International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.77, January 2026

Deep Adaptive Learning for Robust and Scalable Swarm
Coordination in Dynamic Environments

B. Sivakumar Reddy S.K. Harish

Jinka Ranganayakulu

M. Krishna*

RV College of Engineering RV College of Engineering RV College of Engineering RV College of Engineering

Bengaluru Bengaluru

ABSTRACT

Large groups of autonomous agents, like mobile robots or
drones, can work together to accomplish complex tasks in
unpredictable and dynamic environments thanks to swarm
coordination. The flexibility, scalability, and communication
effectiveness of traditional rule-based or reinforcement-
learning approaches are frequently hampered. To improve
swarm coordination's robustness and scalability, this paper
suggests a Deep Adaptive Learning (DAL) framework that
combines attention-based communication, multi-agent
reinforcement learning, and meta-adaptive learning. Reducing
communication overhead and increasing coordination
efficiency, each agent uses a deep neural policy network with a
dynamic attention mechanism to selectively process pertinent
neighbour information. Additionally, quick policy adaptation
to environmental changes without complete retraining is made
possible by an environment-change detection module in
conjunction with meta-learning. In contrast to current methods,
DAL offers a scalable solution for intelligent swarm systems
by achieving faster convergence, higher cumulative rewards,
and superior resilience to agent loss and communication noise,
as demonstrated by experimental results from dynamic area
coverage, target tracking, and formation-switching tasks.
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1. INTRODUCTION

Many engineering applications, including search and rescue
[1], disaster management [2], surveillance operations [3], and
environmental monitoring tasks [4], have made extensive use
of swarm intelligence. As a result, it offers redundancy, fault
tolerance, scalability, and flexibility [5]. In static scenarios, the
ruled-based Reynolds' Boids model [6] produces remarkable
emergent coordination [7]. However, when agents encounter
changing environments, this system frequently becomes
unstable or produces unpredictable coordination or suboptimal
coordination [8]. Centralised control strategies suffer from two
fundamental limitations like scalability and single point
vulnerability. The growing number of agents in this system
causes communication to grow exponentially, making real-
time decision-making impractical [9].

Decentralised control architectures use limited neighbour
communications and their own observations to make local
decisions [10]. The distributed nature of biological swarms is
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more closely modelled by this system, which also increases
scalability and fosters robustness for individual failures [11].
Complex control policies can be successfully learnt by
autonomous agents using Deep Reinforcement Learning
(DRL). In order to learn complex control policies and partially
observable environments, DRL directly processes high-
dimensional sensory data [12]. Through the use of Multi Agent
Reinforcement Learning (MARL), agents can learn how to
interact with their peers and the environment on both an
individual and collective level [13]. MARL improves robotic
coordination, traffic management, and cooperative navigation.
Nonetheless, there are a number of basic difficulties when
using DRL or MARL on large-scale swarm systems. The curse
of dimensionality is the exponential expansion of the joint state
action space as the number of agents rises. In addition to
increasing simple complexity, it hinders policy convergence
[14]. Multiple agents learning simultaneously causes
environmental non-stationarity, which is against the Markow
property that most RL algorithms rely on [15]. Individual
agents are limited by communication constraints and partial
observability. Due to the system's full environmental data,
responses are delayed and coordination is ineffective [16]. The
fact that multi-agent communication topologies change over
time is another important concern.

Therefore, learning-based swarm frameworks incorporate
time-varying  connectivity ~while maintaining  robust
coordination in incomplete, delayed or noisy communication
[17]. Graph Neural Networks[18] and attention-based
communication models[19] improve information flow and
stability. But they still struggle with scalability when thousands
of agents interact in real time and require efficient mechanisms
to limit communication overhead. The interplay between
adaptability, robustness, and scalability defines the next
frontier in swarm intelligence research.

Adaptive learning systems must balance exploration and
exploitation to respond to environmental changes without
destabilizing coordination. Robustness requires resilience to
sensor noise, communication failure and agent loss, while
scalability demands. Achieving all three properties
simultaneously within a deep learning framework is a challenge
for artificial intelligence [20]. Dong and Li[21] proposed
Adaptive Evolutionary Reinforcement Learning that has
dynamically balanced reinforcement updates and evolutionary
research. Evolutionary MARL (E-MARL) has been explored
to preserve population diversity and improve robustness in non-
stationary environments[22]. Nevertheless, all methods target
only small multi-agents (low-dimensional problems), leaving
their  applicability,  decentralized  swarm  systems
unresolved. Hence, the DAL framework integrates: (i) deep
multi-agent reinforcement learning (MARL) for decentralized
policy, ii) dynamic attention-based communication for scalable
information and iii) environmentally-aware meta adaptation for
rapid policy adjustment in response to the environment. The
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proposed DAL framework aims to bridge the gap between
biological inspiration and data-driven intelligence by providing
learning, adapting and sustaining.

2. RELATED WORK

The study of swarm coordination lies at the intersection of
distributed control, swarm intelligence, and multi-agent
learning. Numerous approaches have been proposed to design
scalable and robust swarm systems capable of emergent
collective behavior. Among these, DAL frames more relevant
areas of research. This framework includes classical rule-
based models, control-based approaches, deep MARL, the
GNN model for coordination, and adaptive and meta-learning
techniques for dynamic systems.

Early works on swarm intelligence models such as Reynolds’
Boids simulated flocking behavior using separation, alignment,
and cohesion rules to produce emergent formations without
explicit coordination [23]. Further, this framework inspired
collective motion, aggregation and dispersion in robot swarms
[24]. Ant Colony optimization[24] and Particle Swarm
Optimization[25] models  pheromone-based collective
movement of particles. These models are more effective for
static optimization and path-planning but lack adaptability for
dynamic environments. Martinoli [26] and Beni [27]
established the theoretical models for collective robotic
behaviours, scalability and tolerance. Further extended to
practical applications including foraging, cooperative transport
and area coverage [28]. More recent efforts incorporated
probabilistic finite-state machines [29] and potential-field
methods to formalize swarm behaviour [30]. However, such
rule-based strategies still face difficulties in uncertain
situations.

To improve coordination precision and performance
guarantees, many researchers explored control-theoretic and
optimization-based formulations. Graph-theoretic methods,
including consensus algorithms [31], formation control [32]
and converge control [33] use numerical models for agent
interactions to achieve global convergence. Olfati [34], and
Cortex et al. [35] proposed a consensus-based flocking
framework and introduced coverage control using Voronoi
partitioning to enable distributed spatial deployment. Model
predictive control (MPC) and potential field optimization
provide flexibility by allowing agents to solve local
optimization problems [35]. However, MPC is more
computationally expensive and is unsuitable for real-time
adaptation in dynamic environments.

The success of DRL in high-dimensional decision-making
tasks [36] has inspired its application to swarm systems. DRL
agents learn policies by maximising cumulative rewards
through interaction with environment, which makes suitable for
autonomous coordination. Single agent DRL ability to learn
robust behaviours directly from sensor inputs[37]. Moreover,
extending this method to multi-agent system leads to new
complexities due to the curse of dimensionality, credit
assignment and nano-stationarity [38]. Although MARL
framework addresses theses challenge successfully but struggle
in large swarm environments. They assume a fixed number of
agents and static communication topology. The adaptation
mechanisms were limited to communication control rather than
behavioural policy updates.

3. THEORETICAL FRAMEWORK

3.1 Problem Formulation
In this study, the swarm coordination problem is modelled as a
Partially Observable Markov Game (POMG) that captures the

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.77, January 2026

stochastic, dynamic, and decentralised nature of multi-agent
interactions. The swarm consists of N autonomous agents
operating in a shared environment. Each agent i€{1,2,...,N}
observes a local state 0i(t)€O; at time t, selects an action
ai(t)EA;, and receives an instantaneous reward r'(t)€R based on
the collective outcome of all agents’ actions.

Normally, the swarm system is represented as:

G= (S {A }L 1rPr {Rl};,lill}/) (qu)

Where S, and A are global state space and action space of agent
i respectively. P =SXA1XA:2 .... X AN — S defines the
transition function, capturing how the joint actions influence
environment dynamics. Ri =S X Ai — R is the reward function
assigned to agent i; and y€[0,1) is the discount factor
controlling the long-term reward weighting.

Because each agent has only partial observations, it must infer
the hidden global state st€S through local sensory data and
limited communication with its neighbours. The overall
objective of the swarm is to maximise the expected cumulative
global reward:

R =X E [/ry(®)] (Eq.2)

This formulation allows decentralised learning, where each
agent optimises its local policy mi(ailoi), yet collective
behaviour emerges through shared reward structures and inter-
agent communication

Global Reward:R|

Transition Local Rewards:
Observations: |o;(t) Function:P r(t)

Action Selecuon‘
0i(t)

(eq.1) Environment State Transition

G=(S,{A}, P, {Ri}my) max E[Yro7 & Za7i ()]

[ Decentralized Policy Learning ] [ Shared Reward Structure ]

[ Inter-Agent Communication J [ Emergent Swarm Behavior J

Fig. 1. Theoretical framework for swarm coordination
formulated as a Partially Observable Markov Game

Fig. 1 should illustrate the swarm environment as a loop
showing (i) agents observing local states oi(t), (ii) selecting
actions ai(t), (iii) interacting via the transition function P, (iv)
receiving local rewards ri(t) and (v) jointly contributing to the
global reward R. The figure visually links decentralised
observation—action cycles to the shared objective, clarifying
how individual policies produce emergent swarm behaviour.

1.2 Deep Policy Representation

In the proposed framework, each agent i learns a policy
parameterized by a deep neural network, denoted as 7oi(ailoi,ci),
which maps its local observation oi(t) and contextual
communication input ci(t) to an action ai(t). This neural policy
structure enables decentralized agents to make autonomous

55



decisions while maintaining coordinated group behaviour
through inter-agent communication.

The communication term ci represents aggregated information
received from the neighbouring agents within a local
communication radius and is formally defined as:

¢ = foac (10,.) (Eq.3)

where fp4c denotes the Dynamic Attention Communication
(DAC) module. The DAC mechanism allows each agent to
selectively attend to relevant neighbours by assigning attention
weights ajj that quantify the importance of information coming
from agent j:
exp (eij)

i = S oo (e eij= g(0Oi, Oj)) (Eq.4)
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Fig. 2. Deep Policy Representation with Dynamic
Attention Communication

Where, ejj is a learnable compatibility function that measures
the relevance between the feature embeddings of agents i and
j. The attention coefficients aij are normalised using a softmax
function to ensure that the sum of attention over all neighbours
equals one. This dynamic weighting mechanism allows the
swarm to adaptively modulate information flow—enhancing
robustness against communication noise, redundant messages,
or changing topologies.

Fig. 2 should illustrate each agent’s neural policy i receiving
two inputs its local observation o; and aggregated
communication context ¢i. The DAC module, shown as an
attention layer, processes neighbour observations oj to compute
attention scores o, Wwhich determine the weighted
communication signal entering the policy network. The Fig. 2
visually highlights selective attention links among agents,
demonstrating adaptive information exchange that drives
coordinated swarm decision-making.

3.3 Environment-Change Detection

The environment-change detection mechanism continuously
monitors two dynamic indicators: the population reward
variance o%(t) and the divergence in observation distributions
Dxwr(p(ot)llp(ot-1)). The reward variance reflects the stability of
agent performance across the swarm. A sharp increase in 0% (t)
indicates inconsistent rewards among agents, suggesting
altered environmental conditions or disturbances affecting task
performance. Simultaneously, the Kullback—Leibler (KL)
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divergence DxL measures the shift in the statistical distribution
of agent observations between consecutive time steps. A
significant rise in this value signals that the sensory inputs have
deviated from prior patterns, implying that the environment’s
state-transition dynamics have changed. An environment
change is declared when either of the following thresholds is
exceeded:

O'Iza(t) < 14 OT DKL > 1 (EqS)

Population Reward Variance

Th *(t)
Q L]
>
s Environment
Change Declared
If: (02 tt > 11)
Time (1) OR (DKL < 12 @)
Observation Divergence l

Trigger Meta-
Th2(t) Parameter Updates
SR GO RS

D)

i‘ime (t)

Reconfigure Policy
Parameters (7o)
Monitoring metrics used for
environment-change detection.

Adapt Attention
Weights (@) in D
DAC Module

Enables rapid policy adjustment and
sustained swarm performance under dynamic
environmental conditions

Fig. 3. Environment-Change Detection and Adaptive
Meta-Learning Process

Upon detection, meta-parameter updates are triggered,
prompting the learning system to reconfigure policy parameters
or adapt the attention weights in response to the new conditions.
This mechanism enables rapid adjustment of swarm policies
without retraining from scratch, ensuring sustained
performance under dynamic and uncertain scenarios. Fig. 3
should illustrate the monitoring process showing the temporal
evolution of ¢4 (t) and Dk and highlight the threshold-based
trigger that initiates adaptive meta-learning updates.

3.4 Meta-Adaptation Mechanism

The proposed framework employs a Model-Agnostic Meta-
Learning (MAML)-based adaptation strategy to enable the
swarm to adjust rapidly to new environmental conditions
without complete retraining. Meta-learning, or “learning to
learn,” equips the policy parameters with generalizable
knowledge that can be fine-tuned efficiently when an
environment shift occurs.

Formally, the meta-adaptation process consists of two stages:
an inner update for task-specific adaptation and an outer update
for meta-level optimization. During the inner loop, each agent
performs a gradient-based update using the current reward
signal R:

0' =6 — aV0 LijpnerR; (Eq.6)
where o is the inner learning rate. These yields adapted
parameters 0’ suited to the modified environment.
Subsequently, the outer update refines the meta-parameters
across multiple environment samples:

0« 0 — BVO LoyrerRes1 (Eq.7)
with B representing the meta-learning rate. This dual-step
process ensures that the learned policy not only adapts rapidly
to environmental perturbations but also maintains long-term
generalization across diverse conditions.
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Fig 4. MAML-based Adaptive Meta-Learning Process

Fig. 4 should illustrate the MAML workflow showing the
inner-loop adaptation where agents update local parameters 6’
in response to detected environment change, followed by the
outer-loop meta-update that consolidates these adaptations into
a global policy 0. Arrows should depict iterative feedback
between local adaptation and global optimization, highlighting
efficient knowledge transfer and reduced retraining effort.

4. DEEP ADAPTIVE LEARNING
ALGORITHM

4.1 Overview

The DAL algorithm integrates three complementary
components MARL, DAC, and Meta-Adaptation to achieve
scalable and resilient swarm coordination in dynamic
environments. The algorithm alternates cyclically between
local learning, communication optimization, and adaptive
updates, ensuring both short-term responsiveness and long-
term stability. In the first stage, each agent performs local
policy updates using a MARL approach such as MAPPO.
Agents optimize decentralized policies mei(ailoi, ci) through
reward feedback while maintaining a shared objective across
the swarm. This process enables local autonomy with global
cooperation.

In the second stage, the DAC module dynamically optimizes
attention-based communication by computing importance
weights aij. These weights prioritize relevant neighbours and
filter redundant or noisy information, ensuring efficient and
context-aware message exchange across the swarm

Finally, the third stage invokes meta-adaptation when
environmental changes are detected via fluctuations in reward
variance or observation divergence. The MAML-inspired
adaptation mechanism adjusts meta-parameters 0 for rapid
recovery and sustained performance without full retraining. \
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Fig. 5. Overview of the Deep Adaptive Learning Algorithm.

Together, these stages create feedback driven learning cycle
that continuously refines coordination, communication, and
adaptability, enabling the swarm to maintain high performance
under uncertainty and dynamic conditions. Fig. 5 should depict
a three-stage loop: Local Policy Update — DAC Optimization
— Meta-Adaptation — forming a continuous cycle. Arrows
should represent the feedback between environment detection
and learning modules, illustrating how  adaptive
communication and meta-learning enhance robustness and
scalability.

4.2 Training Procedure

The DAL algorithm follows a three-phase cyclic training
process integrating MARL, attention-based communication,
and meta-adaptation. In the Multi-Agent Interaction Phase,
each agent i observes its state oi, receives contextual input ci
from the DAC module, selects an action ai~mei(ailoi, ci), and
obtains reward ri.

In the Policy Optimization Phase, the collective reward R =
Y. 1; is computed, and the policy parameters are updated via
gradient ascent:

00+ VO J(0) (Eq.8)

This improves decentralized coordination and swarm
efficiency. If the Environment Change Detection (ECD)
module identifies significant changes, the Meta-Adaptation
Phase triggers a MAML-based update using meta-parameters
¢, enabling rapid recovery without full retraining. Fig. 6
illustrates this iterative workflow, highlighting continuous
adaptation for robustness and scalability under dynamic
conditions.
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Fig. 6. Training Workflow of the Deep Adaptive Learning
Algorithm

4.3 Complexity and Scalability

The DAL framework achieves high scalability and
computational efficiency by integrating DAC, which
significantly reduces communication overhead compared to
traditional fully connected multi-agent systems.

In a conventional setup, every agent communicates with all
others, resulting in a communication complexity of O(N?). This
full communication model leads to high bandwidth
consumption, excessive synchronization costs, and limited
scalability when the number of agents N increases. As
illustrated in Fig. 7, the proposed DAC-based communication
reduces complexity to O(kN), where k represents the average
number of relevant neighbours. The attention mechanism
selectively filters out redundant or low-impact communication
links, maintaining only essential connections. This selective
attention ensures reduced overhead and scalability for large N,
without compromising coordination quality.

Full Communication : DAC-based
(O(N?) : Communication (O(kN)

N(N-1/2-072) N

)

! & Selective Attention

High Bandwidth, Not | Reduced Overhead,
scalable for large N : Scalable for large N
Efficient, Parallel Multi-Agent Learning g o i 2

Fig. 7. Complexity and Scalability Overview.

Additionally, DAL’s decentralized architecture enables parallel
training across agents, making it well-suited for GPU clusters
and distributed computing environments. This design allows
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the system to maintain efficient, parallel multi-agent learning
while scaling seamlessly to larger swarm sizes.

5. EXPERIMENTAL EVALUATION IN
SIMULATION ENVIRONMENT

(a) Dynamic Area Coverage
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Fig.8 Simulation Environment and Dynamic Tasks
Evaluates adaptability Scalability

The simulation environment used for evaluating the DAL
framework is illustrated in Fig. 8, showcasing three dynamic
swarm coordination tasks: Dynamic Area Coverage, Target
Tracking, and Formation Switching.

In Dynamic Area Coverage (Fig. 8a), agents operate in a 2D
environment containing obstacles that appear and disappear
over time. The swarm dynamically redistributes to maintain
uniform coverage, testing adaptability and communication
efficiency. In Target Tracking (Fig 8b), multiple moving
targets with varying speeds and trajectories challenge agents to
coordinate and track efficiently. This scenario evaluates the
swarm’s responsiveness and stability in non-stationary
conditions.

In Formation Switching (Fig. 8c), agents transition between
geometric configurations (e.g., circle <> line), demonstrating
coordination and synchronization under changing formation
goals.
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Experiments were conducted with swarm sizes N=10, 50, 100N
comparing DAL with baseline algorithms MAPPO, QMIX,
DGN, and CommNet—under identical conditions.
Performance was assessed using four key metrics: cumulative
reward, adaptation time, communication efficiency, and
robustness to failure.

6. RESULTS

6.1 Quantitative Evaluation
The performance of the proposed DAL framework was
evaluated on three dynamic multi-agent tasks Dynamic Area
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Coverage, Target Tracking, and Formation Switching across
swarm sizes N=10, 50, 100. Comparative baselines included
QMIX, DGN, and MAPPO, tested under identical simulation
conditions.

Table 1 summarizes the averaged quantitative results. DAL
consistently achieved the highest average cumulative reward
(0.89), lowest adaptation time (60 s), and lowest
communication overhead, outperforming all baselines. The
DAC module contributed to improved message efficiency,
while meta-adaptation enabled faster recovery under non-

stationary conditions.

Table 1. Summary of existing swarm coordination approaches with key strengths and limitations

Method Avg. Reward Adaptation Success Comm. Robustness (A Perf. | Energy Efficiency
1 Time (s) | Rate 1 Overhead | @10% loss) | 1
QMIX 0.72 150 81% High -18% 0.63
DGN 0.78 120 85% Medium -15% 0.68
MAPPO 0.80 100 86% High -14% 0.70
DAL 0.89 60 93% Low -4% 0.82
(Proposed)
DAL converged approximately 40% faster and adapted twice
as quickly after environmental changes compared to MAPPO 100 = DQL
and QMIX. Robustness tests with 10% agent loss and 20% ) DAL
communication noise revealed <5% performance degradation 2
for DAL, versus >15% for baselines. § 80
5.2 Graphical Analysis % -
The comparative graphical analysis presented in Figure 9 E
comprehensively illustrates the performance advantages of the =
proposed DAL framework over traditional Deep Q-Learning S 40
(DQL) across multiple performance metrics, including %
cumulative reward, adaptation time, communication efficiency, a
and robustness. L2
<
—— Deep Agent
407 Dep CLeaming g 25 50 75 100
Environment Transitions
T 304 Fig. 9b. Adaptation time versus environment transitions
g comparing Deep Q-Learning (DA) and Deep Adaptive
& Learning
(]
-é 201 Fig. 9(b) illustrates adaptation time across varying
] environmental transitions. DAL exhibits nearly 50% faster
§ adaptation compared to DQL, reflecting its rapid policy
g 10 reconfiguration ability under non-stationary conditions. The
? reduced adaptation delay is attributed to DAL’s meta-learning
g layer, which reuses prior learned parameters instead of
= 04 reinitializing from scratch during environmental changes.

0 100 200 200 300
Training Episodes
Fig. 9a. Average cumulative reward vs. training episodes
comparing Deep Q-Learning (DA) and Deep Adaptive
Learning

In Fig. 9a, the average cumulative reward versus training
episodes indicates that DAL achieves significantly faster and
smoother convergence compared to DQL. While DQL’s
performance plateaus early and exhibits large fluctuations due
to limited adaptability, DAL progressively improves reward
accumulation, stabilizing at a higher asymptotic value. This
consistent increase demonstrates the ability of DAL’s meta-
adaptive mechanism to generalize across dynamic task
variations while maintaining steady learning progression

100

— DQL
. — DAL
< 80
=1
£ 60
)
P R %
S 40 N
=
2
£ 20 \
=
g i o0
= (o]
'Q
o/
(0} 2 4 6 10

Environment Transitions

Fig. 9c. Communication overhead versus environment
transitions comparing Deep Q-Learning (DA) and Deep
Adaptive Learning
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In Fig. 9(c), the communication overhead comparison
highlights DAL’s efficiency advantage. The DAC module
selectively prioritizes relevant inter-agent communication
links, reducing unnecessary bandwidth utilization by
approximately 40-50% relative to DQL. This attention-driven
strategy allows agents to exchange only high-value
information, thereby improving scalability and maintaining
stable coordination even with increasing swarm sizes.

— DO
0-
DAL
_5-
Q
&)
5
Eh 1
kS
9]
o
2157 |
\
-201 | |-

Agen't Loss Communication Noise

Fig. 9d. Robustness comparison under agent loss and
communication noise for Deep Q-Learning (DA) and Deep
Adaptive Learning, showing smaller performance
degradation for DAL

Fig. 9(d) evaluates robustness under conditions of agent loss
and communication noise. DAL maintains near-optimal
performance with minimal degradation (<5%), whereas DQL
exhibits over 15-20% loss. The DAL’s adaptive
communication and decentralized learning structure
collectively ensure resilience to partial system failures and
noisy interactions

Overall, the results from Figure 9a-9d validate DAL’s
effectiveness in achieving higher rewards, faster adaptability,
reduced communication load, and superior robustness,
confirming its suitability for scalable and dynamic swarm
coordination environments.

5.3 Qualitative Observations

Figure 10 illustrates the qualitative behavior of swarm agents
operating under the DAL framework across different dynamic
coordination tasks. In Fig. 10(a), agents demonstrate dynamic
area coverage, where they uniformly distribute themselves
across the workspace while maintaining optimal separation and
avoiding collisions with environmental boundaries or
obstacles. This shows DAL’s ability to sustain balanced
coverage through decentralized coordination.

In Fig.10(b), the swarm exhibits cluster reformation following
partial agent loss or failure. Agents autonomously reorganize
into cohesive clusters without central control, showcasing
resilience and self-healing behaviour in disrupted
environments. This emphasizes the robustness of the DAL’s
communication and adaptive policy modules.
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Fig 10. Visualization of DAL swarm behaviours: area
coverage, cluster reformation, circular, and linear
formations

Fig. 10(c) presents the circular formation task, where agents
arrange themselves in a symmetric ring structure, representing
organized perimeter monitoring or target encirclement
scenarios. This demonstrates DAL’s precision in maintaining
geometric configurations through attention-based coordination.

Finally, Fig.10(d) displays the linear formation, where agents
align themselves along a trajectory, simulating coordinated
movement for exploration or patrol operations. The smooth and
stable alignment reveals the DAL framework’s ability to
preserve formation integrity during transitions. Overall, these
visual observations confirm that DAL enables autonomous,
robust, and adaptive swarm coordination, ensuring coherent
group behavior even in uncertain and dynamically changing
environments.

5.4 Animated Demonstration

A dynamic visualization was developed to illustrate the
adaptive and coordinated behaviours achieved through the
DAL framework. The time-lapse animation captures the
evolution of swarm behaviour over time, highlighting DAL’s
ability to maintain performance and stability across varying and
unpredictable scenarios.

In the initial phase, the agents encounter sudden obstacle
appearances within the workspace. Instead of losing
coordination, the agents autonomously reconfigure their local
positions, maintaining uniform coverage and avoiding
collisions. This demonstrates the capability of DAL’s attention-
based communication mechanism to support rapid, localized
decision-making without the need for central control.

In the subsequent phase, the swarm performs target tracking,
where moving targets follow complex and non-linear
trajectories. The agents dynamically reassign functional roles,
ensuring sustained tracking performance even when individual
agents fail or communication quality degrades. Finally, during
formation switching, the swarm transitions smoothly between
geometric configurations, such as circular and linear
formations, while preserving inter-agent distances and global
alignment. Overall, the animated demonstration reinforces the
robustness, scalability, and adaptability of the DAL framework.
It provides visual confirmation that decentralized learning and
dynamic attention mechanisms enable consistent coordination,
resilience, and collective intelligence under continuously
changing environmental and operational conditions.

60



6. DISCUSSION

The proposed DAL framework demonstrates significant
advantages in addressing the long-standing challenges of
robustness, scalability, and adaptability in dynamic swarm
coordination. Its environment-aware meta-learning mechanism
enables the swarm to sustain high performance even under non-
stationary conditions such as environmental shifts, agent loss,
or communication noise. The decentralized learning structure
ensures scalability, allowing performance to remain stable as
the swarm size increases, while the attention-based
communication module efficiently manages information flow,
reducing redundancy and bandwidth usage. Furthermore, the
MAML-inspired adaptation mechanism provides near-instant
responsiveness to task or environment changes, allowing
agents to rapidly fine-tune policies without retraining from
scratch.

Despite these strengths, DAL presents a few limitations. The
framework incurs high initial computational costs during
training due to the multi-layered reinforcement and meta-
learning processes. Additionally, sim-to-real transfer remains a
challenge, as real-world deployment may require domain
adaptation to account for sensor noise, actuation delays, and
environmental uncertainties.

Future research directions include deploying DAL on physical
swarm platforms such as UAVs and underwater robots,
developing hierarchical swarm control architectures, and
extending DAL to competitive or cooperative multi-swarm
environments. Moreover, establishing theoretical convergence
and stability guarantees would strengthen the framework’s
applicability for large-scale, real-world autonomous systems.

7. CONCLUSION

This study presented the DAL framework, a robust, scalable, and
adaptive approach for swarm coordination in dynamic
environments. By integrating MARL, attention-based
communication, and meta-adaptation, DAL enables
decentralized agents to achieve efficient coordination, rapid
adaptability, and resilience under uncertainty. The framework
effectively addresses critical challenges such as mnon-
stationarity, communication constraints, and scalability,
outperforming existing methods in both convergence speed and
robustness. Experimental evaluations across dynamic tasks—
including area coverage, target tracking, and formation
switching—demonstrated superior cumulative rewards,
reduced adaptation time, and enhanced fault tolerance. DAL’s
decentralized architecture and dynamic attention mechanism
collectively ensure stable and efficient performance as swarm
size increases. Overall, the proposed framework bridges the
gap between Dbiological inspiration and data-driven
intelligence, providing a strong foundation for real-world
deployment in large-scale autonomous systems such as UAV
swarms, robotic fleets, and distributed sensor networks
operating in complex and changing environments. Future
extensions of DAL can enable cross-domain transfer learning
and integration with real-world robotic testbeds
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