecture

3.1.1 Executor()
It invokes the single threaded application binary with the

necessary parameter and holds a pipe [8] onto the created

process instance to read any message from it. Each process

instance runs in a core of the multicore processor. Any message

from the process instance passes through the pipe to the

executor. The executor stores the message which is finally

retrieved by the main function.

3.1.2 Executor Class
This class is a template class [9]. The Execute method is used

for executing the command. The first argument to this method is

the binary name along with any arguments. The arguments types

can be any data type such as string, long, float, int etc. The

Executor returns a pointer to a pipe [8] which can be processed

as a regular file processing. The Execute_and_store method

executes the command and also stores the output in a vector of

strings. For example: two processes are trying to search and get

the order information out of which one is processing a file and

other one is searching a database to get related information. In

this case the Execute_and_store method is useful. Each process

can store the search information in the vector container. Once

the processes complete the search, the manger process processes

the vector to retrieve the necessary information. The following

pseudo code represents the class definitions. Line number 4

represents the vector which is used by Execute_and_store

method to store the output received from the application through

pipe, and the main retrieves the messages from this vector.

1. template <class V, class X>
2. class Executor{
3. public:
4. vector<string> vec;
5. fp Execute(const char *cmd, V v, X x){

}

6. void Execute_and_store(const char *cmd,
V v, X x){}

7. };

The variable V and X (line 1) can be of data types such as long,

int, float, char *, string etc. The parameter cmd at line 5

represents the binary need to be invoked and V, X are parameter

which act as command line arguments. For arguments greater

than 2 can be clubbed into V and X as strings with space in

between. For example: a C/C++ binary Execute(“a.out V X)”

can be invoked with more than 2 arguments as “a.out ” “123

345 567” “890 xyz” where argument V=”123 345 567” and X

= “123 345 567”. A python program can be invoked as

Execute(“a.py V X”). Similarly shell script can be invoked as

Execute(“a.ksh V X”), and perl script can be invoked as

Execute(“a.perl V X”). The basic idea here is to split the data

among more than one process and execute them in parallel. Only

the Python and Shell scripts cannot use shared memory in this

framework for interprocess communication. If interprocess

communication is required for python and shell script file can be

used for this. However, Java, C/C++, PERL can use the shared

memory as explained in following section 3.1.4 for inter process

communication.

3.1.3 Manager Class
 The manager class provides the main method which creates

threads and splits data.

3.1.4 Interprocess communications
This framework provides an integrated communication

mechanism. It uses pipe and shared memory [10] for

communicating with each other.

3.1.5 Synchronizations
The synchronization is achieved through the combination of

POSIX primitives [11] and token approach blended into object

oriented paradigm for achieving powerful objected oriented

interfaces for wide acceptance and reusability. The token

approach uses 2 shared memory variables for synchronizations

[11]. Figure 2.0 represents how the critical section for shared

memory variable is synchronized. Line number 1 provides the

method to invoke lock the critical section. At line 3, the

invoking shared memory object gets the key which basically

works as a token and line 4 checks to see if the value is 0. If the

value is set to 0, it updates the shared memory and set the token

for the reader to read it at line 6. The reader’s token value is 1.

The reader thread polls on this key in its own address space, and

when it reads the value 1, it reads the data from the shared

memory at line 4 in figure 3.0.

1. This->lock();
2. While(true){
3. Char *str = shmkey.get();
4. If(atoi(str) == 0){
5. Shm.set((char *) k.c_str()));
6. Shm.set(“1”);
7. …….
8. This->unlock();

Figure 2.0 Pseudo code of synchronization for Writers

1. Int n = atoi(shmkey.get());

2. If(n == 1){

3. Int shmid=shmget(1234, 1024, 0666);

4. Token = (char *) shmat(shmid, (void

*) 0, 0);

5. Shmkey.set(“0”);

6. }

7. Return Token;

Figure 3.0 Pseudo code of synchronization for the reader

process

S

M

P

F

 A

A1

A2

A3

C-1

C-2

C-3

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

3

The benefit out of this approach is that processes invoked

by SMPF framework do not directly act with shared

memory. It is the thread object that reads the value from

the process and sets the shared memory. Each process

does its sequential computation without worrying about

other process. The developer need not think much about

shared memory, semaphores etc required for the parallel

processing. Even a shell script program which has no

features of shared memory, semaphore can be

parallelized.

3.1.6 Address spaces
There are 2 types of address spaces discussed in this

paper. Thread address space and process address space.

The multicore thread objects are created in the thread

address space which provides the facilities for accessing

same memory locations, fast locking/unlocking

mechanism provided by the thread libraries. Each process

runs in its own address space i.e process address space,

so an existing single threaded application has no impact

on the computation or corruptions with other applications.

However they can communicate with the corresponding

threads for sharing data.

3.1.7 Shared Memory
It uses two shared memory classes i.e. one shared

memory acts as a token and the other as the data store for

processing.

4. EXPERIMENTAL SETUP
The following table describes the experimental setup for

both the case studies.

Table 1.0 Hardware Configuration

Component Details

Machine Name 4 CPU, 4 core Intel © Tigerton @

2.93 GHz and 32 GB RAM.

Number of Cores 16 cores

Operating System Redhat © Linux, 2.6.18-92.1.18.el5

Compiler g++, gcc version 4.1.2 20071124

(Red Hat 4.1.2-42). Thread model:

POSIX

Cache Size of each

core

4096 KB

5. CASE STUDY
This case study involves a log file which captures various

information an application writes when transaction occurs.

During business hour it captures several information, and at the

end of the day, the size of the file becomes huge. In this

experiment I have demonstrated a file that contains FIX [18]

messages and the size of the file is 8 GB.

This sample file contains multiple lines in the following format:

8=FIX.4.0; 11=<Order ID>; 35=<Order Qty>; 100=<Price>

Each line contains 4 name/ value pairs separated by a semicolon.

Typically a search is performed on the 2nd field i.e. Order ID

field for this file. A sequential operation would execute the

search in the following manner:

5.1 Sequential Approach
I) Read the Filename and the search string

II) Check the File

III) If (File exists) then read line else go to VI.

IV) Match the line with the search pattern, If (match

found) print at STDOUT else go to V.

V) Continue Step IV, till end of file

VI) Quit.

5.2 Parallel Approach
Using SMPF, the file size is split equally based on the number

of cores. This division gives the file offset for each part. The

offset is distributed among the applications.

I) Read the file name and the search pattern

II) Check the existence of file

III) Determine the number of cores in the server

IV) Determine the size of the file

V) Divide the size of file into a series of offsets

VI) Create multicore thread object using SMPF

VII) Distribute the file name, begin offset and range to

each multicore thread object

VIII) Each multicore thread object invokes the

application with the supplied parameters using

Execute_and_store method discussed in section

3.1.2, and executes it as if it is running in a single

processor mode.

IX) Each spawned application searches for the pattern

in the slice and print the results to the pipe

X) Each multicore thread objects reads the data from

pipe, and store it in a shared variable (vector

container section 3.1.2 pseudo code). SMPF

provides the synchronization mechanism to prevent

data corruptions.

XI) SMPF finally reads the shared variable (vector

container)

SMPF is written in C++ [12] which invokes a sequential
application written in Perl which does the actual searching within
the file chunk. Using SMPF this application is transformed to
multicore. Figure 4.0 demonstrates high level view of the parallel
approach using UML [13]. Figure 5.0 compares the execution
time of normal sequential search with the parallel thread based
search. The parallel search operation was implemented using
SMPF. The observation is that for the above described 8 GB file
a sequential search operation takes an average of 14.8 seconds
over the 20 times the test was executed. However for SMPF, the
search operation completes with an average of 3.73 seconds over
the 20 test executions. Figure 6.0 shows the CPU usages.

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

4

Figure 4.0 SMPF Message Flow

5.3 Results

Figure 5.0 Sequential approach takes 14.8 secs and

multicore transformation takes 3.7 secs for text search

Figure 6.0 CPU usages by sequential approach and Parallel

approach after multicore transformation

6. CONCLUSION
It is evident from the case study; multicore transformation

produces better results than sequential approach. From CPU

usage graph, it is further clear that when a sequential application

is migrated to a multicore architecture, the application is

confined to a core which can utilize only a core. The sequential

application discussed in the case study uses a single core, where

as when the application is transformed into multicore, it uses 16

cores to complete the search task in 3.7 secs with a speed up of

4X. The transform logic in the case study is simple to change

which reduces the cost.

7. REFERENCES
[1] Planning Considerations for Multicore Processor

Technology, John Fruehe, Dell Power Solutions, May 2005

[2] W W Gropp, E L Lusk, A taxonomy of programming models

for symmetric multiprocessors and SMP clusters, IEEE

Computer Society Washington, DC, USA, 1995

[3] Matteo Frigo, The Cilk Project,

http://supertech.csail.mit.edu/cilk/, October, 2007

[4] R Badrinath, STSD Bangalore, Parallel Programming and

MPI,

hpce.iitm.ac.in/.../Parallel%20Programming%20and%20M

PI.ppt, September, 2008

[5] OpenMP Architecture Review Board, The openmp api

specification for parallel programming, January, 2009

[6] Felix Garcia and Javier Fernandez, POSIX thread libraries,

Linux Journal, February 01, 2000

[7] Blaise Barney, POSIX Thread Programming, Lawrence

Livermore National Laboratory, 2010

[8] Sandra Mamrak and Shaun Rowland, Unix Pipes, April,

2004

 [9] Carlos Moreno, An Introduction to the Standard Template

Library (STL), 1999

 [10] Dave Marshall, IPC: Shared Memory,

www.cs.cf.ac.uk/Dave/C/node27.html,1999

[11] William Stallings, Operating Systems, Internals and Design

Principle, 2009

[12] Juan Soulié,C++ Language Tutorial, June, 2007

[13] Dr. Jon Siegel, OMG, Introduction to OMG's

unified Modeling Language™ (UML®),

http://www.omg.org/gettingstarted/what_is_uml.htm, June

2009

[14] Intel White Paper, Optimizing Software for Multi-Core

Processors, 2007, USA

[15] A Generic Method of Parallel Processing in Base SAS® 8

and 9, Sassoon Kosian, Inductis, New Providence, 2007,

NJ

[16] Simple Message Passing Framework for Multicore

Programming Development and Transformations, Prabin R.

Sahoo, ICTSM-2011, February, 2011, Mumbai

[17] Message Passing Interface, Wikimedia Foundation, Inc.

http://en.wikipedia.org/wiki/Message_Passing_Interface,

February 2011

[18] FIX protocol, FIX Protocol Limited

http://www.fixprotocol.org/what-is-fix.shtml, 2011

Initialize ()

Read the configurations (binary, no. of cores, etc)

Create Multicore thread objects

Application-1 Application-2

Join

