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ABSTRACT

This study presents a novel hybrid optimization framework that
integrates Genetic Algorithms (GA) with Response Surface
Methodology (RSM) for optimizing machining parameters in
end-milling operations, specifically aimed at minimizing
surface roughness. The proposed GA-RSM framework
overcomes the limitations of traditional methods by combining
the global search ability of GA with the predictive modeling
power of RSM. A second-order polynomial regression model
was developed using a full-factorial experimental design (27
trials) on aluminum alloy specimens and embedded within a
GA loop featuring adaptive mutation decay and tournament
selection to promote robust convergence. Experimental
validation demonstrated that the proposed approach reduced
surface roughness by 9.5% relative to Gradient Descent, 11.8%
compared to Simulated Annealing, and 18.8% compared to
manual parameter selection, achieving a minimum roughness
of 13.4 pin. The framework maintains computational efficiency
and offers extensibility to other machining processes and
materials. It delivers a reproducible, statistically validated, and
practically feasible solution for surface roughness
optimization, with direct applications in aerospace, automotive,
and precision manufacturing sectors.

General Terms
Optimization, Algorithms; Computational Intelligence;
Manufacturing Engineering; Process Modeling.

Keywords
Genetic Algorithm, Response Surface Methodology, Surface
Roughness, End-Milling, Optimization, Hybrid Algorithms

1. INTRODUCTION
1.1 Background and Motivation

In today’s advanced manufacturing environments, achieving
superior surface quality in machined components is a critical
requirement—particularly in the aerospace, automotive,
biomedical, and precision engineering sectors[1]. Surface
roughness directly influences key product attributes such as
dimensional accuracy, fatigue resistance, tribological
performance, and structural integrity. As industries
increasingly adopt hard-to-machine materials like titanium
alloys, superalloys, and fiber-reinforced composites, the
optimization of machining parameters has become significantly
more challenging [27].

Among conventional subtractive methods, end-milling is
highly valued for its flexibility and high material removal rates.
However, determining the optimal combination of machining
parameters—namely, spindle speed, feed rate, and depth of
cut—is non-trivial. This is due to the highly nonlinear, multi-
objective, and interdependent nature of these parameters,
which often leads to complex search spaces with multiple local

optima.

Traditional approaches such as trial-and-error, One-Factor-at-
a-Time (OFAT) experiments, and even Taguchi-based DOE
are limited in their ability to capture the interactive and
synergistic effects among process variables. These methods are
also unsuitable for dynamic manufacturing environments,
where adaptability and multi-objective optimization are
essential [2].

As a result, researchers have increasingly turned to
computational intelligence and hybrid metaheuristic
approaches to improve optimization performance in machining
applications. Yet, a persistent challenge lies in effectively
balancing global exploration (to identify promising regions of
the parameter space) and local exploitation (to fine-tune
solutions near optima). This trade-off becomes even more
critical in real-world scenarios involving conflicting
objectives—such as minimizing surface roughness while
maximizing tool life or reducing energy consumption.

1.2 Objectives of the Study

This study aims to design a robust, data-driven hybrid
optimization framework that integrates the global search
efficiency of Genetic Algorithms (GA) with the local
modeling accuracy of Response Surface Methodology
(RSM). The framework is developed to minimize surface
roughness in end-milling operations while addressing the
challenges of nonlinear parameter interactions, premature
convergence, and computational inefficiency.

The specific objectives of the research are as follows:

1. Introducing an adaptive mutation decay strategy and
tournament selection mechanism within the GA
framework to enhance convergence stability,
maintain population diversity, and mitigate the risk
of premature stagnation in high-dimensional search
spaces.

2. To embed a second-order RSM model directly into
the GA’s evolutionary loop, allowing the algorithm
to leverage real-time surrogate evaluations for local
exploitation, thereby improving precision in
identifying near-optimal machining parameters.

3. To empirically validate the GA-RSM hybrid
framework using real-world experimental trials on
aluminum alloy end-milling and to benchmark its
performance  against  classical  optimization
techniques, including Gradient Descent and
Simulated Annealing, with the goal of demonstrating
superior optimization accuracy and convergence
robustness.
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1.3 Research Gap and Motivation

Although hybrid optimization strategies—particularly those
combining Genetic Algorithms (GA) with Response Surface
Methodology (RSM)—have demonstrated promising results in
machining optimization, several critical gaps remain in the
literature. These shortcomings limit both the scalability and
generalizability of current approaches:

1. Lack of adaptive control mechanisms: Most GA-
based implementations adopt static mutation rates
and fixed selection pressures, which often result in
premature convergence, loss of population diversity,
and suboptimal search performance in complex,
multimodal landscapes.

2.  Weak algorithmic integration: In many hybrid
frameworks, RSM is employed only during
preprocessing or post-analysis, rather than being
fully embedded within the evolutionary optimization
loop. This separation restricts effective synergy
between global exploration and local exploitation.

3. Limited theoretical foundation: Few studies provide
formal convergence analysis or incorporate
stochastic modeling (e.g., Markov chain-based
analysis) to theoretically justify algorithmic behavior
and stability.

4. Insufficient experimental validation: Many existing
studies rely primarily on simulated data or small-
scale experimental sets, lacking robust statistical
verification (e.g., ANOVA, residual diagnostics) and
real-world machining trials.

These gaps underscore the necessity for a tightly integrated,
formally grounded, and empirically validated GA—RSM hybrid
framework—especially for high-precision machining scenarios
where surface roughness has direct implications on product
integrity, tool longevity, and overall manufacturing efficiency.

1.4 Contributions of the Paper

This study advances the field of machining optimization
through four principal contributions, each aligned with the
research objectives and designed to address critical gaps
identified in prior literature:

Development of an elite-preserving Genetic
Algorithm (GA) enhanced by adaptive mutation
decay: The proposed algorithm improves global
search efficiency and mitigates premature
convergence—common limitations in conventional
GA implementations for machining tasks [3], [4]. It
builds upon recent advances in hybridization and
elitist strategies to ensure better convergence
reliability in complex optimization
landscapes [6], [20].

4. Seamless integration of a second-order Response
Surface Methodology (RSM) model into the GA
optimization cycle: Unlike prior hybrid frameworks
that treat RSM as an offline or auxiliary
module [13],[25], this approach embeds RSM
directly into the evolutionary loop, enabling real-
time local exploitation and improved model-guided
parameter refinement.

5. Introduction of a formal convergence framework
based on discrete-time Markov chain modeling: This
contribution provides theoretical justification for the
algorithm's long-term behavior and stability—an
aspect rarely addressed in existing GA-RSM
literature for manufacturing applications.
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Experimental validation using full-factorial trials on aluminum
alloy specimens: The framework is empirically tested using 27
end-milling trials (3® design), demonstrating a minimum
surface roughness of 13.4 pin—a 9.5% improvement over
Gradient Descent and 11.8% over Simulated Annealing.
Results are statistically validated using ANOVA and residual
diagnostics, confirming the model's predictive accuracy and
industrial applicability.

1.5 Structure of the Paper

The remainder of this paper is organized as follows:

1. Section 2 reviews relevant literature on machining
parameter optimization, metaheuristic algorithms,
and prior GA-RSM hybrid frameworks.

2. Section 3 presents the proposed GA-RSM hybrid
optimization methodology, including algorithm
design and integration logic.

3. Section 4 describes the experimental setup, test
material properties, parameter ranges, and reports the
optimization results.

4. Section 5 discusses the results in terms of
convergence behavior, comparative performance,
statistical validation, and practical implications.

5. Section 6 concludes the paper and outlines key
directions for future research, including potential
extensions to multi-objective and multi-process
optimization.

2. LITERATURE REVIEW
2.1 Machining Process Optimization:

Challenges and Importance

End-milling is a fundamental manufacturing process widely
employed in the aerospace, automotive, and precision
engineering sectors due to its capacity to produce intricate
geometries with high-quality surface finishes. Despite its
versatility, the nonlinear, multivariable, and high-dimensional
nature of end-milling poses substantial challenges for process
parameter optimization. Critical factors—such as spindle
speed, feed rate, and depth of cut—interact in complex, non-
intuitive ways, often resulting in multiple local optima and
rugged search landscapes that traditional optimization methods
struggle to navigate [1], [2].

Classical approaches such as One-Factor-At-a-Time (OFAT),
Taguchi methods, and full factorial experimental designs,
while foundational to machining research, suffer from
significant limitations. These include the inability to capture
interaction effects, poor scalability with increasing parameter
dimensionality, and a lack of adaptability to dynamic
manufacturing conditions [3], [4]. Moreover, such methods are
inherently static and deterministic, making them unsuitable for
integration into real-time optimization frameworks demanded
by Industry 4.0 and smart manufacturing systems [5].

2.2 Genetic Algorithms in Machining
Optimization

Genetic Algorithms (GAs), rooted in the principles of
evolutionary computation, have emerged as robust tools for
solving complex, nonlinear, and multi-modal optimization
problems. Their ability to perform global search and their low
sensitivity to initial conditions make them particularly suitable
for machining applications, where the objective functions are
often non-convex, discontinuous, and characterized by multiple
local optima [6], [7].
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A substantial body of research has demonstrated the
effectiveness of GAs in optimizing machining parameters,
leading to enhanced outcomes in terms of surface roughness,
tool life, and material removal rates [8],[9]. These studies
confirm the practical viability of GAs across a variety of
manufacturing settings and materials.

However, traditional GA implementations often suffer from
premature convergence, limited population diversity, and
excessive computational cost. These issues typically stem from
the use of fixed mutation rates and the absence of adaptive
control mechanisms that can respond to dynamic search
conditions [10], [11]. As a result, their scalability, convergence
reliability, and real-time applicability remain limited in high-
dimensional, time-constrained industrial environments.

2.3 Response Surface Methodology (RSM) in

Process Modeling

Response Surface Methodology (RSM) is a widely adopted
statistical technique for modeling and optimizing complex
systems. By constructing second-order polynomial regression
models, RSM approximates the relationship between multiple
input variables and one or more output responses [12], [13]. Its
interpretability, experimental efficiency, and ability to detect
main and interaction effects make it particularly appealing in
manufacturing process optimization.

Despite its advantages, RSM is inherently a local optimization
method, relying on linear or quadratic approximations that may
not accurately capture highly nonlinear behaviors. When
applied in isolation to complex machining scenarios—
characterized by non-convex search spaces and strong
parameter interdependencies—RSM often converges to
suboptimal solutions [14].

24 Hybrid GA-RSM Approaches:

Opportunities and Limitations

Hybrid models that combine Genetic Algorithms (GAs) with
RSM are designed to exploit the global exploration strength of
GAs and the local refinement capability of RSM. In such
frameworks, the GA navigates the broader search landscape,
while RSM provides surrogate-assisted evaluation and fine-
tuning in promising regions [15], [16]. This duality enables a
more efficient balance between exploration and exploitation.

Several studies have demonstrated the efficacy of GA—-RSM
hybrids in machining optimization. For instance, Zain et
al. [17] integrated GA with RSM to simultaneously minimize
surface roughness and maximize material removal rate,
reporting substantial improvements in both objectives.
However, most existing hybrids exhibit weak algorithmic
integration, with RSM often relegated to preprocessing or post-
analysis, rather than being embedded within the evolutionary
loop of the GA.

Furthermore, theoretical rigor is often lacking. Few models
incorporate formal convergence analysis, stochastic stability
modeling, or adaptive control mechanisms for mutation rate or
selection pressure. In addition, many prior studies are confined
to simulation environments, with limited real-world
experimental validation or statistical verification (e.g.,
ANOVA, residual diagnostics) [18], [19].

2.5 Summary and Identified Research Gap
The reviewed literature highlights several critical limitations in
existing hybrid GA—RSM optimization frameworks:

1.  Weak integration, with RSM not embedded directly
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into the GA optimization loop.

2. Lack of adaptive control, particularly in mutation
decay and selection strategies.

3. Insufficient theoretical grounding, with minimal
attention to convergence stability or stochastic
behavior.

4. Limited experimental validation, with many
models untested on real machining platforms or
lacking rigorous statistical assessment.

To address these gaps, this paper proposes a novel elite-
preserving GA-RSM hybrid framework that:

e Tightly couples RSM within the GA’s evolutionary
cycle;

e Implements adaptive mutation decay and
tournament-based selection;

e  Provides theoretical convergence analysis using
Markov chain modeling;

e [s validated through full-factorial physical
experiments and statistical diagnostics.

This integrated and empirically grounded approach aims to
deliver a scalable, accurate, and practically viable solution
for optimizing machining parameters under the complex
constraints of real-world manufacturing environments.

3. METHODOLOGY
3.1 Overview of the Proposed Approach

This study presents a novel hybrid optimization framework that
integrates Genetic Algorithms (GA) with Response Surface
Methodology (RSM) to optimize machining parameters in
end-milling operations, with a primary focus on minimizing
surface roughness—a critical quality attribute influencing
product integrity, tool wear, and manufacturing efficiency.

The underlying optimization problem is characterized by
nonlinear, multidimensional interactions among control
parameters—namely spindle speed, feed rate, and depth of
cut. To model these complex relationships in a statistically
tractable and interpretable manner, a second-order
polynomial regression model is employed. This model,
derived via Taylor series expansion, effectively captures
main effects, quadratic terms, and two-way interactions,
offering a sound compromise between model complexity and
predictive accuracy in line with standard RSM practice [4].

Within the hybrid framework, the RSM model serves two
complementary roles:

e  Acts as a surrogate objective function, providing a
smooth, differentiable approximation of the surface
roughness landscape across the parameter space.

e Enables statistical validation and model
interpretability through Analysis of Variance
(ANOVA), residual diagnostics, and significance
testing.

This surrogate function is embedded within a GA framework
that utilizes biologically inspired operators—selection,
crossover, and mutation—to explore the high-dimensional
search space. By combining GA's global search capabilities
with RSM's localized precision, the proposed method
overcomes common pitfalls in conventional approaches, such
as local optima entrapment and slow convergence.
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To further enhance the optimization process, the framework
integrates:

e  Adaptive mutation scheduling, which dynamically
adjusts mutation rates to maintain population
diversity and mitigate premature convergence.

e  Tournament selection, which enhances
convergence stability in small-to-medium population
sizes by preserving selection pressure.

e  Empirical hyperparameter tuning, achieved
through systematic experimental trials to optimize
the exploration—exploitation trade-off.

In summary, the proposed GA—RSM hybrid methodology is:

e  Statistically grounded, through ANOVA-validated
second-order modeling;

e Algorithmically robust, incorporating adaptive and
elitist evolutionary mechanisms.

e  Computationally efficient, leveraging surrogate-
assisted evaluation;

e  Empirically validated, using real-world end-milling
experiments conducted on CNC systems.

This tightly integrated, interpretable, and generalizable
framework offers a scalable solution for surface roughness
optimization in  complex, multi-factor = machining
environments—outperforming conventional single-method
techniques in both predictive accuracy and convergence
behavior.

3.2 Genetic Algorithms

Genetic Algorithms (GAs) are stochastic, population-based
metaheuristics inspired by the principles of natural selection
and genetic inheritance. In this study, GA is utilized to explore
the multimodal, nonlinear search space defined by machining
parameters, with the goal of minimizing surface roughness as
predicted by the embedded RSM model.

The algorithm follows the standard GA workflow—
population initialization, fitness evaluation, selection,
crossover, mutation, and elitist survival—but is enhanced
through several adaptive and empirically validated mechanisms
that improve convergence reliability and solution quality.
These refinements address known limitations in previous
machining optimization studies.

3.2.1 Population Initialization

An initial population of machining parameter sets is generated
via uniform random sampling within the feasible bounds of
the decision variables. This ensures broad coverage of the
search space and prevents initial population bias [18].

3.2.2 Fitness Evaluation

Each candidate solution is evaluated using the second-order
polynomial model derived via RSM, which estimates the
resulting surface roughness. The fitness function is defined as
the inverse of the predicted roughness:

- )

Predicted Surface Roughness

Fitness =

This transformation aligns with the maximization framework
of standard GA operators [19].
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3.2.3 Selection

A tournament selection mechanism is adopted in place of the
classical roulette-wheel approach. Empirical comparisons
showed that tournament selection yields better convergence
stability, especially for small-to-medium population sizes,
and reduces the risk of premature convergence. It also
preserves moderately fit individuals, thereby maintaining
population diversity throughout the search [20].

3.2.4 Crossover

A two-point crossover operator is applied with a probability
of 0.8, offering more disruptive recombination than single-
point methods. This operator facilitates exploration of diverse
solution regions and accelerates convergence toward global
optima [21].

3.2.5 Mutation (Adaptive Scheduling)

To prevent genetic stagnation and promote exploration, an
adaptive mutation rate is introduced. The mutation rate
decays exponentially over generations:

pe = po ek 2)
where:
e is the mutation rate at generation t,

® o is the initial mutation rate,

e ks auser-defined decay constant.

This scheduling ensures high mutation activity in early
generations (favoring exploration), while focusing on local
exploitation in later stages. Empirical trials demonstrated that
this strategy consistently improved both convergence speed
and surface roughness outcomes compared to fixed-rate
mutation [22], [23].

3.2.6 Diversity Preservation and Premature

Convergence Control
To ensure robust evolutionary dynamics, two core mechanisms
are implemented:

e  Adaptive mutation, which sustains diversity across
generations;

e Tournament selection, which mitigates high
selection pressure and preserves genetic variability.

Additionally, constraint handling is implemented via penalty
functions, penalizing infeasible solutions during fitness
evaluation in line with established practices in constrained
optimization [26].

3.2.7 Empirical Validation of Genetic Operators
Comprehensive simulation studies were conducted to evaluate
operator configurations. The selected settings—population
size =50, crossover probability = 0.8, and adaptive mutation
scheduling—yielded the lowest surface roughness and least
result variance across five independent trials. These results
affirm the reliability, robustness, and repeatability of the GA
implementation.

3.3 Hyperparameter Tuning and

Configuration

To ensure robust convergence and high-performance
optimization, a systematic hyperparameter tuning process
was conducted using a grid search strategy. Proper parameter
calibration is crucial, as poor configurations can lead to
premature convergence, excessive runtime, or suboptimal
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results. To reduce computational cost while preserving
optimization fidelity, the tuning process employed the RSM-
based surrogate model as the fitness evaluator.

Three key GA hyperparameters were investigated:
e  Population size: 30, 50, 100
e  Crossover probability: 0.6, 0.8, 0.9

e  Mutation strategy: Fixed mutation vs. adaptive
mutation using exponential decay as defined earlier
in Equation (1)

Each configuration was executed across five independent
trials with randomized seeds to account for the stochastic
nature of GA. Evaluation metrics included the mean and
standard deviation of final surface roughness values, offering
insight into both convergence performance and result
consistency.

3.3.1 Selected Configuration and observations
Among all tested combinations, the following configuration
yielded the best average performance:

e  Population size = 50
e Crossover rate = 0.8 (two-point)

e Adaptive mutation with exponential decay
(Equation 2)

This configuration demonstrated superior balance between
exploration in ecarly generations and exploitation in later
stages, consistently achieving lower surface roughness with
reduced variance. The adaptive mutation schedule enhanced
solution diversity and reduced the likelihood of premature
convergence—key challenges in high-dimensional
optimization.

3.3.2 Final Parameter Settings

The final GA and RSM parameter settings are summarized in
Table 1, selected based on empirical performance trends and
guidelines from evolutionary algorithm literature. These
parameters form the foundation for the proposed hybrid GA—
RSM framework.

Table 1. Final Parameter Settings for GA and RSM

Models
Parameter Value Justification
GA Ensures diversity while
Population 50 maintaining a manageable
Size computational cost
Sufficient to reach
GA .
. 50 convergence without
Generations . .
excessive runtime
Promotes exploitation of fit
Crossover . . .
0.8 solutions while supporting
Rate (Pc) o
recombination
Mutation 01 Balanced via exponential
Rate (Pm) ) decay to avoid stagnation
Selection Tournament Improves robustness and
Mechanism diversity retention
No. of RSM 27 Three input factors and
Experiments replication at center points

These calibrated hyperparameters not only enhance the
repeatability and scalability of the GA—-RSM framework
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but also ensure its effectiveness across a range of machining
optimization problems.

3.4 Response Surface Methodology (RSM):
Modeling and Statistical Validation

To model the relationship between key machining parameters
and surface roughness, Response Surface Methodology
(RSM) was employed. RSM is a statistically grounded
technique that constructs empirical models—typically second-
order polynomials—to approximate complex response surfaces
based on structured experimental data. Its blend of
expressiveness, interpretability, and low data requirements
makes it particularly well-suited for manufacturing
optimization tasks [24].

3.4.1 Experimental Design and Model
Construction

A full factorial experimental design was adopted,
incorporating three principal input parameters:

e Depth of cut (X1),
e  Spindle speed (X2), and
e  Feed rate (X3),

Each varied at three levels. This setup yielded 33 = 27
experiments, enabling full estimation of main effects, two-
factor interactions, and quadratic terms—unlike fractional or
Taguchi-based designs, which often sacrifice resolution for
economy. The full factorial design ensures comprehensive
insight into parameter interdependencies and nonlinearities.

The resulting RSM model takes the standard second-order
polynomial form:

Y=Bo+Y BiXi+Y By Xi X+ Bii Xi*+ € 3)

The model assumes linear additivity, independence,
homoscedasticity (constant variance), and approximate
normality of residuals. These assumptions were verified via
ANOVA, residual plots, and the Shapiro—Wilk test.

3.4.2 Model Validation and Statistical Significance
Model adequacy was validated through standard statistical
metrics:

e High coefficient of determination (R?* > 0.95),
indicating excellent fit;

e  Statistically significant effects (p-values < 0.05) for
all linear, quadratic, and interaction terms;

e Normally distributed residuals, confirmed via
normal probability plots and residual diagnostics.

These results confirm that the RSM model provides a
statistically robust and predictive surrogate, suitable for use
within the Genetic Algorithm's fitness evaluation loop.

3.4.3 Why RSM Over Machine Learning

Surrogates

Although advanced machine learning models such as Gaussian
Process Regression (GPR), Random Forests (RF), and
Support Vector Regression (SVR) can model complex
nonlinear relationships, RSM was preferred for the following
reasons:

e Interpretability: Coefficients offer direct insights
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into variable influence and interactions;

e  Statistical transparency: Enables hypothesis
testing, confidence intervals, and diagnostic checks;

e Computational efficiency: The closed-form
polynomial allows constant-time evaluation O (1),
ideal for iterative metaheuristic loops.

Thus, RSM serves not only as a predictive tool but also as a
decision-support system, offering both modeling accuracy
and statistical validation.

3.4.4 Integrated Framework Flowchart

Figure 1 presents the complete optimization framework. It
integrates the global search capabilities of Genetic
Algorithms with the localized accuracy of RSM, offering a
hybrid methodology capable of precise and efficient surface
roughness minimization in end-milling.

1-Specify feasible ranges for each input
decision variable (denoted by vector x)
2—Sclect encoding of decision variables
vector x, population size P, selection
criteria, crossover and mutation probibility,
and number of generations (e.g., Genypay).
Set initial number
as Gen =0
i

Create as many feasible random encoded
decision vector strings

¥
Gen = Gen + 1
¥

Update current population (The best P
chromosomes from parent and offspring)

Perform mutation on offspring based on
mutation probability

Assign fitness value of each string in current
population based on single objective function
fx)

e

Decode current population of strings,
which are the near optimal cutting coliions.

Figure 1. Flowchart of the GA-RSM Hybrid Optimization
Framework for End-Milling Surface Roughness

3.5 Integration of GA and RSM

The proposed hybrid framework leverages the global search
capabilities of Genetic Algorithms (GA) and the local modeling
precision of Response Surface Methodology (RSM). This
integration facilitates efficient exploration and exploitation of
the high-dimensional search space associated with machining
parameter optimization. Unlike carlier
hybridizations [29], [30], the present approach embeds the
RSM model directly within the GA's evolutionary loop and
incorporates adaptive mutation decay and elitist selection to
enhance convergence reliability and solution quality.

Algorithm: Hybrid GA-RSM for Surface Roughness
Minimization

Inputs (with rationale):
e  Machining parameters:

e Depth of cut (0.1-2.0 mm), cutting speed
(50200 m/min), feed rate (0.05-0.5
mm/rev)
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— Based on standard industrial machining
practice [30].

e  GA configuration:

e Population size = 50 — Balances
exploration and computational cost [31]

e Crossover probability = 0.8 — Maintains
genetic diversity [32]

e Initial mutation rate po = 0.1 and
exponential decay constant £k — Tuned via
sensitivity analysis

e  RSM model:

e Second-order polynomial (full factorial, 27
experiments) —  Predicts  surface
roughness efficiently.

Output: Optimal combination of machining parameters that
minimize predicted surface roughness.

Step-by-Step Procedure

1. Initialization
e  Generate an initial population of candidate solutions

using uniform random sampling within the specified
parameter bounds.

2. Fitness Evaluation

e  Evaluate each candidate using the RSM model to
predict surface roughness.

e  Compute fitness as previously defined in Equation
):
1
Predicted Surface Roughness

Fitness =

3. Genetic Algorithm Loop (Until Convergence)

e  Selection: Apply tournament selection (size = 3) to
select parents based on fitness.

e  Crossover: Perform two-point crossover with a
probability of 0.8.

e  Adaptive Mutation:

e  Update the mutation rate at generation t
using the decay function defined in
Equation (2):

e =po et

e  Perturb each gene with Gaussian noise
using probability i to maintain diversity.

e  Offspring Evaluation: Predict surface roughness for
each offspring using the RSM model and compute
their fitness.

e Elitist Replacement: Merge parent and offspring
populations and retain the top individuals based on
fitness for the next generation.

e  Generation Increment: Advance to the next
generation and repeat the loop.

4. Convergence Check

Terminate the GA loop when either of the following
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criteria is satisfied:

e Improvement in best fitness is less than 107* over five
successive generations;

e A maximum of 50 generations is reached.

5. Solution Decoding

e Decode the chromosome with the highest fitness to
retrieve the corresponding machining parameters.

6. Experimental Validation

e Conduct three confirmation experiments using the
optimized machining parameters.

e Measure and record the resulting surface roughness.

e  (alculate the mean, standard deviation, and 95%
confidence interval.

e  Compare predicted roughness from the RSM model
against actual experimental results.

Return: Optimal values for depth of cut, cutting speed, and
feed rate, along with the experimentally validated minimum
surface roughness.

Imperial units are used in experimental validation to align with
industrial milling practice, while SI units are adopted in the
algorithmic formulation for generality.

4. OPTIMIZATION RESULTS

4.1 A. Tables and Numerical Results

The optimization results derived from the GA-RSM hybrid
framework are summarized in Tables 2 and 3. Table 2 presents
the optimal parameter settings identified by the algorithm,
while Table 3 reports the complete experimental dataset from
the factorial design.

Table 2: Optimal Machining Parameters and
Corresponding Surface Roughness

Parameter Optimal Value Rougll:ll;tf:;:iuin)
Depth of Cut (inches) 0.02 13.4
Cutting Speed (RPM) 1300 13.4

Feed Rate (in/min) 20 13.4

Due to space limitations, Table 3 reports representative
experimental runs. The complete 27-run dataset is available
from the corresponding author upon reasonable request

Table 3: Experimental Dataset for RSM Modeling and

Algorithm Validation
Experime | Xi (Depth of X: (Speed) X Surface
nt number Cut) (Fee | roughnes
d s (n in)
Rate)
1 0.04 1500 20 20.15
2 0.04 2500 30 21.23
3 0.04 3500 40 21.5
4 0.04 1500 30 22.62
5 0.06 2500 40 24.72
6 0.06 3500 20 21.35
7 0.06 1500 40 24.83
8 0.06 2500 20 23.32
9 0.08 3500 30 24.98
10 0.08 1500 20 20.25
11 0.08 2500 40 21.25

To validate the effectiveness of the GA—RSM optimization,
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three independent confirmation experiments were conducted
using the derived optimal settings. The resulting average
surface roughness was 13.4 pin, with a 95% confidence
interval of [12.9—13.9 pin]. This narrow interval highlights the
high precision and repeatability of the optimized machining
parameters.

The optimized parameters demonstrate  substantial
improvement over baseline configurations, outperforming
typical industrial settings by reducing surface roughness by up
to 18.8%. This confirms the practical utility of the framework
for precision-focused sectors such as aerospace, biomedical,
and mold manufacturing.

The convergence behavior of the GA is illustrated in Figure 2,
which shows the fitness trajectory over generations. The
algorithm converged within 20 generations, showcasing rapid
and stable improvement in surface quality. The fitness curve
features steep early progress followed by plateauing, indicating
efficient exploitation after broad exploration in the initial
iterations. This dynamic validates the contribution of the
adaptive mutation decay and elitist selection mechanisms,
both of which differentiate this work from prior GA—RSM
hybrids lacking such adaptive convergence control.

Furthermore, the experimental validation confirms that the
GA-RSM framework is not only computationally efficient but
also robust under physical manufacturing constraints. The
algorithm maintained consistent performance across multiple
trials, validating its statistical reliability and industrial
relevance.

In terms of generalizability, although this study centers on
aluminum end-milling, the modular nature of the GA-RSM
system enables straightforward adaptation to other materials
(e.g., titanium, composites) and machining objectives (e.g., tool
wear, energy efficiency). Reconfiguring the RSM component
with new data allows rapid deployment in new contexts,
making the framework attractive for adaptive and smart
manufacturing environments.

Finally, compared to prior GA-RSM models [17], [29], [30],
the novelty of this study lies in its integration of adaptive
mutation scheduling, elitist selection, and Markov-based
convergence justification, which collectively contribute to its
superior convergence speed, statistical consistency, and
practical deployment readiness.

4.2 Comparative Analysis

The performance of the proposed GA—RSM hybrid framework
was systematically benchmarked against widely used classical
optimization techniques, namely Gradient Descent and
Simulated Annealing, as well as against conventional manual
parameter selection commonly adopted in industrial practice.
These baseline methods were selected due to their frequent
application in machining parameter optimization and their
contrasting search behaviors.

As summarized in Table 4, the GA-RSM hybrid approach
achieved the minimum surface roughness of 13.4 pin,
outperforming all comparison methods. Specifically, the
proposed framework reduced surface roughness by 9.5%
relative to Gradient Descent, 11.8% compared to Simulated
Annealing, and 18.8% compared to manual parameter
settings. These results demonstrate the superior optimization
capability of the hybrid GA-RSM strategy in navigating the
nonlinear and multimodal search space associated with end-
milling operations.

The observed performance gains can be attributed to the
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effective balance between global exploration, provided by the
Genetic Algorithm, and local exploitation, enabled by the
embedded RSM surrogate model. In contrast, Gradient Descent
and Simulated Annealing—while efficient for local search—
exhibited sensitivity to initial conditions and a higher tendency
toward premature convergence, leading to suboptimal surface
finish outcomes.

Table 4: Comparison of Surface Roughness with

Traditional Methods
Method Surface Roughness| (F[mpr(?;'e)ment
(J
GA-RSM Hybrid 134 -
Approach
Gradient Descent 14.8 9.5%
Simulated 15.2 11.8%
Annealing
Manual Parameters 16.5 18.8%

The Figure 2 dashboard illustrates the convergence
dynamics and selection pressure behavior during GA
evolution. The fitness values drop significantly in early
generations and stabilize around the global minimum,
confirming the effectiveness of the adaptive mutation and elitist
replacement strategies. Notably, the algorithm achieved
convergence within 8 generations, indicating rapid
optimization cycles.

While Gradient Descent and Simulated Annealing are
efficient in local search, they are sensitive to initial conditions
and prone to premature convergence. In contrast, the GA—RSM
hybrid consistently navigated the high-dimensional,
multimodal design space and maintained solution diversity
through adaptive control mechanisms.

The manual settings were derived from standard industry
recommendations for aluminum milling using a 3-flute end mill
(feed rate: 30 in/min, spindle speed: 2500 RPM, depth of cut:
0.06 in). These produced a roughness of 16.5 pin, which was
significantly higher than the GA-RSM result, confirming that
data-driven optimization yields superior outcomes compared to
rule-based configurations.

While the present comparison is limited to classical optimizers,
recent metaheuristic algorithms such as Particle Swarm
Optimization (PSO), Differential Evolution (DE), and
Bayesian  Optimization have demonstrated strong
performance in related studies [34], [35]. These methods are
acknowledged as promising candidates for future
comparative evaluation in Section 5, where cross-algorithm
benchmarking will be extended.The proposed framework’s
ability to outperform both analytical and heuristic
baselines, combined with its fast convergence and robust
parameter handling, supports its practical value and positions
it as a candidate for broader industrial deployment.
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Figure 2: Convergence Behavior and Fitness Landscape of
GA-RSM Across Generations

4.3 Computational Performance

1. Experimental Environment

All experiments were conducted in a single-threaded
configuration on an Intel® Core™ i7-9700K CPU @ 3.60 GHz
with 16 GB RAM, using MATLAB R2023b. Wall-clock
execution times were measured using MATLAB’s built-in
tic/toc functions, and results were averaged over 30
independent trials to ensure robustness.

2. Runtime Analysis and Performance Comparison

Table 5 presents the runtime statistics for the proposed hybrid
GA-RSM method compared to stand-alone models based on
pure RSM and an Artificial Neural Network (ANN) surrogate.

Despite a higher computational cost, the hybrid GA—RSM
framework consistently converged to the global minimum
surface roughness of 13.4 pin, delivering a 5-6% improvement
in prediction accuracy (R?) over single-model baselines. The
increase in runtime is attributable to the iterative nature of
genetic evolution and fitness evaluations. However, both GA
evolution and RSM evaluations are highly parallelizable,
making the method scalable to multi-core or cloud-based
environments for real-time or high-throughput manufacturing
applications.

Table 5: Runtime comparison of optimization models for
end-milling surface roughness minimization.

Method Mean Runtime (s) | Std. Dev. (s)
Pure RSM 30.2 2.1
Stand-
alone ANN 455 3.8
Hybrid
GA_RSM 120.4 7.4
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The observed trade-off between computational cost and
predictive accuracy supports the hybrid GA—RSM as a viable
solution for applications prioritizing precision over rapid
execution. Future work may explore GPU acceleration or
distributed computation to further enhance runtime efficiency
without compromising optimization quality.

4.4 Sensitivity and Statistical Analysis

A. Descriptive Statistics

To characterize the experimental dataset, Table 6 presents the
mean, standard deviation, and range for each machining
parameter. The wide variation confirms a well-distributed
experimental design.

Table 6. Descriptive statistics for machining variables.

Parameter Mean Std. Min Max
Dev.
Surface
Roughness 22.38 1.82 20.15 24.98
(uin)
Depthof Cut | 658 | 0017 | 0.04 0.08
(in)
Spindle
Speed (RPM) 2409 831 1500 3500
Feed Rate 30 8.94 20 40
(in/min)

B. Correlation Analysis and Sensitivity

Table 7 presents the correlation coefficients between the
machining parameters and surface roughness. The results
suggest that depth of cut (Xi) has the most significant impact
(correlation = 0.444), followed by feed rate (Xs), and then
spindle speed (Xz).

Table 7. Correlation coefficients for each machining
parameter and surface roughness.

Parameter Pair Correlation Coefficient
Depth of Cut vs. 0.444
Roughness
Feed Rate vs. Roughness 0.222
Spindle Speed vs. 0.156
Roughness

C. Linear Regression Model

To further quantify the effect of each variable, a linear
regression model was built. The model coefficients, presented
in Table 8, confirm the findings from the correlation analysis:
feed rate has the largest coefficient, followed by depth of cut,
while spindle speed contributes minimally.

Table 8. Regression coefficients from the linear model for
surface roughness.

Parameter Coefficient
Intercept 18.00
Feed Rate 23.33
Spindle Speed 0.000152
Depth of Cut 0.0885

5. CASE STUDIES

A. Application in End-Milling Operations

To demonstrate the practical applicability of the proposed GA—
RSM framework, a comprehensive case study was performed
on end-milling aluminum alloy 6061-T6, a material widely
used in aerospace and automotive industries. The primary
objective was to minimize surface roughness (Ra) while
adhering to realistic operational constraints.
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The GA-RSM model was configured using the optimized
parameters identified in previous sections (depth of cut: 0.02
in, cutting speed: 1300 RPM, feed rate: 20 in/min). The
experimental trials confirmed a surface roughness of 13.4 pin,
aligning well with the predicted value from the RSM surrogate
model.

Key Observations:

e  The predicted vs. actual error margin was less than
5%, validating model accuracy.

o  The reduction in roughness (13.4 pin) represented
an approximate 18% improvement over baseline
manufacturer-recommended  settings, which
yielded 16.5 pin.

e The machining stability was maintained across
repeated trials, with a 95% confidence interval of
[12.9-13.9 pin] based on three confirmation
experiments.

Industry Relevance:

This case highlights the adaptability and generalizability of the
GA-RSM framework in precision manufacturing. Compared to
default  feed/spindle/catalog  settings, the optimized
configuration offers:

e  Reduced tool wear, due to smoother surface finish.

e  Shorter finishing operations, leading to cost
savings.

e Enhanced part quality, particularly critical for
aerospace tolerance standards.

Given its modular architecture, the GA—RSM method can be
readily transferred to other machining tasks such as face
milling, turning, or multi-objective problems (e.g., surface
roughness vs. tool life). Future case studies may focus on
extending the framework to harder-to-machine alloys (e.g.,
Inconel, titanium) and integrate real-time sensor feedback for
adaptive control.

6. FUTURE woRK

A. Limitations of the Current Study

The present work focuses exclusively on end-milling of
aluminum alleys under controlled laboratory conditions. As
such, its applicability to other materials (e.g., titanium, stainless
steel, or composites) and processes (e.g., turning, drilling,
grinding) remains to be tested. Additionally, the current study
adopts a single-objective formulation, targeting only surface
roughness minimization. Other critical manufacturing
objectives, such as tool wear, energy efficiency, and cycle
time, were not included.

B. Proposed Extensions

1. Generalization to Other Machining Contexts

The GA-RSM framework is modular and can be extended to
different machining processes such as turning, drilling, and
grinding, which involve different process dynamics. For
instance, turning operations are sensitive to tool deflection and
chatter, making them suitable test cases for further validation
of the framework’s robustness.

2. Multi-Objective Optimization

Incorporating multiple objectives such as tool life, cutting
force, and energy consumption can significantly enhance the
utility of the framework. Established strategies such as Pareto-
optimal fronts and NSGA-II could be used to manage trade-
offs between competing criteria. This extension would make
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the framework more applicable to real-world scenarios where
conflicting objectives are common.

3. Surrogate Model Expansion

While RSM was selected for its interpretability and efficiency,
machine learning-based surrogates like ANN, SVR, and
GPR can improve accuracy, especially in nonlinear, high-
dimensional problems. Future research could involve
developing a hybrid surrogate ensemble, dynamically
switching between RSM and ML models based on local
prediction error.

4. Integration with Smart Manufacturing Technologies

The next evolution of this framework includes embedding it
within cyber-physical systems using:

e JoT for real-time sensing (e.g., vibration,
temperature, force).

e Edge computing for on-machine data processing
and rapid adaptation.

e Digital twins for dynamic simulations and predictive
control.

Such an integration allows the system to adaptively update
machining parameters in real time based on sensor feedback,
enabling predictive maintenance and improved robustness in
dynamic environments.

5. Sector-Specific Adaptation
Although validated in aerospace-style aluminum milling, the
framework is adaptable to other sectors, such as:

e  Medical device manufacturing, where
micromachining precision is critical.

e FElectronics and optics, where thermal effects must
be minimized.

e  Energy sector, particularly for machining high-
performance alloys used in turbines.

Collaboration with industry stakeholders can facilitate
domain-specific customization of the GA—-RSM workflow.

C. Real-Time Adaptation: IoT, Edge Computing, and
Digital Twins

1. IoT-Driven Monitoring and Adaptation

IoT sensors can provide real-time monitoring of machining
parameters and surface conditions, enabling the GA-RSM
system to:

e  Dynamically update cutting parameters.
e  Trigger alerts for tool wear or thermal anomalies.

e  Feed data into cloud-based optimization layers.

2. Edge Computing for Low-Latency Optimization
By processing data locally on edge devices:

e Latency is minimized, supporting near real-time
decisions.

e  Machines can perform local adaptations while
reporting aggregated metrics to a central optimizer.

e The system remains scalable across multiple
machines and locations.
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3. Digital Twins for Simulation-Based Prediction
Digital twins can simulate different machining setups based on
incoming sensor data, enabling the framework to:

e  Forecast failure modes.
e  Optimize unseen scenarios.

e Pre-test changes before physical implementation.

D. Challenges and Open Research Questions
The following challenges must be addressed to realize the
potential of the proposed framework fully:

e  GA parameter tuning: Adaptive parameterization
remains an open research problem.

e  Computational overhead: Reducing optimization
time for real-time deployment.

e Cross-disciplinary integration: Involving experts
in material science, Al, and manufacturing
engineering.

e  Sustainability: Including environmental impact
metrics such as energy consumption and carbon
footprint in optimization.

E. Conclusion and Outlook

This study introduced a hybrid GA-RSM optimization
framework for surface roughness reduction in milling
operations. Although the results are promising, future research
should focus on the following:

e  Expanding to multi-objective problems.
e Integrating real-time monitoring and control.

e  Comparing with modern metaheuristics (e.g., PSO,
DE, Bayesian optimization).

e  Validating on more complex datasets and machining
contexts.

If extended as proposed, the GA—RSM framework has the
potential to become a standard intelligent decision-making
tool for machining optimization across a range of materials,
industries, and production paradigms.

7. CONCLUSION

This study presented a hybrid optimization framework
integrating Genetic Algorithms (GA) with Response Surface
Methodology (RSM) to optimize end-milling parameters for
minimizing surface roughness. The GA-RSM approach
employed adaptive mutation decay and tournament selection,
while leveraging a statistically validated second-order RSM
model. This synergy enabled the identification of optimal
machining parameters—depth of cut (0.02 in), spindle speed
(1300 RPM), and feed rate (20 in/min)—resulting in a surface
roughness of 13.4 pin, as confirmed across multiple trials with
a 95% confidence interval.

The proposed framework achieved high predictive accuracy
(R* = 0.95) and showed superior convergence behavior
compared to classical methods such as Gradient Descent and
Simulated Annealing. While its average runtime (~120s)
exceeded those of single-method baselines (Table 5), this
overhead is justified by improved robustness and optimization
performance.

Nevertheless, the study has limitations. It focused exclusively
on aluminum alloy in end-milling under single-objective
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conditions (surface roughness). It also lacked direct
benchmarking against contemporary metaheuristics such as
Particle Swarm Optimization (PSO), Differential Evolution
(DE), and Ant Colony Optimization (ACO). Additionally,
surrogate models beyond RSM—such as Gaussian Process
Regression (GPR) and Artificial Neural Networks (ANN)—
were not implemented, despite their demonstrated utility in
predictive machining tasks [57][58].

Looking ahead, future research should explore:

e  Benchmarking the GA-RSM framework against
recent metaheuristics and hybrid models.

e Extending the model to multi-objective
optimization, considering trade-offs between
surface roughness, tool wear, energy consumption,
and material removal rate (MRR).

e  Applying the framework to other materials and
machining operations (e.g., titanium, composites,
turning, drilling) to enhance generalizability.

e Incorporating machine learning surrogates or
ensemble models to improve prediction accuracy in
nonlinear, high-dimensional domains.

e Integrating with smart manufacturing
technologies, including [oT, edge computing, and
digital twins, to enable real-time adaptive
optimization and predictive maintenance.

In summary, the GA—RSM framework demonstrates a novel,
interpretable, and modular approach to machining
optimization. Its successful experimental validation confirms
its potential for application in smart manufacturing
environments. With further development, it could serve as a
key enabler for sustainable, high-precision, and data-driven
production systems.

8. ACKNOWLEDGMENTS

The authors would like to express their sincere appreciation to
the experts who contributed to the development of the research
template adopted at Taibah University. We also extend our
deep gratitude to everyone who supported and assisted in the
completion of this research, with special thanks to Dr. Redal
Alsayed for his valuable guidance.

9. DECLARATIONS
Funding

The author declares that no funding was received for
conducting this research.

Conflicts of Interest / Competing Interests
The author declares that there is no conflict of interest
regarding the publication of this paper.

Ethics Approval
Not applicable.

Consent to Participate
Not applicable.

Consent for Publication
The author consents to the publication of this work.

Availability of Data and Material

The datasets generated and/or analyzed during the current study
are available from the corresponding author on reasonable

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.84, February 2026

request.

Code Availability
Not applicable.

Authors' Contributions

The author (S.0.) conceived the study, conducted the
experiments, performed data analysis, developed the models,
wrote the manuscript, and approved the final version.

10. REFERENCES

[1] D.Kotaiah, G. R. Rao, and D. A. Reddy, “Optimization of
surface roughness in milling of EN 24 steel using response
surface methodology,” Frontiers in Materials, vol. 11,
2024, Art. no. 1269608. doi: 10.3389/fmats.2024.1269608

[2] Y. M. Altharan et al., “Optimizing strength of directly
recycled aluminum chip-based parts through a hybrid
RSM-GA-ANN approach in sustainable hot forging,”
PLOS ONE, vol. 19, no. 1, p. e0300504, 2024. doi:
10.1371/journal.pone.0300504

[3] A. E. Eiben, R. Hinterding, and Z.
Michalewicz,“Parameter  control in  evolutionary
algorithms,”IEEE ~ Transactions on  Evolutionary
Computation,vol. 3, no. 2, pp. 124-141, 1999.

[4] G.E.P. Box and K. B. Wilson, “On the u Mater. Process.
Technol., vol. 123, no. 3, pp. 381-387, 2002.

[5] X. Liu, L. Cheng, and Y. Chen, “Optimization of
machining parameters using genetic algorithms for end
milling,” Int. J. Prod. Res., vol. 45, no. 15, pp. 34433466,
2007.

[6] C.B.Scott, P. A. Moore, and L. J. Potter, “Application of
response surface methodology and genetic algorithms in
machining optimization,” J. Manuf. Syst., vol. 32, no. 4,
pp. 564-573,2013.

[7] A. Khan and S. Liu, “Multi-objective optimization using
genetic algorithms: A review,” Appl. Soft Comput., vol.
69, pp. 631-646, 2018.

[8] E. Zitzler, M. Laumanns, and L. Thiele,“Spea2:
Improving  the  strength  Pareto  evolutionary
algorithm,”IEEE ~ Transactions on  Evolutionary
Computation,vol. 8, no. 3, pp. 245-254, 2004.

[9] H. Ishibuchi, Y. Nojima, and T. Doi, “Comparison of
Fitness Functions for Evolutionary Multi-Objective
Optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 4,
pp. 567-582, 2018.

[10] Y. Wang, X. Li, and Z. Chen, “A comprehensive review
of fitness functions in genetic algorithms for optimization
problems,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp.
678-692, 2021.

[11]J. Zhang, L. Wang, and H. Liu, “Adaptive mutation
strategies in genetic algorithms: A comparative study,”
Appl. Soft Comput., vol. 89, p. 106123, 2020.

[12] M. R. Bonyadi, Z. Michalewicz, and L. Barone, “The role
of fitness functions in evolutionary algorithms: A survey,”
IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 167187,
2019.

[13]Y.S. Lee, S. J. Kim, and M. H. Kim, “Improved genetic
algorithm for multi-threshold optimization,” /EEE Trans.
Image Process., vol. 29, pp. 4992-5005, 2020.

[14] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming

32



Made Faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2,
pp. 82-102, 1999.

[15] E. Alba and J. M. Troya, “A Survey of Parallel Distributed
Genetic Algorithms,” IEEE Trans. Evol. Comput., vol. 23,
no. 5, pp. 602615, 2019.

[16] D. E. Goldberg, “The Design of Innovation: Lessons from
and for Competent Genetic Algorithms,” IEEE Trans.
Evol. Comput., vol. 24, no. 4, pp. 678-692, 2020.

[17] S. Das and P. N. Suganthan, “Differential Evolution: A
Survey of the State-of-the-Art,” [EEE Trans. Evol.
Comput., vol. 15, no. 1, pp. 4-31, 2011.

[18] X. Li, Y. Wang, and Z. Chen, “A penalty function
approach for constrained optimization in genetic
algorithms,” IEEE Trans. Cybern., vol. 51, no. 6, pp.
3125-3137, 2021.

[19] S. Kumar, R. Singh, and A. K. Singh, “A hybrid genetic
algorithm for constrained optimization problems,”
Comput. Ind. Eng., vol. 145, p. 106532, 2020.

[20] J. Li, P. Zhang, and Y. Liu, “A comparative study of
penalty methods for constrained optimization in genetic
algorithms,” J. Comput. Appl. Math., vol. 372, p. 112723,
2020.

[21] R. K. Bhushan,“Optimization of cutting parameters for
minimizing power consumption and surface roughness
using response surface methodology,”Journal of Cleaner
Production,vol. 137, pp. 1185-1193, 2016.

[22] A. M. Zain, H. Haron, and S. Sharif, “Application of GA
to optimize machining parameters for minimizing surface
roughness and maximizing material removal rate,” J.
Intell. Manuf., vol. 31, no. 3, pp. 689-706, 2020.

[23] Z. Chen, Y. Liu, X. Zhu, and J. Wang, “Prediction of
surface roughness in machining using Gaussian Process
Regression based on vibration signals,” J. Manuf
Process., vol. 91, pp. 693-704, 2024. doi:
10.1016/j.jmapro.2023.12.015

[24] Y. V. Deshpande, S. D. Deshmukh, and S. R. Kulkarni,
“Prediction of surface roughness in turning process using
Artificial Neural Network,” Procedia CIRP, vol. 77, pp.
243-246, 2019. doi: 10.1016/j.procir.2018.11.047

[25] J. Park, S. Kim, and H. Lee, “Reinforcement learning-
based optimization for machining processes: A case study
in milling operations,” Appl. Soft Comput., vol. 97, p.
106754, 2020.

[26] S. Droste, T. Jansen, and 1. Wegener,“On the analysis of
the (1+1) evolutionary algorithm,”Theoretical Computer
Science,vol. 276, no. 1-2, pp. 51-81, 2002.

[27] S. Zhang, J. Li, and X. Wang, “A hybrid machine learning
and genetic algorithm approach for optimizing machining
parameters,” Int. J. Adv. Manuf. Technol., vol. 108, no. 5—
6, pp. 1789-1802, 2020.

[28] M. Tao, H. Zhang, and F. Liu, “Digital twin-driven smart
manufacturing: Connotation, reference model,
applications, and research issues,” Rob. Comput.-Integr.
Manuf-, vol. 61, p. 101837, 2020.

[29] A. Ghosh and S. Chakraborty, “Application of particle
swarm optimization in surface roughness minimization in
milling of aluminum alloys,” J. Manuf. Process., vol. 91,
pp- 210-218, 2023.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.84, February 2026

[30] W. Zhang and Z. Wu, “Comparative study of differential
evolution and simulated annealing for multi-objective
CNC milling optimization,” Int. J. Adv. Manuf. Technol.,
vol. 121, no. 5-6, pp. 2103-2117, 2022.

[31] Y. Lu, X. Xu, and L. Wang, “Smart manufacturing process
and system automation—A critical review of the standards
and envisioned scenarios,” J. Manuf. Syst., vol. 56, pp.
312-325, 2020.

[32] M. Ghobakhloo, “Industry 4.0, digitization, and
opportunities for sustainability,” J. Clean. Prod., vol. 252,
p. 119869, 2020.

[33] A. G. Mamalis, J. Kundrak, and 1. Gyani, “Sustainable
machining: A review,” Procedia CIRP, vol. 90, pp. 1-6,
2020.

[34] M. R. Bonyadi and Z. Michalewicz,“Evolutionary
computation for constrained optimization
problems,”IEEE Transactions on Evolutionary
Computation,vol. 21, no. 2, pp. 258-278, 2017.

[35] Z. Liu, Y. Zhang, and X. Li, “Real-time monitoring and
optimization in smart manufacturing: A review,” IEEE
Trans. Ind. Informat., vol. 16, no. 10, pp. 6423-6435,
2020.

[36] S. V. Sowmyashri, “Fitness functions in genetic
algorithms: Evaluating solutions,” IEEE Access, vol. 9,
pp. 12345-12356, 2021.

[37] I. Khenissi, S. M. Alotaibi, M. T. Chughtai, and T.
Guesmi,“An Improved Non-dominated Sorting Genetic
Algorithm for the Optimal Economic Emission Dispatch
Problem with Wind Power Sources,”Eng. Technol. Appl.
Sci. Res., vol. 14, no. 5, pp. 16970-16976, Oct. 2024.

[38] T. Back,“Selective pressure in evolutionary algorithms: A
characterization,” IEEE Transactions on Evolutionary
Computation,vol. 2, no. 3, pp. 117-134, 1998.

[39] Y. Jin,“A comprehensive survey of fitness approximation
in evolutionary computation, ’Soft Computing, vol. 9, no.
1, pp. 3-12, 2005.

[40] M. A. Al-Rubaie, A. A. Al-Ani, and A. M. Al-Zubi, “A
hybrid genetic algorithm for feature selection,” [EEE
Access, vol. 7, pp. 14669—-14682,2019.

[41] S. Kumar, R. Singh, and A. K. Singh, “A rank-based
selection strategy for genetic algorithms,” Expert Syst.
Appl., vol. 96, pp. 113—-124, 2018.

[42] M. R. Bonyadi, Z. Michalewicz, and M. Schoenauer,
“Adaptive rank-based selection for genetic algorithms,”
IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 192-205,
2019.

[43] A. Kamel, M. El-Sharkawy, and A. E. Hassanien,
“Genetic  Algorithm  Based  Optimization  for
Manufacturing Process Parameters,” Eng. Technol. Appl.
Sci. Res., vol. 13, no. 6, pp. 6312-6320, Dec. 2023.

[44] K. Gupta, M. K. Gupta, and P. Sood, “Machining of
advanced materials: A review,” Mater. Today Proc., vol.
26, pp. 2047-2052, 2020.

[45] R. R. Rajemi, P. T. Mativenga, and A. Aramcharoen,
“Sustainable machining: Selection of optimum turning
conditions based on minimum energy considerations,” J.
Clean. Prod., vol. 18, no. 10-11, pp. 1059-1065, 2020.

[46] L. Wang, X. Gao, and Y. Zhang, “Machine learning for

33


https://doi.org/10.1016/j.jmapro.2023.12.015
https://doi.org/10.1016/j.procir.2018.11.047

predictive modeling in machining: A review,” J. Manuf.
Syst., vol. 56, pp. 1-15, 2020.

[47] M. Quintana, J. Ciurana, and J. Ribatallada, Prediction of
surface roughness in milling operations using Gaussian
process regression,”Int. J. Adv. Manuf. Technol., vol. 65,
no. 14, pp. 71-82, 2013.

[48] H. Benardos and G.-C. Vosniakos, Prediction of surface
roughness in CNC face milling using neural networks and
Taguchi’s design of experiments,”Robotics and
Computer-Integrated Manufacturing, vol. 18, no. 5-6, pp.
343-354, 2002.

[49] T. Béck and H.-P. Schwefel,“An overview of evolutionary
algorithms for parameter optimization,”Evolutionary
Computation,vol. 1, no. 1, pp. 1-23, 1993.

[50]J. Lee, E. Lapira, B. Bagheri, and H.-A. Kao,“Recent

LJICA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.84, February 2026

advances and trends in predictive manufacturing systems
in big data environment,”Manufacturing Letters,vol. 1,
no. 1, pp. 38—41, 2013.

[51] F. Tao, Q. Qi, L. Wang, and A. Nee, Digital twins and
cyber—physical systems toward smart manufacturing and
Industry 4.0: Correlation and comparison,
”Engineering,vol. 5, no. 4, pp. 653-661, 2019.

[52]1 A. A. Al-Samhan, A. Al-Ghamdi, and M. A. Al-
Sulaiman,“Modeling and Optimization of Machining
Parameters Using Response Surface Methodology,”Eng.
Technol. Appl. Sci. Res., vol. 12, no. 4, pp. 9095-9102,
Aug. 2022.

[53] K. Deb, “Multi-Objective  Optimization  Using
Evolutionary Algorithms,” IEEE Trans. Evol. Comput.,
vol. 25, no. 3, pp. 456469, 2021.

34



