International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.84, February 2026

SnoozeNet: An Ensemble CNN-MediaPipe Feature-based
Pipeline with Temporal Convolutional Networks for Real-
Time Driver Drowsiness Detection

Louie I. Calma Jr.
College of Computer Studies
Angeles University Foundation
Angeles City, Pampanga,

Christian Harvey G.

Cayanan
College of Computer Studies
Angeles University Foundation

lan Carlo A. Reyes
College of Computer Studies
Angeles University Foundation
Angeles City, Pampanga,

Philippines Angeles City, Pampanga, Philippines
Philippines
Melissa Pantig
College of Computer Studies
Angeles University Foundation
Angeles City, Pampanga, Philippines
ABSTRACT traffic accidents globally [3]. In the Philippines, driver fatigue

Driver drowsiness is a significant contributor to road accidents,
often leading to impaired focus, delayed reaction times, and
poor decision-making. To address this issue, this study
introduces SnoozeNet, a lightweight and efficient real-time
driver drowsiness detection system that combines
Convolutional Neural Networks (CNNs), MediaPipe facial
landmark tracking, and Temporal Convolutional Networks
(TCNs). The model extracts spatial features from eye and
mouth regions to detect blink rate, eye closure, and yawning,
while MediaPipe provides head pose estimations to assess
posture and nodding behavior. These features are fused and
processed by a TCN to model behavioral transitions over time.
The system was trained on diverse public datasets and
evaluated against LSTM-based baselines, showing improved
accuracy, training efficiency, and responsiveness. Results
confirm that the lightweight CNN-MediaPipe-TCN pipeline
effectively detects drowsiness-related facial cues across varied
lighting conditions and facial structures, offering a robust and
deployable solution for real-world driver-monitoring
applications. Comprehensive validation showed that the
pipeline achieved strong performance with an overall accuracy
of 94.6%, Fl-score of 0.930, and AUROC of 0.984, while
delivering real-time classification in a browser-based
application at approximately 15 FPS.
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1. INTRODUCTION

Driver drowsiness remains a major contributor to road
accidents worldwide, impairing focus, reaction time, and
decision-making in ways comparable to alcohol impairment [1,
2]. According to the World Health Organization, drowsiness-
related crashes account for approximately 20% of all road

is recognized as a significant yet underreported factor in
vehicular accidents [4]. Studies indicate that 67.3% of drivers
have reported experiencing drowsiness while driving [3], with
many commercial vehicle drivers reporting substantial fatigue
during long-haul trips [2].

Recent advances in deep learning and computer vision have
enabled the real-time monitoring of facial cues, such as
blinking, yawning, and head movement, for drowsiness
detection [7, 8]. However, most existing drowsiness detection
models demand high computational power and expensive
hardware, which limits their accessibility and practical
deployment, especially in resource-constrained environments.
Traditional approaches relied on intrusive physiological
sensors or vehicle-based monitoring systems that suffered from
high false-positive rates and delayed detection [2].

This study developed a lightweight ensemble Convolutional
Neural  Network-MediaPipe  feature-based = Temporal
Convolutional Network (TCN) model to classify drowsy and
non-drowsy states. It utilizes ensemble CNNs for spatial
extraction of mouth and eye features, combined with
MediaPipe facial landmark features and a TCN for real-time
analysis of temporal behavior. By reducing hardware
requirements, this new pipeline opens up opportunities for
researchers in developing countries to develop and adapt
drowsiness detection systems tailored to local needs.

2. RELATED WORK
2.1 Traditional Drowsiness Detection
Methods

Early drowsiness detection systems relied on intrusive
physiological sensors such as electroencephalography (EEG),
electrocardiography (ECG), and electromyography (EMG) to
monitor brain activity, heart rate, and muscle tension [2]. While
these methods provided accurate measurements of fatigue-
related physiological changes, they required direct contact with
the driver, making them impractical for real-world deployment
[5]. Vehicle-based detection methods emerged as non-intrusive
alternatives, monitoring steering wheel movements, lane
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departures, and vehicle speed variations as indicators of driver
fatigue [2]. However, these approaches suffered from high
false-positive rates, as driving behavior can be influenced by
road conditions, traffic patterns, and driver experience rather
than drowsiness alone.

2.2 Vision-Based Approaches

Recent advances in computer vision and deep learning have
enabled non-intrusive, camera-based drowsiness detection
systems. These systems analyze facial features such as eye
closure patterns, blink frequency, yawning, and head pose to
identify signs of fatigue [13, 14]. Convolutional Neural
Networks (CNNs) have become the dominant approach for
extracting spatial features from facial images, demonstrating
superior performance in recognizing drowsiness-related visual
patterns [15, 16]. MediaPipe, developed by Google, provides a
robust framework for real-time facial landmark detection and
head pose estimation [6]. Its lightweight architecture makes it
suitable for deployment in resource-constrained environments,
enabling efficient extraction of geometric features such as eye
aspect ratio (EAR), mouth aspect ratio (MAR), and head
orientation angles.

2.3 Temporal Modeling in Drowsiness
Detection

Drowsiness manifests as temporal patterns rather than isolated
events, requiring models capable of capturing sequential
dependencies. Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks have been widely used
for temporal modeling in drowsiness detection [18, 19].
However, LSTMs suffer from vanishing gradient problems
during training and limited parallelization capabilities, making
them less efficient for real-time applications [7]. Temporal
Convolutional Networks (TCNs) have emerged as a powerful
alternative, offering parallelizable training, stable gradients,
and flexible receptive fields through dilated convolutions [8].
TCNs have demonstrated superior performance in sequence
modeling tasks, outperforming LSTMs in accuracy and training
efficiency [9].

3. METHODOLOGY

3.1 System Architecture Overview

The proposed SnoozeNet system comprises three main
components: CNN-based feature extraction for eye and mouth
regions, MediaPipe-based head pose estimation, and a
Temporal Convolutional Network for sequence modeling. The
architecture is designed to balance computational efficiency
with detection accuracy, enabling real-time deployment on
standard hardware. The pipeline processes video frames at 15
FPS, extracting spatial and temporal features that are combined
for drowsiness classification.
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Figure 1. SnoozeNet Pipeline Architecture

3.2 Feature Extraction and Preprocessing

3.2.1 Facial Landmark Detection

MediaPipe FaceMesh was employed to extract 468 three-
dimensional facial landmarks from each video frame. This
provides robust spatial reference points for calculating eye,
mouth, and head-pose features. Key landmark regions include
eye landmarks (33-133 for left eye, 362-263 for right eye),
mouth landmarks (61, 291, 13, 14, 81, 178, 308, 402), and
head-pose anchors (outer eye corners at 33 and 263, chin at 152,
forehead at 10).

3.2.2 Eye and Mouth Aspect Ratios

Eye Aspect Ratio (EAR) quantifies the degree of eye openness
using six key landmarks around each eye. The formula
computes the ratio of vertical eye-opening distances to
horizontal eye span. EAR values decrease significantly when
eyes close, providing a reliable indicator of eye state. Mouth
Aspect Ratio (MAR) measures the relative vertical opening of
the mouth and serves as a key indicator of yawning behavior.
The formula computes the ratio of vertical mouth opening
distances to horizontal mouth span. Higher MAR values
indicate mouth opening, with sustained high values signaling
yawning events.

eag = P2 =Poll +[Ips — ps|
2||p1—p4||

MAR = [Img — mo|| + |lmy — mg|| + |Ims —m, ||

3||m1_m6||

Figure 2. Eye Aspect Ratio and Mouth Aspect Ratio
Illustration

3.2.3 Head Pose Estimation

Head pose estimation identifies the driver's yaw, pitch, and roll
angles, which are critical for recognizing nodding or looking-
away behaviors. The head orientation axes are derived from
selected facial landmarks. A dynamic baseline calibration
mechanism was implemented to account for varying camera
positions and individual driver postures. The calibration
process captures baseline head pose during the initial non-
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drowsy state, allowing the system to detect deviations
indicative of nodding behavior. Calibrated angles are computed
by comparing current head orientation with the baseline
rotation matrix, neutralizing camera-angle bias and subject-
specific posture offsets.

3.2.4 Behavioral Feature Computation
Several temporal behavioral metrics were computed from the
extracted facial features:

Eye Openness: CNN-predicted probabilities from the left and
right eyes are combined. If the combined probability falls
below 0.40, the eye is considered closed.

PERCLOS (Percentage of Eye Closure): Computed as the
proportion of closed-eye frames within a 30-second sliding
window, providing a standard fatigue metric.

Blink Detection: Characterized by short-duration eye closures
lasting 2—6 frames (approximately 0.13—0.40 seconds). Blink
rate over 30 seconds is tracked.

Eye Openness Trend: Short-term and long-term exponential
moving averages (EMAs) are computed to capture gradual eye-
closing behavior. The difference between them reflects the
trend.

Yawning Detection: Mouth openness is derived from CNN-
based yawn probability, smoothed using a 1-second EMA. A
yawn event is triggered if the mouth remains open for at least
1.3 seconds.

Nod Detection: A nod event occurs when the head tilts
downward (pitch exceeds threshold) while the eyes are closed,
indicating fatigue-related head drops.

Table 1. Drowsy Event Formulas and Calculation

Thresholds
Paramater Condition / Value Notes
Eye closed (Peye < 0.40) -
Blink Duration 2-6 frames (0.13-0.40 s) -
Prolonged closure (=0.8 X FPS) ~ 2.55 -
PERCLOS window 30 s (450 frames) —
Mouth open (y; = 0.55),close Hysteresis
<045
Yawn event (dy = 1.3s) -
Head nod pitch < —4°,roll <20° —
Sliding clip 6 s window, 3 s stride -

3.3 CNN Architecture and Training

3.3.1 Eye Open/Closed CNN

A lightweight CNN was designed to classify eye state from
grayscale 90x90 pixel cropped eye regions. The architecture
consists of three convolutional blocks with progressively
increasing filter sizes (32, 64, 128). Each convolutional layer
uses 3x3 kernels followed by batch normalization, ReLU
activation, and 2x2 max pooling. The flattened features are
processed through dense layers with dropout regularization
(rate=0.3 - 0.2) before the final sigmoid output layer for binary
classification.
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Figure 3. CNN Architecture Parameters - Eye
Open/Closed Model

Training was performed using the Adam optimizer with binary
cross-entropy loss. The learning rate was set to 0.001 with a
decay schedule. Data augmentation techniques including
random rotation (£15°), brightness adjustment (+20%), and
horizontal flipping were applied to improve generalization. The
model was trained for 30 epochs with early stopping
(patience=10) on validation loss. The dataset split was 70%
training, 15% validation, and 15% testing, ensuring sufficient
data for learning while maintaining unbiased evaluation.

3.3.2 Mouth Open/Closed CNN

To accommodate the finer spatial details of the mouth region,
the mouth CNN processes larger 120x120 grayscale inputs.
The architecture employs four convolutional blocks with filter
sizes (32, 64, 128, 256) to capture complex mouth opening
patterns associated with yawning. Each block includes batch
normalization and dropout (rate=0.5) for regularization. The
network architecture is deeper than the eye CNN to better
capture the wider range of mouth shapes and yawning
expressions.

The mouth CNN was trained using Adam optimizer with binary
cross-entropy loss over 40 epochs. The same data augmentation
strategy was applied as for the eye CNN. Training utilized
frames extracted from YawDD and D3S datasets, with MAR-
based auto-labeling followed by manual validation to ensure
label quality. The model successfully learned to distinguish
between closed mouth, open mouth, and yawning states with
high confidence.
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Figure 4. CNN Architecture Parameters - Mouth
Open/Closed Model

3.4 Temporal Convolutional Network
Architecture

The Temporal Convolutional Network (TCN) was designed to
capture long-range temporal dependencies in drowsiness
behavior patterns. The architecture processes sequences of 90
frames (6 seconds at 15 FPS) using dilated 1D causal
convolutions. The dilation rates follow an exponential pattern
(1, 2, 4, 8), enabling the network to capture dependencies
across different temporal scales without significantly
increasing model parameters.

Each TCN block consists of two dilated convolutional layers
with 64 filters and kernel size 3, followed by batch
normalization, ReLU activation, and spatial dropout (rate=0.3).
Residual connections are employed to facilitate gradient flow
and enable deeper architectures. The TCN receives
concatenated features including CNN probability outputs (eye
openness, yawn probability), MediaPipe-derived pose angles
(calibrated yaw, pitch, roll), and computed behavioral metrics
(PERCLOS, blink rate, eye closure duration).

Training employed a focal loss to address class imbalance
between drowsy and non-drowsy frames, with alpha=0.75 and
gamma=2.0. The Adam optimizer was used with an initial
learning rate of 0.0001 and cosine annealing scheduling. Early
stopping was applied with patience of 15 epochs monitoring
validation AUROC. A sliding window approach with 3-second
stride was used to create temporal sequences, with coarse labels
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(binary drowsy/non-drowsy) assigned based on the presence of
any drowsiness indicator within the window.
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Figure 5. TCN Architecture Parameters and
Hyperparameters

3.5 LSTM Baseline Architecture

For comparative evaluation, an LSTM-based architecture was
implemented as a baseline. The LSTM processes the same 90-
frame input sequences with 64 hidden units per layer. The
architecture consists of two stacked LSTM layers with dropout
(rate=0.25) for regularization. The final LSTM output is
processed through dense layers with ReLU activation before
the sigmoid output layer. Training utilized the same optimizer,
loss function, and learning rate scheduling as the TCN for fair
comparison.

3.6 Datasets

The system was trained and evaluated on multiple public
datasets to ensure generalization across diverse demographics
and conditions: NTHU Drowsy Driver Detection (NTHU-
DDD), which contains infrared videos with detailed
annotations on eye states and yawning [10], YawDD focused
on yawning detection with diverse lighting and head positions
[11], Driver Drowsiness Dataset (D3S) providing annotated
video sequences with multiple drowsiness indicators [12], the
DMD Dataset, offering large-scale multi-modal driver
monitoring data [13], and Open-Closed Eyes Dataset
specialized for eye state classification [14].
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3.7 Evaluation Metrics and Validation

Model performance was evaluated using standard classification
metrics: accuracy measuring overall correctness, precision
indicating the proportion of true positives among predicted
positives, recall measuring the proportion of actual positives
correctly identified, F1-score representing the harmonic mean
of precision and recall, AUROC (Area Under Receiver
Operating Characteristic curve) assessing discrimination
ability across all thresholds, and AUPRC (Area Under
Precision-Recall Curve) particularly important for imbalanced
datasets.

Two validation strategies were employed: holdout validation
using an 80-20 train-test split for overall performance
assessment, and Leave-One-Subject-Out (LOSO) cross-
validation where each fold held out all data from one driver for
testing while training on the rest. LOSO validation effectively
prevents identity leakage and enables realistic deployment
assessment, evaluating the model's ability to generalize to
completely unseen individuals without requiring personalized
calibration.

4. RESULTS AND DISCUSSION

4.1 CNN Feature Extraction Performance
The CNN models successfully generated stable and
discriminative probability outputs for eye and mouth regions.
The eye CNN achieved 97.8% accuracy in distinguishing
between open and closed eyes, with strong generalization
across different lighting conditions and facial orientations. The
mouth CNN demonstrated 96.4% accuracy in detecting
yawning, effectively handling variations in mouth shape and
head pose. These probability outputs remained stable and
responsive to facial state transitions while maintaining low
noise during alert phases.
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Figure 7. CNN Probability Output Visualization

The yaw-pitch-roll calibration mechanism significantly
improved the reliability of pose features by neutralizing
camera-angle bias and subject-specific posture offsets. As
demonstrated in evaluation, the calibrated orientation signals
remained centered and consistent across sessions, allowing the
TCN to interpret head movements as genuine behavioral
patterns rather than environmental artifacts. This calibration
was particularly effective in distinguishing between natural
head movements during normal driving and nodding behavior
indicative of drowsiness.

i = L L i
Figure 8. Calibrated Head Pose Angles (Yaw, Pitch, Roll)

4.2 Training Efficiency Analysis

The proposed feature-based pipeline demonstrated high
training efficiency across different hardware configurations.
CNN training for eye detection required 40 minutes on GTX
1050 and 9 minutes on RTX 2060 Super, while mouth detection
training took 34 minutes and 14 minutes respectively. These
results demonstrate that the CNN-based approach can be
executed on lower-end hardware, though with considerably
slower training compared to higher-tier GPUs.

Despite the computational demands of sequence modeling,
both TCN and LSTM frameworks trained rapidly due to the
efficiency of the feature-based pipeline. TCN training required
only 6 seconds on GTX 1050 and 9 seconds on RTX 2060
Super, while LSTM training took 15 seconds and 6 seconds,
respectively. The TCN demonstrated notably faster training
times, indicating that the optimized architecture minimizes
processing overhead and enables efficient training of resource-
intensive temporal models across different hardware
configurations.

Table 2. CNN Training Time Comparison Across

Hardware
GPU Yawn Model Blink Model
GTX 1050 34m 15s 40m 46s
RTX 2060 Super 14m 30s 9m 17s
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Table 3. Temporal Model Training Time Comparison

GPU Yawn Model Blink Model
GTX 1050 9s 15s
RTX 2060 Super 6s 9m 17s

4.3 Overall Performance Comparison

The CNN-MediaPipe-TCN pipeline achieved superior
performance compared to the LSTM baseline across all
evaluation metrics. The TCN model achieved an overall
accuracy of 94.6%, F1-score of 0.930, AUROC of 0.984, and
AUPRC of 0.980. The model demonstrated strong precision
(0.91) and recall (0.95) for the drowsy class, indicating
effective detection of fatigue states with low false-positive
rates. For the non-drowsy class, the model achieved precision
0f 0.97 and recall of 0.95, confirming reliable classification of
alert states.

Table 4. Per-Class Evaluation Metrics for CNN-
MediaPipe-TCN Model

Class Precision Recall F1- Support
Score

Awake 0.97 0.95 0.96 91

Drowsy 091 0.95 0.93 56

In contrast, the LSTM-based model achieved lower
performance, with an accuracy of 89.8%, F1-score of 0.870,
AUROC of 0.950, and AUPRC of 0.931. While LSTM was
able to model temporal sequences, it showed reduced precision
in detecting drowsy states (0.85 vs 0.91 for TCN), suggesting a
higher rate of false positives. The recall for drowsy detection
was also lower (0.89 vs 0.95), indicating missed drowsiness
events. These results demonstrate the TCN's superior ability to
capture temporal dependencies in drowsiness behavior while
maintaining higher classification accuracy.

Table 5. Per-Class Evaluation Metrics for CNN-
MediaPipe-LSTM Model

Class Precision Recall F1- Support
Score

Awake 0.93 0.90 0.92 91

Drowsy 0.85 0.89 0.87 56

A direct comparison of overall performance metrics confirms
the TCN's advantages. The TCN model outperformed LSTM in
accuracy (94.6% vs 89.8%), Fl-score (0.930 vs 0.870), and
AUROC (0.984 vs 0.950). The performance gap is particularly
evident in the AUROC metric, with TCN showing 3.4
percentage points higher discrimination ability. This superior
performance can be attributed to TCN's architectural
advantages: parallel training enabling stable gradients, dilated
convolutions providing exponentially growing receptive fields
for capturing long-range dependencies, and reduced memory
burden compared to maintaining LSTM hidden states.

Table 6. Overall Performance Comparison: TCN vs

LSTM
Metric TCN LSTM
Accuracy 0.946 0.898
AUROC 0.984 0.950
F1 0.93 0.87
Total samples 147 147

4.4 Subject-Independent Generalization

Leave-One-Subject-Out  (LOSO)  cross-validation ~ was
performed to evaluate subject-independent generalization, a
critical requirement for real-world deployment. The CNN-
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MediaPipe-TCN pipeline demonstrated strong generalization
with average metrics of ACC = 0.882, F1 = 0.837, AUROC =
0.939, and AUPRC = 0.938 across all subjects. These results
show robust precision-recall behavior across varying class
prevalence and confirm the model's ability to generalize to
unseen drivers without requiring individual calibration.

The LOSO validation revealed consistent performance across
most subjects, with some variation depending on individual
drowsiness manifestation patterns. Subjects with more
pronounced drowsiness indicators (e.g., longer eye closure
durations, frequent yawning) showed higher detection
accuracy, while those with subtle or atypical patterns presented
greater challenges. Despite this variability, the average
performance remained high, demonstrating the model's
robustness to inter-subject differences.

Table 7. LOSO Cross-Validation Results - CNN-
MediaPipe-TCN Model

Subject ACC F1 AUR AUP Pos(%)
OoC RC
person001 0.980 0.985 1.000 1.000 64.71

person002 0.837 0.818 0.956 0.954 44.90

person003 0.843 0.789 0.981 0.982 45.10

person004 0.840 0.840 0915 0.939 48.00

person005 0.936 0.941 0.985 0.990 55.32

person006 0.960 0.964 0.994 0.996 56.44

person007 0.833 0.818 0911 0.936 45.83

person008 0.961 0.875 0.994 0.975 15.69

person009 0.882 0.870 0.992 0.988 39.22

person010 0.837 0.882 0.921 0.980 77.55

person011 0.796 0.722 0.907 0.912 44.90

person(012 0.981 0.984 0.997 0.998 58.49

person013 0.809 0.471 0.652 0.574 25.53

person014 0.857 0.759 0.945 0918 32.65

Average 0.882 0.837 0.939 0.938 46.74

In contrast, the CNN-MediaPipe-LSTM baseline achieved
lower LOSO performance with averages of ACC 0.827, F1
0.774, AUROC 0.897, and AUPRC 0.884. The LSTM model
showed greater sensitivity to subject-specific variability,
particularly for profiles with low positive rates or atypical
drowsiness patterns. Several subjects showed significantly
degraded performance with LSTM, indicating reduced
generalization capability compared to TCN. The Fl1-score
difference of 0.063 (0.837 vs 0.774) is particularly notable,
confirming TCN's superior balance between precision and
recall across diverse individuals.

Table 8. LOSO Cross-Validation Results - CNN-
MediaPipe-LSTM Model

Subject ACC F1 AUR | AUP
OoC RC

Pos(%)

person001 0.667 0.653 0.847 0.927 64.71

person002 0.837 0.810 0.949 0.944 44.90

person003 0.941 0.933 0.960 0.949 45.10

person004 0.680 0.680 0.737 0.734 48.00

person005 0.872 0.897 0.963 0.971 55.32

person006 0.921 0.926 0.972 0.983 56.44

person007 0.854 0.829 0.904 0.921 45.83

person008 0.902 0.545 0.913 0.738 15.69

person009 0.725 0.741 0.950 0.923 39.22

person010 0.755 0.829 0.861 0.957 77.55

person011 0.776 0.703 0.843 0.866 44.90

person012 0.906 0.921 0.977 0.984 58.49

person013 0.809 0.471 0.748 0.555 25.53

person014 0.939 0.897 0.936 0.929 32.65

Average 0.827 0.774 0.897 0.884 46.74
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These LOSO results align with expectations that temporal
convolutions are more resilient to long-range variance and
training instability than recurrent models, especially under
limited data conditions. The TCN's ability to maintain
consistent performance across all subjects without personalized
calibration demonstrates its practical viability for commercial
deployment in driver monitoring systems.

4.5 Real-Time Deployment Performance

The optimized lightweight pipeline was successfully deployed
as a browser-based web application using TensorFlow js,
enabling real-time drowsiness detection via a standard webcam
without specialized hardware. The system was evaluated on
consumer-grade hardware (Intel Core i5, 8GB RAM, integrated
graphics) to assess practical deployment viability. The pipeline
achieved real-time inference at approximately 15 FPS with
average latency of 67ms per frame, demonstrating sufficient
responsiveness for driver monitoring applications.

The web application implements a severity classification
system based on accumulated drowsiness duration thresholds.
The system classifies the driver as non-drowsy when total
drowsy time is below 1 second, drowsy when exceeding 1
second, and critical when surpassing 5 seconds. This threshold-
based severity assessment provides graduated warnings,
allowing drivers to recognize fatigue progression before
reaching critical levels. The system successfully detected
prolonged eye closure, yawning events, and nodding behavior
in real-time testing scenarios across different users and lighting
conditions.

Figure 9. SnoozeNet Web Application Interface -
Drowsiness Detection

4.6 Discussion

The superior performance of the TCN-based approach can be
attributed to several architectural advantages over LSTM.
Unlike LSTMs which process sequences recurrently and suffer
from vanishing gradients, TCNs employ causal dilated
convolutions that enable parallel training and stable gradient
flow. The dilated convolutions provide exponentially growing
receptive fields, allowing the model to capture long-range
temporal dependencies without the memory burden of
maintaining hidden states across all time steps.

The integration of MediaPipe head pose estimation proved
particularly valuable for detecting nodding behavior, a subtle
but reliable indicator of drowsiness. The calibration mechanism
successfully accounted for inter-individual differences in
neutral head position, reducing false positives caused by
natural head movements during normal driving. The
combination with CNN-based eye and mouth analysis ensured
robust detection even when only one indicator (e.g., eye closure
without nodding, or yawning without sustained eye closure)
was present.
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The feature-based pipeline's computational efficiency enables
deployment on standard consumer hardware without GPU
acceleration. By extracting compact behavioral features
(probabilities, angles, rates) rather than processing raw video
frames through the temporal model, the system significantly
reduces memory requirements and enables real-time inference
in browser environments. This accessibility is crucial for
widespread adoption, particularly in developing countries
where specialized hardware may not be readily available.

The strong LOSO cross-validation results demonstrate
practical deployment viability. Unlike systems requiring
personalized calibration or training data for each driver,
SnoozeNet can be immediately deployed for new users with
consistent performance. This characteristic addresses a critical
barrier to commercial adoption, as fleet operators can
implement the system across diverse driver populations
without individual setup procedures.

5. CONCLUSION

This study successfully developed SnoozeNet, an ensemble
CNN-MediaPipe-TCN pipeline for real-time driver drowsiness
detection. The system achieves 94.6% accuracy with strong
generalization to unseen drivers (LOSO ACC 0.882),
outperforming LSTM-based approaches in both accuracy and
computational efficiency. The integration of CNN-based
feature extraction, MediaPipe head pose estimation, and
Temporal Convolutional Networks provided a comprehensive
solution that captures both spatial and temporal aspects of
drowsiness behavior.

The lightweight architecture enables real-time deployment on
standard consumer hardware at 15 FPS, making advanced
drowsiness detection accessible for resource-constrained
environments. The browser-based implementation using
TensorFlow.js demonstrates practical viability for commercial
deployment without specialized hardware requirements. The
calibration mechanism for head pose and the ensemble
approach for facial feature detection ensure robustness across
varying camera angles, lighting conditions, and facial
structures.

Future work will focus on several areas, including: expanding
the training dataset with more diverse demographics and
environmental conditions, particularly nighttime and low-light
scenarios; integrating multi-modal signals such as steering
patterns, vehicle performance data, and physiological sensors
for enhanced detection reliability; optimizing the model for
edge deployment in embedded automotive systems through
quantization and pruning techniques; and exploring attention
mechanisms or transformer architectures for potentially
improved temporal modeling. Additionally, long-term field
studies with commercial drivers would provide valuable
insights into real-world performance and user acceptance.
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