
IJCA Special Issue on “Evolutionary Computation for Optimization Techniques”  

ECOT, 2010 

51 

Planted (l, d) - Motif Finding using Particle Swarm 

Optimization  
 

U.Srinivasulu Reddy 
Department of Computer Applications 

National Institute of Technology 
Tiruchirappalli, Tamil Nadu, India 

 

Michael Arock  
Department of Computer Applications 

National Institute of Technology 
Tiruchirappalli, Tamil Nadu, India 

 

A.V.Reddy 
Department of Computer Applications 

National Institute of Technology 
Tiruchirappalli, Tamil Nadu, India 

 

ABSTRACT 

In Bioinformatics, Motif Finding is one of the most popular 

problems, which has many applications. Generally, it is to locate 

recurring patterns in the sequence of nucleotides or amino acids. 

As we can’t expect the pattern to be exact matching copies owing 

to biological mutations, the motif finding turns to be an NP-

complete problem. By approximating the same in different 

aspects, scientists have provided many solutions in the literature. 

The most of the algorithms suffer with local optima. Particle 

swarm optimization (PSO) is a new global optimization technique 

which has wide applications. It finds the global best solution by 

simply adjusting the trajectory of each individual towards its own 

best location and towards the best particle of the swarm at each 

generation. We have adopted the features of the PSO to solve the 

Planted Motif Finding Problem and have designed a sequential 

algorithm. We have performed experiments with simulated data it 

outperforms MbGA and PbGA. The PMbPSO also applied for 

real biological data sets and observe that the algorithm is also able 

to detect known TFBS accurately when there are no mutations.  

General Terms: Evolutionary Optimization Techniques, 

Bioinformatics, Computational Biology. 

Keywords: Motif Finding, Particle Swarm Optimization 

(PSO), Swarm Intelligence (SI), Transcriptional Factor Binding 

Sites (TFBS), Planted Motifs.   

1. INTRODUCTION 
A gene is a segment of DNA that is the blueprint for protein. 

Basically, the control of gene regulation is determined by the 

chemical reactions which are, in turn, controlled by the shape and 

electrostatic charges of the molecules involved. Unfortunately, 

this information was not available. In 1950, Francois Jacob and 

Jacques Monod first discovered regulation genes, in Paris. These 

genes provide the instructions for creating proteins to control the 

expression of the other structural genes and play a key role in 

gene expression. 

In order to regulate the gene expression process, a molecule called 

transcription factor will bind to a short substring in the promoter 

region of the gene. We call this substring as a binding site of the 

transcription factor. A single transcription factor can be bound to 

multiple binding sites. We refer to these binding sites as "Motifs". 

Motifs are fundamental functional elements in proteins. These 

patterns are vital for understanding gene function, human disease, 

and may serve as therapeutic drug target. Motifs can be used to 

determine evolutionary and functional relationships of the genes. 

Motifs vary in lengths, positions, redundancy, orientation and 

bases. Finding these short sequences (motifs or signals) is a 

fundamental problem in molecular biology and computer science 

with important applications such as knowledge-based drug design, 

forensic DNA analysis, and agricultural biotechnology [1]. 

Motif Finding is the process of locating the meaningful patterns in 

the sequence of DNA, RNA or Proteins. The patterns are not 

exact copies due to biological reasons. So, the motif finding 

problem turns to be an NP-Complete Problem. It is one of the key 

areas of interest for a number of researchers. There are different 

types of motifs in the literature namely: Sequential Motifs, 

Gapped motifs, Structured Motifs, Planted Motifs and Network 

Motifs. A number of methods, algorithms and tools have been 

developed in the recent years to solve these problems. Gibbs 

Sampler [2] and MEME [3] are most widely used in practice to 

solve the motif finding problem and these methods are local 

search methods. For planted motifs, Random Projections [4] and 

Pattern Branching [5] got better results compared to others. The 

complete survey of DNA motif finding algorithms, methods and 

different approaches are presented in [6]. All these methods 

suffered from the problem of local optima. In the recent days 

many Evolutionary Computational Techniques/Evolutionary 

Algorithms (EAs) are being tried with different coding schemes 

and different objective functions to eliminate local optima. 

Among these, Genetic Algorithm (GA) is one of the widely used 

algorithms to find motifs. Though GA’s help overcome the 

problem of local optima, it is only to some extent and it is 

possible only at the cost of exercising more operators [7].   

The Swarm Intelligence (SI) is a recent emerging technology to 

solve optimization problems. It has a lot of scope to handle 

complex problems in the field of Bioinformatics and 

Computational Biology [8]. The Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) are the two popular 

techniques in SI. The characteristics of PSO promise to arrive at a 

new optimization framework which probes in the neighborhood 

regions. In addition, it is done systematically to explore the 

neighborhood profiles.  

In recent years, PSO has been used to solve different types of 

motif finding problems. The following are a few to mention with   

their advantages and disadvantages.  

Hardin and Rouchka proposed a hybrid motif discovery approach 

framed combining Particle Swarm Optimization (PSO) and the 

Expectation Maximization (EM) algorithm. They used PSO to 

generate a seed for the EM algorithm [9]. This method still 

suffered with local optima.  

Zhou et al. formulate the Transcriptional Factor Binding Sites 

(TFBS) as a Combinatorial Optimization Problem. Then, they 

applied a hybrid PSO (HPSO) to solve the challenging issue in 

upstream regions of genes regulated by Octamer binding sites. 

They developed two local search operators and one recombination 
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mutation operator in HPSO [10]. These results bring out some 

putative binding sites motifs, but not all the binding sites. The 

same author and his team demonstrated how to used evolutionary 

computing method to discover the binding sites. Then, they 

proposed a novel algorithm IPSO-GA by integrating an improved 

PSO with GA to search sequence motifs from      co-expressed 

genes regulated by the NF-Kb transcription factor [11]. Their 

experimental results help find putative binding sites, but not to 

discover the true motifs.  

X. Chang et al. proposed a novel framework to use EA to identify 

transcriptional factor binding sites. They introduced two EA 

techniques GA and PSO and also presented two different coding 

methods to solve this problem [12]. These methods can find 

correct binding site motifs than Gibbs Sampling and MEME. In 

their second experiment, both GA and PSO fail to predict the 

binding site of the sequence 17. 

B. Chang et al. applied PSO algorithm to protein sequence motif 

discovery problem [13]. The results were compared with 

PROSITE database and they obtained global optimum protein 

sequence motifs but these were not more meaningful in biological 

sense.  

In this paper, we adopt the features of the PSO to solve the 

Planted Motif Finding Problem. We perform experiments with 

simulated (l, d)-planted motif challenging instances of (10, 2), 

(11, 2), (12, 3), (15, 4), (16, 5), (18, 6), (20, 7), (30, 11) and (40, 

15) and real biological data sets and observe that the algorithm 

works better for the longer motif instances. Our approach is also 

able to detect known TFBS accurately. The rest of the paper is 

organized as follows: Section 2 imparts a background with 

preliminaries of motif finding problem. Section 3 describes PSO 

background and its applicability to Motif Finding Problem. 

Section 4 discusses the PSO algorithm for planted motif problem 

Section 5 deals with experimental results and Section 6 presents 

the conclusion with future work. 

2. BACKGROUND 
Before defining the Motif Finding Problem, let us consider the 

definitions of string and substring. A string S is an ordered list of 

characters written contiguously from left to right. For any string S, 

S[i..j] is the (contiguous) substring of S that starts at position i 

and ends at position j of S. A motif is a substring s of length l that 

may or may not present in a given string S.  An occurrence of a (l, 

d)-motif is a substring s of length l that varies at most d positions 

from the motif. 

Motif Finding in general, is locating recurring patterns in the 

sequence of nucleotides or amino acids. Formal definition of 

motif finding problem is as follows: Let S = {s1, s2 …sT} be a 

sample of T N-letter biosequences, each sequence containing an (l, 

d)-motif, i.e., a motif of length l with d mismatches (mutations). 

In this paper, we consider the planted motif finding problem 

which is preciously defined by Pevzner and Sze [14, 15]. In this, 

each input string Si contains a planted occurrence of an (l, d)-

motif, having an initial positions j  {1, 2…N-l+1}, where N is 

the length of the string Si. Here, we assume that all strings are of 

the same length. The aim of the planted motif problem is to find 

all the occurrences of the (l, d)-motifs that appear in each of the T 

input strings without knowing, a priori, the motif. 

We will now formally define the Planted Motif Finding Problem 

as the following input/output requirements. 

Input: A set of T strings {s1, s2 …. sT} each of length N over 

alphabet {a, c, g, t}, where each string contains a planted 

occurrence of the (l, d)-motif.  

Output: A set of P best starting positions {p1, p2 …. pT } where 

the planted (l, d)-motif occurs in T strings.  

All the solutions to motif finding problem essentially follow a 

three-step method. The steps are: Representing the sequences, 

determining suitable objective function(s), and employing 

appropriate search strategies. There are two common ways of 

representing motifs: Consensus sequence and Position Weight 

Matrix (PWM) or Probabilistic Matrix representations. Whilst 

first method takes symbols by majority, the second method 

assigns probability of each nucleotide occurring at each position 

of the motif sequence. Basically, there are two major 

classifications of methods for motif finding: Scanning for known 

motifs and Employing Statistical or Combinatorial methods. First 

method aims at searching in a database (already formed) which is 

a collection of known transcription factors as well as their DNA 

binding sites and profiles. For example, TRANSFAC database 

and PROSITE are two important databases among many. This 

method is not suitable, when we need to find new sites. So, we 

employ either statistical or combinatorial approach. The literature 

says the combinatorial approach is a better approach than the 

statistical approach. Gibbs Sampler, MEME, AlignACE, 

BioProspector , CONSENSUS , and TEIRESIAS are a few to 

mention. These approaches are unable to solve the Challenge 

Problem proposed by Pevzner and Sze in 2000. They defined the 

challenge problem as follows: Given a sample of n=20 sequences, 

each N=600 nucleotides long with an implanted motif of length l 

=15 with d=4 mutations, find the motif. Since then, various 

approaches have solved the motif challenge problem. The 

WINNOWER, SP-STAR [15], MERMAID [16], ROJECTIONS, 

MULTIPROFILER, Pattern Branching and Profile Branching are 

the most frequently referred among them. All the above said 

algorithms share a common protocol which is a step-by-step 

procedure of planted motif discovery shown in figure 1.  

Sequences with annotated motifs, how these motifs hide when 

affected with pathogen, how to find these hidden motifs by motif 

search programs and compare the predicated motifs with 

annotated motifs for the accuracy, are the steps.  

2.1 Preliminaries 

For better understanding of planted motif finding problem, we 

recall some of the definitions here: 

2.1.1 Objective Function 
Computational methods are defined based on the objective 

functions we choose. The purpose of an objective function is to 

approximate the correlation between sequence patterns and their 

biological meaning in terms of mathematical function. The 

objective functions are only heuristics. After objective function is 

determined, the goal is to find the patterns of high objective 

function value. To reach this goal, two important associated issues 

are employed: pattern representation and search strategy. We use 

score as the objective function in this problem.                      

Score =

l

j

sP jM
1

)( )(  
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Where P(s) is profile matrix corresponding to starting positions S. 

M P(s)( j) is the largest count in column j of P(s). 

2.1.2 Hamming Distance  
It is the number of changes applied to a sequence to obtain 

another sequence. For example, If V = ATTGTC and 

W=ACTCTC, then d (V, W) = 2. 

 

Fig.1. Benchmarking protocol for Planted Motif Finding. 

3. BACKGROUND ON PARATICLE 

SWARM OPTIMIZATION 
 

Particle swarm optimization (PSO) method is an evolutionary 

optimization technique first developed by Kennedy and Eberhart 

[17] in 1995. It finds the global best solution by simply adjusting 

the trajectory of each individual towards its own best location and 

towards the best particle of the swarm at each generation. 

Particle Swarm Optimization is one of the optimization 

techniques under EAs. The particle swarm imitates a kind of 

social optimization. Given a problem, a suitable evaluation 

method, called fitness function is to be formulated and also a 

communication structure or social network that lets individuals to 

interact among them. Then, with the help of random inferences as 

start points, we trigger an iterative process. It aims at improving 

the candidate solutions step-by-step by finding the best fatnesses’ 

and remembering their locations.  These are essentially local best 

successes. Now, with the interaction among neighbors, escorted 

by these successes we can move toward the globally best success.  

The position and velocity of the ith particle in the n-dimensional 

search space can be represented as Xi = (xi1, xi2, xi3… xin) and 

Velocity Vi = (vi1, vi2, vi3…vin) respectively. Each particle has its 

best position Pi = (pi1, pi2, pi3… pin) corresponding to the personal 

best fitness value obtained so far at time t, with reference to the 

user defined objective function. The global best particle, which 

represents the fittest particle found so far at time t in the entire 

swarm, is denoted by pg.  The new velocity of the each particle is 

calculated according to the following equation. 

 Vin(t+1)= vin(t)+c1 rand1() (pin-xin)+c2 rand2() (pg-xin) (1) 

Where c1 and c2 are acceleration coefficient constants, is called 

inertia factor and rand1 ( ) and rand2 ( ) are two sparely generated 

uniformly distributed random numbers in the range [0, 1]. 

At each iteration (generation), the position of each particle is 

updated according to the following equation.  

                Xin(t+1) = xin (t) + Vin (t+1)                     (  2 ) 

3.1 The pseudo-code of the procedure is as follows: 

 

For each particle  

     Initialize particle 

End 

do 

    For each particle  

     Calculate fitness value 

         If the fitness value is better than the best fitness value    

                (pBest) in history set current value as the new pBest 

    End 

       Choose the particle with the best fitness value of all the  

        particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (1) 

        Update particle position according equation     (2) 

    End  

While maximum iterations or minimum error criteria is not 

attained 

3.2 Flow chart  

The following flowchart shows the detail flow of the PSO 

algorithm. First, it generates the initial population and then 

evolves local best particles, i.e., pBest’s. If the termination 

condition occur or no change in the results, then it selects the 

global best particle i.e., gBest and prints the results. Otherwise, it 

calculates new velocity and new positions for particles by using 

above formulae (1) and (2).  

 

                                                                     Yes 

  

      

   

                                                 No    

 

 

                     

 

 

 

     

  

 

 

 

Fig.2.The basic structure of PSO 
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4. PARTICLE SWARM OPTIMIZATION 

FOR PLANTED (l, d) - MOTIF FINDING 
1. [Initialization] 

NUM_ITERATION and POP_SIZE can be altered by 

user 

POP_SIZE is recommender to be above 30 

Initial velocity of the each individual is 0                    

2.  Generate a random number from each sequence in the 

range 1 to N-l+1 called position of the particle xi in the n-

dimensional search space.  

                c1, c2    2 

                      0.6 

3. for  i 1 to NUM_ITERATION  

do 

               rand1( ) and rand2( ) are the random numbers in the   

               range [0,1]  

  for  i 1 to POP_SIZE  

do 

Ten offsprings are obtained from 

moving the particle i 5 positions 

right and 5 positions left. Find the 

score for particle i and its children. 

pBesti is the best scored position of 

the particle i and its children 

                  End for 

gBest is the best scored position from all pbesti‘s 

Vin(t+1)   vin(t)+c1 rand1() (pin - xin)+c2 rand2() (pg - xin)                     

Xin(t+1) xin (t) + Vin (t+1) 

If the particle’s positions go beyond the extreme, follow wrap-

around. Using new particles continue the next iteration until no 

change in particles or maximum number of iterations.  

i  i + 1 

End for 

In the above pseudo-code, we set an initial population by 

selecting a random starting position from each sequence in the 

range [1, N-l+1] and assign it to a particle. Repeat the same 

process for whole population. After getting the initial population, 

we generate ten offsprings by moving a particle five positions left 

and five positions right. We evaluate the fitness function for the 

parent and its offsprings by applying the score as an objective 

function. The positions of sequences with the maximum score 

value are called pBest’s. we repeat the same process for all the 

particles. After getting all pBests, find the maximum score among 

all the pBests, the maximum is the gBest. Once we get the pBest 

and gBest values, we update the velocity and position by 

substituting these values in the formulae (1) and (2). If the 

particle’s positions go beyond the extreme, follow wrap-around. 

We continue the above process for the new particles until we get 

the planted motif or we reach the maximum number of iterations. 

The main difficulty we face in the algorithm implementation is to 

set an appropriate parameter value for PSO algorithm, i.e., Vmax 

value. Based on the objective function the results also vary. We 

should give due importance to select a suitable objective function. 

By trial and error, we have selected parameters for proposed 

algorithm as follows: 

Table 1 Parameters of proposed algorithm (MbPSO) 

Parameter description Parameter Values 

Size of Swarm : POP_SIZE 30 

Self-recognition coefficient: c1 2 

Social coefficient: c2 2 

Inertia Weight: w 0.6 

Maximum Velocity: Vmax 5 

5. EXPERIMENTAL RESULTS 

5.1 Experimental Set Up: 
To test our proposed algorithm with simulated data, we generate 

(l, d)-planted motif challenging instances of (10, 2), (11, 2), (12, 

3), (15, 4), (16, 5), (18, 6), (20, 7), (30, 11) and (40, 15) as 

follows: first, a motif length l is generated by choosing l at 

random. Second, we construct N=20 background sequences each 

of length T=600. Third, we mutate the motif l by randomly 

choosing d position. Finally we implant the mutated motif at 

randomly generated motif occurrences in each sequence.  We used 

Intel core 2 Duo processor at 2.66GHZ with 2GB of RAM and 80 

GB hard disc for implementing the algorithm. 

An experimental comparison of two encoding schemes for planted 

motif finding problem by using GA is presented in [7]. They are 

position-based GA, PbGA and Motif-based GA, MbGA. Their 

results show a clear solution quality improvement of the motif-

based representation over the position-based representation. 

MbGA and PbGA did not use to find real biological data and they 

took more time to find implanted motifs. 

In this paper, we compare the results of these two encoding 

schemes with our proposed PSO-based algorithm for Planted 

Motif Finding called PMbPSO, because all the three algorithms 

belong to the same family of the EAs. Table 2 shows the average 

computation time (T ) in seconds of MbGA, PbGA and 

PMbPSO. The PMbPSO algorithm is run 30 times for each 

instance and the average of time taken by PMbPSO shows that 

PMbPSO outperforms MbGA and PbGA. The MbGA and PbGA 

are unable to find longer motifs after (18, 6) onwards. The 

proposed algorithm PMbPSO results clearly show that it is able to 

find longer motifs.  

Table 2 The average computation time (T ) of MbGA, PbGA 

and PMbPSO 

(l, d) MbGA PbGA PMbPSO 

(10,2) 81.67 11.1 0.98 

(11,2) 91.50   11.77 1.12 
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(12,3) 131.50 12.4 1.18 

(15,4) 155.17 31.1 1.23 

(16,5) 335.10   12.39 1.25 

(18,6) - - 1.36 

(20,7) - - 1.38 

(30,11) - - 1.85 

(40,15) - - 2.23 

 

Table 3 shows the standard deviation (S. D.) values for the 

MbGA, PbGA and PMbPSO.  PMbPSO works better for longer 

motifs. It takes less S.D. values when we increase the length of the 

motifs and the number of mismatches, whereas MbGA, PbGA did 

not show any results for longer size motifs in their results. 

Table 3 The standard deviation for MbGA, PbGA and 

PMbPSO 

(l, d) S.D. MbGA S.D. PbGA S.D. PMbPSO 

(10,2) 17.95 2.58 1.00 

(11,2) 21.57 3.05 1.33 

(12,3) 28.92 2.34 1.38 

(15,4) 55.55 10.66 1.28 

(16,5) 95.52 2.35 0.94 

(18,6) - - 1.12 

(20,7) - - 1.06 

(30,11) - - 0.56 

(40,15) - - 0.72 

The following figure 3 shows the average time taken by the 

different (l, d)-planted motifs. The graph clearly depicts how time 

varies with respect to the size of the motif length and the number 

of mutations. Time is directly proportional to motif lengths and its 

mutations. When the size of (l, d) increases, time also increases.  

  Fig. 3 Average Time taken by different (l, d)-planted motifs. 

The following figure 4 shows the average number of mismatches 

taken by the different (l, d)-planted motifs. The graph clearly 

indicates that the proposed algorithm works better for the longer 

size motifs. The proposed algorithm is able to find longer size 

motifs with minimum number of mismatches.  

 

Fig. 4 Average Mismatches taken by different (l, d)-planted 

motifs. 

We have also tested the proposed algorithm (PMbPSO) for real 

biological sequences stored in the public database SCPD [18]. 

The sequence lengths T, the motifs length l were the same as those 

of the published in SCPD. We have tried values for d, 0 and 1. 

Experimental results are shown in Table 4. The PMbPSO could 

find the motifs for these data sets within one second for each data 

set. The PMbPSO is able to find motifs when d=0 exactly. 

 

Table 4 Experimental results on real biological data sets. 

 

Transcription 

Factor binding 

sites 

Published 

Motifs  

Motifs Discovered by 

PMbPSO 

d=0  d=1 

GCR1 CWTCC CTTCC CTTCC 

GATA CTTATC CTTATC CTTATC 

CCBF,SCB,SW16 CNCGAAA CACGAAA CACGAAA 

CuRE, MAC1 TTTGCTC TTTGCTC AAGCAAA 

GCFAR CCCGGG CCCGGG CCCAGG 

 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have adopted the features of the PSO to solve the 

Planted Motif Finding Problem and have designed a sequential 

algorithm. We have performed experiments with simulated (l, d)-

planted motif challenging instances of (10, 2), (11, 2), (12, 3), 

(15, 4), (16, 5), (18, 6), (20, 7), (30, 11) and (40, 15). Our 

proposed algorithm outperforms MbGA and PbGA with respect to 

the average time taken and S.D. values.  The results also show 

that the proposed algorithm works better for longer size motifs. 

The PMbPSO also applied for real biological data sets and 

observe that the algorithm is also able to detect known TFBS 

accurately when there are no mutations.   

In future, we wish to extend the same for more number of 

instances and also for the hard instances like (9, 2) (11, 3) (13, 4) 

(15, 5) and (17, 6). We face a difficulty in the algorithm 

implementation in setting an appropriate parameter value for PSO 

algorithm, i.e., Vmax value. We should give due importance to 

select a suitable objective function, because the outcomes are 
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more dependent on the objective function. Hence, we plan to 

employ multi-objective functions to solve different types of motif 

finding problems.  
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