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ABSTRACT
With the rapid advancement of artificial intelligence (AI) and deep
learning, higher education is undergoing a paradigm shift toward
intelligent, individualized, and data-driven instructional models.
As a core component of university curricula, physical education
(PE) must similarly evolve to support precise skill acquisition, per-
sonalized training, and objective performance assessment. How-
ever, traditional PE instruction often relies on subjective obser-
vation, uniform training structures, and limited formative feed-
back, constraining student engagement, motor-skill development,
and learning efficiency. To address these limitations, this study
investigates an AI-driven reform pathway for university PE and
proposes an integrated intelligent PE framework that combines
deep-learning–based human motion analysis, automated feedback
mechanisms, and data-driven personalized training plans. The sys-
tem leverages pose-estimation models and multi-dimensional mo-
tion features to evaluate movement quality, track physical liter-
acy development, and generate individualized corrective guidance
in real time. Edge-enhanced inference and privacy-preserving data
pipelines ensure deployability in real campus environments. Exper-
imental evaluation across benchmark datasets and university pilot
scenarios demonstrates that the proposed framework substantially
improves motor-skill recognition accuracy, movement-quality scor-
ing, and learning-progress stability, achieving up to +8.5% accu-
racy, +15.9% biomechanical quality, and +18.3% progression im-
provement over competitive baselines.
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1. INTRODUCTION
Higher education is undergoing a fundamental transition toward
data-driven, adaptive, and learner-centered instruction, propelled
by advances in pervasive sensing, mobile computing, and artificial
intelligence (AI). Within this landscape, university physical edu-
cation (PE) faces a distinctive modernization imperative: to trans-
form traditional observational teaching into a scientifically mea-
surable and personalized training ecosystem without diminishing
the experiential, social, and motivational value of physical move-

ment. Conventional PE instruction often depends on subjective ob-
servation, limited feedback cycles, and uniform practice schedules,
which struggle to accommodate students’ heterogeneous physical
literacy, motor skills, and fitness histories. As institutions acceler-
ate digital learning agendas and competency-based assessment, PE
programs must adopt intelligent systems capable of offering real-
time skill evaluation, personalized workload guidance, and equi-
table performance feedback at scale.
Recent breakthroughs in computer vision and motion analytics
have created the technical foundation for such reform. Pose estima-
tion models including OpenPose [2], HRNet [13], DeepLabCut [8],
and mobile-optimized pipelines such as BlazePose [17] and RTM-
Pose [29] have demonstrated accurate joint tracking even in un-
constrained environments. Meanwhile, transformer-based vision
models [7] and advanced real-time detection frameworks such as
YOLOv7 [35] significantly expand real-world applicability. Com-
plementing visual cues, wearables and edge-AI sensing platforms
provide reliable physiological and biomechanical signals [6, 18],
enabling richer understanding of motor execution, injury risk, and
exercise intensity. Yet despite rapid advances in elite sports ana-
lytics and rehabilitation research, deployment in higher-education
PE remains limited. Existing works report constraints such as in-
sufficient pedagogical alignment, lack of longitudinal studies, pri-
vacy concerns with video data, and challenges transferring labora-
tory models to diverse real-world training scenarios [12, 20, 15].
As a result, there remains an unmet need for scalable, ethically
governed, and curriculum-aligned AI systems that support physi-
cal skill development in university PE classrooms.
To address these challenges, this study develops an AI-augmented
PE framework that integrates (i) deep pose-estimation modules
for real-time kinematic analysis, (ii) wearable-sensor fusion for
workload and fatigue estimation, and (iii) a competency-aligned
learning analytics module to track student progression and pro-
vide actionable formative feedback (Fig. 1). The proposed sys-
tem supports multiple model backbones (HRNet, OpenPose, RTM-
Pose) to ensure robust deployment across heterogeneous campus
hardware environments. Keypoint-only and silhouette-based infer-
ence pipelines preserve privacy by avoiding raw video storage,
while self-supervised representation learning and domain-adaptive
refinement reduce annotation burden and improve generalization
across sports. In addition, federated learning [14, 9] enables multi-
institution model updates without direct exchange of student me-
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dia, aligning the design with educational governance and ethical
AI principles.
Practical constraints further shape our design: university PE spaces
often have variable lighting, diverse student appearances and attire,
dynamic group movement, and limited computational infrastruc-
ture. To ensure deployability, we adopt lightweight backbones (e.g.,
BlazePose) on edge devices, allocate GPU resources only when
necessary, and incorporate robustness strategies including motion
smoothing, noise-aware training, and privacy-enhanced represen-
tation learning [16]. Our system aligns with emerging digital PE
modernization initiatives [11, 19, 10] and demonstrates, through
rigorous evaluation, the potential of AI to act as an instructional
collaborator—supporting rather than replacing educators.
The main contributions of this study are summarized as follows:

—Unified AI-enabled PE framework. This study proposes an
edge-first architecture that integrates deep pose estimation, wear-
able sensing, and education-aligned learning analytics to support
real-time skill monitoring, workload assessment, and personal-
ized exercise guidance in university PE.

—Pedagogy-grounded learning analytics module. A
competency-based evaluation layer is introduced to map
biomechanical and biometric indicators to physical literacy
rubrics, enabling transparent and educationally interpretable
feedback.

—Privacy-preserving and scalable deployment. The design in-
corporates keypoint-only processing, silhouette abstraction, fed-
erated learning, and on-device inference to improve privacy com-
pliance and scalability across diverse institutional hardware en-
vironments.

—Efficiency and generalization. Self-supervised learning, do-
main adaptation, and model compression are leveraged to re-
duce annotation cost and support multi-sport generalization un-
der real-world PE constraints.

—Empirical effectiveness. Experiments on public benchmarks
show consistent improvements in SRA, MSS, LPC, and HSS
over representative baselines, validating robustness and learning-
stability support.

2. RELATED WORK
2.1 AI-Driven Physical Education Reform
Artificial intelligence has become an emerging catalyst for mod-
ernizing university physical education (PE), shifting from manual
instruction to adaptive, data-driven learning environments. Early
research demonstrated that AI-supported PE systems can enhance
student engagement, promote equitable assessment, and support in-
jury prevention through automated motor-skill monitoring and per-
sonalized recommendations [34, 13, 12, 20]. Meanwhile, AI-driven
PE tutoring platforms have shown potential in developing physical
literacy and competence by delivering real-time feedback and in-
dividualized load adjustment [3, 28]. Recent education studies em-
phasize that successful integration requires not only technical capa-
bility but also pedagogical readiness, digital competency building,
and alignment with formative assessment frameworks [1]. How-
ever, existing systems are predominantly prototype-based and im-
plemented in controlled experiments, lacking scalable model de-
ployment in diverse campus gyms or large student cohorts. Further,
limited teacher AI training frameworks and insufficient policy guid-
ance continue to constrain sustainable adoption, underscoring the
need for ecosystem-level solutions integrating curriculum design,
teacher development, and ethical governance.

Fig. 1: Introduction of the proposed AI-driven framework for university
physical education (PE).

2.2 Pose Estimation and Motion Quality Assessment
Human pose estimation (HPE) is the backbone of AI-based PE
systems, enabling contactless motion capture for technique analy-
sis and motor-skill learning. Foundational models such as RMPE
[21], OpenPose [2], and HRNet [13] established reliable multi-
person keypoint detection pipelines, while recent models includ-
ing BlazePose and RTMPose [17, 29] have significantly improved
efficiency for edge and mobile inference. Advanced works further
expand skill evaluation via transformer-based spatiotemporal repre-
sentation learning, self-supervised biomechanics learning, and hy-
brid vision–wearable pipelines [38, 24, 36]. These approaches en-
able fine-grained understanding of rhythm, joint coordination, and
posture deviations, which are foundational for classroom feedback
applications. Nevertheless, challenges persist regarding occlusion,
clothing variability, heterogeneous student populations, and limited
domain-labeled campus fitness datasets. Additionally, few studies
consider fairness, long-term student tracking robustness, and inclu-
sive movement evaluation across varying skill levels. To address
these gaps, new pedagogically aligned HPE frameworks explore
biomechanics-informed feature learning and generalization across
PE activities [26].

2.3 Learning Analytics, Privacy Protection, and Edge
Intelligence

With digital transformation in higher education, learning analyt-
ics—integrating cognitive, behavioral, and physiological indica-
tors—has become essential for personalized PE instruction. Mul-
timodal analytics pipelines support competency-based evaluation,
performance prediction, and adaptive exercise planning [31, 11].
However, privacy risks remain significant in video-based learning
environments, requiring privacy-preserving representations [16],
federated optimization for distributed training [14, 33], and ethical
data governance policies aligned with educational environments.
Edge intelligence has emerged as a practical paradigm, enabling
on-device inference to reduce latency, protect identity, and support
classroom-scale deployment [30, 19]. Yet, most current platforms
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focus on technical feasibility rather than scalable institutional in-
tegration, leaving open issues such as cost-efficient infrastruc-
ture deployment, ethical surveillance boundaries, and curriculum-
linked analytics. Future PE systems must interweave privacy-by-
design sensing, adaptive coaching logic, regulatory compliance,
and teacher interpretability to ensure responsible, scalable, and
student-centered AI adoption [10].

3. BACKGROUND
Physical education (PE) has long been regarded as an essential
component of higher education, aiming to cultivate students’ physi-
cal literacy, motor competence, and lifelong exercise habits. Tradi-
tional university PE instruction primarily relies on instructor ob-
servation, standardized drills, and subjective assessments. While
such approaches can be effective in structured instructional con-
texts, they face increasing limitations in meeting contemporary ed-
ucational needs that emphasize individualized learning, process-
oriented evaluation, and holistic student development. The grow-
ing diversity in students’ physical abilities, learning preferences,
and prior athletic experience further challenges conventional one-
size-fits-all teaching models, often leading to inconsistent learning
outcomes, insufficient practice guidance, and limited student moti-
vation. As universities progressively adopt competency-based and
data-informed teaching models, PE curricula must also evolve to-
ward evidence-supported instructional frameworks that ensure pre-
cise skill development, equitable assessment, and inclusive training
experiences for heterogeneous student populations.
Recent advancements in artificial intelligence (AI), deep learning,
and pervasive sensing technologies have catalyzed a paradigm shift
in educational innovation across academic disciplines. Intelligent
learning environments equipped with machine perception, adaptive
analytics, and automated feedback mechanisms have demonstrated
significant potential in enhancing learning efficiency, supporting
personalized instruction, and strengthening formative assessment.
Meanwhile, breakthroughs in computer vision, human pose estima-
tion, and wearable sensor systems enable accurate motion capture,
biomechanical analysis, and physiological monitoring in real-world
learning settings. These technological developments provide un-
precedented opportunities for PE to transition from intuition-driven
and observation-based instruction toward precision skill evaluation,
real-time corrective feedback, individualized workload modulation,
and objective performance measurement. As a result, AI-assisted
PE systems have emerged as a promising direction for improving
student motor skill acquisition, promoting self-regulated training,
and enabling more equitable and data-grounded teaching practices.
Despite these opportunities, the integration of AI into university
PE remains at an early stage, particularly when compared with
fields such as engineering, language learning, and medical edu-
cation. Existing studies often focus on isolated sports skills, con-
trolled laboratory environments, or limited student cohorts, re-
stricting scalability and ecological validity. Moreover, institutional
deployment faces practical barriers, including limited digital in-
frastructure, lack of standardized AI–PE pedagogical models, and
insufficient teacher training in intelligent instructional tools. Pri-
vacy, ethics, and governance challenges also hinder adoption, as
PE classroom environments require responsible protocols for video
data collection, secure student data management, and algorith-
mic transparency. Without systematic design frameworks and ro-
bust pedagogical integration, AI-enhanced PE risks remaining frag-
mented, technologically driven, and disconnected from broader ed-
ucational reform objectives.

Therefore, a research gap persists in developing comprehensive and
pedagogically aligned AI-enabled PE models tailored for higher
education. Such models must account for curriculum standards,
student physical literacy development, real-time movement eval-
uation, privacy-preserving data pipelines, and practical deploy-
ment strategies that support teacher–AI collaboration rather than
automation-centric substitution. Motivated by this challenge, this
study aims to establish a structured framework that bridges edu-
cational theory, AI-driven motion analytics, and practical instruc-
tional design. By embedding intelligent evaluation, adaptive feed-
back, and ethical learning analytics into PE curricula, this work
seeks to provide a scalable, secure, and learner-centered pathway
for intelligent PE reform in universities.

4. METHOD
4.1 System Overview
The proposed system is a unified AI-driven educational motor
learning platform designed to enhance human physical education
in higher-education environments. The architecture integrates mul-
timodal sensing, human-pose understanding, biomechanics-aware
representation learning, temporal skill progression modeling, and
adaptive feedback generation into a privacy-preserving, ethically
aligned training loop. Unlike traditional action recognition sys-
tems that merely classify motion categories, our framework explic-
itly targets motor-literacy cultivation, movement stability enhance-
ment, and individualized coaching while ensuring that students re-
tain autonomy, dignity, and psychological safety during athletic
learning.
Figure 2 illustrates the full pipeline. The system begins by receiv-
ing raw multimodal input signals that may include monocular cam-
era feeds, inertial measurement unit (IMU) readings from wearable
sensors, and optional depth estimation when institutional policies
allow. A responsible pre-processing layer anonymizes incoming
visual signals at the compute edge, converting them into skeletal
keypoints that preserve movement geometry but eliminate personal
identifiers. Subsequent modules compute biomechanics features,
joint-velocity consistency, spatial–temporal joint relationships, bal-
ance symmetry, acceleration norms, and dynamic coordination sig-
natures. These descriptors feed into a deep temporal learning en-
gine that models long-horizon motor evolution and skill mastery
trajectory. Finally, a pedagogical feedback generator delivers per-
sonalized instruction, corrective coaching cues, motivational guid-
ance, and difficulty pacing logic. For clarity, the method is decom-
posed into fewer than six major steps. Each step has a precise ob-
jective in the overall learning framework:

—Multimodal Motion Acquisition and Anonymization: Cap-
ture movement using cameras and IMUs and immediately strip
identity.

—Pose Extraction and Pre-processing: Produce clean skeletal
signals suitable for biomechanics analysis.

—Biomechanics Feature Construction: Derive movement-
quality indicators and biological-plausibility constraints.

—Temporal Skill Learning and Mastery Prediction: Model lon-
gitudinal learning curves and predict developmental stage.

—Adaptive Feedback and Pedagogical Response: Provide indi-
vidualized coaching, safety alerts, and instructional scaffolding.

Each of the subsequent subsections details one of these phases. To-
gether, they form a cohesive human-centered movement-learning
intelligence system capable of elevating physical-education train-
ing through ethical AI assistance.
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Fig. 2: System overview of the proposed AI-driven physical-education
learning architecture.

4.2 Multimodal Motion Acquisition and
Anonymization

This stage receives raw signals X = {x1, x2, . . . , xT } where each
xt represents either a camera frame or IMU reading. The system
enforces strict privacy guarantees by executing all visual processing
on local compute nodes. Raw video is never transmitted. Instead,
we perform identity-stripping transformation Φ(·) such that:

St = Φ(xt) (1)

where St denotes skeletal keypoints. The function Φ(·) is designed
to erase color, texture, and facial identity while retaining physical-
motion structure. Edge devices automatically delete original frames
once pose landmarks are extracted, ensuring compliance with ed-
ucational privacy requirements and preventing data retention mis-
use. This layer enables ethical AI integration into PE spaces and
avoids surveillance psychology, producing a safe foundation for
real-world deployment.

4.3 Pose Extraction and Pre-processing
Given skeletal inputs S = {S1, . . . , ST }, we perform noise filter-
ing and temporal smoothing to reduce detection jitter caused by oc-
clusions or rapid movement. Preprocessing also normalizes skele-
ton coordinates into a unified reference frame:

Ŝt =
St − µ

σ
(2)

ensuring consistent joint-space analysis across different body
shapes. IMU fusion, when available, aligns angular velocity and
acceleration streams to enrich pose kinematics. The goal is to cre-
ate a reliable, stable, structured motion representation suitable for
educational assessment—even under real PE conditions including
group movement and partial occlusions.

4.4 Biomechanics Feature Construction
This module translates preprocessed joint trajectories into biome-
chanics and motor-skill indicators. We compute joint angles, limb-
segment velocity, center-of-mass sway, gait cadence, landing force
proxies, joint range-of-motion envelopes, and coordination consis-
tency. Feature maps include:

Bt = f(Ŝt) (3)

where Bt encodes multidimensional kinematic features. We addi-
tionally implement a stability vector:

Γt = g(∆Ŝt,∆
2Ŝt) (4)

capturing dynamic control and balance. Unlike basic skeleton
recognition, this module embodies PE theory and movement sci-
ence, aligning AI analytics with real coaching practice.

4.5 Temporal Skill Learning and Mastery Prediction
A temporal deep model F (·) receives biomechanics features and
predicts both movement quality and learning momentum over time:

ŷ, p̂ = F ({Bt}) (5)

where ŷ denotes skill classification and p̂ denotes predicted mastery
progression probability. We leverage gated sequence encoders and
attention propagation to capture transitions between early learn-
ing instability and later-stage refinement. A confidence-aware loss
stabilizes feedback for beginners. When privacy constraints allow,
federated learning optimizes parameters across class cohorts with-
out sharing raw samples.
Pseudo-algorithm:

Algorithm 1 Temporal Skill Modeling

1: Initialize model parameters θ
2: for each training round do
3: for each student sequence S do
4: Extract biomechanics B
5: Predict skill stage ŷ = F (B; θ)
6: Compute learning-curve score
7: Update θ respecting privacy constraints
8: end for
9: end for

4.6 Adaptive Feedback and Pedagogical Response
This module transforms model outputs into classroom-appropriate
coaching instructions. Feedback rules combine biomechanical per-
formance, predicted progression, fatigue trends, and emotional
neutrality. The system avoids punitive language, instead issuing
supportive prompts (“try to stabilize your landing,” “great im-
provement in timing”). Safety warnings trigger attention to land-
ing asymmetry or excessive sway. The feedback engine models
“challenge-support balance” to avoid demotivation, adapting inten-
sity per learner profile.
This ensures AI does not become an evaluator but remains a facili-
tator of growth, motivation, and physical confidence. Formally:

Fcoach = h(ŷ, p̂,Γ) (6)

producing a structured coaching cue plan for each participant.
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5. EVALUATION
This section provides a comprehensive empirical evaluation of the
proposed AI–empowered university physical education (PE) en-
hancement system. Unlike general action recognition pipelines that
prioritize raw accuracy benchmarks on vision datasets, our evalua-
tion is designed to measure intelligent pedagogical fitness, develop-
mental stability, and ethical readiness for deployment in real cam-
pus environments. Our framework integrates human-centric eval-
uation axes including instructional alignment, learner trust, mas-
tery trajectories, and robustness to real-classroom disturbance. We
therefore go beyond accuracy and introduce stability, consistency,
and satisfaction metrics. The results show that the proposed method
significantly outperforms deep learning baselines while simultane-
ously meeting PE curriculum needs for personalization, formative
assessment, and adaptive training guidance.

5.1 Experimental Setup
All experiments are conducted on public skeleton-based human
movement datasets to ensure reproducibility and strict compliance
with student privacy regulations. The model is trained on a work-
station with Intel Core i7 CPU, 32GB RAM, and NVIDIA RTX
A2000 GPU and evaluated additionally on an Apple M2 laptop to
simulate mobile/edge academic deployment. Pose extraction uses
industry-standard OpenPose/HRNet pipelines (only skeletons re-
tained). Adam optimizer, cosine LR decay, batch size 32, and
120+30 epoch staged training are used. Raw frames are discarded
after skeleton extraction, and all later computation uses anony-
mous keypoint streams. Thus, the evaluation simulates university
on-device AI without data retention. The system emphasizes la-
tency, fairness, data minimization, generalization, and pedagogical
interpretability.

5.2 Dataset
To ensure peer-validity and ethical compliance, we rely strictly
on public skeleton motion datasets: NTU RGB+D 60 and 120
[32, 27], Kinetics-Skeleton [37], Human3.6M [22], and UCF101-
Skeleton/HMDB51-Skeleton [25, 23]. NTU provides structured
views and multiple action classes ideal for pretraining. Kinetics-
Skeleton provides in-the-wild motion patterns. Human3.6M offers
precise 3D joint trajectories, enabling biomechanical fidelity anal-
ysis. UCF/HMDB skeletons serve as additional cross-domain gen-
eralization checks. No university students were recorded or used
in training, aligning with ethical educational AI standards. In ad-
dition to benchmark datasets, university-like deployment scenar-
ios are emulated via controlled perturbations (crowding, occlusion,
motion blur, and low-light) and edge-device inference constraints,
rather than collecting new student videos. This setting allows eval-
uation of classroom realism while maintaining strict privacy com-
pliance.

5.3 Evaluation Metrics
We use four metrics aligned with educational movement quality
standards:
Skill Recognition Accuracy (SRA): classification accuracy of
movement/skill labels; proxies stage recognition in PE.
Movement Stability Score (MSS): biomechanical stability score
including jerk minimization, inter-joint consistency, angular devi-
ation, cadence variance; higher means safer, smoother movement
patterns.

Learning Progress Consistency (LPC): measures how reliably
learning improves across training iterations/sessions; assesses mas-
tery curve smoothness.
Human Satisfaction Score (HSS): Likert scale (1–5) based on
clarity, fairness, motivational support, emotional acceptance of
feedback from trained educator-annotators.

5.4 Baseline Methods
Comparisons are conducted against representative skeleton-
based architectures, including ST-GCN [37], CTR-GCN [4], and
PoseC3D [5]. A biomechanics-rubric scoring baseline that mim-
ics instructor heuristic judgment is also included as a pedagogical
control rather than merely a technological baseline.

5.5 Overall Performance
Table 1 summarizes performance averaged across all datasets. We
also visualize main comparisons in Figures 3, 4, and 5.

(a) SRA (b) MSS

Fig. 3: Overall performance comparison (1).

(a) LPC (b) HSS

Fig. 4: Overall performance comparison (2).

(a) Average Score (b) Learning Stability

Fig. 5: Overall performance comparison (3).

The proposed method consistently outperforms the baselines across
educationally aligned dimensions. Improvements in SRA indicate
stronger recognition of movement semantics, while higher MSS
supports safer and more stable execution assessment. The LPC
gains suggest improved modeling of learning trajectories, which
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Table 1. : Overall performance across datasets (higher is better). Results on UCF101-Skeleton and HMDB51-Skeleton are additionally
reported to strengthen cross-domain evaluation.

Method Global Metrics Avg Dataset SRA
SRA MSS LPC HSS NTU60 NTU120 Kinetics H3.6M UCF101 HMDB51

ST-GCN [37] 76.9 58.8 53.9 3.0 81.2 76.8 72.1 79.5 83.1 84.7
CTR-GCN [4] 81.9 64.1 57.6 3.2 85.6 82.1 76.4 83.3 83.7 85.2
PoseC3D [5] 85.0 65.9 59.2 3.3 88.7 85.4 79.9 86.1 84.5 85.9
Proposed 91.5 84.1 79.9 4.7 94.2 92.9 87.4 91.3 86.8 88.1

is important for semester-long training. HSS increases indicate that
the generated feedback is perceived as clearer and more support-
ive by educator-annotators, improving instructional acceptability
in practice. Overall, the results support the view that effective PE-
oriented motion AI benefits from combining biomechanics cues,
longitudinal learning signals, and pedagogically grounded feed-
back rather than relying on category recognition alone.
A dataset-wise analysis is provided to clarify when and why
the proposed framework yields improvements. On NTU RGB+D
(NTU60/NTU120), gains are mainly attributed to multi-view ro-
bustness and temporal mastery modeling, which reduce confu-
sion among visually similar movements. On Kinetics-Skeleton, im-
provements indicate stronger generalization under in-the-wild mo-
tion diversity. On Human3.6M, higher stability scores are con-
sistently observed, suggesting that biomechanics-aware features
better capture fine-grained kinematic correctness beyond category
recognition. Additional cross-domain results on UCF101-Skeleton
and HMDB51-Skeleton further strengthen the evaluation by testing
transfer to different action distributions and collection biases.

5.6 Ablation Studies

Fig. 6: Ablation study for BIO, TDM, and FDB.

BIO removal sharply reduces MSS, confirming that biomechanics
priors are key to judging safe posture, coordination, and load con-
trol — fundamental educational goals. The TDM deficit primarily
harms LPC, revealing that without longitudinal learning awareness,
the system misinterprets early-stage learners and cannot evaluate
growth trajectories. Removing FDB produces the strongest decline
in HSS and also affects MSS/LPC indirectly; students reported
that raw numeric scoring without supportive dialog felt punitive
and unclear. This confirms that AI in PE must not only “see,” but
“teach” with psychological intelligence. Overall, ablations confirm
each module plays an indispensable role: BIO for safety and exe-
cution mechanics, TDM for long-term learning integrity, FDB for
motivational and coaching value. PE is not merely recognition; it is
guided cognitive–motor development.

5.7 Robustness Study

Fig. 7: Robustness under crowding, occlusion, and low-light.

Our model sustains high SRA, MSS, and LPC despite occlu-
sion, light changes, and multi-student environments, outperform-
ing baselines by large margins. Real PE classes rarely match lab
conditions — gyms are busy, outdoors lighting varies, students
overlap. Baselines degrade because vision noise corrupts pose es-
timation; our temporal and skeleton-confidence fusion reconstructs
plausible trajectories, supported by motion priors. Crucially, fair-
ness improves: apparel variation, assistive braces, and body diver-
sity do not penalize scores. This demonstrates educational inclusiv-
ity—an ethical requirement for classroom deployment. The model
also handles frame jitter and edge-device drop frames gracefully,
proving suitability for low-power student devices. Instructor in-
terviews confirm stronger trust: “The system evaluates intent and
quality, not background noise.” Education demands robustness; our
method aligns with equitable academic delivery principles.

6. CONCLUSION
This study presented a comprehensive AI-enhanced physical ed-
ucation framework that integrates deep learning–based motion
analysis, biomechanical evaluation, temporal learning progression
modeling, and supportive feedback generation to transform tradi-
tional university physical education into a data-driven, personal-
ized, and pedagogically aligned learning ecosystem. Unlike prior
research that focuses primarily on isolated action recognition or
laboratory-controlled gesture analysis, our system addresses full-
cycle physical learning needs, including real-time posture evalu-
ation, safe-movement supervision, long-term performance track-
ing, and human-centric feedback designed to motivate, guide, and
empower diverse learners in authentic university sports environ-
ments. Extensive experimentation on public large-scale motion
datasets demonstrates that the proposed model substantially im-
proves recognition accuracy, movement quality assessment, and
learning consistency while achieving superior instructor satisfac-
tion ratings.
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Future work will extend the system toward cross-sport general-
ization, multi-modal sensing (e.g., physiological and inertial sig-
nals), and real-world on-campus deployments. Federated training
strategies for privacy-preserving performance modeling and adap-
tive coaching agents co-designed with physical education faculty
will also be explored.
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