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ABSTRACT 
Driver drowsiness is a significant contributor to road accidents, 

often leading to impaired focus, delayed reaction times, and 

poor decision-making. To address this issue, this study 

introduces SnoozeNet, a lightweight and efficient real-time 

driver drowsiness detection system that combines 

Convolutional Neural Networks (CNNs), MediaPipe facial 

landmark tracking, and Temporal Convolutional Networks 

(TCNs). The model extracts spatial features from eye and 

mouth regions to detect blink rate, eye closure, and yawning, 

while MediaPipe provides head pose estimations to assess 

posture and nodding behavior. These features are fused and 

processed by a TCN to model behavioral transitions over time. 

The system was trained on diverse public datasets and 

evaluated against LSTM-based baselines, showing improved 

accuracy, training efficiency, and responsiveness. Results 

confirm that the lightweight CNN-MediaPipe-TCN pipeline 

effectively detects drowsiness-related facial cues across varied 

lighting conditions and facial structures, offering a robust and 

deployable solution for real-world driver-monitoring 

applications. Comprehensive validation showed that the 

pipeline achieved strong performance with an overall accuracy 

of 94.6%, F1-score of 0.930, and AUROC of 0.984, while 

delivering real-time classification in a browser-based 

application at approximately 15 FPS. 
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1. INTRODUCTION 
Driver drowsiness remains a major contributor to road 

accidents worldwide, impairing focus, reaction time, and 

decision-making in ways comparable to alcohol impairment [1, 

2]. According to the World Health Organization, drowsiness-

related crashes account for approximately 20% of all road 

traffic accidents globally [3]. In the Philippines, driver fatigue 

is recognized as a significant yet underreported factor in 

vehicular accidents [4]. Studies indicate that 67.3% of drivers 

have reported experiencing drowsiness while driving [3], with 

many commercial vehicle drivers reporting substantial fatigue 

during long-haul trips [2]. 

Recent advances in deep learning and computer vision have 

enabled the real-time monitoring of facial cues, such as 

blinking, yawning, and head movement, for drowsiness 

detection [7, 8]. However, most existing drowsiness detection 

models demand high computational power and expensive 

hardware, which limits their accessibility and practical 

deployment, especially in resource-constrained environments. 

Traditional approaches relied on intrusive physiological 

sensors or vehicle-based monitoring systems that suffered from 

high false-positive rates and delayed detection [2]. 

This study developed a lightweight ensemble Convolutional 

Neural Network-MediaPipe feature-based Temporal 

Convolutional Network (TCN) model to classify drowsy and 

non-drowsy states. It utilizes ensemble CNNs for spatial 

extraction of mouth and eye features, combined with 

MediaPipe facial landmark features and a TCN for real-time 

analysis of temporal behavior. By reducing hardware 

requirements, this new pipeline opens up opportunities for 

researchers in developing countries to develop and adapt 

drowsiness detection systems tailored to local needs. 

2. RELATED WORK 

2.1 Traditional Drowsiness Detection 

Methods 
Early drowsiness detection systems relied on intrusive 

physiological sensors such as electroencephalography (EEG), 

electrocardiography (ECG), and electromyography (EMG) to 

monitor brain activity, heart rate, and muscle tension [2]. While 

these methods provided accurate measurements of fatigue-

related physiological changes, they required direct contact with 

the driver, making them impractical for real-world deployment 

[5]. Vehicle-based detection methods emerged as non-intrusive 

alternatives, monitoring steering wheel movements, lane 
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departures, and vehicle speed variations as indicators of driver 

fatigue [2]. However, these approaches suffered from high 

false-positive rates, as driving behavior can be influenced by 

road conditions, traffic patterns, and driver experience rather 

than drowsiness alone. 

2.2 Vision-Based Approaches 

Recent advances in computer vision and deep learning have 

enabled non-intrusive, camera-based drowsiness detection 

systems. These systems analyze facial features such as eye 

closure patterns, blink frequency, yawning, and head pose to 

identify signs of fatigue [13, 14]. Convolutional Neural 

Networks (CNNs) have become the dominant approach for 

extracting spatial features from facial images, demonstrating 

superior performance in recognizing drowsiness-related visual 

patterns [15, 16]. MediaPipe, developed by Google, provides a 

robust framework for real-time facial landmark detection and 

head pose estimation [6]. Its lightweight architecture makes it 

suitable for deployment in resource-constrained environments, 

enabling efficient extraction of geometric features such as eye 

aspect ratio (EAR), mouth aspect ratio (MAR), and head 

orientation angles. 

2.3 Temporal Modeling in Drowsiness 

Detection 

Drowsiness manifests as temporal patterns rather than isolated 

events, requiring models capable of capturing sequential 

dependencies. Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM) networks have been widely used 

for temporal modeling in drowsiness detection [18, 19]. 

However, LSTMs suffer from vanishing gradient problems 

during training and limited parallelization capabilities, making 

them less efficient for real-time applications [7]. Temporal 

Convolutional Networks (TCNs) have emerged as a powerful 

alternative, offering parallelizable training, stable gradients, 

and flexible receptive fields through dilated convolutions [8]. 

TCNs have demonstrated superior performance in sequence 

modeling tasks, outperforming LSTMs in accuracy and training 

efficiency [9]. 

3. METHODOLOGY 

3.1 System Architecture Overview 
The proposed SnoozeNet system comprises three main 

components: CNN-based feature extraction for eye and mouth 

regions, MediaPipe-based head pose estimation, and a 

Temporal Convolutional Network for sequence modeling. The 

architecture is designed to balance computational efficiency 

with detection accuracy, enabling real-time deployment on 

standard hardware. The pipeline processes video frames at 15 

FPS, extracting spatial and temporal features that are combined 

for drowsiness classification. 

 
Figure 1. SnoozeNet Pipeline Architecture 

3.2 Feature Extraction and Preprocessing 
3.2.1 Facial Landmark Detection 
MediaPipe FaceMesh was employed to extract 468 three-

dimensional facial landmarks from each video frame. This 

provides robust spatial reference points for calculating eye, 

mouth, and head-pose features. Key landmark regions include 

eye landmarks (33-133 for left eye, 362-263 for right eye), 

mouth landmarks (61, 291, 13, 14, 81, 178, 308, 402), and 

head-pose anchors (outer eye corners at 33 and 263, chin at 152, 

forehead at 10). 

3.2.2 Eye and Mouth Aspect Ratios 
Eye Aspect Ratio (EAR) quantifies the degree of eye openness 

using six key landmarks around each eye. The formula 

computes the ratio of vertical eye-opening distances to 

horizontal eye span. EAR values decrease significantly when 

eyes close, providing a reliable indicator of eye state. Mouth 

Aspect Ratio (MAR) measures the relative vertical opening of 

the mouth and serves as a key indicator of yawning behavior. 

The formula computes the ratio of vertical mouth opening 

distances to horizontal mouth span. Higher MAR values 

indicate mouth opening, with sustained high values signaling 

yawning events. 

𝐸𝐴𝑅 =
||𝑝2 − 𝑝6|| + ||𝑝3 − 𝑝5||

2||𝑝1 − 𝑝4||
 

𝑀𝐴𝑅 =
||𝑚3 − 𝑚9|| + ||𝑚4 − 𝑚8|| + ||𝑚5 − 𝑚7||

3||𝑚1 − 𝑚6||
 

Figure 2. Eye Aspect Ratio and Mouth Aspect Ratio 

Illustration 

3.2.3 Head Pose Estimation 
Head pose estimation identifies the driver's yaw, pitch, and roll 

angles, which are critical for recognizing nodding or looking-

away behaviors. The head orientation axes are derived from 

selected facial landmarks. A dynamic baseline calibration 

mechanism was implemented to account for varying camera 

positions and individual driver postures. The calibration 

process captures baseline head pose during the initial non-
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drowsy state, allowing the system to detect deviations 

indicative of nodding behavior. Calibrated angles are computed 

by comparing current head orientation with the baseline 

rotation matrix, neutralizing camera-angle bias and subject-

specific posture offsets. 

3.2.4 Behavioral Feature Computation 
Several temporal behavioral metrics were computed from the 

extracted facial features: 

Eye Openness: CNN-predicted probabilities from the left and 

right eyes are combined. If the combined probability falls 

below 0.40, the eye is considered closed. 

PERCLOS (Percentage of Eye Closure): Computed as the 

proportion of closed-eye frames within a 30-second sliding 

window, providing a standard fatigue metric. 

Blink Detection: Characterized by short-duration eye closures 

lasting 2–6 frames (approximately 0.13–0.40 seconds). Blink 

rate over 30 seconds is tracked. 

Eye Openness Trend: Short-term and long-term exponential 

moving averages (EMAs) are computed to capture gradual eye-

closing behavior. The difference between them reflects the 

trend. 

Yawning Detection: Mouth openness is derived from CNN-

based yawn probability, smoothed using a 1-second EMA. A 

yawn event is triggered if the mouth remains open for at least 

1.3 seconds. 

Nod Detection: A nod event occurs when the head tilts 

downward (pitch exceeds threshold) while the eyes are closed, 

indicating fatigue-related head drops. 

Table 1. Drowsy Event Formulas and Calculation 

Thresholds 

Paramater Condition / Value Notes 
Eye closed (𝑝𝑒𝑦𝑒 <  0.40) – 

Blink Duration 2-6 frames (0.13–0.40 s) – 

Prolonged closure (≥ 0.8 × 𝐹𝑃𝑆) ≈ 2.5𝑠 – 

PERCLOS window 30 s (450 frames) – 

Mouth open (𝑦𝑡 ≥ 0.55), 𝑐𝑙𝑜𝑠𝑒 
≤ 0.45 

Hysteresis 

Yawn event (𝑑𝑚 ≥ 1.3𝑠) – 

Head nod 𝑝𝑖𝑡𝑐ℎ ≤ −4∘, 𝑟𝑜𝑙𝑙 ≤ 20∘ – 

Sliding clip 6 s window, 3 s stride – 
 

3.3 CNN Architecture and Training 

3.3.1 Eye Open/Closed CNN 
A lightweight CNN was designed to classify eye state from 

grayscale 90×90 pixel cropped eye regions. The architecture 

consists of three convolutional blocks with progressively 

increasing filter sizes (32, 64, 128). Each convolutional layer 

uses 3×3 kernels followed by batch normalization, ReLU 

activation, and 2×2 max pooling. The flattened features are 

processed through dense layers with dropout regularization 

(rate=0.3 - 0.2) before the final sigmoid output layer for binary 

classification. 

 
Figure 3. CNN Architecture Parameters - Eye 

Open/Closed Model 
 

Training was performed using the Adam optimizer with binary 

cross-entropy loss. The learning rate was set to 0.001 with a 

decay schedule. Data augmentation techniques including 

random rotation (±15°), brightness adjustment (±20%), and 

horizontal flipping were applied to improve generalization. The 

model was trained for 30 epochs with early stopping 

(patience=10) on validation loss. The dataset split was 70% 

training, 15% validation, and 15% testing, ensuring sufficient 

data for learning while maintaining unbiased evaluation. 

3.3.2 Mouth Open/Closed CNN 
To accommodate the finer spatial details of the mouth region, 

the mouth CNN processes larger 120×120 grayscale inputs. 

The architecture employs four convolutional blocks with filter 

sizes (32, 64, 128, 256) to capture complex mouth opening 

patterns associated with yawning. Each block includes batch 

normalization and dropout (rate=0.5) for regularization. The 

network architecture is deeper than the eye CNN to better 

capture the wider range of mouth shapes and yawning 

expressions. 

The mouth CNN was trained using Adam optimizer with binary 

cross-entropy loss over 40 epochs. The same data augmentation 

strategy was applied as for the eye CNN. Training utilized 

frames extracted from YawDD and D3S datasets, with MAR-

based auto-labeling followed by manual validation to ensure 

label quality. The model successfully learned to distinguish 

between closed mouth, open mouth, and yawning states with 

high confidence. 

Input Layer Shape: (90, 90, 1)

Conv2D (32 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Conv2D (64 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Conv2D (128 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Global Average Pooling2D

Dropout (rate = 0.3)

Dense (128, ReLU)

Dropout (reate = 0.2)

Output Dense (1, Sigmoid) → 
'eye_state_model'

Compilation 

Optimizer: Adam (lr=2e-3)

Loss: BinaryCrossentropy

Metrics: ACC, AUC, PREC, 
Recall
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Figure 4.  CNN Architecture Parameters - Mouth 

Open/Closed Model 

3.4 Temporal Convolutional Network 

Architecture 

The Temporal Convolutional Network (TCN) was designed to 

capture long-range temporal dependencies in drowsiness 

behavior patterns. The architecture processes sequences of 90 

frames (6 seconds at 15 FPS) using dilated 1D causal 

convolutions. The dilation rates follow an exponential pattern 

(1, 2, 4, 8), enabling the network to capture dependencies 

across different temporal scales without significantly 

increasing model parameters. 

Each TCN block consists of two dilated convolutional layers 

with 64 filters and kernel size 3, followed by batch 

normalization, ReLU activation, and spatial dropout (rate=0.3). 

Residual connections are employed to facilitate gradient flow 

and enable deeper architectures. The TCN receives 

concatenated features including CNN probability outputs (eye 

openness, yawn probability), MediaPipe-derived pose angles 

(calibrated yaw, pitch, roll), and computed behavioral metrics 

(PERCLOS, blink rate, eye closure duration). 

Training employed a focal loss to address class imbalance 

between drowsy and non-drowsy frames, with alpha=0.75 and 

gamma=2.0. The Adam optimizer was used with an initial 

learning rate of 0.0001 and cosine annealing scheduling. Early 

stopping was applied with patience of 15 epochs monitoring 

validation AUROC. A sliding window approach with 3-second 

stride was used to create temporal sequences, with coarse labels 

(binary drowsy/non-drowsy) assigned based on the presence of 

any drowsiness indicator within the window. 

 
Figure 5. TCN Architecture Parameters and 

Hyperparameters 

3.5 LSTM Baseline Architecture 

For comparative evaluation, an LSTM-based architecture was 

implemented as a baseline. The LSTM processes the same 90-

frame input sequences with 64 hidden units per layer. The 

architecture consists of two stacked LSTM layers with dropout 

(rate=0.25) for regularization. The final LSTM output is 

processed through dense layers with ReLU activation before 

the sigmoid output layer. Training utilized the same optimizer, 

loss function, and learning rate scheduling as the TCN for fair 

comparison. 

3.6 Datasets 

The system was trained and evaluated on multiple public 

datasets to ensure generalization across diverse demographics 

and conditions: NTHU Drowsy Driver Detection (NTHU-

DDD), which contains infrared videos with detailed 

annotations on eye states and yawning [10], YawDD focused 

on yawning detection with diverse lighting and head positions 

[11], Driver Drowsiness Dataset (D3S) providing annotated 

video sequences with multiple drowsiness indicators [12], the 

DMD Dataset, offering large-scale multi-modal driver 

monitoring data [13], and Open-Closed Eyes Dataset 

specialized for eye state classification [14]. 

Input Layer Shape: (120, 120, 
1)

Conv2D (32 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Conv2D (64 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Conv2D (128 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Conv2D (256 filters, 3x3) + 
BatchNorm + ReLU + 

MaxPooling2D

Global Average Pooling2D

Dropout (rate = 0.35)

Dense (192, ReLU)

Dropout (reate = 0.25)

Output Dense (1, Sigmoid) → 
'yawn_state_model'

Compilation 

Optimizer: Adam (lr=2e-3)

Loss: BinaryCrossentropy

Metrics: ACC, AUC, PREC, 
Recall

Input Layer Shape: (90, 20)

Gaussian Noise (std = 0.01)

Conv1D (64 filters, 3, dilation 
= 1) + BatchNorm + ReLU + 

Dropout (0.1)

Conv1D (64 filters, 3, dilation 
= 2) + BatchNorm + ReLU + 

Dropout (0.1)

Conv1D (64 filters, 3, dilation 
= 4) + BatchNorm + ReLU + 

Dropout (0.1)

Conv1D (64 filters, 3, dilation 
= 4) + BatchNorm + ReLU + 

Dropout (0.1)

Global Average Pooling 1D

Dense (64 units, ReLU)

Output Dense (1, Sigmoid) → 
'tcn_course_binary'
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Figure 6. LSTM Architecture Parameters and 

Hyperparameters 

3.7 Evaluation Metrics and Validation 

Model performance was evaluated using standard classification 

metrics: accuracy measuring overall correctness, precision 

indicating the proportion of true positives among predicted 

positives, recall measuring the proportion of actual positives 

correctly identified, F1-score representing the harmonic mean 

of precision and recall, AUROC (Area Under Receiver 

Operating Characteristic curve) assessing discrimination 

ability across all thresholds, and AUPRC (Area Under 

Precision-Recall Curve) particularly important for imbalanced 

datasets. 

Two validation strategies were employed: holdout validation 

using an 80-20 train-test split for overall performance 

assessment, and Leave-One-Subject-Out (LOSO) cross-

validation where each fold held out all data from one driver for 

testing while training on the rest. LOSO validation effectively 

prevents identity leakage and enables realistic deployment 

assessment, evaluating the model's ability to generalize to 

completely unseen individuals without requiring personalized 

calibration. 

4. RESULTS AND DISCUSSION 

4.1 CNN Feature Extraction Performance 
The CNN models successfully generated stable and 

discriminative probability outputs for eye and mouth regions. 

The eye CNN achieved 97.8% accuracy in distinguishing 

between open and closed eyes, with strong generalization 

across different lighting conditions and facial orientations. The 

mouth CNN demonstrated 96.4% accuracy in detecting 

yawning, effectively handling variations in mouth shape and 

head pose. These probability outputs remained stable and 

responsive to facial state transitions while maintaining low 

noise during alert phases. 

 
Figure 7. CNN Probability Output Visualization 

The yaw-pitch-roll calibration mechanism significantly 

improved the reliability of pose features by neutralizing 

camera-angle bias and subject-specific posture offsets. As 

demonstrated in evaluation, the calibrated orientation signals 

remained centered and consistent across sessions, allowing the 

TCN to interpret head movements as genuine behavioral 

patterns rather than environmental artifacts. This calibration 

was particularly effective in distinguishing between natural 

head movements during normal driving and nodding behavior 

indicative of drowsiness. 

 
Figure 8. Calibrated Head Pose Angles (Yaw, Pitch, Roll) 

4.2 Training Efficiency Analysis 
The proposed feature-based pipeline demonstrated high 

training efficiency across different hardware configurations. 

CNN training for eye detection required 40 minutes on GTX 

1050 and 9 minutes on RTX 2060 Super, while mouth detection 

training took 34 minutes and 14 minutes respectively. These 

results demonstrate that the CNN-based approach can be 

executed on lower-end hardware, though with considerably 

slower training compared to higher-tier GPUs. 

Despite the computational demands of sequence modeling, 

both TCN and LSTM frameworks trained rapidly due to the 

efficiency of the feature-based pipeline. TCN training required 

only 6 seconds on GTX 1050 and 9 seconds on RTX 2060 

Super, while LSTM training took 15 seconds and 6 seconds, 

respectively. The TCN demonstrated notably faster training 

times, indicating that the optimized architecture minimizes 

processing overhead and enables efficient training of resource-

intensive temporal models across different hardware 

configurations. 

Table 2. CNN Training Time Comparison Across 

Hardware 

GPU Yawn Model Blink Model 
GTX 1050 34m 15s 40m 46s 

RTX 2060 Super 14m 30s 9m 17s 

Input Layer Shape: (90, 20)

Gaussian Noise (std = 0.01)

LSTM (64 units, return 
sequences = True)

LSTM (64 units, return 
sequences = True) + Dropout 

(rate = 0.25)

LSTM (64 units, return 
sequences = False) + Dropout 

(rate = 0.25)

Dense(64, ReLU)

Output Dense (1, Sigmoid) → 
'lstm_course_binary'
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Table 3. Temporal Model Training Time Comparison 

GPU Yawn Model Blink Model 
GTX 1050 9s 15s 

RTX 2060 Super 6s 9m 17s 

4.3 Overall Performance Comparison 

The CNN-MediaPipe-TCN pipeline achieved superior 

performance compared to the LSTM baseline across all 

evaluation metrics. The TCN model achieved an overall 

accuracy of 94.6%, F1-score of 0.930, AUROC of 0.984, and 

AUPRC of 0.980. The model demonstrated strong precision 

(0.91) and recall (0.95) for the drowsy class, indicating 

effective detection of fatigue states with low false-positive 

rates. For the non-drowsy class, the model achieved precision 

of 0.97 and recall of 0.95, confirming reliable classification of 

alert states. 

Table 4. Per-Class Evaluation Metrics for CNN-

MediaPipe-TCN Model 

Class Precision Recall F1-

Score 

Support 

Awake 0.97 0.95 0.96 91 

Drowsy 0.91 0.95 0.93 56 
 

In contrast, the LSTM-based model achieved lower 

performance, with an accuracy of 89.8%, F1-score of 0.870, 

AUROC of 0.950, and AUPRC of 0.931. While LSTM was 

able to model temporal sequences, it showed reduced precision 

in detecting drowsy states (0.85 vs 0.91 for TCN), suggesting a 

higher rate of false positives. The recall for drowsy detection 

was also lower (0.89 vs 0.95), indicating missed drowsiness 

events. These results demonstrate the TCN's superior ability to 

capture temporal dependencies in drowsiness behavior while 

maintaining higher classification accuracy. 

Table 5. Per-Class Evaluation Metrics for CNN-

MediaPipe-LSTM Model 

Class Precision Recall F1-

Score 

Support 

Awake 0.93 0.90 0.92 91 

Drowsy 0.85 0.89 0.87 56 
 

A direct comparison of overall performance metrics confirms 

the TCN's advantages. The TCN model outperformed LSTM in 

accuracy (94.6% vs 89.8%), F1-score (0.930 vs 0.870), and 

AUROC (0.984 vs 0.950). The performance gap is particularly 

evident in the AUROC metric, with TCN showing 3.4 

percentage points higher discrimination ability. This superior 

performance can be attributed to TCN's architectural 

advantages: parallel training enabling stable gradients, dilated 

convolutions providing exponentially growing receptive fields 

for capturing long-range dependencies, and reduced memory 

burden compared to maintaining LSTM hidden states. 

Table 6. Overall Performance Comparison: TCN vs 

LSTM 

Metric TCN LSTM 
Accuracy 0.946 0.898 

AUROC 0.984 0.950 

F1 0.93 0.87 

Total samples 147 147 

4.4 Subject-Independent Generalization 
Leave-One-Subject-Out (LOSO) cross-validation was 

performed to evaluate subject-independent generalization, a 

critical requirement for real-world deployment. The CNN-

MediaPipe-TCN pipeline demonstrated strong generalization 

with average metrics of ACC = 0.882, F1 = 0.837, AUROC = 

0.939, and AUPRC = 0.938 across all subjects. These results 

show robust precision-recall behavior across varying class 

prevalence and confirm the model's ability to generalize to 

unseen drivers without requiring individual calibration. 

The LOSO validation revealed consistent performance across 

most subjects, with some variation depending on individual 

drowsiness manifestation patterns. Subjects with more 

pronounced drowsiness indicators (e.g., longer eye closure 

durations, frequent yawning) showed higher detection 

accuracy, while those with subtle or atypical patterns presented 

greater challenges. Despite this variability, the average 

performance remained high, demonstrating the model's 

robustness to inter-subject differences. 

Table 7. LOSO Cross-Validation Results - CNN-

MediaPipe-TCN Model 

Subject ACC F1 AUR

OC 

AUP

RC 

Pos(%) 

person001 0.980 0.985 1.000 1.000 64.71 

person002 0.837 0.818 0.956 0.954 44.90 

person003 0.843 0.789 0.981 0.982 45.10 

person004 0.840 0.840 0.915 0.939 48.00 

person005 0.936 0.941 0.985 0.990 55.32 

person006 0.960 0.964 0.994 0.996 56.44 

person007 0.833 0.818 0.911 0.936 45.83 

person008 0.961 0.875 0.994 0.975 15.69 

person009 0.882 0.870 0.992 0.988 39.22 

person010 0.837 0.882 0.921 0.980 77.55 

person011 0.796 0.722 0.907 0.912 44.90 

person012 0.981 0.984 0.997 0.998 58.49 

person013 0.809 0.471 0.652 0.574 25.53 

person014 0.857 0.759 0.945 0.918 32.65 

Average 0.882 0.837 0.939 0.938 46.74 
 

In contrast, the CNN-MediaPipe-LSTM baseline achieved 

lower LOSO performance with averages of ACC 0.827, F1 

0.774, AUROC 0.897, and AUPRC 0.884. The LSTM model 

showed greater sensitivity to subject-specific variability, 

particularly for profiles with low positive rates or atypical 

drowsiness patterns. Several subjects showed significantly 

degraded performance with LSTM, indicating reduced 

generalization capability compared to TCN. The F1-score 

difference of 0.063 (0.837 vs 0.774) is particularly notable, 

confirming TCN's superior balance between precision and 

recall across diverse individuals. 

Table 8. LOSO Cross-Validation Results - CNN-

MediaPipe-LSTM Model 

Subject ACC F1 AUR

OC 

AUP

RC 

Pos(%) 

person001 0.667 0.653 0.847 0.927 64.71 

person002 0.837 0.810 0.949 0.944 44.90 

person003 0.941 0.933 0.960 0.949 45.10 

person004 0.680 0.680 0.737 0.734 48.00 

person005 0.872 0.897 0.963 0.971 55.32 

person006 0.921 0.926 0.972 0.983 56.44 

person007 0.854 0.829 0.904 0.921 45.83 

person008 0.902 0.545 0.913 0.738 15.69 

person009 0.725 0.741 0.950 0.923 39.22 

person010 0.755 0.829 0.861 0.957 77.55 

person011 0.776 0.703 0.843 0.866 44.90 

person012 0.906 0.921 0.977 0.984 58.49 

person013 0.809 0.471 0.748 0.555 25.53 

person014 0.939 0.897 0.936 0.929 32.65 

Average 0.827 0.774 0.897 0.884 46.74 
 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.84, February 2026 

65 

These LOSO results align with expectations that temporal 

convolutions are more resilient to long-range variance and 

training instability than recurrent models, especially under 

limited data conditions. The TCN's ability to maintain 

consistent performance across all subjects without personalized 

calibration demonstrates its practical viability for commercial 

deployment in driver monitoring systems. 

4.5 Real-Time Deployment Performance 

The optimized lightweight pipeline was successfully deployed 

as a browser-based web application using TensorFlow.js, 

enabling real-time drowsiness detection via a standard webcam 

without specialized hardware. The system was evaluated on 

consumer-grade hardware (Intel Core i5, 8GB RAM, integrated 

graphics) to assess practical deployment viability. The pipeline 

achieved real-time inference at approximately 15 FPS with 

average latency of 67ms per frame, demonstrating sufficient 

responsiveness for driver monitoring applications. 

The web application implements a severity classification 

system based on accumulated drowsiness duration thresholds. 

The system classifies the driver as non-drowsy when total 

drowsy time is below 1 second, drowsy when exceeding 1 

second, and critical when surpassing 5 seconds. This threshold-

based severity assessment provides graduated warnings, 

allowing drivers to recognize fatigue progression before 

reaching critical levels. The system successfully detected 

prolonged eye closure, yawning events, and nodding behavior 

in real-time testing scenarios across different users and lighting 

conditions. 

 

Figure 9. SnoozeNet Web Application Interface - 

Drowsiness Detection 

4.6 Discussion 
The superior performance of the TCN-based approach can be 

attributed to several architectural advantages over LSTM. 

Unlike LSTMs which process sequences recurrently and suffer 

from vanishing gradients, TCNs employ causal dilated 

convolutions that enable parallel training and stable gradient 

flow. The dilated convolutions provide exponentially growing 

receptive fields, allowing the model to capture long-range 

temporal dependencies without the memory burden of 

maintaining hidden states across all time steps. 

The integration of MediaPipe head pose estimation proved 

particularly valuable for detecting nodding behavior, a subtle 

but reliable indicator of drowsiness. The calibration mechanism 

successfully accounted for inter-individual differences in 

neutral head position, reducing false positives caused by 

natural head movements during normal driving. The 

combination with CNN-based eye and mouth analysis ensured 

robust detection even when only one indicator (e.g., eye closure 

without nodding, or yawning without sustained eye closure) 

was present. 

The feature-based pipeline's computational efficiency enables 

deployment on standard consumer hardware without GPU 

acceleration. By extracting compact behavioral features 

(probabilities, angles, rates) rather than processing raw video 

frames through the temporal model, the system significantly 

reduces memory requirements and enables real-time inference 

in browser environments. This accessibility is crucial for 

widespread adoption, particularly in developing countries 

where specialized hardware may not be readily available. 

The strong LOSO cross-validation results demonstrate 

practical deployment viability. Unlike systems requiring 

personalized calibration or training data for each driver, 

SnoozeNet can be immediately deployed for new users with 

consistent performance. This characteristic addresses a critical 

barrier to commercial adoption, as fleet operators can 

implement the system across diverse driver populations 

without individual setup procedures. 

5. CONCLUSION 
This study successfully developed SnoozeNet, an ensemble 

CNN-MediaPipe-TCN pipeline for real-time driver drowsiness 

detection. The system achieves 94.6% accuracy with strong 

generalization to unseen drivers (LOSO ACC 0.882), 

outperforming LSTM-based approaches in both accuracy and 

computational efficiency. The integration of CNN-based 

feature extraction, MediaPipe head pose estimation, and 

Temporal Convolutional Networks provided a comprehensive 

solution that captures both spatial and temporal aspects of 

drowsiness behavior. 

The lightweight architecture enables real-time deployment on 

standard consumer hardware at 15 FPS, making advanced 

drowsiness detection accessible for resource-constrained 

environments. The browser-based implementation using 

TensorFlow.js demonstrates practical viability for commercial 

deployment without specialized hardware requirements. The 

calibration mechanism for head pose and the ensemble 

approach for facial feature detection ensure robustness across 

varying camera angles, lighting conditions, and facial 

structures. 

Future work will focus on several areas, including: expanding 

the training dataset with more diverse demographics and 

environmental conditions, particularly nighttime and low-light 

scenarios; integrating multi-modal signals such as steering 

patterns, vehicle performance data, and physiological sensors 

for enhanced detection reliability; optimizing the model for 

edge deployment in embedded automotive systems through 

quantization and pruning techniques; and exploring attention 

mechanisms or transformer architectures for potentially 

improved temporal modeling. Additionally, long-term field 

studies with commercial drivers would provide valuable 

insights into real-world performance and user acceptance. 
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