
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.84, February 2026 

22 

An Adaptive Surrogate-Assisted GA–RSM Framework 

for Surface Roughness Minimization in End-Milling 

Salah ElDin Zaher Olaymi 
Department of Management Information Systems 

College of Business Administration 
Taibah University, Saudi Arabia 

ORCID: https://orcid.org/0009-0008-8289-8120 
 
 

ABSTRACT 
This study presents a novel hybrid optimization framework that 

integrates Genetic Algorithms (GA) with Response Surface 

Methodology (RSM) for optimizing machining parameters in 

end-milling operations, specifically aimed at minimizing 

surface roughness. The proposed GA–RSM framework 

overcomes the limitations of traditional methods by combining 

the global search ability of GA with the predictive modeling 

power of RSM. A second-order polynomial regression model 

was developed using a full-factorial experimental design (27 

trials) on aluminum alloy specimens and embedded within a 

GA loop featuring adaptive mutation decay and tournament 

selection to promote robust convergence. Experimental 

validation demonstrated that the proposed approach reduced 

surface roughness by 9.5% relative to Gradient Descent, 11.8% 

compared to Simulated Annealing, and 18.8% compared to 

manual parameter selection, achieving a minimum roughness 

of 13.4 µin. The framework maintains computational efficiency 

and offers extensibility to other machining processes and 

materials. It delivers a reproducible, statistically validated, and 

practically feasible solution for surface roughness 

optimization, with direct applications in aerospace, automotive, 

and precision manufacturing sectors. 

General Terms 
Optimization; Algorithms; Computational Intelligence; 

Manufacturing Engineering; Process Modeling. 

Keywords 
Genetic Algorithm, Response Surface Methodology, Surface 
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1. INTRODUCTION 

1.1 Background and Motivation 
In today’s advanced manufacturing environments, achieving 

superior surface quality in machined components is a critical 

requirement—particularly in the aerospace, automotive, 

biomedical, and precision engineering sectors [1]. Surface 

roughness directly influences key product attributes such as 

dimensional accuracy, fatigue resistance, tribological 

performance, and structural integrity. As industries 

increasingly adopt hard-to-machine materials like titanium 

alloys, superalloys, and fiber-reinforced composites, the 

optimization of machining parameters has become significantly 

more challenging [27]. 

Among conventional subtractive methods, end-milling is 

highly valued for its flexibility and high material removal rates. 

However, determining the optimal combination of machining 

parameters—namely, spindle speed, feed rate, and depth of 

cut—is non-trivial. This is due to the highly nonlinear, multi-

objective, and interdependent nature of these parameters, 

which often leads to complex search spaces with multiple local 

optima. 

Traditional approaches such as trial-and-error, One-Factor-at-

a-Time (OFAT) experiments, and even Taguchi-based DOE 

are limited in their ability to capture the interactive and 

synergistic effects among process variables. These methods are 

also unsuitable for dynamic manufacturing environments, 

where adaptability and multi-objective optimization are 

essential [2]. 

As a result, researchers have increasingly turned to 

computational intelligence and hybrid metaheuristic 

approaches to improve optimization performance in machining 

applications. Yet, a persistent challenge lies in effectively 

balancing global exploration (to identify promising regions of 

the parameter space) and local exploitation (to fine-tune 

solutions near optima). This trade-off becomes even more 

critical in real-world scenarios involving conflicting 

objectives—such as minimizing surface roughness while 

maximizing tool life or reducing energy consumption. 

1.2 Objectives of the Study 
This study aims to design a robust, data-driven hybrid 

optimization framework that integrates the global search 

efficiency of Genetic Algorithms (GA) with the local 

modeling accuracy of Response Surface Methodology 

(RSM). The framework is developed to minimize surface 

roughness in end-milling operations while addressing the 

challenges of nonlinear parameter interactions, premature 

convergence, and computational inefficiency. 

The specific objectives of the research are as follows: 

1. Introducing an adaptive mutation decay strategy and 

tournament selection mechanism within the GA 

framework to enhance convergence stability, 

maintain population diversity, and mitigate the risk 

of premature stagnation in high-dimensional search 

spaces. 

2. To embed a second-order RSM model directly into 

the GA’s evolutionary loop, allowing the algorithm 

to leverage real-time surrogate evaluations for local 

exploitation, thereby improving precision in 

identifying near-optimal machining parameters. 

3. To empirically validate the GA–RSM hybrid 

framework using real-world experimental trials on 

aluminum alloy end-milling and to benchmark its 

performance against classical optimization 

techniques, including Gradient Descent and 

Simulated Annealing, with the goal of demonstrating 

superior optimization accuracy and convergence 

robustness. 
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1.3 Research Gap and Motivation 
Although hybrid optimization strategies—particularly those 

combining Genetic Algorithms (GA) with Response Surface 

Methodology (RSM)—have demonstrated promising results in 

machining optimization, several critical gaps remain in the 

literature. These shortcomings limit both the scalability and 

generalizability of current approaches: 

1. Lack of adaptive control mechanisms: Most GA-

based implementations adopt static mutation rates 

and fixed selection pressures, which often result in 

premature convergence, loss of population diversity, 

and suboptimal search performance in complex, 

multimodal landscapes. 

2. Weak algorithmic integration: In many hybrid 

frameworks, RSM is employed only during 

preprocessing or post-analysis, rather than being 

fully embedded within the evolutionary optimization 

loop. This separation restricts effective synergy 

between global exploration and local exploitation. 

3. Limited theoretical foundation: Few studies provide 

formal convergence analysis or incorporate 

stochastic modeling (e.g., Markov chain-based 

analysis) to theoretically justify algorithmic behavior 

and stability. 

4. Insufficient experimental validation: Many existing 

studies rely primarily on simulated data or small-

scale experimental sets, lacking robust statistical 

verification (e.g., ANOVA, residual diagnostics) and 

real-world machining trials. 

These gaps underscore the necessity for a tightly integrated, 

formally grounded, and empirically validated GA–RSM hybrid 

framework—especially for high-precision machining scenarios 

where surface roughness has direct implications on product 

integrity, tool longevity, and overall manufacturing efficiency. 

1.4 Contributions of the Paper 
This study advances the field of machining optimization 

through four principal contributions, each aligned with the 

research objectives and designed to address critical gaps 

identified in prior literature: 

Development of an elite-preserving Genetic 

Algorithm (GA) enhanced by adaptive mutation 

decay: The proposed algorithm improves global 

search efficiency and mitigates premature 

convergence—common limitations in conventional 

GA implementations for machining tasks [3], [4]. It 

builds upon recent advances in hybridization and 

elitist strategies to ensure better convergence 

reliability in complex optimization 

landscapes [6], [20]. 

4. Seamless integration of a second-order Response 

Surface Methodology (RSM) model into the GA 

optimization cycle: Unlike prior hybrid frameworks 

that treat RSM as an offline or auxiliary 

module [13], [25], this approach embeds RSM 

directly into the evolutionary loop, enabling real-

time local exploitation and improved model-guided 

parameter refinement. 

5. Introduction of a formal convergence framework 

based on discrete-time Markov chain modeling: This 

contribution provides theoretical justification for the 

algorithm's long-term behavior and stability—an 

aspect rarely addressed in existing GA–RSM 

literature for manufacturing applications. 

Experimental validation using full-factorial trials on aluminum 

alloy specimens: The framework is empirically tested using 27 

end-milling trials (3³ design), demonstrating a minimum 

surface roughness of 13.4 µin—a 9.5% improvement over 

Gradient Descent and 11.8% over Simulated Annealing. 

Results are statistically validated using ANOVA and residual 

diagnostics, confirming the model's predictive accuracy and 

industrial applicability. 

1.5 Structure of the Paper 
The remainder of this paper is organized as follows: 

1. Section 2 reviews relevant literature on machining 

parameter optimization, metaheuristic algorithms, 

and prior GA–RSM hybrid frameworks. 

2. Section 3 presents the proposed GA–RSM hybrid 

optimization methodology, including algorithm 

design and integration logic. 

3. Section 4 describes the experimental setup, test 

material properties, parameter ranges, and reports the 

optimization results. 

4. Section 5 discusses the results in terms of 

convergence behavior, comparative performance, 

statistical validation, and practical implications. 

5. Section 6 concludes the paper and outlines key 

directions for future research, including potential 

extensions to multi-objective and multi-process 

optimization. 

2. LITERATURE REVIEW 

2.1 Machining Process Optimization: 

Challenges and Importance 
End-milling is a fundamental manufacturing process widely 

employed in the aerospace, automotive, and precision 

engineering sectors due to its capacity to produce intricate 

geometries with high-quality surface finishes. Despite its 

versatility, the nonlinear, multivariable, and high-dimensional 

nature of end-milling poses substantial challenges for process 

parameter optimization. Critical factors—such as spindle 

speed, feed rate, and depth of cut—interact in complex, non-

intuitive ways, often resulting in multiple local optima and 

rugged search landscapes that traditional optimization methods 

struggle to navigate [1], [2]. 

Classical approaches such as One-Factor-At-a-Time (OFAT), 

Taguchi methods, and full factorial experimental designs, 

while foundational to machining research, suffer from 

significant limitations. These include the inability to capture 

interaction effects, poor scalability with increasing parameter 

dimensionality, and a lack of adaptability to dynamic 

manufacturing conditions [3], [4]. Moreover, such methods are 

inherently static and deterministic, making them unsuitable for 

integration into real-time optimization frameworks demanded 

by Industry 4.0 and smart manufacturing systems [5]. 

2.2 Genetic Algorithms in Machining 

Optimization 
Genetic Algorithms (GAs), rooted in the principles of 

evolutionary computation, have emerged as robust tools for 

solving complex, nonlinear, and multi-modal optimization 

problems. Their ability to perform global search and their low 

sensitivity to initial conditions make them particularly suitable 

for machining applications, where the objective functions are 

often non-convex, discontinuous, and characterized by multiple 

local optima [6], [7]. 
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A substantial body of research has demonstrated the 

effectiveness of GAs in optimizing machining parameters, 

leading to enhanced outcomes in terms of surface roughness, 

tool life, and material removal rates [8], [9]. These studies 

confirm the practical viability of GAs across a variety of 

manufacturing settings and materials. 

However, traditional GA implementations often suffer from 

premature convergence, limited population diversity, and 

excessive computational cost. These issues typically stem from 

the use of fixed mutation rates and the absence of adaptive 

control mechanisms that can respond to dynamic search 

conditions [10], [11]. As a result, their scalability, convergence 

reliability, and real-time applicability remain limited in high-

dimensional, time-constrained industrial environments. 

2.3 Response Surface Methodology (RSM) in 

Process Modeling 
Response Surface Methodology (RSM) is a widely adopted 

statistical technique for modeling and optimizing complex 

systems. By constructing second-order polynomial regression 

models, RSM approximates the relationship between multiple 

input variables and one or more output responses [12], [13]. Its 

interpretability, experimental efficiency, and ability to detect 

main and interaction effects make it particularly appealing in 

manufacturing process optimization. 

Despite its advantages, RSM is inherently a local optimization 

method, relying on linear or quadratic approximations that may 

not accurately capture highly nonlinear behaviors. When 

applied in isolation to complex machining scenarios—

characterized by non-convex search spaces and strong 

parameter interdependencies—RSM often converges to 

suboptimal solutions [14]. 

2.4 Hybrid GA–RSM Approaches: 

Opportunities and Limitations 
Hybrid models that combine Genetic Algorithms (GAs) with 

RSM are designed to exploit the global exploration strength of 

GAs and the local refinement capability of RSM. In such 

frameworks, the GA navigates the broader search landscape, 

while RSM provides surrogate-assisted evaluation and fine-

tuning in promising regions [15], [16]. This duality enables a 

more efficient balance between exploration and exploitation. 

Several studies have demonstrated the efficacy of GA–RSM 

hybrids in machining optimization. For instance, Zain et 

al. [17] integrated GA with RSM to simultaneously minimize 

surface roughness and maximize material removal rate, 

reporting substantial improvements in both objectives. 

However, most existing hybrids exhibit weak algorithmic 

integration, with RSM often relegated to preprocessing or post-

analysis, rather than being embedded within the evolutionary 

loop of the GA. 

Furthermore, theoretical rigor is often lacking. Few models 

incorporate formal convergence analysis, stochastic stability 

modeling, or adaptive control mechanisms for mutation rate or 

selection pressure. In addition, many prior studies are confined 

to simulation environments, with limited real-world 

experimental validation or statistical verification (e.g., 

ANOVA, residual diagnostics) [18], [19]. 

2.5 Summary and Identified Research Gap 
The reviewed literature highlights several critical limitations in 

existing hybrid GA–RSM optimization frameworks: 

1. Weak integration, with RSM not embedded directly 

into the GA optimization loop. 

2. Lack of adaptive control, particularly in mutation 

decay and selection strategies. 

3. Insufficient theoretical grounding, with minimal 

attention to convergence stability or stochastic 

behavior. 

4. Limited experimental validation, with many 

models untested on real machining platforms or 

lacking rigorous statistical assessment. 

To address these gaps, this paper proposes a novel elite-

preserving GA–RSM hybrid framework that: 

• Tightly couples RSM within the GA’s evolutionary 

cycle; 

• Implements adaptive mutation decay and 

tournament-based selection; 

• Provides theoretical convergence analysis using 

Markov chain modeling; 

• Is validated through full-factorial physical 

experiments and statistical diagnostics. 

This integrated and empirically grounded approach aims to 

deliver a scalable, accurate, and practically viable solution 

for optimizing machining parameters under the complex 

constraints of real-world manufacturing environments. 

3. METHODOLOGY 

3.1 Overview of the Proposed Approach 
This study presents a novel hybrid optimization framework that 

integrates Genetic Algorithms (GA) with Response Surface 

Methodology (RSM) to optimize machining parameters in 

end-milling operations, with a primary focus on minimizing 

surface roughness—a critical quality attribute influencing 

product integrity, tool wear, and manufacturing efficiency. 

The underlying optimization problem is characterized by 

nonlinear, multidimensional interactions among control 

parameters—namely spindle speed, feed rate, and depth of 

cut. To model these complex relationships in a statistically 

tractable and interpretable manner, a second-order 

polynomial regression model is employed. This model, 

derived via Taylor series expansion, effectively captures 

main effects, quadratic terms, and two-way interactions, 

offering a sound compromise between model complexity and 

predictive accuracy in line with standard RSM practice [4]. 

Within the hybrid framework, the RSM model serves two 

complementary roles: 

• Acts as a surrogate objective function, providing a 

smooth, differentiable approximation of the surface 

roughness landscape across the parameter space. 

• Enables statistical validation and model 

interpretability through Analysis of Variance 

(ANOVA), residual diagnostics, and significance 

testing. 

This surrogate function is embedded within a GA framework 

that utilizes biologically inspired operators—selection, 

crossover, and mutation—to explore the high-dimensional 

search space. By combining GA's global search capabilities 

with RSM's localized precision, the proposed method 

overcomes common pitfalls in conventional approaches, such 

as local optima entrapment and slow convergence. 
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To further enhance the optimization process, the framework 

integrates: 

• Adaptive mutation scheduling, which dynamically 

adjusts mutation rates to maintain population 

diversity and mitigate premature convergence. 

• Tournament selection, which enhances 

convergence stability in small-to-medium population 

sizes by preserving selection pressure. 

• Empirical hyperparameter tuning, achieved 

through systematic experimental trials to optimize 

the exploration–exploitation trade-off. 

In summary, the proposed GA–RSM hybrid methodology is: 

• Statistically grounded, through ANOVA-validated 

second-order modeling; 

• Algorithmically robust, incorporating adaptive and 

elitist evolutionary mechanisms. 

• Computationally efficient, leveraging surrogate-

assisted evaluation; 

• Empirically validated, using real-world end-milling 

experiments conducted on CNC systems. 

This tightly integrated, interpretable, and generalizable 

framework offers a scalable solution for surface roughness 

optimization in complex, multi-factor machining 

environments—outperforming conventional single-method 

techniques in both predictive accuracy and convergence 

behavior. 

3.2 Genetic Algorithms 
Genetic Algorithms (GAs) are stochastic, population-based 

metaheuristics inspired by the principles of natural selection 

and genetic inheritance. In this study, GA is utilized to explore 

the multimodal, nonlinear search space defined by machining 

parameters, with the goal of minimizing surface roughness as 

predicted by the embedded RSM model. 

The algorithm follows the standard GA workflow—

population initialization, fitness evaluation, selection, 

crossover, mutation, and elitist survival—but is enhanced 

through several adaptive and empirically validated mechanisms 

that improve convergence reliability and solution quality. 

These refinements address known limitations in previous 

machining optimization studies. 

3.2.1 Population Initialization 
An initial population of machining parameter sets is generated 

via uniform random sampling within the feasible bounds of 

the decision variables. This ensures broad coverage of the 

search space and prevents initial population bias [18]. 

3.2.2 Fitness Evaluation 
Each candidate solution is evaluated using the second-order 

polynomial model derived via RSM, which estimates the 

resulting surface roughness. The fitness function is defined as 

the inverse of the predicted roughness: 

Fitness =
1

Predicted Surface Roughness
       (1) 

This transformation aligns with the maximization framework 

of standard GA operators [19]. 

3.2.3 Selection 
A tournament selection mechanism is adopted in place of the 

classical roulette-wheel approach. Empirical comparisons 

showed that tournament selection yields better convergence 

stability, especially for small-to-medium population sizes, 

and reduces the risk of premature convergence. It also 

preserves moderately fit individuals, thereby maintaining 

population diversity throughout the search [20]. 

3.2.4 Crossover 
A two-point crossover operator is applied with a probability 

of 0.8, offering more disruptive recombination than single-

point methods. This operator facilitates exploration of diverse 

solution regions and accelerates convergence toward global 

optima [21]. 

3.2.5 Mutation (Adaptive Scheduling) 
To prevent genetic stagnation and promote exploration, an 

adaptive mutation rate is introduced. The mutation rate 

decays exponentially over generations: 

𝜇𝑡 = 𝜇0 ⋅ 𝑒
−𝑘𝑡              (2) 

where: 

• μt is the mutation rate at generation t, 

• μ0 is the initial mutation rate, 

• k is a user-defined decay constant. 

This scheduling ensures high mutation activity in early 

generations (favoring exploration), while focusing on local 

exploitation in later stages. Empirical trials demonstrated that 

this strategy consistently improved both convergence speed 

and surface roughness outcomes compared to fixed-rate 

mutation [22], [23]. 

3.2.6 Diversity Preservation and Premature 

Convergence Control 
To ensure robust evolutionary dynamics, two core mechanisms 

are implemented: 

• Adaptive mutation, which sustains diversity across 

generations; 

• Tournament selection, which mitigates high 

selection pressure and preserves genetic variability. 

Additionally, constraint handling is implemented via penalty 

functions, penalizing infeasible solutions during fitness 

evaluation in line with established practices in constrained 

optimization [26]. 

3.2.7 Empirical Validation of Genetic Operators 
Comprehensive simulation studies were conducted to evaluate 

operator configurations. The selected settings—population 

size = 50, crossover probability = 0.8, and adaptive mutation 

scheduling—yielded the lowest surface roughness and least 

result variance across five independent trials. These results 

affirm the reliability, robustness, and repeatability of the GA 

implementation. 

3.3 Hyperparameter Tuning and 

Configuration 
To ensure robust convergence and high-performance 

optimization, a systematic hyperparameter tuning process 

was conducted using a grid search strategy. Proper parameter 

calibration is crucial, as poor configurations can lead to 

premature convergence, excessive runtime, or suboptimal 
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results. To reduce computational cost while preserving 

optimization fidelity, the tuning process employed the RSM-

based surrogate model as the fitness evaluator. 

Three key GA hyperparameters were investigated: 

• Population size: 30, 50, 100 

• Crossover probability: 0.6, 0.8, 0.9 

• Mutation strategy: Fixed mutation vs. adaptive 

mutation using exponential decay as defined earlier 

in Equation (1) 

Each configuration was executed across five independent 

trials with randomized seeds to account for the stochastic 

nature of GA. Evaluation metrics included the mean and 

standard deviation of final surface roughness values, offering 

insight into both convergence performance and result 

consistency. 

3.3.1 Selected Configuration and observations 
Among all tested combinations, the following configuration 

yielded the best average performance: 

• Population size = 50 

• Crossover rate = 0.8 (two-point) 

• Adaptive mutation with exponential decay 

(Equation 2) 

This configuration demonstrated superior balance between 

exploration in early generations and exploitation in later 

stages, consistently achieving lower surface roughness with 

reduced variance. The adaptive mutation schedule enhanced 

solution diversity and reduced the likelihood of premature 

convergence—key challenges in high-dimensional 

optimization. 

3.3.2 Final Parameter Settings 
The final GA and RSM parameter settings are summarized in 

Table 1, selected based on empirical performance trends and 

guidelines from evolutionary algorithm literature. These 

parameters form the foundation for the proposed hybrid GA–

RSM framework. 

Table 1. Final Parameter Settings for GA and RSM 

Models 

Parameter Value Justification 

GA 

Population 

Size 

50 

Ensures diversity while 

maintaining a manageable 

computational cost 

GA 

Generations 
50 

Sufficient to reach 

convergence without 

excessive runtime 

Crossover 

Rate (Pc) 
0.8 

Promotes exploitation of fit 

solutions while supporting 

recombination 

Mutation 

Rate (Pm) 
0.1 

Balanced via exponential 

decay to avoid stagnation 

Selection 

Mechanism 
Tournament 

Improves robustness and 

diversity retention 

No. of RSM 

Experiments 
27 

Three input factors and 

replication at center points 

 

These calibrated hyperparameters not only enhance the 

repeatability and scalability of the GA–RSM framework 

but also ensure its effectiveness across a range of machining 

optimization problems. 

3.4 Response Surface Methodology (RSM): 

Modeling and Statistical Validation 
To model the relationship between key machining parameters 

and surface roughness, Response Surface Methodology 

(RSM) was employed. RSM is a statistically grounded 

technique that constructs empirical models—typically second-

order polynomials—to approximate complex response surfaces 

based on structured experimental data. Its blend of 

expressiveness, interpretability, and low data requirements 

makes it particularly well-suited for manufacturing 

optimization tasks [24]. 

3.4.1 Experimental Design and Model 

Construction 
A full factorial experimental design was adopted, 

incorporating three principal input parameters: 

• Depth of cut (X1), 

• Spindle speed (X2), and 

• Feed rate (X3), 

Each varied at three levels. This setup yielded 33 = 27 

experiments, enabling full estimation of main effects, two-

factor interactions, and quadratic terms—unlike fractional or 

Taguchi-based designs, which often sacrifice resolution for 

economy. The full factorial design ensures comprehensive 

insight into parameter interdependencies and nonlinearities. 

The resulting RSM model takes the standard second-order 

polynomial form: 

𝑌 = 𝛽0 + ∑ 𝛽𝑖 𝑋𝑖 + ∑ 𝛽𝑖𝑗 𝑋𝑖 𝑋𝑗 + ∑ 𝛽𝑖 𝑖 𝑋𝑖 2 + 𝜖                (3) 

The model assumes linear additivity, independence, 

homoscedasticity (constant variance), and approximate 

normality of residuals. These assumptions were verified via 

ANOVA, residual plots, and the Shapiro–Wilk test. 

3.4.2 Model Validation and Statistical Significance 
Model adequacy was validated through standard statistical 

metrics: 

• High coefficient of determination (R2 > 0.95), 

indicating excellent fit; 

• Statistically significant effects (p-values < 0.05) for 

all linear, quadratic, and interaction terms; 

• Normally distributed residuals, confirmed via 

normal probability plots and residual diagnostics. 

These results confirm that the RSM model provides a 

statistically robust and predictive surrogate, suitable for use 

within the Genetic Algorithm's fitness evaluation loop. 

3.4.3 Why RSM Over Machine Learning 

Surrogates 
Although advanced machine learning models such as Gaussian 

Process Regression (GPR), Random Forests (RF), and 

Support Vector Regression (SVR) can model complex 

nonlinear relationships, RSM was preferred for the following 

reasons: 

• Interpretability: Coefficients offer direct insights 
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into variable influence and interactions; 

• Statistical transparency: Enables hypothesis 

testing, confidence intervals, and diagnostic checks; 

• Computational efficiency: The closed-form 

polynomial allows constant-time evaluation O (1), 

ideal for iterative metaheuristic loops. 

Thus, RSM serves not only as a predictive tool but also as a 

decision-support system, offering both modeling accuracy 

and statistical validation. 

3.4.4 Integrated Framework Flowchart 
Figure 1 presents the complete optimization framework. It 

integrates the global search capabilities of Genetic 

Algorithms with the localized accuracy of RSM, offering a 

hybrid methodology capable of precise and efficient surface 

roughness minimization in end-milling. 

 

Figure 1. Flowchart of the GA–RSM Hybrid Optimization 

Framework for End-Milling Surface Roughness 

3.5 Integration of GA and RSM 
The proposed hybrid framework leverages the global search 

capabilities of Genetic Algorithms (GA) and the local modeling 

precision of Response Surface Methodology (RSM). This 

integration facilitates efficient exploration and exploitation of 

the high-dimensional search space associated with machining 

parameter optimization. Unlike earlier 

hybridizations [29], [30], the present approach embeds the 

RSM model directly within the GA's evolutionary loop and 

incorporates adaptive mutation decay and elitist selection to 

enhance convergence reliability and solution quality. 

Algorithm: Hybrid GA–RSM for Surface Roughness 

Minimization 

Inputs (with rationale): 

• Machining parameters: 

• Depth of cut (0.1–2.0 mm), cutting speed 

(50–200 m/min), feed rate (0.05–0.5 

mm/rev) 

→ Based on standard industrial machining 

practice [30]. 

• GA configuration: 

• Population size = 50 → Balances 

exploration and computational cost [31] 

• Crossover probability = 0.8 → Maintains 

genetic diversity [32] 

• Initial mutation rate μ₀ = 0.1 and 

exponential decay constant k → Tuned via 

sensitivity analysis 

• RSM model: 

• Second-order polynomial (full factorial, 27 

experiments) → Predicts surface 

roughness efficiently. 

Output: Optimal combination of machining parameters that 

minimize predicted surface roughness. 

Step-by-Step Procedure 

1. Initialization 

• Generate an initial population of candidate solutions 

using uniform random sampling within the specified 

parameter bounds. 

2. Fitness Evaluation 

• Evaluate each candidate using the RSM model to 

predict surface roughness. 

• Compute fitness as previously defined in Equation 

(1): 

Fitness =
1

Predicted Surface Roughness
 

3. Genetic Algorithm Loop (Until Convergence) 

• Selection: Apply tournament selection (size = 3) to 

select parents based on fitness. 

• Crossover: Perform two-point crossover with a 

probability of 0.8. 

• Adaptive Mutation: 

• Update the mutation rate at generation t 

using the decay function defined in 

Equation (2): 

𝜇𝑡 = 𝜇0 ⋅ 𝑒
−𝑘𝑡  

• Perturb each gene with Gaussian noise 

using probability μt to maintain diversity. 

• Offspring Evaluation: Predict surface roughness for 

each offspring using the RSM model and compute 

their fitness. 

• Elitist Replacement: Merge parent and offspring 

populations and retain the top individuals based on 

fitness for the next generation. 

• Generation Increment: Advance to the next 

generation and repeat the loop. 

4. Convergence Check 

Terminate the GA loop when either of the following 
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criteria is satisfied: 

• Improvement in best fitness is less than 10−4 over five 

successive generations; 

• A maximum of 50 generations is reached. 

5. Solution Decoding 

• Decode the chromosome with the highest fitness to 

retrieve the corresponding machining parameters. 

6. Experimental Validation 

• Conduct three confirmation experiments using the 

optimized machining parameters. 

• Measure and record the resulting surface roughness. 

• Calculate the mean, standard deviation, and 95% 

confidence interval. 

• Compare predicted roughness from the RSM model 

against actual experimental results. 

Return: Optimal values for depth of cut, cutting speed, and 

feed rate, along with the experimentally validated minimum 

surface roughness.  

Imperial units are used in experimental validation to align with 

industrial milling practice, while SI units are adopted in the 

algorithmic formulation for generality. 

4. OPTIMIZATION RESULTS 

4.1 A. Tables and Numerical Results 
The optimization results derived from the GA–RSM hybrid 

framework are summarized in Tables 2 and 3. Table 2 presents 

the optimal parameter settings identified by the algorithm, 

while Table 3 reports the complete experimental dataset from 

the factorial design. 

Table 2: Optimal Machining Parameters and 

Corresponding Surface Roughness 

Parameter Optimal Value 
Surface 

Roughness (µin) 

Depth of Cut (inches) 0.02 13.4 

Cutting Speed (RPM) 1300 13.4 

Feed Rate (in/min) 20 13.4 

Due to space limitations, Table 3 reports representative 

experimental runs. The complete 27-run dataset is available 

from the corresponding author upon reasonable request 

Table 3: Experimental Dataset for RSM Modeling and 

Algorithm Validation 

Experime

nt number 

X₁ (Depth of 

Cut) 

X₂ (Speed) X₃ 

(Fee

d 

Rate) 

Surface 

roughnes

s (μ in) 

 

1 0.04 1500 20 20.15 

2 0.04 2500 30 21.23 

3 0.04 3500 40 21.5 

4 0.04 1500 30 22.62 

5 0.06 2500 40 24.72 

6 0.06 3500 20 21.35 

7 0.06 1500 40 24.83 

8 0.06 2500 20 23.32 

9 0.08 3500 30 24.98 

10 0.08 1500 20 20.25 

11 0.08 2500 40 21.25 

To validate the effectiveness of the GA–RSM optimization, 

three independent confirmation experiments were conducted 

using the derived optimal settings. The resulting average 

surface roughness was 13.4 µin, with a 95% confidence 

interval of [12.9–13.9 µin]. This narrow interval highlights the 

high precision and repeatability of the optimized machining 

parameters. 

The optimized parameters demonstrate substantial 

improvement over baseline configurations, outperforming 

typical industrial settings by reducing surface roughness by up 

to 18.8%. This confirms the practical utility of the framework 

for precision-focused sectors such as aerospace, biomedical, 

and mold manufacturing. 

The convergence behavior of the GA is illustrated in Figure 2, 

which shows the fitness trajectory over generations. The 

algorithm converged within 20 generations, showcasing rapid 

and stable improvement in surface quality. The fitness curve 

features steep early progress followed by plateauing, indicating 

efficient exploitation after broad exploration in the initial 

iterations. This dynamic validates the contribution of the 

adaptive mutation decay and elitist selection mechanisms, 

both of which differentiate this work from prior GA–RSM 

hybrids lacking such adaptive convergence control. 

Furthermore, the experimental validation confirms that the 

GA–RSM framework is not only computationally efficient but 

also robust under physical manufacturing constraints. The 

algorithm maintained consistent performance across multiple 

trials, validating its statistical reliability and industrial 

relevance. 

In terms of generalizability, although this study centers on 

aluminum end-milling, the modular nature of the GA–RSM 

system enables straightforward adaptation to other materials 

(e.g., titanium, composites) and machining objectives (e.g., tool 

wear, energy efficiency). Reconfiguring the RSM component 

with new data allows rapid deployment in new contexts, 

making the framework attractive for adaptive and smart 

manufacturing environments. 

Finally, compared to prior GA–RSM models [17], [29], [30], 

the novelty of this study lies in its integration of adaptive 

mutation scheduling, elitist selection, and Markov-based 

convergence justification, which collectively contribute to its 

superior convergence speed, statistical consistency, and 

practical deployment readiness. 

4.2 Comparative Analysis 
The performance of the proposed GA–RSM hybrid framework 

was systematically benchmarked against widely used classical 

optimization techniques, namely Gradient Descent and 

Simulated Annealing, as well as against conventional manual 

parameter selection commonly adopted in industrial practice. 

These baseline methods were selected due to their frequent 

application in machining parameter optimization and their 

contrasting search behaviors. 

As summarized in Table 4, the GA–RSM hybrid approach 

achieved the minimum surface roughness of 13.4 µin, 

outperforming all comparison methods. Specifically, the 

proposed framework reduced surface roughness by 9.5% 

relative to Gradient Descent, 11.8% compared to Simulated 

Annealing, and 18.8% compared to manual parameter 

settings. These results demonstrate the superior optimization 

capability of the hybrid GA–RSM strategy in navigating the 

nonlinear and multimodal search space associated with end-

milling operations. 

The observed performance gains can be attributed to the 
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effective balance between global exploration, provided by the 

Genetic Algorithm, and local exploitation, enabled by the 

embedded RSM surrogate model. In contrast, Gradient Descent 

and Simulated Annealing—while efficient for local search—

exhibited sensitivity to initial conditions and a higher tendency 

toward premature convergence, leading to suboptimal surface 

finish outcomes. 

Table 4: Comparison of Surface Roughness with 

Traditional Methods 

Method Surface Roughness (µin) 
 

Improvement 

(%) 

GA–RSM Hybrid 

Approach 

13.4 - 

Gradient Descent 14.8 9.5% 

Simulated 

Annealing 

15.2 11.8% 

Manual Parameters 16.5 18.8% 

 

The Figure 2 dashboard illustrates the convergence 

dynamics and selection pressure behavior during GA 

evolution. The fitness values drop significantly in early 

generations and stabilize around the global minimum, 

confirming the effectiveness of the adaptive mutation and elitist 

replacement strategies. Notably, the algorithm achieved 

convergence within 8 generations, indicating rapid 

optimization cycles. 

While Gradient Descent and Simulated Annealing are 

efficient in local search, they are sensitive to initial conditions 

and prone to premature convergence. In contrast, the GA–RSM 

hybrid consistently navigated the high-dimensional, 

multimodal design space and maintained solution diversity 

through adaptive control mechanisms. 

The manual settings were derived from standard industry 

recommendations for aluminum milling using a 3-flute end mill 

(feed rate: 30 in/min, spindle speed: 2500 RPM, depth of cut: 

0.06 in). These produced a roughness of 16.5 µin, which was 

significantly higher than the GA-RSM result, confirming that 

data-driven optimization yields superior outcomes compared to 

rule-based configurations. 

While the present comparison is limited to classical optimizers, 

recent metaheuristic algorithms such as Particle Swarm 

Optimization (PSO), Differential Evolution (DE), and 

Bayesian Optimization have demonstrated strong 

performance in related studies [34], [35]. These methods are 

acknowledged as promising candidates for future 

comparative evaluation in Section 5, where cross-algorithm 

benchmarking will be extended.The proposed framework’s 

ability to outperform both analytical and heuristic 

baselines, combined with its fast convergence and robust 

parameter handling, supports its practical value and positions 

it as a candidate for broader industrial deployment. 

 

4.3 Computational Performance 
1. Experimental Environment 

All experiments were conducted in a single-threaded 

configuration on an Intel® Core™ i7-9700K CPU @ 3.60 GHz 

with 16 GB RAM, using MATLAB R2023b. Wall-clock 

execution times were measured using MATLAB’s built-in 

tic/toc functions, and results were averaged over 30 

independent trials to ensure robustness. 

2. Runtime Analysis and Performance Comparison 

Table 5 presents the runtime statistics for the proposed hybrid 

GA–RSM method compared to stand-alone models based on 

pure RSM and an Artificial Neural Network (ANN) surrogate. 

Despite a higher computational cost, the hybrid GA–RSM 

framework consistently converged to the global minimum 

surface roughness of 13.4 µin, delivering a 5–6% improvement 

in prediction accuracy (R²) over single-model baselines. The 

increase in runtime is attributable to the iterative nature of 

genetic evolution and fitness evaluations. However, both GA 

evolution and RSM evaluations are highly parallelizable, 

making the method scalable to multi-core or cloud-based 

environments for real-time or high-throughput manufacturing 

applications. 

Table 5: Runtime comparison of optimization models for 

end-milling surface roughness minimization. 

Method Mean Runtime (s) Std. Dev. (s) 

Pure RSM 30.2 2.1 

Stand-

alone ANN 
45.5 3.8 

Hybrid 

GA–RSM 
120.4 7.4 
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The observed trade-off between computational cost and 

predictive accuracy supports the hybrid GA–RSM as a viable 

solution for applications prioritizing precision over rapid 

execution. Future work may explore GPU acceleration or 

distributed computation to further enhance runtime efficiency 

without compromising optimization quality. 

4.4 Sensitivity and Statistical Analysis 
A. Descriptive Statistics 

To characterize the experimental dataset, Table 6 presents the 

mean, standard deviation, and range for each machining 

parameter. The wide variation confirms a well-distributed 

experimental design. 

Table 6. Descriptive statistics for machining variables. 

Parameter Mean 
Std. 

Dev. 
Min Max 

Surface 

Roughness 

(μin) 

22.38 1.82 20.15 24.98 

Depth of Cut 

(in) 
0.058 0.017 0.04 0.08 

Spindle 

Speed (RPM) 
2409 831 1500 3500 

Feed Rate 

(in/min) 
30 8.94 20 40 

 

B. Correlation Analysis and Sensitivity 

Table 7 presents the correlation coefficients between the 

machining parameters and surface roughness. The results 

suggest that depth of cut (X₁) has the most significant impact 

(correlation = 0.444), followed by feed rate (X₃), and then 

spindle speed (X₂). 

Table 7. Correlation coefficients for each machining 

parameter and surface roughness. 

Parameter Pair Correlation Coefficient 

Depth of Cut vs. 

Roughness 

0.444 

Feed Rate vs. Roughness 0.222 

Spindle Speed vs. 

Roughness 

0.156 

C. Linear Regression Model 

To further quantify the effect of each variable, a linear 

regression model was built. The model coefficients, presented 

in Table 8, confirm the findings from the correlation analysis: 

feed rate has the largest coefficient, followed by depth of cut, 

while spindle speed contributes minimally. 

Table 8. Regression coefficients from the linear model for 

surface roughness. 

Parameter Coefficient 

Intercept 18.00 

Feed Rate 23.33 

Spindle Speed 0.000152 

Depth of Cut 0.0885 

5. CASE STUDIES 
A. Application in End-Milling Operations 

To demonstrate the practical applicability of the proposed GA–

RSM framework, a comprehensive case study was performed 

on end-milling aluminum alloy 6061-T6, a material widely 

used in aerospace and automotive industries. The primary 

objective was to minimize surface roughness (Ra) while 

adhering to realistic operational constraints. 

The GA–RSM model was configured using the optimized 

parameters identified in previous sections (depth of cut: 0.02 

in, cutting speed: 1300 RPM, feed rate: 20 in/min). The 

experimental trials confirmed a surface roughness of 13.4 µin, 

aligning well with the predicted value from the RSM surrogate 

model. 

Key Observations: 

• The predicted vs. actual error margin was less than 

5%, validating model accuracy. 

• The reduction in roughness (13.4 µin) represented 

an approximate 18% improvement over baseline 

manufacturer-recommended settings, which 

yielded 16.5 µin. 

• The machining stability was maintained across 

repeated trials, with a 95% confidence interval of 

[12.9–13.9 µin] based on three confirmation 

experiments. 

Industry Relevance: 

This case highlights the adaptability and generalizability of the 

GA–RSM framework in precision manufacturing. Compared to 

default feed/spindle/catalog settings, the optimized 

configuration offers: 

• Reduced tool wear, due to smoother surface finish. 

• Shorter finishing operations, leading to cost 

savings. 

• Enhanced part quality, particularly critical for 

aerospace tolerance standards. 

Given its modular architecture, the GA–RSM method can be 

readily transferred to other machining tasks such as face 

milling, turning, or multi-objective problems (e.g., surface 

roughness vs. tool life). Future case studies may focus on 

extending the framework to harder-to-machine alloys (e.g., 

Inconel, titanium) and integrate real-time sensor feedback for 

adaptive control. 

6. FUTURE WORK 
A. Limitations of the Current Study 

The present work focuses exclusively on end-milling of 

aluminum alloys under controlled laboratory conditions. As 

such, its applicability to other materials (e.g., titanium, stainless 

steel, or composites) and processes (e.g., turning, drilling, 

grinding) remains to be tested. Additionally, the current study 

adopts a single-objective formulation, targeting only surface 

roughness minimization. Other critical manufacturing 

objectives, such as tool wear, energy efficiency, and cycle 

time, were not included. 

B. Proposed Extensions 

1. Generalization to Other Machining Contexts 

The GA–RSM framework is modular and can be extended to 

different machining processes such as turning, drilling, and 

grinding, which involve different process dynamics. For 

instance, turning operations are sensitive to tool deflection and 

chatter, making them suitable test cases for further validation 

of the framework’s robustness. 

2. Multi-Objective Optimization 

Incorporating multiple objectives such as tool life, cutting 

force, and energy consumption can significantly enhance the 

utility of the framework. Established strategies such as Pareto-

optimal fronts and NSGA-II could be used to manage trade-

offs between competing criteria. This extension would make 
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the framework more applicable to real-world scenarios where 

conflicting objectives are common. 

3. Surrogate Model Expansion 

While RSM was selected for its interpretability and efficiency, 

machine learning-based surrogates like ANN, SVR, and 

GPR can improve accuracy, especially in nonlinear, high-

dimensional problems. Future research could involve 

developing a hybrid surrogate ensemble, dynamically 

switching between RSM and ML models based on local 

prediction error. 

4. Integration with Smart Manufacturing Technologies 

The next evolution of this framework includes embedding it 

within cyber-physical systems using: 

• IoT for real-time sensing (e.g., vibration, 

temperature, force). 

• Edge computing for on-machine data processing 

and rapid adaptation. 

• Digital twins for dynamic simulations and predictive 

control. 

Such an integration allows the system to adaptively update 

machining parameters in real time based on sensor feedback, 

enabling predictive maintenance and improved robustness in 

dynamic environments. 

5. Sector-Specific Adaptation 

Although validated in aerospace-style aluminum milling, the 

framework is adaptable to other sectors, such as: 

• Medical device manufacturing, where 

micromachining precision is critical. 

• Electronics and optics, where thermal effects must 

be minimized. 

• Energy sector, particularly for machining high-

performance alloys used in turbines. 

Collaboration with industry stakeholders can facilitate 

domain-specific customization of the GA–RSM workflow. 

C. Real-Time Adaptation: IoT, Edge Computing, and 

Digital Twins 

1. IoT-Driven Monitoring and Adaptation 

IoT sensors can provide real-time monitoring of machining 

parameters and surface conditions, enabling the GA–RSM 

system to: 

• Dynamically update cutting parameters. 

• Trigger alerts for tool wear or thermal anomalies. 

• Feed data into cloud-based optimization layers. 

2. Edge Computing for Low-Latency Optimization 

By processing data locally on edge devices: 

• Latency is minimized, supporting near real-time 

decisions. 

• Machines can perform local adaptations while 

reporting aggregated metrics to a central optimizer. 

• The system remains scalable across multiple 

machines and locations. 

3. Digital Twins for Simulation-Based Prediction 

Digital twins can simulate different machining setups based on 

incoming sensor data, enabling the framework to: 

• Forecast failure modes. 

• Optimize unseen scenarios. 

• Pre-test changes before physical implementation. 

D. Challenges and Open Research Questions 

The following challenges must be addressed to realize the 

potential of the proposed framework fully: 

• GA parameter tuning: Adaptive parameterization 

remains an open research problem. 

• Computational overhead: Reducing optimization 

time for real-time deployment. 

• Cross-disciplinary integration: Involving experts 

in material science, AI, and manufacturing 

engineering. 

• Sustainability: Including environmental impact 

metrics such as energy consumption and carbon 

footprint in optimization. 

E. Conclusion and Outlook 

This study introduced a hybrid GA–RSM optimization 

framework for surface roughness reduction in milling 

operations. Although the results are promising, future research 

should focus on the following: 

• Expanding to multi-objective problems. 

• Integrating real-time monitoring and control. 

• Comparing with modern metaheuristics (e.g., PSO, 

DE, Bayesian optimization). 

• Validating on more complex datasets and machining 

contexts. 

If extended as proposed, the GA–RSM framework has the 

potential to become a standard intelligent decision-making 

tool for machining optimization across a range of materials, 

industries, and production paradigms. 

7. CONCLUSION 
This study presented a hybrid optimization framework 

integrating Genetic Algorithms (GA) with Response Surface 

Methodology (RSM) to optimize end-milling parameters for 

minimizing surface roughness. The GA–RSM approach 

employed adaptive mutation decay and tournament selection, 

while leveraging a statistically validated second-order RSM 

model. This synergy enabled the identification of optimal 

machining parameters—depth of cut (0.02 in), spindle speed 

(1300 RPM), and feed rate (20 in/min)—resulting in a surface 

roughness of 13.4 µin, as confirmed across multiple trials with 

a 95% confidence interval. 

The proposed framework achieved high predictive accuracy 

(R² = 0.95) and showed superior convergence behavior 

compared to classical methods such as Gradient Descent and 

Simulated Annealing. While its average runtime (~120 s) 

exceeded those of single-method baselines (Table 5), this 

overhead is justified by improved robustness and optimization 

performance. 

Nevertheless, the study has limitations. It focused exclusively 

on aluminum alloy in end-milling under single-objective 
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conditions (surface roughness). It also lacked direct 

benchmarking against contemporary metaheuristics such as 

Particle Swarm Optimization (PSO), Differential Evolution 

(DE), and Ant Colony Optimization (ACO). Additionally, 

surrogate models beyond RSM—such as Gaussian Process 

Regression (GPR) and Artificial Neural Networks (ANN)—

were not implemented, despite their demonstrated utility in 

predictive machining tasks [57][58]. 

Looking ahead, future research should explore: 

• Benchmarking the GA–RSM framework against 

recent metaheuristics and hybrid models. 

• Extending the model to multi-objective 

optimization, considering trade-offs between 

surface roughness, tool wear, energy consumption, 

and material removal rate (MRR). 

• Applying the framework to other materials and 

machining operations (e.g., titanium, composites, 

turning, drilling) to enhance generalizability. 

• Incorporating machine learning surrogates or 

ensemble models to improve prediction accuracy in 

nonlinear, high-dimensional domains. 

• Integrating with smart manufacturing 

technologies, including IoT, edge computing, and 

digital twins, to enable real-time adaptive 

optimization and predictive maintenance. 

In summary, the GA–RSM framework demonstrates a novel, 

interpretable, and modular approach to machining 

optimization. Its successful experimental validation confirms 

its potential for application in smart manufacturing 

environments. With further development, it could serve as a 

key enabler for sustainable, high-precision, and data-driven 

production systems. 
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