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ABSTRACT 
Image processing is essential across various fields such as health- 

care, security, remote sensing, forensics, and agriculture, enabling 

applications like anomaly detection, pattern recognition, scene 

understanding, and image segmentation. With over 80% of the 

world's digital data now in visual form, the need for scalable, 

intelligent solutions is greater than ever. Deep learning (DL) and 

convolutional neural networks (CNNs) are outperforming 

untraditional methods in tasks like tumor classification, forgery 

detection, and object localization with their inherent ability to 

learn and extract deep feature-level information. Advanced 

architectural models. We Only Look Once (YOLO), and hybrid 

models have achieved significant results—CNN-based diagnostic 

tools now surpass 95% accuracy in detecting cancers, while 

YOLO variants carry out real-time detection at over 30 FPS with 

high precision. In the field of image forensics, deep learning 

models can detect splicing and copy-move forgeries with an 

accuracy of over 90% by extracting fine-grained artifacts invisible 

to the human eye. However, the field still poses significant 

challenges, like the limited availability of annotated datasets, and 

high computational needs. In high-stakes fields like healthcare, 

this lack of interpretability raises ethical and practical concerns. 

Techniques like transfer learning and data augmentation partially 

improve results on smaller datasets, while Explainable AI (XAI) 

methods—such as Grad-CAM and SHAP—are becoming essential 

for model transparency, interpretability, and trustworthiness. 

Current research is focused on enhancing model-generalizability, 

interpretability, and fostering interdisciplinary collaboration. As 

these challenges are progressively overcome, deep learning is 

expected to fully unlock its transformative potential across diverse 

image-processing domains. 
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Deep Learning (DL), Image Processing, Convolutional Neural 

Network (CNN) 

Keywords 
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1. INTRODUCTION 
Deep learning has gained significant transformative force across 

most of the domains of image processing. With the continuous rise 

of digital data, image analysis has become central to fields such as 

medical diagnostics, agriculture, entertainment, security, industrial 

automation, and autonomous navigation. Studies estimate that by 

the end of the year 2025, over 100 trillion images will be 

generated each year, emphasizing the urgent need for intelligent 

systems that can effectively interpret and analyze visual content. 

This strategic step signals the nation’s commitment to embrace 

advanced data science and machine learning. As big data expands 

in volume as well as diversity, especially in the image form, deep 

learning becomes an indispensable tool for deriving 

meaningful insights [1]. 

In particular, deep learning-based image compression 

techniques, both lossless and lossy, have shown remarkable 

performance by learning compact and efficient representations 

that preserve image quality while significantly reducing file 

size.[3][4] In real-world settings, deep learning models often 

struggle with distribution shifts, limited availability of labeled 

data, and adversarial attacks [5]. Without adequate training 

and defense strategies, such as adversarial training or 

preprocessing techniques, these vulnerabilities can jeopardize 

reliability in high-stakes applications.[6]In healthcare, 

interpretability is crucial. A diagnosis proposed by a model 

must be explainable to ensure clinical trust and accountability. 

This has led to increased adoption of XAI techniques such as 

LIME, SHAP, and Grad-CAM, which help in visualizing and 

justifying model predictions. A novel example of such 

progress is Tyche, a system designed to provide multiple 

plausible segmentations of medical images without requiring 

any retraining. By allowing users to select the most 

appropriate option from several label maps, Tyche helps 

capture image uncertainty thereby facilitating more informed 

clinical decision-making. Current research is focused on 

improving generalization, enhancing interpretability, and 

fostering interdisciplinary integration. As these challenges are 

addressed, the transformative potential of deep learning in 

image processing will continue to grow across diverse sectors, 

from precision agriculture. 

This survey paper is based on recent literature on deep 

learning in image processing. Rather than emphasizing 

architectural innovations or benchmarks. 

 

2. LITERATURE REVIEW 
Each paper reviewed in this survey is evaluated based on the 

following key aspects: 

▪  Advantages: What are the main contributions of 

the paper? What innovations or performance 

improvements do it bring to the field? 

▪  Limitations: What key challenges or obstacles 

are identified by the authors? Are there issues 

related to scalability, robustness, data 

dependency, or interpretability? 

▪  Future Scope: What do the authors suggest as 

possible future improvements or extensions of 

their work? Are there any unresolved questions 

or hypotheses? 
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Also, by identifying common patterns in techniques and 

challenges addressed, an analysis table is presented at the end. 

 

2.1 Deep Learning for Medical Image 

Processing: Overview, Challenges and 

Future [7] 

Deep learning has revolutionized medical image processing, 

significantly improving disease diagnosis, treatment planning, and 

almost all healthcare automation. It highlights the limitations of 

traditional computer-aided diagnosis (CAD) systems, which rely 

on handcrafted features and domain knowledge. In contrast DL, 

particularly CNNs, offers superior performance by learning 

hierarchical features directly from raw medical images, enabling 

higher diagnostic accuracy, efficient feature extraction, and robust 

model generalization. Core medical imaging tasks such as 

segmentation, classification, detection, and registration are 

thoroughly examined. These are essential for identifying 

anatomical structures, detecting abnormalities, categorizing 

disease states, and aligning images. Real-world applications are 

extensively reviewed across imaging modalities and diseases. In 

gastrointestinal imaging, deep networks assist in polyp localization 

and bleeding detection using capsule endoscopy, while cardiac 

imaging benefits from automated calcium scoring and hybrid 

CNN-SVM approaches for tumor detection. 

Advantages: Deep learning offers numerous advantages in 

medical image processing complex features for manual feature 

engineering. It enhances diagnostic accuracy, speeds up analysis, 

and supports large-scale data handling. Deep learning models have 

exceptional performance across various medical imaging 

modalities, often surpassing traditional machine learning 

techniques. Their adaptability also allows for real-time application 

and integration with other healthcare technologies. 

Limitations: Despite its potential, deep learning faces several 

limitations in the medical domain. One major issue is the scarcity 

of annotated data, as labeling requires domain expertise and is 

time-consuming. Class imbalance, especially for rare diseases, can 

hinder model performance. Additionally, variations in imaging 

protocols and patient anatomy reduce model generalizability.  

Future Scope: The future of deep learning in medical imaging lies 

in developing more explainable models, integrating multi-data 

(such as combining imaging with electronic health records and 

enhancing real-time processing through edge computing. 

Collaborative efforts among clinicians and AI researchers. 

 

2.2 Deeplearning-based speckle imagesuper-

resolution for digital image correlation 

measurement [8] 
Specialized deep learning method to enhance low-resolution (LR) 

speckle images. Since DIC relies on high-resolution (HR) images 

of randomly patterned speckles for accurate results, traditional 

methods require expensive imaging equipment and large storage, 

making the process costly and inefficient. The authors introduce a 

custom neural network called SISRN (Speckle Im- age Super-

Resolution Network) designed specifically to recover fine speckle 

details and maintain the statistical properties unique to DIC 

images. The model is trained using synthetic LR-HR image pairs 

with an L1 loss function and optimized using Adam, targeting a 4× 

resolution improvement. Experimental results show that SISRN 

outperforms traditional interpolation methods and even general-

purpose super-resolution models in terms of PSNR, SSIM, and 

DIC measurement accuracy. It is validated through rigid body 

translation and uniaxial tensile tests, demonstrating that the strain 

and displacement measurements using SISRN-enhanced 

images closely match those obtained using original HR 

images.  

Advantages: The SISRN model allows high-accuracy D'IC 

using low-resolution images, making it cost-effective by 

reducing the need for expensive high-resolution cameras. It is 

uniquely designed to preserve the random texture of speckle 

patterns, which is essential for accurate strain and 

displacement measurement. Its architecture, built on residual 

blocks and sub-pixel convolutions, ensures high performance 

with manageable computational complexity. The model also 

helps reduce image storage needs and was successfully 

validated on real test cases, like rigid translation and tensile 

testing. 

Limitations: One major limitation is that the model was 

trained on synthetically down sampled images, which may not 

capture real-world noise or distortions. Being highly task-

specific, the model is not suitable for general-purpose image 

enhancement without significant changes. 

Future Scope: Future work can involve training the model on 

real-world LR-HR speckle image pairs to improve its 

robustness and generalization. There's also potential to develop 

a multi-scale version of SISRN that handles different 

upscaling factors. Integrating the model into DIC analysis 

software could enable real-time super-resolution before 

measurements. Improving its performance under noise, blur, or 

lighting variations is another valuable direction. Finally, 

SISRN's approach could be adapted to other fields like medical 

imaging or microscopy where random textures play a key role. 

 

 
 

Fig. 1: SISRN Framework 

 

2.3 Deep Learning-Based Digital 

Image Forgery Detection System [9] 
This study presents a robust deep learning-based system for 

detecting digital image forgery, specifically focusing on image 

splicing, a common tampering method where parts from one 

image are inserted into another to fabricate a misleading yet 

realistic visual. These manipulations often leave no obvious 

perceptual clues. To counter increasingly sophisticated 

forgeries, the proposed hybrid model integrates ResNet50v2, 

known for its deep residual learning, with pre-trained YOLO 

CNN weights via transfer learning. This fusion enables 

efficient training and powerful feature extraction, effectively 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.9, May 2025 

67 

distinguishing between authentic and tampered regions of images. 

Advantages: The primary strength of this approach lies in 

effectively combining ResNet50v2 and pre-trained YOLO CNN 

weights through transfer learning, resulting in high accuracy, 

reduced training time and thus less computational power.  It excels 

at detecting image splicing by learning complex visual features. 

Limitations: Despite strong performance in controlled conditions, 

the system shows reduced accuracy under challenging scenarios 

such as poor lighting, motion blur, or surface reflection. The 

segmentation model struggles to generalize across drastically 

different image qualities and tool geometries. 

Future Scope: Future efforts can improve by incorporating 

real-time image capture with edge processing and exploring 

self- or semi-supervised learning could reduce reliance on 

manual labeling. It has the potential to be integrated into smart 

manufacturing and Industrial IoT environments, providing 

real-time monitoring and decision support to reduce downtime 

and improve operational efficiency.

 

2.4 Deep Learning in Big Data, Image, 

and Signal Processing in the Modern 

Digital Age [13] 
Comprehensive editorial overview of 25 cutting-edge 

contributions in a Special Issue, highlighting how deep 

learning is revolutionizing rapid growth of internet-connected 

systems producing large volumes of heterogeneous data, 

traditional processing techniques struggle with scalability and 

efficiency. Deep learning, with its powerful pattern 

recognition and feature extraction, offers a robust solution for 

interpreting raw, un- structured and unlabeled data. Its 

applications span medical informatics, weather prediction, 

cybersecurity, industrial IoT, finance, and education. In 

healthcare, deep learning aids in analyzing medical images, 

signals from wellness devices, and large-scale datasets from 

hospital information systems, for example, detecting COVID- 

19 from chest X-rays, interpreting EEG signals for eye state 

recognition, and classifying mental health conditions like 

depression. In remote sensing, GAN-based models such as 

ESRGAN and Kernel GAN enhance satellite image resolution 

for disaster monitoring and urban development. Deep CNNs 

are also applied to classify sky/cloud patterns crucial for 

weather forecasting. In cybersecurity, deep learning enables 

malware detection, VPN traffic analysis, and anomaly 

detection to provide scalable, distributed security systems. In 

finance and business, sentiment-aware RNNs forecast stock 

trends from Twitter data, while ensemble neural networks 

predict academic outcomes using behavioral and demographic 

data.  

Advantages: This paper underscores the deep learning's 

versatility in processing vast and complex datasets across 

diverse domains making it a cornerstone technology in the 

modern digital era. Its ability to learn from unlabeled and 

diverse data types allows for automation and intelligent 

decision-making in fields ranging from healthcare and 

industry to security. 

Limitations: Despite its promise, deep learning faces several 

limitations. Issues like model generalizability, data privacy, 

and reliability issues. 

Future Scope: To tackle these challenges, the paper 

recommends creating lightweight, energy-efficient models 

and placing a stronger emphasis on explainable AI. It also 

highlights the adoption of self- supervised learning, enhanced 

data augmentation, federated learning for privacy-preserving 

decentralized training, and improved cross-domain 

generalization.   

2.5 Digital image forgery detection using 

deep learning approach [14] 
Deep learning-driven approach to identify image forgeries, 

focusing specifically on the common splicing technique, 

where elements from one image are seamlessly inserted into 

another to produce a realistic yet altered composite. 

Traditional approaches to forgery detection often fall short 

when faced with sophisticated manipulations or post-

processing techniques like compression. To address these 

challenges, the authors proposed a patch-based classification 

method utilizing a CNN architecture based on VGG-16. The 

model is trained to classify small image patches (40×40 

pixels) as either genuine or tampered. This patch-based 

approach enables the network to capture subtle differences 

between authentic and forged regions while simplifying the 

training process, allowing effective performance even with 

limited data. The model records a classification accuracy of 

97.8% when fine-tuned with pre-trained weights and 96.4% 

when trained from scratch (zero-stage model). These results 

surpass the performance of many existing forgery detection 

methods, like DCT analysis, Markov models, and chroma-

based feature extraction. Overall, the study highlights the 

potential of deep CNNs with transfer learning to provide 

effective and scalable solutions for verifying digital image 

integrity. 

Advantages: The proposed approach demonstrates excellent 

accuracy in detecting image splicing, outperforming 

traditional methods and showing strong resilience against 

image distortions and compression. Its use of the well-

established CNN based VGG-16 model allows for effective 

feature extraction and classification by employing a patch-

based classification strategy.  

Limitations: While the model performs well on 

uncompressed data, its accuracy significantly decreases under 

JPEG compression (down to 66%), i.e., when exposed to post-

processing operations, indicating a need for improved 

robustness in real-world conditions. Additionally, the 

approach is restricted to classification and does not localize 

the manipulated regions within an image. 

Future Scope: Future work should expand the model to 

detect diverse forgery types, such as copy-move, retouching, 

and deepfakes, while improving robustness against post-

processing effects like compression, resizing, and noise. The 

author also suggests evaluating the system using alternative 

architectures like Mobile Net or ResNet-50 for improved 

efficiency and incorporating localization techniques to not 

only detect but also highlight tampered regions. Additionally, 

training on more varied datasets could enhance the model's 

generalizability across different manipulation styles and 

image sources. 

2.6 Bidirectional graphics-based 

digital twin framework for 

quantifying seismic damage of 

structures using deep learning 

networks [15] 
This paper introduces a goal is to simulate realistic earthquake 

damage (forward prediction) and predict structural conditions 

such as drift, stress, and strain (backward prediction) using 

images captured during post-earthquake inspections. The 
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framework starts by developing a Graphics-Based Digital 

Twin (GBDT) that integrates finite element (FE) modeling 

using a software called Abaqus using a method known as 

Concrete Damage Plasticity Model (CDPM) to realistically 

simulate cracks and damage. They then turn this damage into 

images by projecting it onto a 3D model using Blender. These 

images are made to look realistic by adding textures and noise 

using tools like Perlin noise, displacement maps, and normal 

maps. These images serve as training data for deep learning 

networks. For backward prediction, the framework uses 

Residual Neural Networks (ResNet) in the Dam- age 2Drift 

(D2Drift) model to estimate maximum drift. The framework 

closes the loop by demonstrating that real or rendered 

photographic images can be used to detect damage and 

estimate structural conditions, effectively bridging the gap 

between visible damage and structural integrity assessment. 

Overall, Bi-GBDT represents a significant step toward 

enabling fast, reliable, and automated post-earthquake 

structural assessments using drone imagery and deep learning.  

 

 
 

Fig. 2: Bi-GBDT Framework 

 

Advantages: The Bi-GBDT framework is designed to quickly 

and automatically assess damage after an earthquake by 

utilizing synthetic data and deep learning techniques. It 

effectively creates realistic simulations of structural damage 

through a Graphics-Based Digital Twin (GBDT) and trains 

accurate models like ResNet and cGANs to predict structural 

conditions from images. The approach reduces the need for 

manual inspections and performs well even on real 

experimental data, making it ideal for rapid and safe damage 

evaluation using drone imagery. 

Limitations: The system heavily relies on synthetic data, 

which may not fully capture the complexity of real-world 

damage. It has been tested mainly on a concrete shear wall, so 

its generalizability to other structures is still limited. Also, 

factors like lighting, image noise, or irregular damage patterns 

in real environments could affect its performance. 

Future Scope: Future work can focus on expanding the 

framework to different structures and using real earthquake 

images to improve model accuracy. Enhancing the realism of 

simulated damage and integrating the system with drone 

platforms can make it a practical tool for real-time structural 

health monitoring in disaster response. 

 

2.7 Learning deep neural networks’ 

architectures using differential evolution. 

Case study: Medical imaging processing 

[16] 
The paper proposes a novel method for automatically 

designing CNN architecture using Differential Evolution 

(DE), a nature-inspired optimization algorithm. Instead of 

manually selecting the number of layers, filters, and other 

hyperparameters, the DE algorithm evolves CNN structures 

over multiple generations by simulating processes like 

mutation, recombination, and selection. The study concludes 

that DE is an effective and efficient strategy for automating 

CNN design, particularly in the context of digital medical 

image analysis. 

 

Advantages: The proposed method eliminates the need for a 

manual design of CNN architectures, saving time and 

reducing human bias in the model configuration. The 

approach is also versatile, working well across different types 

of medical images like MRI scans, histopathology slides, and 

ultrasounds. Moreover, it demonstrates strong classification 

performance, often matching or surpassing well-established 

deep learning models, with robust statistical validation. 

Limitations: One limitation of the study is that the evolved 

CNN architectures using the networks were trained from 

scratch without leveraging pre-trained models, which could 

lead to longer training times and possibly lower performance 

in low-data scenarios. The computational cost of training 

multiple CNNs over several generations, though manageable, 

may still be high for some users without access to GPUs. 

 

Future Scope: Future work could focus on expanding the 

architecture encoding scheme to allow varying numbers of 

hidden units across layers, increasing the model's adaptability. 

Incorporating pretrained CNNs into the evolution process 

could further enhance performance and reduce training time. 

The approach can also be extended to include other types of 

neural layers image analysis. 

 

2.8 Deep Learning-Based Land Cover 

Extraction from Very-High-Resolution 

Satellite Imagery for Assisting Large-

Scale Topographic Map Production [17] 
The research paper addresses Indonesia's urgent need for 

large-scale topographic mapping to support infrastructure, 

planning, and public services. The system's automation makes 

it highly applicable for real-time urban planning 

environmental monitoring, disaster response, and resource 

management. Its modular design also allows easy integration 

of more land cover classes and spatial data, enhancing its 

utility for scalable, accurate topographic map production. 

 

Advantages: The deep learning-based approach significantly 

speeds up land cover extraction speed and accuracy from 

high-resolution satellite imagery, reducing processing time 

from days to under an hour per map sheet. It operates 

continuously with minimal human input and achieves high 

accuracy. Using U-Net architecture with a ResNet34 encoder 

and PCA-based feature selection enhances model 

performance, making the method efficient, scalable, and ideal 

for applications like urban planning and disaster response. 

Limitations: Despite its success, the study also notes 

limitations, particularly due to the limited diversity and 

geographic scope of the training dataset. It is restricted in 

classifying only four land cover types; hence, the model's 

generalizability to other regions or more diverse classes 

remains constrained. Its performance can vary across different 

regions and requires post-processing to remove noise. 
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Future Scope: For future work, the authors propose exploring 

more advanced architecture. A comparative analysis of such 

architectures could also lead to more optimized frameworks 

tailored for scalable and accurate topographic map production.  

 

2.9 Deep learning and computer vision in 

plant disease detection: a comprehensive 

review of techniques, models, and trends in 

precision agriculture [18] 
 

This is based on the role of DL and computer vision enable 

rapid, accurate, non-destructive and automated disease 

diagnostic tools, revolutionizing monitoring and management 

practices in agriculture. The review analyzes over 278 

research articles and highlights key imaging techniques like 

RGB, multispectral, hyperspectral, thermal, fluorescence, 

microscopic, and X-ray imaging, all crucial for early disease 

detection. It evaluates DL architecture. A major focus is on 

multimodal DL, which fuses spectral, visual, and textual data 

to build more robust detection systems. It also emphasizes 

practical deployment challenges, recommending standardized 

datasets, better annotation quality, and lightweight models 

suited for edge computing in real agricultural environments. 

Further, it explores emerging technologies such as AI-

integrated IoT systems for real-time field monitoring, smart 

segmentation for handling large datasets, cloud computing for 

scalable remote diagnostics, and XAI to improve transparency 

for end-users like farmers and agronomists.Overall, the 

integration of DL in precision agriculture enables early 

intervention, automated monitoring, and more informed 

decision-making, thereby boosting productivity, strengthening 

crop protection, and accelerating disease detection, and 

ultimately contributing significantly to global food security. 

Advantages: Deep learning enables fast, non-destructive, and 

highly accurate plant disease detection, automating feature 

extraction and improving diagnostic consistency. Advanced 

imaging technologies. Multimodal learning enhances 

robustness and adaptability across diverse agricultural 

environments, supporting real-time, scalable monitoring. 

Limitations: Despite its benefits, several limitations remain. 

Deep learning models often face reduced performance in real-

world settings due to environmental factors like lighting 

variations, background clutter, and image noise.  

Future Scope: The author proposes that future scope should 

focus on developing lightweight, interpretable, field-ready DL 

models for diverse agricultural environments, integrating XAI 

for transparency, and using edge/cloud computing for real-

time and large-scale deployment. Emphasis should also be 

placed on multimodal and transfer learning approaches that 

fuse different data types and adapt models to new conditions 

with limited data. To support these efforts, larger, annotated, 

and diverse datasets must be created for accuracy in plant 

disease detection. 

 

2.10 Deep learning based denoising and 

enhancement of satellite images using DA-

CNN and ORHE techniques [19] 
The study proposes a hybrid DL-based on technical factors 

during transmission, affecting remote sensing analysis. 

Traditional denoising techniques blur edges, reducing image 

quality. The paper introduces a three-part solution: 

(1) DA-CNN (Denoised Attention-Convolutional Neural 

Network) 
(2) ORHE (Optimized Reformed Histogram Equalization) 
(3) ISSO (Improved Shark Smell Optimization) 

The framework was tested on a Kaggle satellite dataset and 

real-time ISRO data, achieving strong results in both visual 

and numerical metrics. By combining DA-CNN for effective 

noise removal, ORHE for automated contrast improvement, 

and ISSO for fine-tuning, the framework delivers superior 

image clarity and edge preservation. It is highly applicable in 

remote sensing, disaster monitoring, and land use analysis, 

offering fast and accurate preprocessing for satellite imagery. 

 

Advantages: The proposed approach offers high-performance 

denoising and enhancement by combining the strengths of 

deep learning and adaptive histogram techniques. DA-CNN 

preserves important features like edges and textures while 

effectively removing noise, and ORHE automatically adjusts 

contrast without manual input, enhancing visual quality. The 

model achieves excellent accuracy metrics and is applicable to 

real-world satellite data, making it a valuable tool for remote 

sensing tasks. 

Limitations: While the proposed framework shows great 

potential in denoising and enhancement, the proposed 

framework faces several practical issues. Its generalizability 

is yet to be fully established due to insufficient testing on 

extremely low-resolution or highly distorted images. Also, 

challenges concerning interpretability and parameter tuning 

may also hinder its accessibility for non-expert users, creating 

obstacles for its broad, easy-to-use deployment. 

Future Scope: Future work should focus on developing 

lightweight, resource-efficient architectures, exploring data-

efficient learning methods, and improving generalization 

across varying image qualities and terrains. Enhancing 

explainability, enabling adaptive parameter tuning, and 

integrating the model into broader Earth observation pipelines 

will further strengthen its real-world applicability. 

 

2.11 Recent Advances in Deep 

Learning-Based Spatiotemporal 

Fusion Methods for Remote Sensing 

Images [20] 
Deep learning-based spatiotemporal fusion (DL-STF) 

methods have emerged as powerful alternatives, capable of 

automatically learning nonlinear relationships, extracting 

intricate features, andoffering improved adaptability across 

diverse scenarios. The study classifies existing DL-STF 

approaches into four primary categories: 

(1) CNN-based methods – effective for spatial feature 

extraction and have enhanced through residual and 

attention modules 
(2) GAN-based methods – capable of generating high-

quality, realistic images using adversarial learning, 

ideal for sparse or noisy data 
(3) Transformer-based methods – powerful in handling 

long-range spatial and temporal dependencies using 

self-attention mechanisms for capturing global 

contextual information 
(4) Diffusion-based methods – emerging techniques that 

leverages probabilistic noise modeling and denoising 

processes to produce highly accurate and stable fused 

imagery. 
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Advantages: Deep learning has greatly enhanced 

spatiotemporal fusion by enabling the seamless integration of 

diverse satellite imagery with improved high accuracy, 

automated feature extraction, and greater adaptability. Models 

such as CNNs, GANs, and Transformers efficiently capture 

complex spatial and temporal dependencies, outperforming 

traditional fusion methods. These techniques allow more 

precise land monitoring, resource management, and 

environmental assessment, while also expanding the potential 

of remote sensing data dynamic real-world challenges. 

Limitations: Despite their success, DL-STF methods face 

several limitations. They require high computational power, 

large and high-quality datasets, and often struggle with sensor 

inconsistencies and dynamic changes in land cover. The lack 

of standardized evaluation protocols further complicates 

benchmarking and comparison across different approaches. 

Future Scope: Future research should focus on developing 

lightweight, real-time models, enhancing adaptability using 

multi-scale and attention mechanisms, and handling sensor 

mismatches with learned alignments. Integrating physical 

models, enhancing explainability, and creating benchmark 

datasets will further strengthen the reliability and scalability 

of DL-STF systems for wider operational use. 

 

2.12 An Exhaustive Review on Deep 

Learning for Advanced Landslide 

Detection and Prediction from Multi-

Source Satellite Imagery [21] 
This paper presents a comprehensive review and proposed 

framework for improving landslide detection and prediction 

using DL techniques with multi-source satellite data. 

Landslides pose severe risks to life, infrastructure, and 

ecosystems, making accurate, timely detection important. 

Traditional approaches (e.g., manual surveys basic image 

analysis) lack scalability and precision in complex terrains. To 

address this gap, the study integrates DL within the remote 

sensing workflow. The proposed framework leverages 

Sentinel-2 multispectral imagery, slope data from ALOS 

PALSAR, and elevation data from Digital Elevation Models 

(DEM). These data sources are crucial in capturing 

environmental variables like vegetation density, rainfall 

patterns, and terrain structure, all of which are directly linked 

to landslide susceptibility. The integration of spectral, slope, 

and elevation data with DL significantly reduces 

misclassification errors common in traditional methods due to 

limited feature depth. Ultimately, the paper shows how 

integrating DL with satellite data transforms landslide 

detection from a post-event analysis tool into a scalable, real-

time, and proactive decision-making framework. 

 

Advantages: The integration of deep learning with multi-

source satellite data significantly improves the accuracy and 

scalability of landslide detection. By using rich spectral, 

slope, and elevation features along with powerful 

segmentation models, the system can handle complex terrains 

and diverse environmental conditions. The approach supports 

early warning systems and can be effectively used in disaster 

mitigation, risk assessment, and land management planning, 

offering a robust, data-driven solution to an otherwise 

unpredictable natural hazard. 

Limitations: Despite its advancements, the system requires 

high-quality satellite imagery, consistent data availability, and 

significant computational resources for training deep learning 

models.  

Future Scope: For future work, it suggests real-time 

monitoring via edge computing, integrating geophysical 

knowledge for better interpretability, creating benchmark 

datasets, and promoting collaboration to build deployable, 

scalable solutions. 

 

2.13Current trends on the use of 

deep learning methods for image 

analysis in energy applications [22] 
This paper is based on a thorough review of the growing role 

of DL—especially CNNs and encoder–decoder networks—is 

applied to monitor and forecast renewable energy sources like 

solar and wind. These models process sky, satellite, and 

rooftop images to predict irradiance, detect defects in solar 

panels and wind turbines, and assess solar energy potential. 

FCN are particularly effective in segmentation tasks such as 

identifying suitable rooftops for solar installations or mapping 

existing photovoltaic systems at a large scale. The devices 

category involves operational monitoring and diagnostics. 

CNNs and Mask R-CNNs are widely used to analyze thermal 

and infrared images for fault detection in electrical 

components, motors, and power systems. DL is also used to 

monitor battery health, estimate the state of charge, predict 

remaining useful life, and analyze heat distribution in 

buildings for improved energy efficiency. Overall, the paper 

emphasizes DL's growing potential to revolutionize energy 

monitoring, forecasting, and material innovation through 

continued interdisciplinary collaboration. 

 

Advantages: Deep learning, particularly CNNs, offers 

powerful tools for handling complex image data in energy 

applications. It enables accurate classification, object 

detection, and segmentation across various scales—from 

identifying faults in solar panels and wind turbines to 

analyzing microstructures of battery materials. DL models can 

process large datasets efficiently, uncover patterns not easily 

detected by traditional methods, and automate monitoring 

tasks, thereby improving system reliability, predictive 

maintenance, and decision-making in energy management. 

Limitations: Despite its potential, deep learning faces several 

challenges in energy applications. Many energy datasets are 

noisy, irregular, or limited in size, making model training 

difficult. DL models often require significant computational 

resources and lack transparency, which can hinder 

interpretability and trust especially in safety-critical systems. 

Moreover, they are not inherently de- signed to handle 

temporal or spatial dynamics and adapting them to energy-

sector requirements often demands domain-specific tuning, 

data preprocessing, and integration with physical laws. 

Future Scope: The future of DL in energy lies in developing 

more interpretable, resource-efficient models tailored to real-

world constraints. Techniques like Physics-Informed Neural 

Networks (PINNs) offer promising ways to embed domain 

knowledge into DL frameworks.  

2.14Detection of sick broilers by 

digital image processing and deep 

learning [23] 
This paper presents a robust, intelligent system for automated 

detection of sick broilers by integrating DIP with advanced 
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DL models. It addresses the limitations of traditional poultry 

health monitoring, which is often manual, subjective, time-

consuming and error prone. Aiming for early, scalable disease 

detection in commercial farms, the system uses visual data to 

assess broiler health in a non-invasive and efficient manner. 

Video footage from real poultry environments was collected, 

capturing various behaviors and lighting conditions. Two deep 

learning approaches were used. Both models proved highly 

adaptable to dynamic farm conditions and demonstrated the 

effectiveness of deep learning in real-time poultry health 

monitoring, reducing manual labor, enabling early detection 

of illness, and enhancing overall animal welfare and farm 

productivity. Figure 3 shows the proposed methodology. 

 

Advantages: The system offers over 95% accuracy in 

detecting sick broilers through real-time, non-invasive image 

analysis. By evaluating behavioral cues like posture and 

movement, it reduces manual labor, enhances early detection, 

and improves animal welfare and farm efficiency. 

Limitations: Despite its effectiveness, the system has some 

limitations. It depends solely on visible behavioral signs, 

making it less effective for detecting illnesses without clear 

external symptoms. 

Future Scope: Future developments recommended by the 

author might incorporate more data sources, such as thermal 

imaging, aural cues, and multi-angle camera setups to record a 

wider variety of health indicators, to increase their efficacy. 

 

3. ANALYSIS TABLE 
The analysis of the techniques and methods used by various research papers on DL algorithms for image analysis. 

Table 1:Overview of DL Techniques Surveyed in Image Analysis 

Sr. 

No 

Paper Title Techniques Addressed Issue 

1 Deep Learning for Medical Image 

Processing: Overview, Challenges and 

Future [7] 

CNNs, RNNs, AlexNet, 

VG- GNet, GoogLeNet, 

ResNet, U- Net 

Limitations of traditional CAD 

systems, lack of automation, data 

scarcity in healthcare imaging 

2 Deep learning-based speckle image super-

resolution for digital image correlation 

measurement [8] 

SISRN

 (novelframew

ork) based on DL 

DIC using low-resolution speckle 

images 

3 Deep Learning-Based Digital Image 

Forgery Detection System [9] 

ResNet50v2, YOLO CNN Detecting manipulated/forged images, 

image tampering (splicing) 

4 Deep Learning in Big Data, Image and 

Signal Processing in the Modern Digital 

Age [13] 

Deep CNNs, GANs, 

Transfer Learning 

Efficient processing of large 

unstructured data, scalability issues, 

limitations of traditional methods 

5 Digital image forgery detection using deep 

learning approach [14] 

VGG-16 CNN Detecting image splicing 

6 Bidirectional graphics-based digital twin 

framework for quantifying seismic damage 

of structures using deep learning networks 

[15] 

Bi-GBDT (novel 

framework) integrating 

ResNet and cGANs 

Post-earthquake structural damage 

assessment 

7 Learning deep neural networks’ 

architectures using differential evolution. 

Case study: Medical imaging processing 

[16] 

Differential Evolution Automated method for designing CNN 

for medical image analysis 

8 Deep Learning-Based Land Cover 

Extraction from Very- High-

ResolutionSatellite Imagery for Assisting 

Large-Scale Topographic Map Production 

[17] 

U-Net,ResNet34, 

Semantic, Segmentation, 

Pan-sharpened Imagery 

Topographic map production, slow 

land cover classification, manual 

mapping inefficiency, need for real-

time spatial data 

9 Deep learning and computer vision in plant 

disease detection: a comprehensive review 

of techniques, models, and trends in 

precision agriculture [18] 

DL models (CNNs, ViTs, 

GANs), Computer Vision, 

Imaging Techniques 

(RGB, multispectral, 

hyperspectral etc.) 

Manual and error-prone plant disease 

detection 

10 Deep learning based denoising and 

enhancement of satellite images using DA-

CNN and ORHE techniques [19] 

DA-CNN, ORHE, ISSO 

algorithm 

Satellite image distortion/noise, edge 

blurring, enhancement 

11 Recent Advances in Deep Learning-Based 

Spatiotemporal Fusion Methods for Remote 

Sensing Images [20] 

CNNs, 

GANs,Transformers, 

Diffusion Models 

Spatial/temporal resolution trade-off, 

fusion technique limits 

12 An Exhaustive Review on Deep Learning 

for Advanced Landslide Detection and 

Prediction from Multi-Source Satellite 

Imagery [21] 

DeepLabV3+,HRNet,Res

UNet, SegFormer, and U-

Net 

Landslide detection for risk mitigation 
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13 Current trends in the use of deep learning 

methods for image analysis in energy 

applications [22] 

CNNs, FCNs, Mask R-

CNN,GANs, encoder–

decoder architectures 

Image-based challenges in energy 

sector 

14 Detection of sick broilers by digital image 

processing and deep learning [23] 

YOLOv3, IFSSD with 

InceptionV3,feature 

pyramid networks 

Limitations of manual broiler health 

monitoring 

 

4. CONCLUSION 
Deep learning has emerged as a dominant approach in image 

analysis, consistently outperforming traditional methods in 

healthcare, agriculture, remote sensing, manufacturing, and 

digital forensics. Across most of the surveyed literature, 

CNNs remain the foundational architecture, often enhanced 

by frameworks like U-Net, ResNet, YOLO, DeepLab, and 

GANs like classification, segmentation, detection, and image 

enhancement. These techniques tackle issues such as visual 

noise, spatial-temporal resolution gaps, manual annotation 

inefficiencies, and domain inconsistency. To address 

challenges like data scarcity, class imbalance, and overfitting, 

techniques such as transfer learning, data augmentation, and 

hybrid models (e.g., CNN-RNN, ELM- RVFL) are commonly 

applied. While traditional techniques such as filtering, 

morphological operations, and feature extraction are 

interpretable, lightweight, and computationally efficient, they 

often fall short in handling complex tasks that require 

contextual understanding, multi-modal data analysis, or high 

pattern variability. However, when combined with deep 

learning approaches, they can significantly enhance 

interpretability and overall accuracy. Despite these advances, 

common limitations that persist across domain include high 

computational requirements, dependence on extensive labeled 

datasets, limited generalizability, and interpretability 

challenges. However, new approaches that use lightweight 

models, transformer-based architectures, and XAI frameworks 

suggest promising avenues for future exploration. Ultimately, 

the fusion of deep learning with domain-specific knowledge 

and traditional methods is driving the development of 

intelligent, scalable, and real-time image processing solutions 

within various industries.  
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