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ABSTRACT 

The field of cryptography has advanced rapidly in recent years, 

with Elliptic Curve Cryptography (ECC) emerging as one of 

the most efficient methods for ensuring both security and 

computational efficiency. The strength of this encryption 

technique is largely determined by the mathematical properties 

of the Elliptic Curves (EC), which are governed by the 

constants defining its structure. This study explores the use of 

a Genetic Algorithm (GA)—an evolutionary artificial 

intelligence technique—to determine optimal values for the 

constants of EC, aiming to maximize the number of valid points 

over a finite field. This approach highlights the feasibility of 

applying intelligent optimization techniques to complex 

mathematical challenges in cryptographic system design. A 

prototype was implemented to simulate the process and assess 

the GA’s performance in identifying effective solutions. 

Preliminary results suggest that the GA offers a viable 

alternative to traditional search methods, enabling more 

efficient exploration of cryptographic parameters. This could 

contribute to designing more efficient EC for cryptographic 

applications and deepen our theoretical and practical 

understanding of EC construction. 
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1. INTRODUCTION 
Elliptic Curve Cryptography (ECC) has emerged as a key 

component of modern information security, offering superior 

efficiency compared to traditional public-key algorithms such 

as RSA and DSA [1]. The security of ECC is primarily 

determined by the computational difficulty of solving the 

Discrete Logarithm Problem (DLP) [2]. This paper provides a 

brief overview of EC key sizes and their corresponding security 

levels, in comparison with the RSA cryptosystem. 
The Table 1. below explains the security strength of the ECC 

to RSA from where of key size and period in Million 

Instructions per Second (MIPS).  

Table 1. Secret and public key sizes with equivalent 

security levels 

ECC (bit) RSA (bit) Time to be break in MIPS 

106 512 104 
160 1024 1011 
210 2048 1020 
600 21000 1078 

 

ECC is based on the mathematical structure of points on an EC 

over a finite field, where the complexity of point operations 

contributes significantly to encryption strength [3]. 

A solid understanding of the underlying mathematics of EC is 

essential to implement ECC effectively. Despite their name, EC 

are  not related to ellipses; they originate from specific types of 

cubic equations [4]. The standard equation for an EC over the 

real numbers is given by [4-8]: 

 

    𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏                        (1) 

 

whereas a, b are real number and satisfying the condition 

     4𝑎3 + 27𝑏2 ≠  0                          (2) 

 

and x, y  assume value in the real number. 

The prime curve over Zp (where p > 3) is defined by the cubic 

equation shown below: 

𝑦2mod 𝑝 = (𝑥3 + 𝑎𝑥 + 𝑏) mod 𝑝      (3) 

 

Where 

      (4𝑎3 + 27𝑏2)mod 𝑝 ≠  0              (4) 

 

The main contributions of this paper can be summarized as 

follows: 

1. Proposing a multi-population steady-state GA 

framework for elliptic curve parameter optimization. 

2. Providing a comparative experimental evaluation 

against the traditional exhaustive search method. 

3. Demonstrating scalability advantages for large prime 

numbers. 

4. Validating the optimization results with respect to 

Hasse’s theoretical bounds. 

2. RELATED WORKS 
Numerous studies have investigated the unique mathematical 

properties of EC for enhancing encryption and authentication 

in diverse security applications. Neal Koblitz and Victor Miller 

independently introduced the use of ECC in 1985. Their work 

laid the foundation for ECC as an efficient alternative to 

traditional public-key cryptosystems, providing enhanced 

security with significantly smaller key sizes[4]. Numerous 

studies have explored the use of Genetic Algorithms (GAs) to 

refine ECC parameters, aiming to enhance security while 

optimizing computational efficiency. For instance, Kumar and 

Singh proposed a GA-based method for optimizing EC 

parameters, aiming to enhance cryptographic robustness and 

reduce computational overhead. Their methodology showed 

greater resilience against specific cryptanalytic attacks 

compared to conventional fixed-parameter curves[9]. The 

concept of multi-population GAs, often referred to as the island 

model, has been widely explored to improve both stability and 

convergence in evolutionary optimization. In 2019, Zhang et 

al. proposed a framework that preserves diversity among 

subpopulations, preventing premature convergence. Their 

approach has demonstrated effectiveness in various 
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optimization challenges, particularly in fine-tuning 
cryptographic parameters[10]. Several evolutionary 

techniques—such as Particle Swarm Optimization (PSO) and 

Differential Evolution (DE)—have also been applied to 

optimize EC parameters. 

However, Patel and Mehta conducted a comparative analysis 

and found that Gas   provide a more effective balance between 

exploration and exploitation in this context. Their findings 

reinforce the potential of multi-population GA in enhancing 

parameter robustness and search efficiency[11]. Azam et al. has 

presented a new approach to digital watermarking by 

leveraging GAs and ECC. The study aims to enhance 

watermarking security and efficiency by integrating 

evolutionary optimization techniques with strong 

cryptographic principles. GAs enable adaptive optimization, 

while EC provide robust encryption, making the scheme highly 

resilient against attacks while maintaining image fidelity. This 

method is particularly useful for protecting intellectual 

property and ensuring data integrity in digital media[12]. 

3. BASE POINT 
In general, EC based protocol, it is essential to yield a base 

point of order n, preferably n is a large prime, and G≠ ∞ such 

that nG = ∞. As the cryptographic strength of EC relies on n, it 

is preferable to maximize n[6]. 

The order of G in should check is not a smooth integer (small 

integer takes G to point at infinity)[13]. Base point choice in 

ECC is the main procedure for its security[14]. The number of 

point and order of each point depend on the selection of EC 

parameters (p, a, b,G) over Fp. The selection of any point on 

EC as a base point depends on the order of this point; therefore, 

to select base point G, first; determine the order of all points on 

EC over finite field. Since, the large order of base point give a 

large range to select the private key; hence, the point that has 

the maximum order is the best point to select it as a base point. 

The order of any point n ≤ #E(Fp) , if n = #E(Fp) then the point 

is generator, that mean the addition of point to itself give all 

points on EC (the point generates all other points on EC), if 

there is one or more generators in group of points then, the 

group of points is called cyclic group[6]. 

The cyclic groups of points are the best groups of points that 

can select one of its generators as a base point. If all points of 

cyclic group are generators, then, any point of this group can 

be selected as a base point, and the key can generate any value 

of private key. 

Algorithm 1. describes the steps involved in selecting the best 

base point, providing a clear and structured overview of the 

process[15]. 

Algorithm 1 Selection of the best base point on EC 

Input: p    

Output: n 

1: Select a, b ∈ [0, p-1], where (4a3 + 27b2) mod p ≠ 0  

2: Determine all the point Fp. 

3: Select one of the points as a base point G(x,y) 

4: if y=0 then n←1 

5:   else Doubling of G. 

6:      repeat  

7:       determine the solution of (kG+G) for k=2,3… 

8:     until  (kG+G)            ∞ 

9:     n←k+1 

10: end if 

11: repeat the steps 3-10 to the other point 

12: return the point that has maximum order(n) 

 

4. GENETIC ALGORITHM  
Genetic algorithm (GA) is a general tool for search and 

optimization based on the techniques of natural selection. 

Genetic Algorithms (GAs) provide solutions to optimization 

problems by employing mechanisms inspired by natural 

evolution[16]. It not only provides an effective search 

technique but can also be utilized as an efficient optimization 

tool. 

Potential solutions (i.e., population which contains a set of 

chromosomes) generated randomly to a problem and then 

applying different operators, such as: selection, crossover , and 

mutation in order to achieve increasingly better results[17, 18]. 

A GA begins with an initial population of chromosomes, each 

representing a potential solution. In every generation, selected 

chromosomes are used to generate a new population through 

variation operators. This is due to a desire that the new 

population will be more useful than the old population. 

Chromosomes which are chosen to form new offspring’s are 

taken in accordance with their fitness (i.e., the more appropriate 

chromosomes are the more chances they have to re-procreate). 

GA finishes when either an acceptable fitness level is achieved 

or a given number of generations is reached. 

The general algorithmic structure of GA is explained in 

Algorithm 2. below[16]: 

Algorithm 2 The General Algorithm for GA 

1: Initialize population; 

2: repeat  

3:     Evaluation; 

4:     Reproduction; 

5:     Crossover; 

6:     Mutation; 

7: until (terminus conditions are met); 

 

4.1 Population and Initialization 
A population is a set of chromosomes (i.e., solutions for a 

.given problem). The number of chromosomes is named 

Population Size which is a user-defined. Each chromosome 

consists of a set of genes, and the initial population is typically 

generated randomly[19]. 

4.2 Evaluation 
After the population is initialized or a new offspring is created, 

it is necessary to compute a fitness value for a chromosome(s) 

by using a suitable fitness function. The fitness function returns 

a value that reflects the quality of a given chromosome. 

Selecting a suitable function depends on the applications and 

plays a crucial role to success the algorithm[20]. 

4.3 Selection 
In the selection operator, a set of chromosomes are chosen as 

parents depends on their fitness values to form a breeding 

population. There are two main selection mechanisms[16]: 

1.  Roulette wheel selection: It is a classical choice mechanism. 

The better the chromosomes are, the more chances to be taken 

they have. 

2.Tournament selection: A set of chromosomes which are 

randomly chosen from the population, the one with the best 

fitness value being as a parent. This process is repeated as 

parent must be selected. 

4.4 Crossover 
A crossover operator combines the parents with crossover 

probability Pc to form offspring(s). There are different 

crossover operators in literature[21].  
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The main three popular crossover operators are: 

1. One-point crossover (1x): Where the two parents join 

at randomly one crossover point and interchange the 

parent genes after this point to produce two 

offsprings. 

2. Two-point crossover (2x): Where the two parents join 

at randomly two crossover points and interchange the 

parent genes between these two points to produce 

two offsprings. 

3. Uniform crossover (ux): Where a coin toss is 

performed at each corresponding gene to determine 

whether or not an interchange of two genes pass at 

that position. 

4.5 Mutation 
Mutation is the process of randomly altering one or more genes 

within a chromosome, selected with a probability Pm to 

produce a new chromosome[22]. 

4.6 Terminus Conditions 
The steps 3-6 (which are called a generation) in the Algorithm 

2. are repeated until one or more termination conditions are 

met. The popular conditions are: (i) reach a user-define number 

of generations; (ii) the population is identical; (iii) the fitness 

function achieves a specific threshold; and (iv) combination of 

the above[18]. 

5. SELECT a,b PARAMETERS  

(PROPOSED METHOD) 
As a process to select a,b with condition by using Equation 4, 

now; what the values of these parameters are most effective? 

the answer of this question is the parameters which generate 

maximum number of #E(Fp) when compensate the a and b in 

Equation 3, in order to increase the range to select private keys, 

for this reason, an approach is developed to select the best 

parameters using GAs. The traditional method for select 

parameters, for example, is very costly. In order to obtain the 

curve with most effective parameters with maximum order of a 

group. Now, the traditional method has been clarifies in the 

Algorithm 3. 
 

Algorithm 3 The Traditional Algorithm  

Input: p is prime number. 

Output: a and b are the parameters of EC, n is order of a group. 

1: set i ← 1 

2: for a1 = 1 to p-1 

3:      for b1 = 1 to p-1 

4:        if (4a1
3 + 27b1

2) mod p ≠ 0 then 

5:             set c1 ← 1 

6:          for x = 1 to p-1 

7:            for y = 1 to p-1 

8:             if y2 mod p = (x3 + a1x + b1) mod p then 

9:                  c1 ← c1 +1 

10:             end if 

11:            end for 

12:          end for 

13:          if (c1 is prime) & (c1 ≠ p) then 

14:              ai ← a1, bi ← b1, ni ←c1 

15:               i ← i+1 

16:          end if 

17:        end if 

18:      end for 

19: end for 

20: return a and b with maximum n 
 

 

In the current method, the well-known GA that is called steady 

state GA (ssGA) is used. The ssGA algorithm is given in the 

Algorithm 4. 

Algorithm 4 The Basic Algorithm for ssGA 

popsize           size of population. 

population      population of chromosomes. 

pc, pm   probability of crossover and mutation, respectively.       
  

1: Initialization (population, popsize) 

2:  Evaluation (population) 

3: repeat 

4:   parents ← Selection (population, popsize) 

5:   offspring ← Crossover (pc, parents) 

6:   offspring ← Mutation (pm, offspring) 

7:    Evaluation (offspring) 

8:    Replacement (population, popsize, offspring) 

9:   until (termination conditions are met) 

10: return the best individual in the population 

New technique uses GA to decrease the costs of selecting 

parameters, as explained in the following stages: 

5.1 Initialization 
The first stage of the ssGA is the initialization of population; 

the population contains here 50 chromosomes. 

Each chromosome consists of two integer genes that represent 

the parameters a and b of the ECC Equation 3. 

The genes are generated randomly that satisfy the Equation 4. 

In order to avoid weak curve, the n should be prime number 

and is not equal p. 

5.2 Evaluation 
In order to evaluate each chromosome (C), the current work 

uses the following fitness function: f (C) = n. 

5.3 Selection 
The selection scheme is to select two parents as follows: the 

first parent is the fittest individual in the population, while the 

second one is selected randomly. 

5.4 Crossover 
The crossover operator is 1x with crossover probability Pc 

equal to 0.8. 

a1 b1  a1 b2 

12 34  12 1 

     

a2 b2  a2 b1 

123 1  123 23 
 

5.5 Mutation 
The mutation operator is 1m with mutation probability Pm 

equal to 0.2. The new chromosome must satisfy the Equation 

4. 

 
 

a1 b1  a1 b1 

12 1  12 520 
 

 

5.6 Replacement 
The replacement scheme works as follow: the new offsprings 

replace the worst two individuals in the population if these 

offsprings are fitter than the worst two individuals. 
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5.7 Terminus Conditions 
The generation is repeated for 500 generations. 

6. EXPERIMENTAL ENVIRONMENT 
The simulation environment for this study was configured 

using MATLAB R2014a, executed on a 32-bit system featuring 

an Intel Core i5 processor with a clock speed of 3.16 GHz and 

4 GB of RAM. 

7. EXPERIMENTAL RESULTS AND 

PERFORMANCE EVALUATION 
The proposed technique uses the ssGA in order to obtain the 

most effective parameters: a and b with maximum order of a 

group. So, the study implements the algorithm for some prime 

numbers and compares the result with the traditional method 

and noticing the percentage of ssGA results and processing 

time. Figure 1. shows the result of the proposed technique after 

10 runs. As can be seen in the results presented in Figure 1. 

both GA and the traditional technique achieved very nearly 

similar results (i.e., the number of points) despite the fact that 

GA started with random population for each run. In order to 

compare the behavior of the GA, it compared with the 

traditional once, a reasonable small prime numbers are taken in 

the current experimental, since the traditional technique takes a 

long time for execution (e.g., weeks) if the prime number is 

large. 

 
 

 

 

Fig 1: The drawing of No. of points (Traditional Vs. GA). 

For each prime number, the algorithm was executed over 10 

independent runs, and the average number of points along with 

the processing time were calculated. The results demonstrate 

minimal variation between runs, confirming the stability and 

robustness of the proposed approach despite random 

initialization. 

As illustrated in Figure 2., the GA demonstrates significantly 

better performance in terms of processing time compared to the 

traditional method. The GA curve begins at 0.313 seconds 

when the prime number is 47 and rises with very small 

increments when the prime numbers are increase to reached 

(19.156 sec.), (i.e.,when prime number equal to 499). In 

contrast, the traditional method starts at 1.86 seconds (i.e., 

when prime number equal to 47) and rises exponentially with 

the prime numbers are increase reached until (19652.24 sec.), 

(i.e., when prime number equal to 499). 

Fig. 2: Processing time of algorithms traditional, GA. 

 

To provide a deeper quantitative evaluation, the average 

processing time over 10 independent runs was computed for 

each prime number. The results indicate that the GA achieves 

an average speedup exceeding 95% compared to the traditional 

exhaustive search method. This significant improvement can be 

attributed to the guided search mechanism of the GA, which 

restricts exploration to promising regions of the search space 

rather than evaluating all possible parameter combinations. 

 

Table 2: Performance comparison between traditional 

method and GA 

Prime Traditional 

Time (Sec.) 

GA Time 

(Sec.) 

Improvement 

(%) 

47 1.86 0.313 83.2 

97 30.07 0.743 97.5 

149 182.94 1.786 99.0 

199 591.44 3.124 99.5 

251 1507.01 4.624 99.7 

307 2781.65 6.933 99.8 

353 4891.9 9.494 99.8 

401 8211.94 12.869 99.8 

449 12959.93 15.062 99.9 

499 19652.24 19.156 99.9 

 

As shown in Table 2, the percentage of improvement increases 

significantly as the prime number grows. This indicates that the 

computational complexity of the traditional method increases 

exponentially, while the GA maintains a near-linear growth 

pattern. Such behavior highlights the scalability advantage of 

the proposed method. 

 

Furthermore, the convergence behavior of the GA 

demonstrates stability across multiple runs, indicating 

robustness against random initialization effects. The near-

maximal values of #E(Fp) obtained in Table 3 confirm that the 

proposed method effectively explores the solution space while 

maintaining cryptographic validity constraints. 

the results also align with Hasse’s theorem bounds, showing 

that the GA consistently approaches the upper limit of the 

theoretical interval, thereby validating the optimization 

capability of the proposed approach. 

47 97 149 199 251 307 353 401 449 499

Traditional 61 117 173 227 283 337 389 439 491 541

GA 61 109 167 223 281 337 383 439 491 541
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And to illustrate the drawing more, Figure 3. illustrates the 

processing time of traditional and GA for two prime numbers 

(47 and 97). 

Fig. 3: Processing time of algorithms traditional, GA for 

numbers (47 and 97). 

In order to check the effectiveness of the GA with large prime 

numbers (e.g., more than 1000), the GA is tested on 13 prime 

numbers in the range (1009-13681) and compare its results with 

Hasse theorem that  represented in the following bound: 

 𝑝 +  1 −  2 √𝑝   ≤   #E(F𝑝)   ≤   𝑝 + 1 +  2 √𝑝 

The performance of the GA for the large prime numbers is given in 

Table 3. 

 

Table 3 The number of points of Hasse theorem and GA. 

Prime 
Number of points 

Hasse theorem GA 

1009 (946-1073) 1051 

2099 (2008-2191) 2143 

3257 (3143-3372) 3361 

4219 (4090-4349) 4349 

5101 (4959-5244) 5227 

6143 (5987-6300) 6273 

7919 (7742-8097) 7877 

8779 (8592-8967) 8941 

9349 (9156-9543) 9511 

10459 (10254-10664) 10601 

11173 (10962-11384) 11251 

12641 (12417-12866) 12853 

13681 (13448-13915) 13907 

 

The experimental results presented in Table 2 demonstrate that 

the values obtained by the GA consistently approach the upper 

bound of Hasse’s theorem. This observation confirms that the 

proposed optimization strategy effectively searches within the 

valid mathematical domain while preserving cryptographic 

constraints. The ability to approach the theoretical maximum 

without exhaustive enumeration further validates the efficiency 

of the evolutionary search process. 

Overall, the current findings of the GA experiments are 

encouraging and provide us with evidence that GA works 

effectively for the problem under study. So, this technique will 

be used in the selection of a, b, and n for all schemes which are 

illustrated in the current study. 

8. CONCLUSION AND FUTURE WORKS  
This study presented a multi-population Genetic Algorithm for 

optimizing elliptic curve parameters with the objective of 

maximizing the number of valid points over finite fields. The 

experimental evaluation confirmed that the proposed approach 

significantly reduces computational complexity compared to 

the traditional exhaustive method while maintaining 

cryptographic robustness. The results demonstrated not only 

computational efficiency but also strong convergence behavior 

and stability across multiple runs. Furthermore, the proximity 

of the obtained solutions to the theoretical Hasse bounds 

validates the effectiveness of the evolutionary optimization 

strategy. The integration of intelligent search mechanisms into 

elliptic curve parameter generation provides a promising 

direction for future cryptographic system design, particularly in 

large-scale and high-security environments. 

Finally, the suggestions below are provided for the future work 

to improve the proposed scheme: 

1. The study speculates that further work, by selecting an 

appropriate population size based on the prime number, 

would improve the current system’s results and make it 

more realistic. 

2. To further reduce processing time, implementing parallel 

processing using a Graphics Processing Unit (GPU) 

presents an effective solution. GPUs, particularly those 

based on NVIDIA’s GeForce architecture, can 

significantly accelerate large-scale computations. 
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