
IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”

ECOT, 2010

51

Planted (l, d) - Motif Finding using Particle Swarm

Optimization

U.Srinivasulu Reddy
Department of Computer Applications

National Institute of Technology
Tiruchirappalli, Tamil Nadu, India

Michael Arock
Department of Computer Applications

National Institute of Technology
Tiruchirappalli, Tamil Nadu, India

A.V.Reddy
Department of Computer Applications

National Institute of Technology
Tiruchirappalli, Tamil Nadu, India

ABSTRACT

In Bioinformatics, Motif Finding is one of the most popular

problems, which has many applications. Generally, it is to locate

recurring patterns in the sequence of nucleotides or amino acids.

As we can’t expect the pattern to be exact matching copies owing

to biological mutations, the motif finding turns to be an NP-

complete problem. By approximating the same in different

aspects, scientists have provided many solutions in the literature.

The most of the algorithms suffer with local optima. Particle

swarm optimization (PSO) is a new global optimization technique

which has wide applications. It finds the global best solution by

simply adjusting the trajectory of each individual towards its own

best location and towards the best particle of the swarm at each

generation. We have adopted the features of the PSO to solve the

Planted Motif Finding Problem and have designed a sequential

algorithm. We have performed experiments with simulated data it

outperforms MbGA and PbGA. The PMbPSO also applied for

real biological data sets and observe that the algorithm is also able

to detect known TFBS accurately when there are no mutations.

General Terms: Evolutionary Optimization Techniques,

Bioinformatics, Computational Biology.

Keywords: Motif Finding, Particle Swarm Optimization

(PSO), Swarm Intelligence (SI), Transcriptional Factor Binding

Sites (TFBS), Planted Motifs.

1. INTRODUCTION
A gene is a segment of DNA that is the blueprint for protein.

Basically, the control of gene regulation is determined by the

chemical reactions which are, in turn, controlled by the shape and

electrostatic charges of the molecules involved. Unfortunately,

this information was not available. In 1950, Francois Jacob and

Jacques Monod first discovered regulation genes, in Paris. These

genes provide the instructions for creating proteins to control the

expression of the other structural genes and play a key role in

gene expression.

In order to regulate the gene expression process, a molecule called

transcription factor will bind to a short substring in the promoter

region of the gene. We call this substring as a binding site of the

transcription factor. A single transcription factor can be bound to

multiple binding sites. We refer to these binding sites as "Motifs".

Motifs are fundamental functional elements in proteins. These

patterns are vital for understanding gene function, human disease,

and may serve as therapeutic drug target. Motifs can be used to

determine evolutionary and functional relationships of the genes.

Motifs vary in lengths, positions, redundancy, orientation and

bases. Finding these short sequences (motifs or signals) is a

fundamental problem in molecular biology and computer science

with important applications such as knowledge-based drug design,

forensic DNA analysis, and agricultural biotechnology [1].

Motif Finding is the process of locating the meaningful patterns in

the sequence of DNA, RNA or Proteins. The patterns are not

exact copies due to biological reasons. So, the motif finding

problem turns to be an NP-Complete Problem. It is one of the key

areas of interest for a number of researchers. There are different

types of motifs in the literature namely: Sequential Motifs,

Gapped motifs, Structured Motifs, Planted Motifs and Network

Motifs. A number of methods, algorithms and tools have been

developed in the recent years to solve these problems. Gibbs

Sampler [2] and MEME [3] are most widely used in practice to

solve the motif finding problem and these methods are local

search methods. For planted motifs, Random Projections [4] and

Pattern Branching [5] got better results compared to others. The

complete survey of DNA motif finding algorithms, methods and

different approaches are presented in [6]. All these methods

suffered from the problem of local optima. In the recent days

many Evolutionary Computational Techniques/Evolutionary

Algorithms (EAs) are being tried with different coding schemes

and different objective functions to eliminate local optima.

Among these, Genetic Algorithm (GA) is one of the widely used

algorithms to find motifs. Though GA’s help overcome the

problem of local optima, it is only to some extent and it is

possible only at the cost of exercising more operators [7].

The Swarm Intelligence (SI) is a recent emerging technology to

solve optimization problems. It has a lot of scope to handle

complex problems in the field of Bioinformatics and

Computational Biology [8]. The Particle Swarm Optimization

(PSO) and Ant Colony Optimization (ACO) are the two popular

techniques in SI. The characteristics of PSO promise to arrive at a

new optimization framework which probes in the neighborhood

regions. In addition, it is done systematically to explore the

neighborhood profiles.

In recent years, PSO has been used to solve different types of

motif finding problems. The following are a few to mention with

their advantages and disadvantages.

Hardin and Rouchka proposed a hybrid motif discovery approach

framed combining Particle Swarm Optimization (PSO) and the

Expectation Maximization (EM) algorithm. They used PSO to

generate a seed for the EM algorithm [9]. This method still

suffered with local optima.

Zhou et al. formulate the Transcriptional Factor Binding Sites

(TFBS) as a Combinatorial Optimization Problem. Then, they

applied a hybrid PSO (HPSO) to solve the challenging issue in

upstream regions of genes regulated by Octamer binding sites.

They developed two local search operators and one recombination

IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”

ECOT, 2010

52

mutation operator in HPSO [10]. These results bring out some

putative binding sites motifs, but not all the binding sites. The

same author and his team demonstrated how to used evolutionary

computing method to discover the binding sites. Then, they

proposed a novel algorithm IPSO-GA by integrating an improved

PSO with GA to search sequence motifs from co-expressed

genes regulated by the NF-Kb transcription factor [11]. Their

experimental results help find putative binding sites, but not to

discover the true motifs.

X. Chang et al. proposed a novel framework to use EA to identify

transcriptional factor binding sites. They introduced two EA

techniques GA and PSO and also presented two different coding

methods to solve this problem [12]. These methods can find

correct binding site motifs than Gibbs Sampling and MEME. In

their second experiment, both GA and PSO fail to predict the

binding site of the sequence 17.

B. Chang et al. applied PSO algorithm to protein sequence motif

discovery problem [13]. The results were compared with

PROSITE database and they obtained global optimum protein

sequence motifs but these were not more meaningful in biological

sense.

In this paper, we adopt the features of the PSO to solve the

Planted Motif Finding Problem. We perform experiments with

simulated (l, d)-planted motif challenging instances of (10, 2),

(11, 2), (12, 3), (15, 4), (16, 5), (18, 6), (20, 7), (30, 11) and (40,

15) and real biological data sets and observe that the algorithm

works better for the longer motif instances. Our approach is also

able to detect known TFBS accurately. The rest of the paper is

organized as follows: Section 2 imparts a background with

preliminaries of motif finding problem. Section 3 describes PSO

background and its applicability to Motif Finding Problem.

Section 4 discusses the PSO algorithm for planted motif problem

Section 5 deals with experimental results and Section 6 presents

the conclusion with future work.

2. BACKGROUND
Before defining the Motif Finding Problem, let us consider the

definitions of string and substring. A string S is an ordered list of

characters written contiguously from left to right. For any string S,

S[i..j] is the (contiguous) substring of S that starts at position i

and ends at position j of S. A motif is a substring s of length l that

may or may not present in a given string S. An occurrence of a (l,

d)-motif is a substring s of length l that varies at most d positions

from the motif.

Motif Finding in general, is locating recurring patterns in the

sequence of nucleotides or amino acids. Formal definition of

motif finding problem is as follows: Let S = {s1, s2 …sT} be a

sample of T N-letter biosequences, each sequence containing an (l,

d)-motif, i.e., a motif of length l with d mismatches (mutations).

In this paper, we consider the planted motif finding problem

which is preciously defined by Pevzner and Sze [14, 15]. In this,

each input string Si contains a planted occurrence of an (l, d)-

motif, having an initial positions j {1, 2…N-l+1}, where N is

the length of the string Si. Here, we assume that all strings are of

the same length. The aim of the planted motif problem is to find

all the occurrences of the (l, d)-motifs that appear in each of the T

input strings without knowing, a priori, the motif.

We will now formally define the Planted Motif Finding Problem

as the following input/output requirements.

Input: A set of T strings {s1, s2 …. sT} each of length N over

alphabet {a, c, g, t}, where each string contains a planted

occurrence of the (l, d)-motif.

Output: A set of P best starting positions {p1, p2 …. pT } where

the planted (l, d)-motif occurs in T strings.

All the solutions to motif finding problem essentially follow a

three-step method. The steps are: Representing the sequences,

determining suitable objective function(s), and employing

appropriate search strategies. There are two common ways of

representing motifs: Consensus sequence and Position Weight

Matrix (PWM) or Probabilistic Matrix representations. Whilst

first method takes symbols by majority, the second method

assigns probability of each nucleotide occurring at each position

of the motif sequence. Basically, there are two major

classifications of methods for motif finding: Scanning for known

motifs and Employing Statistical or Combinatorial methods. First

method aims at searching in a database (already formed) which is

a collection of known transcription factors as well as their DNA

binding sites and profiles. For example, TRANSFAC database

and PROSITE are two important databases among many. This

method is not suitable, when we need to find new sites. So, we

employ either statistical or combinatorial approach. The literature

says the combinatorial approach is a better approach than the

statistical approach. Gibbs Sampler, MEME, AlignACE,

BioProspector , CONSENSUS , and TEIRESIAS are a few to

mention. These approaches are unable to solve the Challenge

Problem proposed by Pevzner and Sze in 2000. They defined the

challenge problem as follows: Given a sample of n=20 sequences,

each N=600 nucleotides long with an implanted motif of length l

=15 with d=4 mutations, find the motif. Since then, various

approaches have solved the motif challenge problem. The

WINNOWER, SP-STAR [15], MERMAID [16], ROJECTIONS,

MULTIPROFILER, Pattern Branching and Profile Branching are

the most frequently referred among them. All the above said

algorithms share a common protocol which is a step-by-step

procedure of planted motif discovery shown in figure 1.

Sequences with annotated motifs, how these motifs hide when

affected with pathogen, how to find these hidden motifs by motif

search programs and compare the predicated motifs with

annotated motifs for the accuracy, are the steps.

2.1 Preliminaries

For better understanding of planted motif finding problem, we

recall some of the definitions here:

2.1.1 Objective Function
Computational methods are defined based on the objective

functions we choose. The purpose of an objective function is to

approximate the correlation between sequence patterns and their

biological meaning in terms of mathematical function. The

objective functions are only heuristics. After objective function is

determined, the goal is to find the patterns of high objective

function value. To reach this goal, two important associated issues

are employed: pattern representation and search strategy. We use

score as the objective function in this problem.

Score =

l

j

sP jM
1

)()(

IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”

ECOT, 2010

53

Where P(s) is profile matrix corresponding to starting positions S.

M P(s)(j) is the largest count in column j of P(s).

2.1.2 Hamming Distance
It is the number of changes applied to a sequence to obtain

another sequence. For example, If V = ATTGTC and

W=ACTCTC, then d (V, W) = 2.

Fig.1. Benchmarking protocol for Planted Motif Finding.

3. BACKGROUND ON PARATICLE

SWARM OPTIMIZATION

Particle swarm optimization (PSO) method is an evolutionary

optimization technique first developed by Kennedy and Eberhart

[17] in 1995. It finds the global best solution by simply adjusting

the trajectory of each individual towards its own best location and

towards the best particle of the swarm at each generation.

Particle Swarm Optimization is one of the optimization

techniques under EAs. The particle swarm imitates a kind of

social optimization. Given a problem, a suitable evaluation

method, called fitness function is to be formulated and also a

communication structure or social network that lets individuals to

interact among them. Then, with the help of random inferences as

start points, we trigger an iterative process. It aims at improving

the candidate solutions step-by-step by finding the best fatnesses’

and remembering their locations. These are essentially local best

successes. Now, with the interaction among neighbors, escorted

by these successes we can move toward the globally best success.

The position and velocity of the ith particle in the n-dimensional

search space can be represented as Xi = (xi1, xi2, xi3… xin) and

Velocity Vi = (vi1, vi2, vi3…vin) respectively. Each particle has its

best position Pi = (pi1, pi2, pi3… pin) corresponding to the personal

best fitness value obtained so far at time t, with reference to the

user defined objective function. The global best particle, which

represents the fittest particle found so far at time t in the entire

swarm, is denoted by pg. The new velocity of the each particle is

calculated according to the following equation.

 Vin(t+1)= vin(t)+c1 rand1() (pin-xin)+c2 rand2() (pg-xin) (1)

Where c1 and c2 are acceleration coefficient constants, is called

inertia factor and rand1 () and rand2 () are two sparely generated

uniformly distributed random numbers in the range [0, 1].

At each iteration (generation), the position of each particle is

updated according to the following equation.

 Xin(t+1) = xin (t) + Vin (t+1) (2)

3.1 The pseudo-code of the procedure is as follows:

For each particle

 Initialize particle

End

do

 For each particle

 Calculate fitness value

 If the fitness value is better than the best fitness value

 (pBest) in history set current value as the new pBest

 End

 Choose the particle with the best fitness value of all the

 particles as the gBest

 For each particle

 Calculate particle velocity according equation (1)

 Update particle position according equation (2)

 End

While maximum iterations or minimum error criteria is not

attained

3.2 Flow chart

The following flowchart shows the detail flow of the PSO

algorithm. First, it generates the initial population and then

evolves local best particles, i.e., pBest’s. If the termination

condition occur or no change in the results, then it selects the

global best particle i.e., gBest and prints the results. Otherwise, it

calculates new velocity and new positions for particles by using

above formulae (1) and (2).

 Yes

 No

Fig.2.The basic structure of PSO

Evolve best

particles
Select best

particle

Generate initial

Particles

Print the

results

Update the best

Particle

Update particle

Positions

Calculate Particle

Velocity

Is

Limit

reached?

Start Stop

IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”

ECOT, 2010

54

4. PARTICLE SWARM OPTIMIZATION

FOR PLANTED (l, d) - MOTIF FINDING
1. [Initialization]

NUM_ITERATION and POP_SIZE can be altered by

user

POP_SIZE is recommender to be above 30

Initial velocity of the each individual is 0

2. Generate a random number from each sequence in the

range 1 to N-l+1 called position of the particle xi in the n-

dimensional search space.

 c1, c2 2

 0.6

3. for i 1 to NUM_ITERATION

do

 rand1() and rand2() are the random numbers in the

 range [0,1]

 for i 1 to POP_SIZE

do

Ten offsprings are obtained from

moving the particle i 5 positions

right and 5 positions left. Find the

score for particle i and its children.

pBesti is the best scored position of

the particle i and its children

 End for

gBest is the best scored position from all pbesti‘s

Vin(t+1) vin(t)+c1 rand1() (pin - xin)+c2 rand2() (pg - xin)

Xin(t+1) xin (t) + Vin (t+1)

If the particle’s positions go beyond the extreme, follow wrap-

around. Using new particles continue the next iteration until no

change in particles or maximum number of iterations.

i i + 1

End for

In the above pseudo-code, we set an initial population by

selecting a random starting position from each sequence in the

range [1, N-l+1] and assign it to a particle. Repeat the same

process for whole population. After getting the initial population,

we generate ten offsprings by moving a particle five positions left

and five positions right. We evaluate the fitness function for the

parent and its offsprings by applying the score as an objective

function. The positions of sequences with the maximum score

value are called pBest’s. we repeat the same process for all the

particles. After getting all pBests, find the maximum score among

all the pBests, the maximum is the gBest. Once we get the pBest

and gBest values, we update the velocity and position by

substituting these values in the formulae (1) and (2). If the

particle’s positions go beyond the extreme, follow wrap-around.

We continue the above process for the new particles until we get

the planted motif or we reach the maximum number of iterations.

The main difficulty we face in the algorithm implementation is to

set an appropriate parameter value for PSO algorithm, i.e., Vmax

value. Based on the objective function the results also vary. We

should give due importance to select a suitable objective function.

By trial and error, we have selected parameters for proposed

algorithm as follows:

Table 1 Parameters of proposed algorithm (MbPSO)

Parameter description Parameter Values

Size of Swarm : POP_SIZE 30

Self-recognition coefficient: c1 2

Social coefficient: c2 2

Inertia Weight: w 0.6

Maximum Velocity: Vmax 5

5. EXPERIMENTAL RESULTS

5.1 Experimental Set Up:
To test our proposed algorithm with simulated data, we generate

(l, d)-planted motif challenging instances of (10, 2), (11, 2), (12,

3), (15, 4), (16, 5), (18, 6), (20, 7), (30, 11) and (40, 15) as

follows: first, a motif length l is generated by choosing l at

random. Second, we construct N=20 background sequences each

of length T=600. Third, we mutate the motif l by randomly

choosing d position. Finally we implant the mutated motif at

randomly generated motif occurrences in each sequence. We used

Intel core 2 Duo processor at 2.66GHZ with 2GB of RAM and 80

GB hard disc for implementing the algorithm.

An experimental comparison of two encoding schemes for planted

motif finding problem by using GA is presented in [7]. They are

position-based GA, PbGA and Motif-based GA, MbGA. Their

results show a clear solution quality improvement of the motif-

based representation over the position-based representation.

MbGA and PbGA did not use to find real biological data and they

took more time to find implanted motifs.

In this paper, we compare the results of these two encoding

schemes with our proposed PSO-based algorithm for Planted

Motif Finding called PMbPSO, because all the three algorithms

belong to the same family of the EAs. Table 2 shows the average

computation time (T) in seconds of MbGA, PbGA and

PMbPSO. The PMbPSO algorithm is run 30 times for each

instance and the average of time taken by PMbPSO shows that

PMbPSO outperforms MbGA and PbGA. The MbGA and PbGA

are unable to find longer motifs after (18, 6) onwards. The

proposed algorithm PMbPSO results clearly show that it is able to

find longer motifs.

Table 2 The average computation time (T) of MbGA, PbGA

and PMbPSO

(l, d) MbGA PbGA PMbPSO

(10,2) 81.67 11.1 0.98

(11,2) 91.50 11.77 1.12

IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”

ECOT, 2010

55

(12,3) 131.50 12.4 1.18

(15,4) 155.17 31.1 1.23

(16,5) 335.10 12.39 1.25

(18,6) - - 1.36

(20,7) - - 1.38

(30,11) - - 1.85

(40,15) - - 2.23

Table 3 shows the standard deviation (S. D.) values for the

MbGA, PbGA and PMbPSO. PMbPSO works better for longer

motifs. It takes less S.D. values when we increase the length of the

motifs and the number of mismatches, whereas MbGA, PbGA did

not show any results for longer size motifs in their results.

Table 3 The standard deviation for MbGA, PbGA and

PMbPSO

(l, d) S.D. MbGA S.D. PbGA S.D. PMbPSO

(10,2) 17.95 2.58 1.00

(11,2) 21.57 3.05 1.33

(12,3) 28.92 2.34 1.38

(15,4) 55.55 10.66 1.28

(16,5) 95.52 2.35 0.94

(18,6) - - 1.12

(20,7) - - 1.06

(30,11) - - 0.56

(40,15) - - 0.72

The following figure 3 shows the average time taken by the

different (l, d)-planted motifs. The graph clearly depicts how time

varies with respect to the size of the motif length and the number

of mutations. Time is directly proportional to motif lengths and its

mutations. When the size of (l, d) increases, time also increases.

 Fig. 3 Average Time taken by different (l, d)-planted motifs.

The following figure 4 shows the average number of mismatches

taken by the different (l, d)-planted motifs. The graph clearly

indicates that the proposed algorithm works better for the longer

size motifs. The proposed algorithm is able to find longer size

motifs with minimum number of mismatches.

Fig. 4 Average Mismatches taken by different (l, d)-planted

motifs.

We have also tested the proposed algorithm (PMbPSO) for real

biological sequences stored in the public database SCPD [18].

The sequence lengths T, the motifs length l were the same as those

of the published in SCPD. We have tried values for d, 0 and 1.

Experimental results are shown in Table 4. The PMbPSO could

find the motifs for these data sets within one second for each data

set. The PMbPSO is able to find motifs when d=0 exactly.

Table 4 Experimental results on real biological data sets.

Transcription

Factor binding

sites

Published

Motifs

Motifs Discovered by

PMbPSO

d=0 d=1

GCR1 CWTCC CTTCC CTTCC

GATA CTTATC CTTATC CTTATC

CCBF,SCB,SW16 CNCGAAA CACGAAA CACGAAA

CuRE, MAC1 TTTGCTC TTTGCTC AAGCAAA

GCFAR CCCGGG CCCGGG CCCAGG

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have adopted the features of the PSO to solve the

Planted Motif Finding Problem and have designed a sequential

algorithm. We have performed experiments with simulated (l, d)-

planted motif challenging instances of (10, 2), (11, 2), (12, 3),

(15, 4), (16, 5), (18, 6), (20, 7), (30, 11) and (40, 15). Our

proposed algorithm outperforms MbGA and PbGA with respect to

the average time taken and S.D. values. The results also show

that the proposed algorithm works better for longer size motifs.

The PMbPSO also applied for real biological data sets and

observe that the algorithm is also able to detect known TFBS

accurately when there are no mutations.

In future, we wish to extend the same for more number of

instances and also for the hard instances like (9, 2) (11, 3) (13, 4)

(15, 5) and (17, 6). We face a difficulty in the algorithm

implementation in setting an appropriate parameter value for PSO

algorithm, i.e., Vmax value. We should give due importance to

select a suitable objective function, because the outcomes are

IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”

ECOT, 2010

56

more dependent on the objective function. Hence, we plan to

employ multi-objective functions to solve different types of motif

finding problems.

7. REFERENCES
[1] Xiong, J. 2006. Essentials of Bioinformatics, Cambridge

press.

[2] Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald,

A., and Wootton, J. 1993. Detecting subtle sequence signals:

a Gibbs sampling strategy for multiple alignments, Science,

262, 208-214.

[3] Bailey, T., and Elkan, C. 1995. Unsupervised learning of

multiple motifs in biopolymers using expectation

maximization, Mach. Learning, 21, 51–80).

[4] Bubhler, J., and Tompa, M. 2001, Finding motifs using

random projections, Proceedings of the Fifth Annual

International Conference on Research in Computational

Molecular Biology, (69-76).

[5] Price, A., Ramabhadran, S., and Pevzner, P. 2003. Finding

subtle motifs by branching from sample strings,

Bioinformatics, (149-155).

[6] Modan, K., Das and Dai, H. 2007. A survey of DNA motif

finding algorithms, BMC Bioinformatics, (1-13).

[7] Mart´ınez-Arellano, G., and. Brizuela, C.A. 2007.

Comparison of Simple Encoding Schemes in GA’s for the

Motif Finding Problem: Preliminary Results, Springer-

Verlag Berlin Heidelberg, (22–33).

[8] Hassanien, A., Mariofanna, G., Milanova, Tomasz G.,

Smolinski, and Abraham, A. 2008. Computational

Intelligence in Solving Bioinformatics Problems: Reviews,

Perspectives, and Challenges, (1-48).

[9] Hardin, C. T., and Rouchka, E. C. 2005. DNA Motif

Detection Using Particle Swarm Optimization and

Expectation-Maximization, proc. IEEE, (181- 184).

[10] Zhou, W., Zhou, C., Liu, G., and Huang, Y. 2005.

Identification of Transcription Factor Binding Sites Using

Hybrid Particle Swarm Optimization, Springer-Verlag Berlin

Heidelberg, (438–445).

[11] Zhou, W., Zhu, H., Liu, G., Huang, Y., Wang, Y., Han, D.,

and Zhou, C. 2005. A Novel Computational Based Method

for Discovery of Sequence Motifs from Coexpressed Genes,

International Journal of Information Technology, 11, 8, (75-

83).

[12] Chang, X., Zhou, C., Li, Y., and Hu, P. 2006. Identification

of Transcription Factor Binding Sites Using GA and PSO,

Proc.6th Int. Conf on Intelligent Systems Design and

Applications, (1-5).

[13] Chang, B. 2004. Particle Swarm Optimization for Protein

Motif Discovery, in Genetic Programming and Evolvable

Machines, 5, (203-214).

[14] Gusfield, D. 1997. Algorithms on Strings, Trees and

Sequences, Computer Science and Computational Biology.

Cambridge University Press, Cambridge.

[15] Pevzner, P., and Sze, S.-H. 2000. Combinatorial approaches

to finding subtle signals in DNA Sequences. Proc. 8th Int.

Conf. Intelligent Systems for Molecular Biology, (269–278).

[16] Hu,Y. 2003. Finding subtle motifs with variable gaps in

unaligned DNA sequences, Computer Methods and

Programs in Biomedicine, 70, (11–20).

[17] Kennedy, J., and Eberhart, R. C. 1995. Particle Swarm

Optimization, Proc. of the IEEE International Conference on

Neural Networks (1942-1948).

[18] Zhu, J., and Zhang M.Q. 1999. A promoter database of the

yeast Saccharomyces cerevisiae. Bioinformatics, 15, (607-

611).

