
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

42

Develop a LAN-based Password Management System

Dedicated to Android Devices and Fresh Tomato

Routers

Hussein Abdulkhaleq Saleh
Directorate General of Education in Dhi Qar

Al-Haboubi Street, Nasiriyah, 64001, Dhi Qar, IRAQ.

ABSTRACT

This research introduces a LAN-based password management

system tailored for Android devices and FreshTomato routers,

offering a secure, localized alternative to cloud-based and

device-centric solutions. The system integrates an Android

client application with a router-based storage server, utilizing

the router‘s constant availability within the local network to

ensure offline accessibility and reduce dependency on

external services or the device itself. Passwords are

safeguarded through AES-256 encryption, SHA-512 hashing,

and continuous authentication, with communication between

client and server facilitated by HTTP and JSON protocols.

Testing on emulators and a physical device demonstrated the

system‘s functionality, rapid response times, and minimal

resource usage, confirming its usability and performance.

However, limitations include reliance on router availability

and location constraints within the LAN. This work

establishes a decentralized framework for password

management, enhancing user autonomy and resilience against

cloud-centric threats. Future enhancements could expand

compatibility with other router firmwares and incorporate

recovery options.

Keywords

Password Management System, FreshTomato Firmware, LAN

Passwords Storage, Android Application.

1. INTRODUCTION
In today‘s interconnected digital landscape, accessing most

online services—from social media platforms and e-

commerce sites to online banking and healthcare portals—

invariably requires users to create accounts. These accounts

serve as gateways to access those services, enabling features,

tailored recommendations, and secure communication.

Consequently, the proliferation of digital platforms has made

account creation an unavoidable step for individuals seeking

to engage with the modern cyber world. As a result, the

average individual now manages a multitude of accounts,

many of which include sensitive data integral to personal or

financial matters. From a security standpoint, sensitive data

may be vulnerable to unauthorized access. For example, a

compromised email account could lead to identity theft [1],

while breaching banking credentials might result in significant

financial losses [2]. From another perspective, the human

tendency to reuse simple, memorable passwords across

platforms exacerbates vulnerabilities, creating a fragile

security ecosystem where a single breach can jeopardize

multiple accounts.

We live in an era marked by escalating cyber threats, like

ransomware, phishing campaigns, and data breaches.

Protecting sensitive information has never been more critical,

and security frameworks must evolve to safeguard the data.

Within this framework, passwords remain a foundational layer

of defense, yet their effectiveness hinges on secure creation,

management, and storage practices. A single weak or reused

password can undermine even the most advanced security

protocols, emphasizing the need for better management

solutions. Common pitfalls include predictable patterns (e.g.,

―123456‖), reuse across platforms, and infrequent updates [3].

These practices render accounts susceptible to brute-force

attacks and credential-stuffing exploits. Moreover, the burden

of memorizing complex, unique passwords for dozens of

accounts leads many users to prioritize convenience over

security, further eroding protection [4].

Storing passwords securely is as critical as creating strong

ones. Improper storage methods—such as recording

credentials in unencrypted digital notes, spreadsheets, or

physical documents—expose users to significant risks [5]. A

lost notebook or a breached cloud file can transform trivial

negligence into a catastrophic privacy violation. Even widely

adopted solutions like browser-based password managers,

while convenient, centralize risk by storing data on third-party

servers, which may become targets for large-scale attacks [6].

Moreover, many users still rely on outdated methods to

manage passwords, including handwritten lists, static digital

files, or memorization. These approaches lack scalability and

security, offering no protection against physical theft,

unauthorized access, or digital breaches. When passwords are

stored locally on a user‘s device instead, new risks emerge,

such as vulnerabilities tied to physical access.

To tackle these challenges, contemporary password managers

have emerged, which offer encrypted vaults, cross-device

synchronization, and automated password generation.

However, many solutions depend on cloud infrastructure,

necessitating trust in external providers. For users concerned

about privacy, relying on third parties raises anxiety,

especially after notable breaches of centralized platforms [7].

Moreover, cloud-based systems may struggle in offline

situations or localized network environments, which limits

their overall applicability. Even when passwords are stored

locally on a user‘s device, new risks arise. Device-centric

storage introduces vulnerabilities tied to physical access: if the

device is lost, stolen, or temporarily borrowed, unauthorized

parties could exploit poorly protected files or cached

credentials [8]. These shortcomings highlight the need for

approaches that reduce dependency on both cloud

infrastructure and user-owned devices while maintaining

security and accessibility. Considering the drawbacks of

cloud-based and device-centric approaches, localized

alternatives like repurposing network hardware, such as

routers for secure storage, remain underexplored despite their

potential to overcome these challenges.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

43

Routers are ideal due to their constant availability and

strategic position as network gatekeepers, enabling secure,

localized storage. Particularly, those running open-source

firmware like FreshTomato, OpenWRT, and DDWRT offer a

unique opportunity to host localized password repositories.

Their inherent role as network gatekeepers, combined with

customization capabilities, positions them as promising

candidates for decentralized, LAN-based security solutions.

However, such systems require dedicated client interfaces to

enable seamless user interaction, particularly in mobile-

centric environments where smartphones serve as primary

access points. Android, as the world‘s most widely used

mobile OS [9], provides an ideal platform for developing

lightweight, secure client applications that bridge users to

LAN-hosted services.

This paper leverages these synergies to propose developing an

integrated system consisting of an Android client application

for managing passwords, paired with a FreshTomato router

configured as a passwords storage server, which enables

secure password management, prioritizes offline accessibility,

user autonomy, and resistance to cloud-centric threats.

1.1 Paper contributions
This paper introduces a novel approach within the field of

password management systems by developing a LAN-based

user password storage system dedicated to Android devices

and FreshTomato routers. The development process will

involve the following:

 Design and implement an Android application to

function as a client interface for the user based on

usability and security standards.

 Customize a FreshTomato router to serve as a

dedicated password repository accessible only via a

local connection, and implement the server-side logic

to perform tasks required by the Clint app.

This architecture enhances security through physical and

network isolation while empowering users with direct

oversight of their data. By bridging the gap between

convenience and robust protection, the proposed system offers

a resilient alternative to traditional and cloud-based solutions

for users who own those types of devices, aligning with the

evolving demands of digital security. The proposed system

eliminates reliance on external cloud services and prioritizes

localized control and offline accessibility. Additionally, the

proposed system reduces dependence on the device itself for

password storage, mitigating the risks associated with theft or

loss.

1.2 Structure of the Paper
This paper is organized into nine sections. Following this

introduction, Section 2 reviews existing literature on password

management systems and prior implementations of LAN-

based storage solutions. Section 3 details the system

requirements and the methodology of implementing this work.

Section 4 elaborates on the GUI design process of the Android

client application, based on some recommended functional

requirements. Section 5 details the implementation of the

application‘s functions and features, such as password

management operations (adding, deleting, editing, etc.),

encryption and decryption processes, network

communication, and other related tasks. Section 6 shifts focus

to server-side development. It begins by exploring

FreshTomato firmware, customizing it to host the password

vault, and implementing the server-side processes. Section 7

evaluates the integrated system through functional and

security testing, identifies limitations and disadvantages, and

discusses potential vulnerabilities. Finally, Section 8

concludes the work by summarizing findings and proposing

directions for future research. A comprehensive list of

references is provided in Section 9 to acknowledge

foundational studies and tools utilized in this work.

2. LITERATURE REVIEW
With the growing need for secure and efficient password

management, research has focused on developing robust

solutions. This section reviews some existing password

management systems, highlighting their key contributions,

limitations, and the gaps addressed by the proposed LAN-

based storage system.

2.1 Password Management Systems
Password management systems aim to simplify managing,

storing, and retrieving passwords while ensuring security.

PassMan [10] introduces a novel approach where passwords

are generated on-the-fly using a master password, a phrase,

and a hint, without storing the passwords locally or in the

cloud. This approach prevents password theft from storage but

requires users to remember multiple parameters. Similarly,

Versipass [11] uses graphical password cues to help users

associate passwords with accounts, reducing the cognitive

load of remembering multiple passwords. However, these

systems rely heavily on user input, which can be prone to

errors or forgotten hints.

2.2 Local Storage and Encryption

Techniques
Local storage solutions, such as BANK OF PASSWORDS

[12], store passwords on the user's device using robust

encryption techniques like AES-256 and SHA-256. This

approach encrypts passwords as ciphertexts, preventing access

even if the device is compromised. However, local storage

solutions are vulnerable to device loss or theft, which could

expose encrypted passwords to brute-force attacks if the

master password is weak.

2.3 Cloud-Based Solutions
Cloud-based password managers, such as the one proposed by

Kanela [13], use cloud storage to synchronize passwords

across multiple devices. These systems encrypt passwords

using AES-256 and store them in the cloud, ensuring

availability and convenience. However, cloud-based systems

introduce risks such as data breaches and reliance on third-

party servers.

2.4 Security and Usability Trade-offs
Password management systems often struggle to balance

security and usability. PassMan addresses this by generating

passwords on-the-fly, eliminating the need for storage, but it

requires users to remember multiple parameters. On the other

hand, the BANK OF PASSWORDS focuses on local storage

with strong encryption, ensuring security but limiting

accessibility if the device is lost. Versipass improves usability

by using graphical cues to help users remember passwords,

but it relies on user input, which can lead to errors.

2.5 Gaps in Existing Systems
Existing systems reveal several key gaps:

 Cloud Dependency: Systems like the one proposed by

Kanela rely on cloud storage, which introduces risks

such as data breaches and reliance on third-party

servers.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

44

 Device-Centric Risks: Local storage solutions, such as

BANK OF PASSWORDS, are vulnerable to device loss

or theft, which could expose encrypted passwords.

 Usability Challenges: Systems like PassMan and

Versipass require users to remember multiple

parameters or cues, which can be prone to errors or

forgotten inputs.

The proposed LAN-based password storage system addresses

these gaps by leveraging localized storage on a FreshTomato

router, eliminating reliance on cloud services for users who

own that type of router. By combining the security of local

storage with the convenience of an Android application, the

system offers a robust and decentralized solution for password

management.

3. IMPLEMENTATION

METHODOLOGY
This section outlines the technical framework, tools, and

processes employed to develop the LAN-based password

management system. The methodology is divided into

subsections to clarify the client-side (Android application) and

server-side (FreshTomato router) components, along with data

handling and communication protocols. Figure 1 clearly

shows the complete view of the system workflow.

3.1 System Architecture
The system adopts a client-server architecture with the

following components:

1. Client: An Android application for password management

operations.

2. Server: A FreshTomato router configured as a localized

password storage server.

3. Communication: HTTP-based interactions between the

client and server using the OkHttp library. Data will be

transmitted and received in the form of JSON objects.

3.2 Client-Side Development
The Android application is designed to handle user

interactions and securely communicate with the server. Key

aspects include:

3.2.1 Functional Requirements
 Password Management:

 Store: Add new passwords with three fields:

o Account Name (e.g., Facebook, Gmail).

o Username (optional).

o Password Value (encrypted).

 Edit/Delete: Modify or remove stored passwords.

 Copy to Clipboard: copy decrypted passwords.

 User Authentication:

 Register/Login with a username and password

(hashed using SHA-512).

 Logout functionality to terminate sessions.

 Server Configuration:

 Set server IP/port for HTTP communication.

 Check server availability before executing tasks

(e.g., adding/editing passwords).

3.2.2 Development Tools
 IDE: Android Studio 2024.2.1 for UI design and logic

implementation.

 Language: Java 11 for developing app codes and backend

logic.

 Networking: OkHttp 4.12.0 library for HTTP requests.

 SDK:

 Min SDK: 24 (Android 7.0 Nougat).

 Target/Compile SDK: 34 (Android 14).

3.2.3 Security Protocols
 Encryption: AES-256 for encrypting/decrypting password

data during storage/retrieval.

 Hashing: SHA-512 for securing user login credentials.

3.3 Server-Side Configuration
The FreshTomato router hosts the password vault and

processes client requests.

3.3.1 Server Setup
 Hardware: Netgear R8000 router with FreshTomato

firmware (2024.3).

 Web Server: Nginx 1.27.0 embedded with the

FreshTomato firmware to handle HTTP requests.

 PHP Scripts: Coded in Visual Studio Code 1.96.4 for

backend operations:

 Dedicated PHP pages for specific tasks (e.g.,

`add_password.php`, `login.php`).

3.3.2 Database Design
 Database Engine: MySQL via AdminerEVO 4.4.

 Tables:

 Users: Stores `username` (plaintext) and

`hashed_password`.

 Passwords: Stores encrypted `account_name`,

`username`, and `password_value`.

 Storage: A USB stick connected to the router hosts the

database and PHP scripts.

3.4 Testing Environment
 Client Testing:

 Emulator: Official Android Emulator (API 34).

 Physical Device: Xiaomi Mi Max 3 smartphone

(Android 10).

 Server Testing:

 Validate PHP script functionality and MySQL

queries.

 Monitor HTTP response times and error rates.

4. APPLICATION GUI DESIGN
The GUI of the Android client application is designed to

provide an intuitive and secure way to manage passwords

stored on a FreshTomato router within a local area network

(LAN). It focuses on usability and security, allowing users to

perform password management tasks while protecting

sensitive data. This section outlines the GUI components for

password management (store, edit/delete, copy), user

authentication (register/login, logout), and server

configuration (set server IP/port, check availability).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

45

Fig 1: A diagram illustrating the architecture and workflow of the proposed system.

4.1 Launcher Activity
The launcher activity serves as the application's entry point,

featuring instructional text and three main buttons: "LOGIN,"

"REGISTER," and "SERVER SETUP." Selecting "LOGIN"

or "REGISTER" leads to the respective authentication

screens, while "SERVER SETUP" opens a configuration

dialog. The buttons use a consistent color scheme for better

visual coherence. This layout separates core functions,

making navigation easier. The instructional text helps first-

time users understand each button's purpose, providing a

streamlined starting point that enhances usability and directs

users efficiently to key tasks like authentication.

4.2 Server Setup Dialog
Activated by the "SERVER SETUP" button in the launcher

activity. This dialog enables users to configure the router

connection. It features input fields for the server‘s IP address

and port, pre-filled with defaults (e.g., "192.168.1.1" and

"555"), an "OK" button, and a circular `ProgressBar` that

activates during availability checks, as shown in Figure 2-

D.By isolating server configuration in a dialog, the launcher

activity remains focused on navigation, while the dialog

provides a dedicated space for entering network details, as

illustrated in Figure 2-D. This setup ensures reliable server

communication by enabling the user to change the details and

aligning with the server configuration requirements. The

`ProgressBar` offers real-time feedback, confirming the app is

processing the input and keeping the user informed during

server communication, which improves user experience. Note

that the ProgressBar component will be used when designing

other activities and dialogs in this app for the same purposes

mentioned earlier.

4.3 Registration Activity
The registration activity allows users to create accounts,

featuring input fields for username, password, and password

confirmation, alongside "Register" and "Cancel" buttons. A

circular `ProgressBar` indicates processing during

registration, and underlined input fields highlight active areas,

guiding user interaction, as shown in Figure 2-B.The

password confirmation field minimizes errors, enhancing

security by ensuring accurate credential entry. This design

supports the secure registration requirement, offering a clear

and feedback-rich account creation process.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

46

Fig 2: GUI Design – part 1.

4.4 Login Activity
Tailored for authenticating existing users, the login activity

includes input fields for username and password, a "stay

logged in" checkbox, "Login" and "Cancel" buttons, and a

circular ProgressBar, as illustrated in Figure 2-C. Underlined

input fields provide visual cues, indicating focus and

simplifying data entry. A successful login directs users to the

main activity.The "stay logged in" option improves

convenience on trusted devices, balancing usability with

security. This layout fulfills the login requirement, ensuring

secure and user-friendly access to password management

features.

4.5 Main Activity
The main activity serves as the password management hub,

featuring a Toolbar with the title "LAN-Based Password

Storage System" and a subtitle showing the logged-in

username (e.g., "login as: [username]"). A Toolbar menu that

includes "Logout" and "Exit" options is created on the right

side, as shown in Figure 3-B. A RecyclerView in the center

displays stored passwords in card format, and a Floating

Action Button (FAB) with a "+" icon initiates new password

entries. The complete layout of this activity is illustrated in

Figure 3-A. Both the Toolbar and FAB use a consistent color

scheme for visual unity.

The Toolbar provides session context and quick access to

logout/exit, fulfilling the logout requirement. The

RecyclerView leverages Android‘s efficient list management,

ensuring scalability, while the FAB offers an intuitive, thumb-

friendly way to store new passwords. This design centralizes

password management, enhancing usability and accessibility.

4.6 RecyclerView Item Layout
Each RecyclerView item represents a password entry

structured using a GridLayout with a light blue background,

organizing the account name, username, and password in a

grid format. Also, it includes three icons that enable copying,

editing, and deleting the entry, as shown in Figure 3-A. The

copy icon transfers the password to the clipboard, the delete

icon prompts a confirmation AlertDialog, and the edit icon

opens an update dialog.

The light blue background of each GridLayout provides visual

separation between entries. The grid format organizes details

clearly, and the icons enable quick, recognizable actions,

supporting the copy-to-clipboard, edit, and delete

requirements. The confirmation dialog prevents accidental

deletions, reinforcing reliability. This layout facilitates

efficient interaction with password entries, meeting key

functional needs.

4.7 Update Stored Password Dialog
Accessed via the edit icon in each RecyclerView Item. This

dialog allows users to modify password entries. It includes

pre-filled input fields for account name, username, and

password, an "Update" button, and a ProgressBar for

feedback, as illustrated in Figure 3-C. Underlined fields

highlight editable areas, aiding user focus. Pre-filled fields

and a dedicated dialog streamline editing, minimizing

disruption.

4.8 Add New Password Activity
Triggered by the FAB. This activity enables users to add new

passwords, featuring input fields for account name, username

(optional), password, a "Store Password" button, and a

circular ProgressBar, as illustrated in Figure 3-D. Clear labels

and optional fields offer flexibility. This design fulfills the

store's requirement with an intuitive interface for password

creation. Underlined fields provide visual feedback, guiding

data entry.

4.9 Overall Design Considerations
The GUI employs standard Android components (e.g.,

RecyclerView, FAB, and Toolbar) for familiarity and ease of

use. Feedback mechanisms like ProgressBar elements

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

47

mitigate LAN-based latencies, improving responsiveness. A

consistent color scheme across buttons and key elements

enhances visual coherence. Optimized for mobile devices, the

layouts account for screen size and touch interactions,

ensuring accessibility. By aligning with the functional

requirements and security protocols from Section 3, the GUI

balances usability and protection, achieving the objectives of

the proposed system.

Fig 3:GUI Design – part

5. APPLICATION LOGIC

IMPLEMENTATION
This section details the implementation of the Android client

application‘s functionalities and its background processes. As

stated in section 3.2.2, this app will be developed using

Android Studio (version 2024.2.1), the official IDE

recommended by Google for Android app development. Java

will be used to create the code due to its popularity and ease

of use [14]. The application will target devices running

Android 7.0 (SDK 24) and above, up to Android 14 (SDK

34), due to its widespread use, according to Android Studio

statistics.

The application uses the OkHttp library (version 4.12.0) for

efficient network communication with the FreshTomato

router. All network processes (e.g., login, register) will use

CompletableFuture for asynchronous execution, ensuring

responsiveness with a ProgressBar. Data will be transmitted

as JSON objects. SharedPreferences will store lightweight

data like server parameters and login credentials, as

recommended for small persistent storage in Android. For

security, SHA-512 will hash user login credentials, while

AES-256 will encrypt/decrypt stored passwords.

The Android Manifest.xml file of the proposed application

will declare permissions and configurations critical for

network functionality in the LAN environment:

 Permissions:

 <uses-permission

android:name="android.permission.INTERNET" />:

Enables HTTP requests to the FreshTomato router-

hosted server.

 <uses-permission

android:name="android.permission.ACCESS_NET

WORK_STATE" /> and <uses-permission

android:name="android.permission.ACCESS_WIFI

_STATE" />: Monitor connectivity status to ensure

reliable server interactions.

 Cleartext Traffic: The attribute

android:usesCleartextTraffic="true" permits HTTP

communication, required for compatibility with the LAN

server‘s lack of HTTPS support. Note that to mitigate

security risks, sensitive transmitted data is encrypted at

the application before transmission.

The application‘s logic is structured into modular

components, each addressing specific functional

requirements. The following subsections detail the core

workflows, including activity lifecycle management, user

authentication, password operations, and network reliability

mechanisms. These components collectively enable secure

and efficient interaction with the LAN-hosted server while

adhering to Android platform best practices.

5.1 Launcher Activity
The LauncherActivity serves as the entry point, managing

navigation and server setup. It checks the login state in

SharedPreferences: if "login", it skips authentication and

navigates to MainActivity for seamless access on trusted

devices; otherwise, it offers "LOGIN", "REGISTER", and

"SERVER SETUP" options, as illustrated in Figure 4.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

48

Fig 4: Launcher-activity workflow diagram

Server Configuration: The "SERVER SETUP" button opens a

dialog for inputting the server‘s IP (default: "192.168.1.1")

and port (default: "555"). These defaults are initialized in

SharedPreferences upon first launch if unset, ensuring

immediate usability while allowing customization for

flexibility. The JSON object will include one small message:

―hello server‖. An asynchronous GET request to

‗http://[ip]:[port]/check_server_availability.php‘ validates

connectivity, with a ProgressBar providing feedback.

Successful validation saves settings in SharedPreferences for

flexible use, as illustrated in Figure 5.

Fig 5: server-parameters setup process diagram

5.2 User Authentication
Authentication, handled by RegistrationActivity and

LoginActivity, secures credentials with SHA-512 hashing

before transmission. Cryptographic operations are offloaded

to a dedicated Encryption class, enhancing modularity and

reusability.

 Registration: Users enter a username and password

(with confirmation), which is hashed using SHA-512

and sent to ‗http://[ip]:[port]/register.php‘. Client-side

validation enforces a minimum password length of 8

characters to ensure strength. The success registration

stores credentials in SharedPreferences with a "logout"

state, redirecting to MainActivity, as detailed in Figure

6. Setting login-state to "logout" means it is the first

time the user logs into the system, and they should enter

the login credentials next time to access their account.

 Login: LoginActivity hashes the password and sends it

to ‗http://[ip]:[port]/login.php‘. A "stay logged in"

option sets the login state in the SharedPreferences to

"login" for future automatic access, as Figure 7 shows.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

49

Fig 6: Registration process diagram

Fig 7: Login processes diagram

5.3 Password Management Operations
Password management is centralized in MainActivity, using a

RecyclerView for display and a Floating Action Button (FAB)

for adding entries. Optimistic UI updates refresh the

RecyclerView immediately after local operations, ensuring

responsiveness despite network latency. This activity includes

a Toolbar menu (as depicted in Figure 3-B) offering 'Logout'

and 'Exit' options for session control. The logout process

clears the login state and returns to LauncherActivity, as

illustrated in Figure 8.

Except for copy operations, password management operations

employ AES-256 encryption to secure password data (account

name, username, and password, as shown in Figure 3-A). The

key used for this algorithm is derived dynamically from user

credentials (username and password) using PBKDF2 with

10,000 iterations. This ties decryption to the user‘s master

credentials, ensuring that even if the server‘s database is

compromised, passwords remain protected.

The 10,000-iteration count aligns with NIST

recommendations (SP 800-63B) for PBKDF2 [15], balancing

security against brute-force attacks and computational

efficiency on mobile devices.Each operation request to the

server includes the user‘s login credentials for authentication

and as a unique database identifier. This ensures that actions

like retrieving or modifying passwords are limited to the

user‘s data, maintaining account isolation, and preventing data

leakage. A progress bar also appears with each request,

providing feedback during data fetching.

 Viewing Passwords: MainActivity fetches encrypted

passwords in the background after launch directly via

‗http://[ip]:[port]/get_stored_passwords.php‘, decrypts

them using AES for immediate display, and populates the

RecyclerView with the decrypted entries for efficient user

access, as detailed in Figure 8. The 'get-stored-passwords'

request will include login credentials, allowing the server

to search for stored passwords relevant to the user

account.

 Storing Passwords: The FAB launches

Add_New_Password_Activity, where inputs are

encrypted and sent to

http://[ip]:[port]/store_new_password.php after clicking

on ‗store password‘. Success updates the local list and

RecyclerView, then triggers a Toast notification, as

depicted in Figure 9. Similar to the get-passwords request,

the store-new-password request will include login

credentials in addition to the new password‘s info to be

stored.

 Editing and Deleting Passwords: The same encryption and

network patterns in the previous process have been

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

50

applied here. The request for the edit-password process

includes the new password information and the old one, as

shown in Figure 10. The password-delete process triggers

a confirmation AlertDialog that prevents accidental

deletions, as detailed in Figure 11. The request to delete

the selected password includes the login credentials to

delete the relevant password on the server side.

 Copying Passwords: A copy icon button in

`RecyclerView_Adapter` uses `ClipboardManager` to

transfer decrypted passwords to the clipboard, notifying

users via `Toast`. This function does not require any

network communication to execute it.

Fig 8: A diagram details the MainActivity process workflow (exit, logout, display stored passwords)

Fig 9: A diagram illustrating the workflow of storing a new password

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

51

Fig 10: Edit password process diagram

Fig 11: Delete password process diagram

5.4 Network Communication and Error

Handling
The Android app uses OkHttp for HTTP communication with

the FreshTomato router, emphasizing responsiveness through

asynchronous execution with CompletableFuture. Network

operations (authentication, password management, server

availability checks) run in the background to avoid UI freezes

and keep users engaged with ProgressBar feedback. To

combat unstable LAN conditions, OkHttpClient enforces

default timeouts (10 seconds for connection and read),

ensuring users get alerts like ―server not found‖ if the router is

unresponsive.

Data transmission uses JSON formatting for interoperability,

with encrypted payloads serialized into structured objects.

Error handling is granular: timeouts trigger warnings, JSON

parsing failures prompt server reconfigurations, and invalid

credentials reset the UI for session integrity. User feedback is

prioritized through Toast notifications, while server responses

are validated with a "state": "success" flag. For instance,

password deletion requests proceed only after the server

confirms database removal.

The network layer integrates into the broader workflow

(Figure 1). For example, when storing a password, the client

creates a JSON object, sends it to ‗/store_new_password.php‘,

and updates the RecyclerView on the main thread via

runOnUiThread(). Although the system purposely avoids

automatic retries for failed requests to maintain simplicity, it

ensures reliability through strong timeout safeguards and user-

friendly error messaging.

5.5 Security Considerations
The system utilizes a multi-layered security strategy to protect

user data. During registration, client-side validation ensures a

minimum password length of 8 characters and prohibits empty

fields. User passwords are hashed using SHA-512 before

transmission, preventing plaintext exposure on the server. For

every password management request (e.g., viewing, storing,

or editing passwords), login credentials (username and hashed

password) are embedded to verify user authenticity

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

52

continuously. This approach reduces risks related to session

hijacking and reinforces overall security.

As mentioned previously, stored passwords use PBKDF2

(10,000 iterations) to dynamically derive encryption keys

from the user‘s master password, ensuring decryption is tied

to the user. Data is Base64-encoded for JSON compatibility

and stored in SharedPreferences with MODE_PRIVATE to

limit access on rooted devices. Activities are secured by

setting non-entry components to android:exported="false" in

the manifest and overriding the back button in MainActivity

to end sessions with finishAffinity(), which prevents

accidental navigation to sensitive screens. These measures

create a strong defense-in-depth architecture that balances

usability and security against digital and physical threats.

6. SERVER-SIDE CONFIGURATION

IMPLEMENTATION
In the preceding sections, we elaborated on the design and

implementation of the Android client application, which

provides an intuitive interface for users to manage their

passwords securely. However, the functionality of this client

application depends on a robust server-side infrastructure to

store and process password data within a local area network

(LAN). This section shifts focus to the server-side

development, utilizing a FreshTomato router as the backbone

of our LAN-based password management system. We will

explore the FreshTomato firmware and its embedded

software, configure the Netgear R8000 router to serve as a

dedicated password storage server, design and build the

database using AdminerEvo, and implement server operations

through PHP scripts. By the end of this section, the server will

be fully equipped to handle requests from the Android client,

ensuring secure, localized password management.

6.1 Exploring FreshTomato Firmware and

Embedded Software
FreshTomato is an open-source firmware project based on

Linux, designed for routers with Broadcom chipsets. As stated

on freshtomato.org, it is dedicated to routers with a Broadcom

chipset and distributed under the GPL license. This firmware

enhances the capabilities of consumer-grade routers by

providing advanced features such as the ability to host web

servers and databases, which are functionalities critical to this

research. Its user-friendly web interface simplifies

configuration, making it accessible to both novice and

experienced users, while its robust feature set meets the

technical demands of our password management system.

The advantages of FreshTomato include:

 Broad Device Support: Compatible with numerous

routers, such as the Netgear R7000, Asus RT-AC68U,

and Linksys E4200, in addition to the Netgear R8000

used in this work.

 Server Hosting Capabilities: Supports hosting web

servers (nginx) and databases (MySQL), critical for

storing and managing password data.

 USB Functionality: Enables external storage via USB,

facilitating portable hosting of PHP pages and

databases.

 Community Support: Benefits from regular updates and

an active user community, ensuring reliability and

ongoing development.

In comparison to other open-source firmwares like DD-WRT,

which offers extensive features but a steeper learning curve,

and OpenWRT, which provides high customization but

requires significant expertise, FreshTomato strikes a balance

between ease of use and advanced functionality. Its

streamlined interface and simplified configuration workflows

reduce resource consumption, making it an ideal choice for

this project, where hosting a web server and database on a

router is essential without necessitating overly intricate

configurations.

The embedded software employed in this system includes:

 Nginx: A lightweight, high-performance web server

that processes HTTP requests from the Android client

application.

 mysqld: The MySQL database server, responsible for

storing user accounts and password entries.

 AdminerEvo: A web-based database management tool

that facilitates the design and administration of the

MySQL database.

These tools are pre-integrated into FreshTomato, streamlining

the setup process for our server-side implementation. The

base device for this work is the Netgear R8000 router,

equipped with a dual-core 1.8 GHz ARM processor and 256

MB RAM [16], running FreshTomato firmware version

2024.3. Selected for its robust hardware (including multiple

USB ports and sufficient processing power), the R8000 is

well-suited to handle the server tasks required by our system.

Notably, the proposed solution is designed to be compatible

with any ARM- or MIPS-based router running the same

FreshTomato 2024.3 firmware, enhancing its applicability

across similar hardware platforms, though performance may

vary depending on router specifications.

For storage, a USB 3.0 flash drive formatted as NTFS is

connected to the router‘s USB 3.0 port. This stick hosts both

the PHP scripts and the MySQL database, providing a

portable and manageable solution for data storage within the

LAN environment.

6.2 Configuring the Router for Server

Functionality
Configuring the Netgear R8000 as a server involves setting up

USB storage, the NGINX web server, and the MySQL server.

These steps ensure the router can host the password

management system‘s backend, as depicted in the system

architecture (Figure 1).

Accessing the Web Interface:

 Open a web browser and enter the router‘s default IP

address: `192.168.1.1`, then log in using the default

credentials: username `root`, password `admin`.

Setting Up USB Storage:

 Navigate to ‗USB and NAS‘ > ‗USB Support‘ in the

firmware‘s web interface, and enable Core USB, USB

3.0/2.0, USB Storage, and NTFS support.

 Check ‗Automatically mount all partitions to sub-

directories in ‗/mnt‘ under the ‗Automount‘ section to

mount the USB partitions automatically.

 Click ‗Save‘ and reboot the router to ensure the settings

take effect.

 Post-reboot, verify the mounted partition in the ‗Attached

Devices‘ section, where the USB stick appears as

`/mnt/sda5` (see Figure 13).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

53

Fig 12: Setting Up USB Storage in FreshTomato firmware

Fig 13: The mounted partition in the ‘Attached Devices’ section

Configuring the Web Server (nginx version 1.27.0):

 Navigate to ‗Web Server‘ > ‗Nginx & PHP‘, and

enable:

 ‗Enable on Start‘: Ensures the web server starts

automatically on router boot.

 ‗Enable PHP Support‘: Allows execution of PHP

scripts.

 Set ‗Server Port‘ to `555`, aligning with the Android

client‘s configuration.

 Set ‗Document Root Path‘ to

`/mnt/sda5/lan_password_managment_system` based on

our case, where `/mnt/sda5` is derived from the mounted

USB partition, and `lan_password_managment_system`

is the folder for PHP files.

 Click ‗Save‘. The nginx configuration is illustrated in

Figure 14.

Fig 14: NGINX configuration in FreshTomato firmware

Configuring the MySQL Server:

 Navigate to ‘Web Server‘ > ‗MySQL Server‘, and check

‗Enable on Start‘ to launch the database server on router

startup, then click ‗Save‘. The MySQL server setup is

shown in Figure 15.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

54

Fig 15: The MySQL server setup in FreshTomato firmware

These configurations establish the router as a fully functional

server, capable of hosting the web and database services

required for the password management system.

6.3 Designing the Database with

AdminerEvo
The database is designed and built using AdminerEvo

(version 4.8.4), leveraging the MySQL server running on the

router. The steps are as follows:

 In the ‗MySQL Server‘ settings, click ‗Start Now‘ to

activate mysqld.

 Click ‗Open admin interface in new web‘ to launch

AdminerEvo in a new browser tab.

 Log in with the default credentials: username `root`,

password `admin`.

 Select ‗Create Database‘ and name it

`Lan_Password_Storage_System`.

 Create two tables within this database:

 users_table:

o `login_username` (VARCHAR(50),

PRIMARY KEY): Unique identifier for each

user.

o `login_password` (VARCHAR(128)): Stores

the hashed user password.

 passwords_table:

o `user_login_username` (VARCHAR(50),

FOREIGN KEY to

`users_table.login_username`): Links

passwords to a specific user.

o `account_name` (VARCHAR(100)): Name of

the account (e.g., "Facebook").

o `account_username` (VARCHAR(100)):

Account username (optional).

o `account_password` (VARCHAR(256)):

Encrypted password value.

This schema ensures data isolation by associating each

password entry with a unique user via the foreign key

constraint. The database is stored on the USB stick, within the

MySQL data directory configured to utilize the mounted

`/mnt/sda5` partition.

6.4 Implementing Server-Side Operations

with PHP
Server-side operations are implemented through seven PHP

scripts, as illustrated in Figure 1. Each one handles specific

requests from the Android client. These scripts were

developed using Visual Studio Code and deployed to the USB

stick in the directory `/lan_password_managment_system`.

The PHP pages and their functionalities are:

 `check_server_availability.php`: Returns a JSON response

(`{"state":"success","message":"server available"}`) to

confirm server connectivity (see Figure 16).

 `register.php`: Validates if a username exists in

`users_table`. If not, insert the new username and hashed

password, returning a success or error JSON response.

 `login.php`: Authenticates users by verifying the

username and hashed password against `users_table`,

returning a success or failure JSON response.

 `get_stored_passwords.php`: Retrieves all password

entries for an authenticated user from `passwords_table`,

returning them as a JSON array.

 `store_new_password.php`: a new encrypted password

entry into `passwords_table` for the authenticated user,

confirming success via JSON.

 `update_stored_password.php`: Updates an existing

password entry in `passwords_table` based on old and

new values, returning a success or error JSON response.

 `delete_stored_password.php`: Deletes a specified

password entry from `passwords_table` for the

authenticated user, confirming success via JSON (see

Figure 17).

Each script uses PDO (PHP Data Objects) to securely interact

with the MySQL database, preventing SQL injection by

employing prepared statements. Inputs are received as JSON

objects via `php://input`, and responses are returned in JSON

format, aligning with the client‘s communication protocol

(Section 5.4).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

55

The deployment Process includes:

 Write the PHP scripts in Visual Studio Code.

 Copy the files to the USB stick in the

`/lan_password_managment_system` directory.

 Connect the USB stick to the router‘s USB 3.0 port

and reboot the router to recognize the files.

Figures 16 and 17 illustrate the workflows of these server-side

operations, detailing how client requests are processed and

how responses are generated. With these configurations and

implementations, the FreshTomato router is fully operational

as a server, supporting the LAN-based password management

system by securely storing and managing user passwords

within the local network.

Fig 16: Server-side operations logic - part 1

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

56

Fig 17: Server-side operations logic - part 2

7. Testing, Evaluation, and Limitations
This section evaluates the proposed system through a

structured testing process, assesses its performance, and

identifies inherent limitations. The system, comprising an

Android client application and a FreshTomato router

configured as a password storage server, was tested for

functionality, reliability, and usability within a local area

network (LAN) environment. The following subsections

outline the testing methodology, functional testing outcomes,

performance metrics, and the system's limitations, providing a

comprehensive analysis of its practical implementation.

7.1 Testing Methodology
To ensure the system's compatibility and functionality across

diverse Android environments, two distinct testing approaches

were employed:

 Emulator Testing: Two virtual devices were created using

the Android Studio Emulator, both simulating a Pixel 7

smartphone. The first device was configured with a

minimum SDK of 24 (Android 7.0 Nougat), while the

second targeted SDK 34 (Android 14). This range was

selected to verify the application's performance across a

broad spectrum of Android versions, encompassing the

system's supported SDK boundaries as specified in

Section 5. Testing on these emulators ensured

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

57

compatibility with older and newer Android iterations

without requiring exhaustive testing on every intermediate

version.

 Real-Device Testing: A Xiaomi Mi Max 3 smartphone

running Android 10 was used as the physical test device.

An Android Package (APK) file was generated from

Android Studio and transferred to the device via USB for

installation. This approach validated the system's behavior

on actual hardware, accounting for real-world factors such

as device-specific performance and network conditions

that emulators might not fully replicate.

Both testing methods were conducted within a controlled

LAN environment, with the Netgear R8000 router (running

FreshTomato firmware version 2024.3) serving as the server.

The router was connected to a USB 3.0 flash drive hosting the

MySQL database and PHP scripts, as detailed in Section 6.

This setup ensured that all network interactions occurred

locally, aligning with the system's design objectives of offline

accessibility and localized control.

7.2 Functional Testing
Functional testing was performed to confirm that each

component of the system operated as intended. The tests

conducted on both the emulator and real device covered the

user interface, server setup, authentication, password

management operations, and network reliability. The results

are summarized below:

 User Interface (UI) Layouts: All activities, dialogs, and

visual components—such as buttons, input fields, and the

RecyclerView—are displayed correctly across both

testing environments. The layouts, designed in Section 4,

adhered to Android standards, ensuring usability and

visual consistency (e.g., Figures 2 and 3).

 Server Setup: The server configuration functionality was

tested by inputting the router‘s IP address (default:

"192.168.1.1") and port (default: "555") via the Server

Setup Dialog (Figure 2-D). The application successfully

stored these parameters in SharedPreferences and

established a connection to the server, validated by a GET

request to `check_server_availability.php`. The

ProgressBar provided real-time feedback during this

process, confirming operational success.

 Registration: This process was tested by entering a

username and password in the Registration Activity

(Figure 2-B). The client enforced a minimum password

length of 8 characters, hashed the password using SHA-

512, and stored the credentials in SharedPreferences with

a "logout" state. A POST request to `register.php`

successfully added a new row to the `users_table`, and the

application transitioned to the Main Activity, fulfilling the

design requirements from Section 5.

 Login: Login functionality was verified using existing

credentials in the Login Activity (Figure 2-C). With

correct inputs, the app authenticated the user via

`login.php` and navigated to the MainActivity. The "stay

logged in" checkbox, when selected, updated the login

state in SharedPreferences to "login," enabling direct

access to the Main Activity on subsequent launches, as

intended (Figure 7).

 Password Management Operations:

 Storing Passwords: The Add New Password Activity

(Figure 3-D) was used to input account name,

username (optional), and password. The data was

encrypted with AES-256, sent to

`store_new_password.php`, and a new row was added

to the `passwords_table`. The RecyclerView was

updated to reflect the new entry, with a Toast

notification confirming success (Figure 9).

 Editing Passwords: Editing an existing password via

the Update Stored Password Dialog (Figure 3-C)

updated the corresponding entry in the

`passwords_table` through

`update_stored_password.php`. The modified data

remained encrypted, and the RecyclerView reflected

the changes accurately (Figure 10).

 Deleting Passwords: Deleting a password via the

RecyclerView item's deleted icon triggered a

confirmation AlertDialog. Upon confirmation, a

request to `delete_stored_password.php` removed the

entry from the `passwords_table`, and the

RecyclerView updated accordingly (Figure 11).

 Copying Passwords: The copy icon in the

RecyclerView transferred the decrypted password to

the clipboard using ClipboardManager, verified by

pasting it into a text field, with a Toast notification

confirming the action.

 All operations were tested multiple times, achieving a

100% success rate with no errors in both the emulator

and physical device environments, confirming the

robustness of the client-server interaction, as shown in

Table 1.

 Network Operations: Network reliability was assessed

during all server interactions (e.g., login, password

storage). Responses were fast and consistent, with no

application freezing observed. Success and failure

messages were displayed appropriately via Toast

notifications, and ProgressBars provided feedback during

asynchronous operations, aligning with the OkHttp

implementation in Section 5.4.

 Background Behavior: After closing the application using

the "Exit" option in the Main Activity‘s Toolbar menu, no

background processes persisted, as confirmed by device

monitoring tools. This behavior matched the design goal

of minimizing resource usage (Section 5).

 LauncherActivity Logic: Upon relaunch, the

LauncherActivity (Figure 2-A) correctly displayed based

on the SharedPreferences login state: "logout" prompted

authentication, while "login" bypassed it, navigating

directly to the Main Activity (Figure 4).

All tests were conducted with the FreshTomato router

operational, confirming the functionality of server-side PHP

scripts and MySQL interactions as outlined in Section 6.

Table 1 summarizes the system's Functional Test Results.

Table 1: Summary of Functional Test Results

Function Test Case Expected Outcome Actual

Server Setup
Enter the correct IP and port Connection successful, parameters saved As expected

Enter an incorrect IP Connection fails, error message As expected

Registration
Register with a new username User added, transition to Main Activity As expected

Register with an existing username. Error message displayed As expected

Login Login with the correct credentials Authentication successful As expected

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

58

Login with an incorrect password Authentication failed, error message As expected

Store Password Add new password Password stored, list updated As expected

Edit Password Modify an existing password Password updated, list reflects changes As expected

Delete Password Remove password Password deleted, list updated As expected

Copy Password Copy password to clipboard Password copied, notification displayed As expected

7.3 Performance Evaluation
The system's performance was assessed based on key metrics

derived from the testing process:

 Response Times: Network operations, facilitated by the

OkHttp library with a 10-second timeout, exhibited rapid

response times (typically under 1 second) within the LAN

environment. No delays or freezes were observed during

authentication, password management, or server

availability checks, indicating efficient client-server

communication.

 APK Size: The generated APK file measured 6.19 MB, a

reasonable size for an Android application with the

described functionality. This optimized size ensures that

the application can be quickly installed and run on devices

with limited storage, which is particularly important for

older Android versions supported by the system (SDK 24

and above). Also, this aligns with the lightweight design

goals outlined in Section 5, ensuring compatibility with

devices of varying storage capacities.

 Resource Usage: The application ceased all background

activity upon exit, consuming no additional CPU or

memory resources, as verified on Xiaomi Mi Max 3.

Monitoring with Android Profiler confirmed that no

memory leaks or lingering processes persisted after the

application was closed, aligning with the design goal of

minimal resource impact.

Overall, the system performed reliably under normal LAN

conditions, with the FreshTomato router effectively handling

HTTP requests and database operations via its nginx web

server and MySQL server, as configured in Section 6.

7.4 Limitations and Disadvantages
While the system achieved its functional and security

objectives, several limitations were identified during

evaluation, reflecting its LAN-based architecture and

hardware dependencies:

 Router Dependency: The system‘s operation hinges on the

FreshTomato router‘s availability. If the router is powered

off, malfunctions, or becomes inaccessible, all password

management services cease, rendering the application

unusable until the router is restored.

 Location Constraints: Access to password management

features requires the client device to be connected to the

router‘s Wi-Fi network. Users outside the LAN (e.g., at a

different location) cannot interact with the system,

limiting its utility for mobile users requiring remote

access.

 Wi-Fi Coverage Impact: Poor Wi-Fi signal strength or

limited router coverage can degrade system performance,

leading to slower response times or connection failures,

particularly in larger or obstructed environments.

 Physical Security Risks: If the router is stolen or

physically accessed, the USB flash drive containing the

encrypted database and PHP scripts could be

compromised. While data remains encrypted, a

determined attacker with sufficient expertise might

attempt to extract it, posing a security risk.

 USB Flash Drive Reliability: The system relies on the

USB flash drive for storing the MySQL database and PHP

scripts. Disconnection, corruption, or hardware failure of

the drive will disable the server, halting all functionality

and potentially causing data loss if not backed up.

 Lack of Credential Recovery: No recovery mechanism

exists for forgotten login credentials. If a user forgets their

username or password, they cannot access the system or

retrieve stored passwords, resulting in permanent

inaccessibility of their data. This absence is intentional to

prioritize security over convenience.

 Scalability Constraints: The system is optimized for

individual or small-scale use within a single LAN.

Supporting multiple users or larger networks may require

significant modifications to the database schema and

server capacity, which were not tested in this

implementation.

 Absence of Backup Mechanisms: No automated backup

process is implemented for the database stored on the

USB flash drive. Hardware failure or data corruption

could lead to an irreversible loss of stored passwords, a

risk not addressed in the current design. To address this

vulnerability, adopting a manual backup approach is

highly advisable.

8. CONCLUSION AND FUTURE WORK
This research presents a novel LAN-based password

management system designed for Android devices and

FreshTomato routers, delivering a secure, localized alternative

to conventional cloud-based and device-centric solutions. By

integrating an intuitive Android client with a router-based

storage server, the system ensures offline accessibility,

leverages the router‘s constant availability, and mitigates risks

tied to device theft or loss. It employs advanced encryption

and continuous authentication to safeguard data, while the

lightweight, user-friendly Android interface enhances

accessibility across a broad range of devices. Rigorous testing

on emulators and physical hardware confirms its practical

effectiveness.

Despite its strengths, the system‘s reliance on router

availability and Wi-Fi connectivity limits its use beyond the

local network, and the absence of data recovery options

heightens the risk of credential loss. Scalability issues also

restrict their applicability to small-scale deployments. These

trade-offs between security and convenience highlight the

challenge of aligning robust protection with seamless

usability.

Ultimately, this work establishes a compelling framework for

decentralized password management, empowering users with

greater control over their credentials. Future enhancements

could extend compatibility to additional router firmwares,

introduce recovery mechanisms, and improve scalability,

further advancing secure, user-centric password storage.

Building on this research, several directions are proposed to

broaden its impact:

 Expansion to DD-WRT and OpenWRT Firmware:The

current implementation leverages FreshTomato

firmware, but adapting the system for other open-source

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.8, May 2025

59

router platforms, such as DD-WRT and OpenWRT,

would increase its reach. DD-WRT offers extensive

customization and a broad device compatibility list,

while OpenWRT provides a highly flexible Linux-based

environment. Porting the server-side logic (e.g., nginx,

MySQL, PHP scripts) to these firmwares would require

adjusting configurations to their unique interfaces and

resource constraints, enabling users with diverse router

hardware to adopt this localized password management

approach.

 Cross-Platform Expansion: Extending the client

application to other platforms, such as iOS or a web-

based interface for desktop browsers, would enhance

versatility. This would require adapting the app‘s logic

to new ecosystems while maintaining compatibility with

the FreshTomato server, broadening the system‘s user

base.

9. REFERENCES
[1] R. G. Brody, K. Mulig, and J. R. Kimball, "Phishing,

pharming, and identity theft," J. Corp. Account. Finance,

vol. 18, no. 2, pp. 43–49, Jan. 2007, doi:

10.1002/jcaf.20278.

[2] N. N. Cele and S. Kwenda, "Do cybersecurity threats and

risks have an impact on the adoption of digital banking?

A systematic literature review," J. Financial Crime, vol.

32, no. 1, pp. 31–48, Apr. 2024, doi: 10.1108/JFC-10-

2023-0263.

[3] A. Adams and M. A. Sasse, "Users Are Not the Enemy:

Why Users Compromise Computer Security Mechanisms

and How to Take Remedial Measures," Commun. ACM,

vol. 42, no. 12, pp. 40–46, Dec. 1999, doi:

10.1145/322796.322806.

[4] E. Stobert and R. Biddle, "The Password Life Cycle:

User Behaviour in Managing Passwords," in Proc. Symp.

Usable Privacy Security (SOUPS), Menlo Park, CA,

USA, Jul. 2014, pp. 243–255.

[5] A. Karole, N. Saxena, and N. Christin, "Why Johnny

Can‘t Store Passwords Securely: A Usability Evaluation

of Password Managers," in Proc. Symp. Usable Privacy

Security (SOUPS), Pittsburgh, PA, USA, Jul. 2011, pp.

1–16.

[6] R. Biddle, E. Stobert, and S. Chiasson, "A Security

Analysis of Browser-based Password Managers," in

Proc. Netw. Distrib. Syst. Security Symp. (NDSS), San

Diego, CA, USA, Feb. 2016, pp. 1–14.

[7] S. K. Sharma and M. Warkentin, "Privacy Concerns and

Trust in the Context of Cloud-Based Services: A Study

of User Reactions to Data Breaches," J. Inf. Privacy

Security, vol. 15, no. 3, pp. 123–139, Jul. 2019, doi:

10.1080/15536548.2019.1640974.

[8] D. McCarney, D. Barrera, J. Clark, and P. C. van

Oorschot, "Security and Usability Challenges of Moving

to Local Password Storage," in Proc. Annu. Comput.

Security Appl. Conf. (ACSAC), New Orleans, LA, USA,

Dec. 2014, pp. 256–265, doi: 10.1145/2664243.2664261.

[9] Statcounter, "Mobile Operating System Market Share

Worldwide," Sep. 2024. [Online]. Available:

https://gs.statcounter.com/os-market-

share/mobile/worldwide. [Accessed: Oct. 15, 2024].

[10] J. B. Billa et al., "PassMan: A New Approach of

Password Generation and Management without Storing,"

in 2019 7th International Conference on Smart

Computing & Communications (ICSCC), 2019, pp. 1–6.

doi: 10.1109/SCSC.2019.8840591.

[11] E. Stobert and R. Biddle, "A Password Manager that

Doesn‘t Remember Passwords," in Proceedings of the

2014 New Security Paradigms Workshop (NSPW '14),

Victoria, BC, Canada, 2014, pp. 1–12. doi:

10.1145/2683467.2683471.

[12] H. A. Saleh, "BANK OF PASSWORDS: A Secure

Android Password Manager Implemented Based on

Specific Requirements," Al-Kitab Journal for Pure

Sciences, vol. 8, no. 1, pp. 40–62, Mar. 2024. doi:

10.32441/kjps.08.01.p5.

[13] M. Kanela et al., "Secure and Manage Passwords with

Encryption and Cloud Storage," in 2021 4th International

Conference on Innovative Computing and

Communication (ICICC), 2021, pp. 1–4. doi:

10.2139/ssrn.3833469.

[14] A. Petersen, J. Ko, and J. Pane, "Factors related to the

difficulty of learning to program in Java—an empirical

study of non-novice programmers," Inf. Softw. Technol.,

vol. 46, no. 2, pp. 99–107, Feb. 2004, doi:

10.1016/S0950-5849(03)00112-5.

[15] National Institute of Standards and Technology, "NIST

Special Publication 800-63B: Digital Identity

Guidelines," Jun. 2017. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIS

T.SP.800-63b.pdf. [Accessed: Oct. 15, 2024].

[16] Netgear, "Nighthawk X6 AC3200 Tri-Band WiFi Router

(R8000) Data Sheet," 2021. [Online]. Available:

https://www.downloads.netgear.com/files/GDC/datashee

t/en/R8000.pdf. [Accessed: Oct. 15, 2024].

IJCATM : www.ijcaonline.org

