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ABSTRACT 

Insider threats remain one of the most difficult security 

challenges because malicious actions often originate from 

trusted users and evolve over time. Traditional rule-based and 

static incident response systems struggle to adapt to changing 

insider behaviours, leading to delayed or suboptimal responses. 

This study proposes an adaptive incident response framework 

based on reinforcement learning that dynamically selects 

response actions according to observed system states and threat 

severity. The framework models incident response as a 

sequential decision-making process, where an agent learns 

optimal response policies through interaction with a simulated 

enterprise environment. States capture security context and 

threat indicators, actions represent response options, and 

rewards are designed to balance rapid containment, operational 

continuity, and false positive reduction. Experimental 

evaluation demonstrates that the proposed approach 

consistently outperforms static and heuristic-based baselines in 

response effectiveness, convergence stability, and adaptability 

to evolving attack patterns. Results show improved response 

accuracy, faster containment times, and stable learning 

behaviour across training episodes. The Q Learning model 

performed better than Support Vector Machine and Random 

Forest models, reaching 96.8 percent accuracy, an F1 score of 

0.944, and a Matthews Correlation Coefficient (MCC) of 

0.917. When connected to Security Orchestration, Automation 

and Response (SOAR) platforms, the system can make fast and 

context aware decisions that reduce the work of analysts and 

shorten response time. The findings confirm that reinforcement 

learning offers a practical and scalable solution for adaptive 

insider threat incident response. This work contributes an 

automated decision framework that improves resilience, 

reduces manual intervention, and supports trustworthy security 

operations in dynamic environments. 
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1. INTRODUCTION 
Insider threats remain one of the most difficult challenges in 

cybersecurity because the attacker is an authorized user whose 

behaviour closely resembles legitimate activity. Their actions 

are subtle, gradual, and context dependent, which causes 

traditional monitoring systems to generate high false positive 

rates and overwhelming alert volumes. These factors make 

manual incident response difficult to scale, especially when 

insiders deliberately mimic normal behavioural patterns. As a 

result, organizations require adaptive and intelligent 

mechanisms capable of detecting abnormal activity that does 

not rely solely on predefined signatures. 

Security Orchestration, Automation, and Response platforms 

have improved workflow consistency, yet their rule based 

playbooks remain rigid and struggle to adjust to evolving threat 

conditions [1], [2]. Static rules cannot fully capture the dynamic 

strategies used by sophisticated insiders, leading to missed 

detections or delayed responses. Reinforcement Learning has 

gained increased attention as a response to the limitations of 

static rule-based security models. Researchers now explore 

agent-driven learning, where decisions are shaped through 

continuous reward feedback rather than fixed instructions, as 

explained by Sutton and Barto [4].  

Evidence in literature further shows that Reinforcement 

Learning performs strongly in dynamic security environments 

such as robotics, network defense, and intrusion response, 

particularly where uncertainty and sequential actions are 

involved, as reported by Adawadkar and Kulkarni [5] and 

supported by Miles et al. [6]. Within RL approaches, Q-

Learning remains one of the most practical model-free 

techniques because it does not require a prior model of 

environment dynamics. According to Watkins and Dayan [3], 

Q-Learning updates a Q-table that stores expected reward 

values for state–action pairs, improving its policy through 

iterative interaction. These characteristics suggest that Q-

Learning is suitable for autonomous cyber response 

frameworks that must adapt to insider behaviour without 

manual intervention. 

Q Learning is well suited for automated incident response 

systems because it operates effectively in environments where 

attack behaviours and system dynamics are complex and only 

partially observable. As outlined by Sutton and Barto [4], Q 

Learning enables learning without a predefined model of the 

environment, making it adaptable to evolving threat conditions. 

Furthermore, evidence presented by Adawadkar and Kulkarni 

[5] shows that it delivers lightweight and interpretable decision 

policies, unlike deep reinforcement learning approaches that 

demand extensive computational resources. These 

characteristics make Q Learning a practical option for real time 

cyber defense environments where rapid, adaptive, and 

resource efficient decision making is required. 

Building on these strengths, the present study applies Q 

Learning to automate response decisions for insider threat 

scenarios. The approach makes use of the CMU CERT dataset, 

which is widely recognised as a benchmark for modelling 

organisational activities, employee behaviour patterns, and 

malicious insider actions, as reported by Lindauer [7] and 

further supported by Glasser and Lindauer [8]. 
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This work makes three primary contributions. First, it 

introduces a Markov Decision Process formulation designed to 

model incident response decisions over evolving daily 

behavioural states. Second, it develops a data engineering 

pipeline that converts raw CERT logs into structured state 

features while addressing class imbalance using Borderline 

SMOTE, drawing from the methods described by Han et al. [9] 

and Sun et al. [10]. Third, it provides an empirical evaluation 

that demonstrates performance improvements in Accuracy, F1 

Score, and the Matthews Correlation Coefficient when 

compared with competitive baseline models, consistent with 

recommendations in Chicco and Jurman [11] and performance 

benchmarks reported by Gong et al. [12]. 

2. RELATED WORKS 
Efforts to mitigate insider attacks have expanded across 

behavioural analytics, deep learning, automated response 

systems, and reinforcement learning. User and Entity 

Behaviour Analytics is one of the most established approaches 

for identifying insider risk through continuous monitoring of 

user activity. The technique builds behavioural baselines and 

flags deviations linked with data theft, privilege abuse, or 

unusual account actions. By combining endpoint logs, identity 

systems, and network telemetry, UEBA provides contextual 

insight that helps surface risky behaviour before escalation. 

According to Gong et al. [12], graph based UEBA methods 

enhance early detection by modelling relationships among 

users, assets, and access patterns. Evidence from the 

Cybersecurity Insiders Report (2024) also indicates that 

behavioural analytics now forms a core component of insider 

risk strategy for more than eighty percent of organisations [2]. 

Although effective for detection, UEBA does not make 

autonomous response decisions and often requires model 

retraining to remain relevant as user behaviour changes over 

time. 

Deep learning has further improved detection capability, 

especially when applied to large insider datasets such as CMU 

CERT. Ye et al. [13] reported that transforming logs into image 

like matrices allowed convolutional networks to learn threat 

characteristics more effectively. In related work, Tao and 

colleagues [13] proposed test time training to reduce 

performance drift during deployment and maintain 

adaptability. These models increase threat detection accuracy 

but still rely on analysts or fixed rules to take action. 

Recent research continues to refine insider threat modelling 

through scenario driven learning approaches. Tian et al. [14] 

developed models aligned to specific attack categories 

including privilege misuse and data exfiltration, which 

improved classification precision in those cases. However, 

these methods stop short of autonomous response, meaning 

decisions still depend on manual interpretation and workflow 

triggers. This operational gap reinforces the need for 

reinforcement learning driven response frameworks capable of 

adapting to dynamic insider behaviour. 

SOAR platforms are now widely used to streamline security 

operations by integrating alerts, logs, and workflow 

orchestration into unified response pipelines. They reduce 

analyst workload and accelerate incident resolution by 

automating predefined procedures. However, these platforms 

are largely driven by fixed playbooks that do not adapt when 

attacker behaviour evolves. As noted in the guidance from 

CISA/ASD [1] and further discussed by Ismail et al. [4], static 

playbooks degrade rapidly under changing threat conditions. 

This limitation underscores the need for response systems 

capable of updating decision logic dynamically rather than 

relying on rigid rules. 

Reinforcement Learning provides a pathway toward 

autonomous cybersecurity decision-making in environments 

characterised by uncertainty. In RL, an agent interacts with its 

environment, receives rewards or penalties, and incrementally 

learns effective actions. Prior studies demonstrate that RL 

techniques outperform traditional rule-based approaches in 

domains such as malware response, network defence, and 

intrusion containment, where adversarial behaviours change 

over time [5], [6]. These findings indicate strong alignment 

between RL capabilities and insider-threat scenarios involving 

subtle behavioural drift. 

Within RL methods, Q Learning is particularly advantageous 

for cyber response. It is model free and requires no prior 

environmental assumptions, which lowers implementation 

overhead. The method updates a Q table that stores expected 

rewards for state–action pairs and improves through repeated 

experience. Both Watkins and Dayan [3] and Sutton and Barto 

[4] describe how Q Learning converges toward an optimal 

strategy over time. This simplicity, coupled with adaptability, 

makes it suitable for real time automated decision support in 

insider-threat settings. 

Despite these advantages, application of reinforcement 

learning to insider response remains limited. Existing work is 

concentrated primarily on detection, with far less effort 

directed toward automated containment or mitigation actions. 

Additionally, many RL studies rely on synthetic or reduced 

datasets that lack the behavioural complexity found in practical 

environments. Datasets such as CERT r6.2, described by 

Lindauer [7] and extended by Glasser and Lindauer [8], offer 

more realistic behavioural traces suitable for evaluating 

adaptive response strategies. This study addresses identified 

gaps by: 

i Modelling insider incident response as a MDP over 

daily behavioural states. 

ii Integrating a Q-Learning agent within the SOAR 

framework to achieve context-aware adaptive 

response. 

iii Demonstrating performance gains in Accuracy, F1 

Score, and MCC relative to classical baselines [11], 

[12]. 

By integrating reinforcement learning with automated 

orchestration, the proposed approach moves beyond traditional 

detection and enables adaptive, feedback-driven incident 

response. It continuously adjusts actions based on observed 

outcomes, allowing the system to refine decision-making 

policies over time. This learning capability supports resilience 

against evolving insider behaviours and dynamic operational 

conditions. Ultimately, the approach delivers a self-improving 

response mechanism that strengthens organisational cyber 

defense. 

3. METHODOLOGY 

3.1 Dataset Description 
This study uses the CMU CERT Insider Threat Dataset (version 

r6.2) (See table 1), a synthetic yet operationally realistic 

benchmark developed by the Software Engineering Institute at 

Carnegie Mellon University to simulate multi-year 

organisational insider activity [7], [8]. The dataset integrates 

logs from logon events, email exchanges, web browsing, file 

activity, removable media usage, and psychometric 
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assessments, capturing both benign and malicious behaviours 

representative of workplace environments. 

For modelling, activities are aggregated into user-day windows 

to retain behavioural patterns while controlling data 

granularity. Each user-day instance is encoded as an 84-

dimensional feature vector summarising communication 

patterns, file interaction ratios, device-usage frequency, and 

anomaly-related indicators. Labels designate insider activity as 

1 and normal behaviour as 0 to support binary classification. 

Given the significant imbalance between benign and insider 

cases, Borderline-SMOTE is applied to oversample the 

minority class and enhance decision boundary learning [9], 

[10]. All features are normalised to the [0, 1] range to improve 

training stability. The final dataset is partitioned into 70% for 

training, 15% for validation, and 15% for testing to ensure 

reliable model evaluation. 

Table 1: CERT r6.2 dataset distribution across training, 

validation, and test splits, including insider and normal 

instances and the insider category coverage 

Dataset 

Split 

User-

Days 

Insider 

Instances 

Normal 

Instances 

Insider Categories 

Training 2,450 68 2,382 Data Exfiltration, 

Privilege Misuse, 
Policy Violation, 

Device Abuse 

Validation 525 15 510 Same as above 

Test 525 17 508 Same as above 

Total 3,500 100 3,400 — 

 

The CERT r6.2 dataset provides realistic simulation of daily 

enterprise operations with embedded malicious cases. It 

captures diverse insider threat behaviours, including: 

i Data Exfiltration: Unauthorized transfer of 

confidential information through email, removable 

media, or web uploads. 

ii Privilege Misuse: Abuse of legitimate access rights 

for unauthorized system actions. 

iii Policy Violation: Breaches of company policies, such 

as visiting restricted websites or sending prohibited 

content. 

iv Device Abuse: Improper use of USB drives or 

external devices for data extraction or transfer. 

3.2 Security Orchestration, Automation and 

Response (SOAR)  
Security Orchestration, Automation and Response platforms 

streamline operational workflows by aggregating alerts, logs, 

and contextual information from intrusion detection systems, 

endpoint monitors, and analytics pipelines. As noted by Ismail 

et al. [4] and reinforced by guidance from CISA/ASD [1], these 

systems automate predefined playbooks that guide remediation 

actions and reduce the need for repetitive manual intervention. 

By consolidating threat signals and enabling routine task 

execution, SOAR improves consistency, reduces analyst 

fatigue, and accelerates incident response processes. 

A conventional SOAR deployment typically consists of three 

operational layers. At the orchestration layer, alerts from 

multiple security tools are normalised and correlated to 

establish unified visibility across the network [1]. The 

automation layer executes structured response steps including 

host isolation, user lockout, and traffic blocking workflows, as 

described by Ismail et al. [4]. A case management layer then 

provides analysts with audit trails, investigation histories, and 

oversight dashboards, ensuring accountability during 

automated or analyst assisted response activities [1]. 

However, reliance on static rule based playbooks limits the 

adaptability of traditional SOAR systems. As threats evolve 

and user patterns shift, manual updating of playbooks becomes 

time consuming and error prone. Reports from the 

Cybersecurity Insiders Survey [2] indicate that insider threats 

are particularly challenging for static automation because 

behavioural changes often develop gradually rather than 

through discrete malicious events. In rapidly changing 

environments, this rigidity contributes to slower containment 

and reduces the impact of automated workflows. 

To overcome these constraints, the proposed architecture 

incorporates a Q Learning agent as a dynamic decision layer 

within the SOAR pipeline. Instead of executing a fixed 

playbook, the agent evaluates system state features such as 

unusual access frequency or file movement volume and selects 

response actions according to learned policy values. Drawing 

from the reward driven optimisation principles of Watkins and 

Dayan [3] and Sutton and Barto [6], the agent continuously 

updates its Q table based on outcomes, enabling learning driven 

adaptation. With ongoing experience, response decisions 

become more context aware and resilient, improving 

containment efficiency in insider threat environments. 

3.3 Q Learning for Automated Response 
Q Learning offers a suitable foundation for adaptive 

automation in cybersecurity by allowing an agent to learn 

effective response actions through continuous interaction with 

its environment. It operates as a model free reinforcement 

learning method that estimates a value function Q(s, a), 

representing the expected long term gain of performing action 

a in state s assuming optimal future behaviour. Decision quality 

gradually improves as the agent receives rewards or penalties, 

updating Q values iteratively without requiring advance 

knowledge of environment transitions, as described by Watkins 

and Dayan [3] and later expanded in the reinforcement learning 

literature by Sutton and Barto [4]. 

Figure 1 illustrates the Q Learning driven cyber incident 

response architecture applied in this study. The framework 

demonstrates how the agent observes system states, selects 

response actions, and refines its policy through repeated 

exposure to insider threat conditions. Since Q Learning learns 

directly from outcomes rather than predefined rules, it supports 

adaptation in environments where user behaviour and threat 

patterns evolve continuously. Prior research shows that this 

property is valuable in cybersecurity scenarios where states are 

uncertain, partially observable, and influenced by complex 

human behaviour, as noted in findings by Adawadkar and 

Kulkarni [5]. 
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Figure 1. Architecture of the proposed Q Learning driven 

incident response framework, showing how states, actions, 

and reward feedback support policy improvement over 

time 

In this study, the Q Learning agent interacts iteratively with a 

simulated SOAR environment constructed from the CERT r6.2 

dataset. The dataset has been widely used for modelling insider 

activity patterns, as documented by Lindauer [7] and further 

examined by Glasser and Lindauer [8]. During training, the 

agent receives reward signals based on the outcome of its 

selected actions, which may include alert escalation, continued 

monitoring, or temporary account suspension. Positive rewards 

reinforce actions that mitigate risk effectively, while negative 

rewards penalise ineffective or delayed responses. 

Through repeated learning episodes, the Q values in the Q table 

are updated until the agent converges towards an action policy 

that improves containment efficiency and reduces response 

time. As discussed in the reinforcement learning framework 

outlined by Sutton and Barto [4], this trial and reward driven 

optimisation allows the system to improve decision quality 

dynamically. The process supports automated cyber response 

that evolves with observed behaviour rather than relying on 

fixed rules or manual tuning. 

3.4 Q Learning Process and Training 

Dynamics 
The Q Learning driven incident response workflow begins with 

the environment, represented in this study by the CERT r6.2 

logs. The dataset captures routine organisational activities 

including logon events, email traffic, file interactions, and web 

usage. As reported by Lindauer [7] and later expanded by 

Glasser and Lindauer [8], the CERT corpus is widely used for 

modelling both benign and malicious internal behaviour 

patterns. These event streams provide the behavioural evidence 

from which insider activity is inferred, defining the context 

within which the learning agent operates and receives 

feedback. 

The next phase, Feature Extraction and State Representation 

(s), transforms the raw log entries into structured numerical 

features that characterise daily user behaviour. Each state 

reflects aggregated attributes such as login frequency, file 

interaction volume, communication patterns, or device access 

variation. This state encoding enables the system to 

differentiate routine behaviour from anomalous patterns that 

may indicate insider activity, forming the input for action 

selection. 

Once a state is observed, the Q Learning agent selects an action 

(a) that it considers most appropriate at that moment. Action 

options include alert escalation to notify analysts, continued 

monitoring when behaviour requires observation, temporary 

account lock to contain possible abuse, or no action when 

activity appears normal. The decision is governed by a policy 

π, which evolves during training as the agent accumulates 

experience. Foundational work by Watkins and Dayan [3], 

followed by Sutton and Barto [4], explains how the policy 

improves as the agent interacts with its environment and 

receives evaluative feedback. 

Learning is driven by a reward signal (r) that reflects the 

usefulness of each action. A successful response such as 

preventing data exfiltration yields a positive reward, while 

disruptive or unnecessary actions incur penalties. Reward 

signals allow the agent to refine behavioural preferences and 

increase long term response efficiency. 

The Reward and Feedback module closes the learning loop by 

returning outcome values to the agent for Q value adjustment. 

Over many episodes, the agent progressively improves its 

response policy, developing behaviour that adapts to new 

patterns rather than relying on fixed rules. As discussed by 

Sutton and Barto [4] and supported by cyber defence findings 

from Adawadkar and Kulkarni [6], this iterative feedback cycle 

enables continual learning within uncertain and dynamic 

environments. The update process follows the standard Q 

Learning rule originally introduced in Watkins and Dayan [3]: 

𝑸(𝒔, 𝒂)  ←  𝑸(𝒔, 𝒂)  +  𝜶 [𝒓 +  𝜸 𝒎𝒂𝒙_{𝒂′} 𝑸(𝒔′, 𝒂′)  
−  𝑸(𝒔, 𝒂)] 

 
where: 

• Q(s,a) is the value of taking action a in state s. 

• α (alpha) is the learning rate (how fast the model learns). 

• γ (gamma) is the discount factor (how much future rewards 

matter). 

• r is the reward. 

• max_{a′} Q(s′,a′) is the best possible action in the next state. 

The Q Learning agent was trained for 1,000 episodes under an 

ε-greedy exploration strategy, chosen to balance exploratory 

sampling of new actions with exploitation of the most 

rewarding behaviours discovered so far. This mechanism 

ensures that the agent does not prematurely converge on sub-

optimal actions, while still enabling policy refinement over 

time. As described in Sutton and Barto’s reinforcement 

learning foundation and subsequent cyber-defence studies by 

Adawadkar and Kulkarni, ε-greedy exploration promotes 

steady improvement by allowing the agent to test alternative 

responses while reinforcing actions that yield positive 

outcomes [4], [5]. With continued experience, the agent 

converges toward an optimal incident-response policy capable 

of reducing analyst workload and lowering response latency 

within Security Operations Center environments. 

Figure 2 illustrates the convergence trend across the training 

process by plotting cumulative reward progression over all 

1,000 learning episodes. The faint grey curve reflects raw 

reward variation, which is expected during early exploration 

when policy behaviour remains unstable. For interpretability, a 

50-episode moving average is included as the darker overlay, 

highlighting the underlying performance trajectory. The 
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smoothed curve demonstrates a gradual shift from exploratory 

randomness toward more stabilised decision-making, 

confirming that the agent successfully learns more effective 

response strategies over time. 

 

Figure 2. Training convergence curve showing cumulative 

reward progression across episodes, including a moving 

average that highlights stabilisation of the learned policy. 

The vertical marker near episode 850 highlights the point at 

which reward values stabilise and convergence is achieved. 

From this region forward, the reward curve shows minimal 

fluctuation and the agent maintains consistent policy decisions 

over repeated interactions. As reported in foundational 

reinforcement learning literature and later cybersecurity 

applications, such stabilisation indicates that the agent has 

internalised an effective state–action strategy and no longer 

requires extensive exploratory behaviour [3], [4], [5]. At this 

phase, the Q Learning model demonstrates reliable behaviour 

suitable for automated incident-response tasks. The 

convergence pattern strengthens the evidence that Q Learning 

supports adaptive, experience driven policies within insider-

threat environments. 

4. RESULT AND DISCUSSION 

4.1 Result 
The evaluation assesses whether the proposed reinforcement 

learning approach improves automated response decisions 

under realistic insider behaviour. Experiments were conducted 

using CERT r6.2 user day instances with the same feature 

representation and train validation test split described earlier. 

The proposed Q Learning agent was compared with Random 

Forest and SVM (RBF), and performance was measured using 

Accuracy, F1 Score, and MCC. 

Learning behaviour was examined through reward 

convergence across 1,000 episodes under an epsilon greedy 

policy. Early episodes show higher variation because the agent 

explores different actions to learn which responses are effective 

in each state. Over time, the reward curve rises and becomes 

more stable, indicating that the agent increasingly selects 

higher value actions and reduces unnecessary exploration. The 

stabilisation region supports the claim that the policy becomes 

consistent and suitable for repeated use in automated response 

settings. 

Overall performance results in Table 2 show that the Q 

Learning agent achieves the strongest outcomes across all 

reported metrics. The improvement in MCC is important 

because it reflects balanced decision quality even when the 

insider class is rare. This suggests that the proposed approach 

does not only raise average accuracy, but also strengthens 

reliability in imbalanced conditions where false reassurance is 

a common risk. The proposed Q-Learning agent achieved the 

best performance across all metrics, with 96.8 % accuracy, F1 

= 0.944, and MCC = 0.917. Compared with Random Forest and 

SVM, the reinforcement learning approach demonstrates 

superior capacity to capture temporal dependencies and adapt 

to evolving insider behaviours. 

Table 2: Overall model performance comparison on the 

CERT r6.2 test set using Accuracy, F1 Score, and MCC 

for Random Forest, SVM (RBF), and the proposed Q 

Learning agent. 

Model Accuracy (%) F1 Score MCC 

Random 

Forest 

93.6 0.921 0.876 

SVM 

(RBF) 

91.2 0.904 0.842 

Q-

Learning 

Agent 

(Proposed) 

96.8 0.944 0.917 

 

Per category analysis in Table 3 provides additional insight into 

where the improvements occur. The Q Learning model 

performs best across all insider categories and shows the largest 

gains for Privilege Misuse and Device Abuse, which often 

require context aware response decisions. These results align 

with the core advantage of reinforcement learning, where 

policies improve through feedback and can better capture 

sequential behavioural patterns than static decision boundaries. 

The most significant improvement is observed in Privilege 

Misuse, where the agent achieves F1 = 0.96 and MCC = 0.94, 

indicating strong capability in learning effective mitigation 

strategies. Similar gains across Data Exfiltration and Device 

Abuse confirm the adaptability of the framework to varied 

insider behaviours. These results highlight the strength of 

reinforcement-learning-driven automation in handling 

complex and evolving threat patterns. 

Table 3: Per attack type performance comparison showing 

Precision, Recall, F1 Score, and MCC for each model 

across Data Exfiltration, Privilege Misuse, Policy 

Violation, and Device Abuse. 

Attack 
Type 

Model Precision Recall F1 
Score 

MCC 

Data 

Exfiltration 

Random 

Forest 

0.91 0.90 0.90 0.84 

 
SVM 
(RBF) 

0.89 0.87 0.88 0.81 

 
Q-

Learning 
(Proposed) 

0.95 0.93 0.94 0.91 

Privilege 

Misuse 

Random 

Forest 

0.92 0.94 0.93 0.88 

 
SVM 
(RBF) 

0.90 0.91 0.91 0.85 

 
Q-

Learning 

(Proposed) 

0.96 0.97 0.96 0.94 

Policy 

Violation 

Random 

Forest 

0.90 0.88 0.89 0.83 

 
SVM 
(RBF) 

0.87 0.86 0.86 0.80 

 
Q-

Learning 

(Proposed) 

0.93 0.90 0.92 0.90 

Device 

Abuse 

Random 

Forest 

0.91 0.93 0.92 0.86 
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SVM 

(RBF) 

0.89 0.91 0.90 0.83 

 
Q-

Learning 

(Proposed) 

0.94 0.95 0.94 0.92 

. 

Figure 3 presents the per–attack-type analysis comparing F1 

and MCC scores for Random Forest, SVM (RBF), and the 

proposed Q-Learning framework across four insider-threat 

categories: Data Exfiltration, Privilege Misuse, Policy 

Violation, and Device Abuse. The Q-Learning model 

consistently achieves higher values on both metrics, 

demonstrating superior discrimination across all classes. These 

results confirm its adaptive learning capability and improved 

detection reliability in dynamic operational environments. 

 

Figure 3: Per attack type comparison of F1 Score and 

MCC across Random Forest, SVM (RBF), and the 

proposed Q Learning agent for four insider threat 

categories. 

4.2 Discussion and Implications 
The results indicate that the proposed framework improves 

detection and response quality across multiple insider threat 

categories while maintaining strong overall reliability. Higher 

F1 values show that the approach improves the balance 

between catching true insider activity and limiting false alerts. 

Higher MCC values confirm that performance remains stable 

even when insider events are limited in number, which is a 

central challenge in organisational security data. 

A key practical benefit is adaptability. The Q Learning agent 

updates its decision preferences through reward signals, which 

allows it to refine response choices without manual rewriting 

of playbooks. This reduces long term operational burden 

compared with static supervised baselines that often degrade 

after deployment when behaviour patterns shift. The learning 

driven approach therefore supports sustained effectiveness in 

environments where insider tactics and organisational 

workflows change over time. 

The notable gain in MCC, a metric well suited for imbalanced 

datasets, confirms that the model retains stability even when 

insider threat events are rare or difficult to distinguish. 

Simultaneous improvements in F1 and MCC demonstrate that 

the agent captures more genuine insider incidents while 

reducing false alerts. This ensures that analysts receive fewer 

unnecessary escalations and can place greater confidence in the 

model’s recommendations. A system that performs reliably for 

both minority and majority threat classes provides stronger 

operational value and enhanced decision assurance for security 

teams. 

The framework also supports clearer operational oversight 

when state features are interpretable and actions are policy 

driven. Analysts can relate policy choices to behavioural 

indicators such as unusual access frequency or abnormal file 

movement volume, and they can observe learning progress 

through reward trends. This supports responsible use of 

automation by enabling review, justification of response 

actions, and alignment with organisational security objectives.  

5. CONCLUSION AND FUTURE WORK  
This study introduced a Q Learning based framework for 

automated cyber incident response, with a focus on identifying 

and mitigating insider threats. Using the CERT r6.2 dataset, the 

model consistently outperformed traditional classifiers by 

achieving higher accuracy, stronger F1 scores, and improved 

MCC values. The framework integrates smoothly with Security 

Orchestration, Automation and Response systems by learning 

which actions to apply under different behavioural conditions. 

Automating part of the response process helps reduce the 

workload of security analysts and improves response speed, 

especially in environments where insider behaviour changes 

over time.  

The results indicate that adaptive systems of this kind can 

enhance the next generation of Security Operations Centers, 

where human analysts provide oversight instead of managing 

repetitive alert reviews. Practical challenges remain, however. 

Reinforcement learning models require sufficient feedback and 

training episodes to build stable policies, and poor quality 

feedback can weaken learning outcomes. Synthetic datasets 

like CERT r6.2 are useful but cannot fully capture the 

complexity of real organisations, so operational deployment 

will require continuous testing and careful monitoring. 

This work demonstrates that reinforcement learning can 

significantly enhance automated incident response by making 

it more accurate, more adaptable, and more scalable for modern 

cybersecurity operations. Future development will focus on 

deeper and more flexible learning models such as Deep Q 

Networks for recognising complex behavioural patterns, 

prioritized experience replay for more efficient training, and 

continual learning methods that adjust to real time changes in 

user activity. Integrating reinforcement learning with 

explainable AI and fairness based evaluation will further 

improve accountability and trust, especially in environments 

where automated actions carry operational or organisational 

risks. These improvements will help ensure that adaptive 

response systems behave responsibly and remain aligned with 

the long term goals of security teams.. 
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