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ABSTRACT

Insider threats remain one of the most difficult security
challenges because malicious actions often originate from
trusted users and evolve over time. Traditional rule-based and
static incident response systems struggle to adapt to changing
insider behaviours, leading to delayed or suboptimal responses.
This study proposes an adaptive incident response framework
based on reinforcement learning that dynamically selects
response actions according to observed system states and threat
severity. The framework models incident response as a
sequential decision-making process, where an agent learns
optimal response policies through interaction with a simulated
enterprise environment. States capture security context and
threat indicators, actions represent response options, and
rewards are designed to balance rapid containment, operational
continuity, and false positive reduction. Experimental
evaluation demonstrates that the proposed approach
consistently outperforms static and heuristic-based baselines in
response effectiveness, convergence stability, and adaptability
to evolving attack patterns. Results show improved response
accuracy, faster containment times, and stable learning
behaviour across training episodes. The Q Learning model
performed better than Support Vector Machine and Random
Forest models, reaching 96.8 percent accuracy, an F1 score of
0.944, and a Matthews Correlation Coefficient (MCC) of
0.917. When connected to Security Orchestration, Automation
and Response (SOAR) platforms, the system can make fast and
context aware decisions that reduce the work of analysts and
shorten response time. The findings confirm that reinforcement
learning offers a practical and scalable solution for adaptive
insider threat incident response. This work contributes an
automated decision framework that improves resilience,
reduces manual intervention, and supports trustworthy security
operations in dynamic environments.
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1. INTRODUCTION

Insider threats remain one of the most difficult challenges in
cybersecurity because the attacker is an authorized user whose
behaviour closely resembles legitimate activity. Their actions
are subtle, gradual, and context dependent, which causes
traditional monitoring systems to generate high false positive
rates and overwhelming alert volumes. These factors make
manual incident response difficult to scale, especially when
insiders deliberately mimic normal behavioural patterns. As a
result, organizations require adaptive and intelligent
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mechanisms capable of detecting abnormal activity that does
not rely solely on predefined signatures.

Security Orchestration, Automation, and Response platforms
have improved workflow consistency, yet their rule based
playbooks remain rigid and struggle to adjust to evolving threat
conditions [1], [2]. Static rules cannot fully capture the dynamic
strategies used by sophisticated insiders, leading to missed
detections or delayed responses. Reinforcement Learning has
gained increased attention as a response to the limitations of
static rule-based security models. Researchers now explore
agent-driven learning, where decisions are shaped through
continuous reward feedback rather than fixed instructions, as
explained by Sutton and Barto [4].

Evidence in literature further shows that Reinforcement
Learning performs strongly in dynamic security environments
such as robotics, network defense, and intrusion response,
particularly where uncertainty and sequential actions are
involved, as reported by Adawadkar and Kulkarni [5] and
supported by Miles et al. [6]. Within RL approaches, Q-
Learning remains one of the most practical model-free
techniques because it does not require a prior model of
environment dynamics. According to Watkins and Dayan [3],
Q-Learning updates a Q-table that stores expected reward
values for state—action pairs, improving its policy through
iterative interaction. These characteristics suggest that Q-
Learning is suitable for autonomous cyber response
frameworks that must adapt to insider behaviour without
manual intervention.

Q Learning is well suited for automated incident response
systems because it operates effectively in environments where
attack behaviours and system dynamics are complex and only
partially observable. As outlined by Sutton and Barto [4], Q
Learning enables learning without a predefined model of the
environment, making it adaptable to evolving threat conditions.
Furthermore, evidence presented by Adawadkar and Kulkarni
[5] shows that it delivers lightweight and interpretable decision
policies, unlike deep reinforcement learning approaches that
demand  extensive computational resources.  These
characteristics make Q Learning a practical option for real time
cyber defense environments where rapid, adaptive, and
resource efficient decision making is required.

Building on these strengths, the present study applies Q
Learning to automate response decisions for insider threat
scenarios. The approach makes use of the CMU CERT dataset,
which is widely recognised as a benchmark for modelling
organisational activities, employee behaviour patterns, and
malicious insider actions, as reported by Lindauer [7] and
further supported by Glasser and Lindauer [8].
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This work makes three primary contributions. First, it
introduces a Markov Decision Process formulation designed to
model incident response decisions over evolving daily
behavioural states. Second, it develops a data engineering
pipeline that converts raw CERT logs into structured state
features while addressing class imbalance using Borderline
SMOTE, drawing from the methods described by Han et al. [9]
and Sun et al. [10]. Third, it provides an empirical evaluation
that demonstrates performance improvements in Accuracy, F1
Score, and the Matthews Correlation Coefficient when
compared with competitive baseline models, consistent with
recommendations in Chicco and Jurman [11] and performance
benchmarks reported by Gong et al. [12].

2. RELATED WORKS

Efforts to mitigate insider attacks have expanded across
behavioural analytics, deep learning, automated response
systems, and reinforcement learning. User and Entity
Behaviour Analytics is one of the most established approaches
for identifying insider risk through continuous monitoring of
user activity. The technique builds behavioural baselines and
flags deviations linked with data theft, privilege abuse, or
unusual account actions. By combining endpoint logs, identity
systems, and network telemetry, UEBA provides contextual
insight that helps surface risky behaviour before escalation.

According to Gong et al. [12], graph based UEBA methods
enhance early detection by modelling relationships among
users, assets, and access patterns. Evidence from the
Cybersecurity Insiders Report (2024) also indicates that
behavioural analytics now forms a core component of insider
risk strategy for more than eighty percent of organisations [2].
Although effective for detection, UEBA does not make
autonomous response decisions and often requires model
retraining to remain relevant as user behaviour changes over
time.

Deep learning has further improved detection capability,
especially when applied to large insider datasets such as CMU
CERT. Ye et al. [13] reported that transforming logs into image
like matrices allowed convolutional networks to learn threat
characteristics more effectively. In related work, Tao and
colleagues [13] proposed test time training to reduce
performance drift during deployment and maintain
adaptability. These models increase threat detection accuracy
but still rely on analysts or fixed rules to take action.

Recent research continues to refine insider threat modelling
through scenario driven learning approaches. Tian et al. [14]
developed models aligned to specific attack categories
including privilege misuse and data exfiltration, which
improved classification precision in those cases. However,
these methods stop short of autonomous response, meaning
decisions still depend on manual interpretation and workflow
triggers. This operational gap reinforces the need for
reinforcement learning driven response frameworks capable of
adapting to dynamic insider behaviour.

SOAR platforms are now widely used to streamline security
operations by integrating alerts, logs, and workflow
orchestration into unified response pipelines. They reduce
analyst workload and accelerate incident resolution by
automating predefined procedures. However, these platforms
are largely driven by fixed playbooks that do not adapt when
attacker behaviour evolves. As noted in the guidance from
CISA/ASD [1] and further discussed by Ismail et al. [4], static
playbooks degrade rapidly under changing threat conditions.
This limitation underscores the need for response systems
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capable of updating decision logic dynamically rather than
relying on rigid rules.

Reinforcement Learning provides a pathway toward
autonomous cybersecurity decision-making in environments
characterised by uncertainty. In RL, an agent interacts with its
environment, receives rewards or penalties, and incrementally
learns effective actions. Prior studies demonstrate that RL
techniques outperform traditional rule-based approaches in
domains such as malware response, network defence, and
intrusion containment, where adversarial behaviours change
over time [5], [6]. These findings indicate strong alignment
between RL capabilities and insider-threat scenarios involving
subtle behavioural drift.

Within RL methods, Q Learning is particularly advantageous
for cyber response. It is model free and requires no prior
environmental assumptions, which lowers implementation
overhead. The method updates a Q table that stores expected
rewards for state—action pairs and improves through repeated
experience. Both Watkins and Dayan [3] and Sutton and Barto
[4] describe how Q Learning converges toward an optimal
strategy over time. This simplicity, coupled with adaptability,
makes it suitable for real time automated decision support in
insider-threat settings.

Despite these advantages, application of reinforcement
learning to insider response remains limited. Existing work is
concentrated primarily on detection, with far less effort
directed toward automated containment or mitigation actions.
Additionally, many RL studies rely on synthetic or reduced
datasets that lack the behavioural complexity found in practical
environments. Datasets such as CERT r6.2, described by
Lindauer [7] and extended by Glasser and Lindauer [8], offer
more realistic behavioural traces suitable for evaluating
adaptive response strategies. This study addresses identified

gaps by:

i Modelling insider incident response as a MDP over
daily behavioural states.

ii  Integrating a Q-Learning agent within the SOAR
framework to achieve context-aware adaptive
response.

iii Demonstrating performance gains in Accuracy, F1
Score, and MCC relative to classical baselines [11],
[12].

By integrating reinforcement learning with automated
orchestration, the proposed approach moves beyond traditional
detection and enables adaptive, feedback-driven incident
response. It continuously adjusts actions based on observed
outcomes, allowing the system to refine decision-making
policies over time. This learning capability supports resilience
against evolving insider behaviours and dynamic operational
conditions. Ultimately, the approach delivers a self-improving
response mechanism that strengthens organisational cyber
defense.

3. METHODOLOGY

3.1 Dataset Description

This study uses the CMU CERT Insider Threat Dataset (version
r6.2) (See table 1), a synthetic yet operationally realistic
benchmark developed by the Software Engineering Institute at
Carnegie Mellon University to simulate multi-year
organisational insider activity [7], [8]. The dataset integrates
logs from logon events, email exchanges, web browsing, file
activity, removable media usage, and psychometric
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assessments, capturing both benign and malicious behaviours
representative of workplace environments.

For modelling, activities are aggregated into user-day windows
to retain behavioural patterns while controlling data
granularity. Each user-day instance is encoded as an 84-
dimensional feature vector summarising communication
patterns, file interaction ratios, device-usage frequency, and
anomaly-related indicators. Labels designate insider activity as
1 and normal behaviour as 0 to support binary classification.

Given the significant imbalance between benign and insider
cases, Borderline-SMOTE is applied to oversample the
minority class and enhance decision boundary learning [9],
[10]. All features are normalised to the [0, 1] range to improve
training stability. The final dataset is partitioned into 70% for
training, 15% for validation, and 15% for testing to ensure
reliable model evaluation.

Table 1: CERT r6.2 dataset distribution across training,
validation, and test splits, including insider and normal
instances and the insider category coverage

Dataset User- Insider Normal | Insider Categories
Split Days | Instances | Instances
Training 2,450 68 2,382 Data Exfiltration,

Privilege Misuse,
Policy Violation,
Device Abuse

Validation 525 15 510 Same as above
Test 525 17 508 Same as above
Total 3,500 100 3,400 —

The CERT 16.2 dataset provides realistic simulation of daily
enterprise operations with embedded malicious cases. It
captures diverse insider threat behaviours, including:

i Data  Exfiltration: Unauthorized transfer of
confidential information through email, removable
media, or web uploads.

ii  Privilege Misuse: Abuse of legitimate access rights
for unauthorized system actions.

iii  Policy Violation: Breaches of company policies, such
as visiting restricted websites or sending prohibited
content.

iv  Device Abuse: Improper use of USB drives or
external devices for data extraction or transfer.

3.2 Security Orchestration, Automation and
Response (SOAR)

Security Orchestration, Automation and Response platforms
streamline operational workflows by aggregating alerts, logs,
and contextual information from intrusion detection systems,
endpoint monitors, and analytics pipelines. As noted by Ismail
et al. [4] and reinforced by guidance from CISA/ASD [1], these
systems automate predefined playbooks that guide remediation
actions and reduce the need for repetitive manual intervention.
By consolidating threat signals and enabling routine task
execution, SOAR improves consistency, reduces analyst
fatigue, and accelerates incident response processes.

A conventional SOAR deployment typically consists of three
operational layers. At the orchestration layer, alerts from
multiple security tools are normalised and correlated to
establish unified visibility across the network [1]. The
automation layer executes structured response steps including
host isolation, user lockout, and traffic blocking workflows, as
described by Ismail et al. [4]. A case management layer then
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provides analysts with audit trails, investigation histories, and
oversight dashboards, ensuring accountability during
automated or analyst assisted response activities [1].

However, reliance on static rule based playbooks limits the
adaptability of traditional SOAR systems. As threats evolve
and user patterns shift, manual updating of playbooks becomes
time consuming and error prone. Reports from the
Cybersecurity Insiders Survey [2] indicate that insider threats
are particularly challenging for static automation because
behavioural changes often develop gradually rather than
through discrete malicious events. In rapidly changing
environments, this rigidity contributes to slower containment
and reduces the impact of automated workflows.

To overcome these constraints, the proposed architecture
incorporates a Q Learning agent as a dynamic decision layer
within the SOAR pipeline. Instead of executing a fixed
playbook, the agent evaluates system state features such as
unusual access frequency or file movement volume and selects
response actions according to learned policy values. Drawing
from the reward driven optimisation principles of Watkins and
Dayan [3] and Sutton and Barto [6], the agent continuously
updates its Q table based on outcomes, enabling learning driven
adaptation. With ongoing experience, response decisions
become more context aware and resilient, improving
containment efficiency in insider threat environments.

3.3 Q Learning for Automated Response

Q Learning offers a suitable foundation for adaptive
automation in cybersecurity by allowing an agent to learn
effective response actions through continuous interaction with
its environment. It operates as a model free reinforcement
learning method that estimates a value function Q(s, a),
representing the expected long term gain of performing action
a in state s assuming optimal future behaviour. Decision quality
gradually improves as the agent receives rewards or penalties,
updating Q values iteratively without requiring advance
knowledge of environment transitions, as described by Watkins
and Dayan [3] and later expanded in the reinforcement learning
literature by Sutton and Barto [4].

Figure 1 illustrates the Q Learning driven cyber incident
response architecture applied in this study. The framework
demonstrates how the agent observes system states, selects
response actions, and refines its policy through repeated
exposure to insider threat conditions. Since Q Learning learns
directly from outcomes rather than predefined rules, it supports
adaptation in environments where user behaviour and threat
patterns evolve continuously. Prior research shows that this
property is valuable in cybersecurity scenarios where states are
uncertain, partially observable, and influenced by complex
human behaviour, as noted in findings by Adawadkar and
Kulkarni [5].
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Figure 1. Architecture of the proposed Q Learning driven
incident response framework, showing how states, actions,
and reward feedback support policy improvement over
time

In this study, the Q Learning agent interacts iteratively with a
simulated SOAR environment constructed from the CERT r6.2
dataset. The dataset has been widely used for modelling insider
activity patterns, as documented by Lindauer [7] and further
examined by Glasser and Lindauer [8]. During training, the
agent receives reward signals based on the outcome of its
selected actions, which may include alert escalation, continued
monitoring, or temporary account suspension. Positive rewards
reinforce actions that mitigate risk effectively, while negative
rewards penalise ineffective or delayed responses.

Through repeated learning episodes, the Q values in the Q table
are updated until the agent converges towards an action policy
that improves containment efficiency and reduces response
time. As discussed in the reinforcement learning framework
outlined by Sutton and Barto [4], this trial and reward driven
optimisation allows the system to improve decision quality
dynamically. The process supports automated cyber response
that evolves with observed behaviour rather than relying on
fixed rules or manual tuning.

3.4 Q Learning Process and Training

Dynamics

The Q Learning driven incident response workflow begins with
the environment, represented in this study by the CERT 6.2
logs. The dataset captures routine organisational activities
including logon events, email traffic, file interactions, and web
usage. As reported by Lindauer [7] and later expanded by
Glasser and Lindauer [8], the CERT corpus is widely used for
modelling both benign and malicious internal behaviour
patterns. These event streams provide the behavioural evidence
from which insider activity is inferred, defining the context
within which the learning agent operates and receives
feedback.

The next phase, Feature Extraction and State Representation
(s), transforms the raw log entries into structured numerical
features that characterise daily user behaviour. Each state
reflects aggregated attributes such as login frequency, file
interaction volume, communication patterns, or device access
variation. This state encoding enables the system to
differentiate routine behaviour from anomalous patterns that
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may indicate insider activity, forming the input for action
selection.

Once a state is observed, the Q Learning agent selects an action
(a) that it considers most appropriate at that moment. Action
options include alert escalation to notify analysts, continued
monitoring when behaviour requires observation, temporary
account lock to contain possible abuse, or no action when
activity appears normal. The decision is governed by a policy
n, which evolves during training as the agent accumulates
experience. Foundational work by Watkins and Dayan [3],
followed by Sutton and Barto [4], explains how the policy
improves as the agent interacts with its environment and
receives evaluative feedback.

Learning is driven by a reward signal (r) that reflects the
usefulness of each action. A successful response such as
preventing data exfiltration yields a positive reward, while
disruptive or unnecessary actions incur penalties. Reward
signals allow the agent to refine behavioural preferences and
increase long term response efficiency.

The Reward and Feedback module closes the learning loop by
returning outcome values to the agent for Q value adjustment.
Over many episodes, the agent progressively improves its
response policy, developing behaviour that adapts to new
patterns rather than relying on fixed rules. As discussed by
Sutton and Barto [4] and supported by cyber defence findings
from Adawadkar and Kulkarni [6], this iterative feedback cycle
enables continual learning within uncertain and dynamic
environments. The update process follows the standard Q
Learning rule originally introduced in Watkins and Dayan [3]:

Q(s,a) < Q(s,a) + a[r + ymax_{a'} Q(s',a’)
- Q(s,a)]

where:
* O(s,a) is the value of taking action a in state s.

* o (alpha) is the learning rate (how fast the model learns).

*y (gamma) is the discount factor (how much future rewards
matter).

* 1 is the reward.
e max_{a'} Q(s'a') is the best possible action in the next state.

The Q Learning agent was trained for 1,000 episodes under an
e-greedy exploration strategy, chosen to balance exploratory
sampling of new actions with exploitation of the most
rewarding behaviours discovered so far. This mechanism
ensures that the agent does not prematurely converge on sub-
optimal actions, while still enabling policy refinement over
time. As described in Sutton and Barto’s reinforcement
learning foundation and subsequent cyber-defence studies by
Adawadkar and Kulkarni, g-greedy exploration promotes
steady improvement by allowing the agent to test alternative
responses while reinforcing actions that yield positive
outcomes [4], [5]. With continued experience, the agent
converges toward an optimal incident-response policy capable
of reducing analyst workload and lowering response latency
within Security Operations Center environments.

Figure 2 illustrates the convergence trend across the training
process by plotting cumulative reward progression over all
1,000 learning episodes. The faint grey curve reflects raw
reward variation, which is expected during early exploration
when policy behaviour remains unstable. For interpretability, a
50-episode moving average is included as the darker overlay,
highlighting the underlying performance trajectory. The
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smoothed curve demonstrates a gradual shift from exploratory
randomness toward more stabilised decision-making,
confirming that the agent successfully learns more effective
response strategies over time.
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o

0 200 400 600 860 1000
Episodes

Figure 2. Training convergence curve showing cumulative
reward progression across episodes, including a moving
average that highlights stabilisation of the learned policy.

The vertical marker near episode 850 highlights the point at
which reward values stabilise and convergence is achieved.
From this region forward, the reward curve shows minimal
fluctuation and the agent maintains consistent policy decisions
over repeated interactions. As reported in foundational
reinforcement learning literature and later cybersecurity
applications, such stabilisation indicates that the agent has
internalised an effective state—action strategy and no longer
requires extensive exploratory behaviour [3], [4], [5]. At this
phase, the Q Learning model demonstrates reliable behaviour
suitable for automated incident-response tasks. The
convergence pattern strengthens the evidence that Q Learning
supports adaptive, experience driven policies within insider-
threat environments.

4. RESULT AND DISCUSSION
4.1 Result

The evaluation assesses whether the proposed reinforcement
learning approach improves automated response decisions
under realistic insider behaviour. Experiments were conducted
using CERT 16.2 user day instances with the same feature
representation and train validation test split described earlier.
The proposed Q Learning agent was compared with Random
Forest and SVM (RBF), and performance was measured using
Accuracy, F1 Score, and MCC.

Learning behaviour was examined through reward
convergence across 1,000 episodes under an epsilon greedy
policy. Early episodes show higher variation because the agent
explores different actions to learn which responses are effective
in each state. Over time, the reward curve rises and becomes
more stable, indicating that the agent increasingly selects
higher value actions and reduces unnecessary exploration. The
stabilisation region supports the claim that the policy becomes
consistent and suitable for repeated use in automated response
settings.

Overall performance results in Table 2 show that the Q
Learning agent achieves the strongest outcomes across all
reported metrics. The improvement in MCC is important
because it reflects balanced decision quality even when the
insider class is rare. This suggests that the proposed approach
does not only raise average accuracy, but also strengthens
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reliability in imbalanced conditions where false reassurance is
a common risk. The proposed Q-Learning agent achieved the
best performance across all metrics, with 96.8 % accuracy, F1
=0.944, and MCC = 0.917. Compared with Random Forest and
SVM, the reinforcement learning approach demonstrates
superior capacity to capture temporal dependencies and adapt
to evolving insider behaviours.

Table 2: Overall model performance comparison on the
CERT r6.2 test set using Accuracy, F1 Score, and MCC
for Random Forest, SVM (RBF), and the proposed Q
Learning agent.

Model Accuracy (%) | F1 Score | MCC
Random 93.6 0.921 0.876
Forest
SVM 91.2 0.904 0.842
(RBF)
Q- 96.8 0.944 0.917
Learning
Agent
(Proposed)

Per category analysis in Table 3 provides additional insight into
where the improvements occur. The Q Learning model
performs best across all insider categories and shows the largest
gains for Privilege Misuse and Device Abuse, which often
require context aware response decisions. These results align
with the core advantage of reinforcement learning, where
policies improve through feedback and can better capture
sequential behavioural patterns than static decision boundaries.

The most significant improvement is observed in Privilege
Misuse, where the agent achieves F1 = 0.96 and MCC = 0.94,
indicating strong capability in learning effective mitigation
strategies. Similar gains across Data Exfiltration and Device
Abuse confirm the adaptability of the framework to varied
insider behaviours. These results highlight the strength of
reinforcement-learning-driven  automation in  handling
complex and evolving threat patterns.

Table 3: Per attack type performance comparison showing
Precision, Recall, F1 Score, and MCC for each model
across Data Exfiltration, Privilege Misuse, Policy
Violation, and Device Abuse.

Attack Model Precision | Recall Fl MCC
Type Score
Data Random 091 0.90 0.90 0.84
Exfiltration | Forest
SVM 0.89 0.87 0.88 0.81
(RBF)
Q- 0.95 0.93 0.94 0.91
Learning
(Proposed)
Privilege Random 0.92 0.94 0.93 0.88
Misuse Forest
SVM 0.90 0.91 0.91 0.85
(RBF)
Q- 0.96 0.97 0.96 0.94
Learning
(Proposed)
Policy Random 0.90 0.88 0.89 0.83
Violation Forest
SVM 0.87 0.86 0.86 0.80
(RBF)
Q- 0.93 0.90 0.92 0.90
Learning
(Proposed)
Device Random 0.91 0.93 0.92 0.86
Abuse Forest
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SVM 0.89 091 0.90 | 0.83
(RBF)

Q- 0.94 0.95 094 | 0.92
Learning

(Proposed)

Figure 3 presents the per—attack-type analysis comparing F1
and MCC scores for Random Forest, SVM (RBF), and the
proposed Q-Learning framework across four insider-threat
categories: Data Exfiltration, Privilege Misuse, Policy
Violation, and Device Abuse. The Q-Learning model
consistently achieves higher values on both metrics,
demonstrating superior discrimination across all classes. These
results confirm its adaptive learning capability and improved
detection reliability in dynamic operational environments.
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Figure 3: Per attack type comparison of F1 Score and
MCC across Random Forest, SVM (RBF), and the
proposed Q Learning agent for four insider threat

categories.

4.2 Discussion and Implications

The results indicate that the proposed framework improves
detection and response quality across multiple insider threat
categories while maintaining strong overall reliability. Higher
F1 values show that the approach improves the balance
between catching true insider activity and limiting false alerts.
Higher MCC values confirm that performance remains stable
even when insider events are limited in number, which is a
central challenge in organisational security data.

A key practical benefit is adaptability. The Q Learning agent
updates its decision preferences through reward signals, which
allows it to refine response choices without manual rewriting
of playbooks. This reduces long term operational burden
compared with static supervised baselines that often degrade
after deployment when behaviour patterns shift. The learning
driven approach therefore supports sustained effectiveness in
environments where insider tactics and organisational
workflows change over time.

The notable gain in MCC, a metric well suited for imbalanced
datasets, confirms that the model retains stability even when
insider threat events are rare or difficult to distinguish.
Simultaneous improvements in F1 and MCC demonstrate that
the agent captures more genuine insider incidents while
reducing false alerts. This ensures that analysts receive fewer
unnecessary escalations and can place greater confidence in the
model’s recommendations. A system that performs reliably for
both minority and majority threat classes provides stronger

v
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operational value and enhanced decision assurance for security
teams.

The framework also supports clearer operational oversight
when state features are interpretable and actions are policy
driven. Analysts can relate policy choices to behavioural
indicators such as unusual access frequency or abnormal file
movement volume, and they can observe learning progress
through reward trends. This supports responsible use of
automation by enabling review, justification of response
actions, and alignment with organisational security objectives.

5. CONCLUSION AND FUTURE WORK

This study introduced a Q Learning based framework for
automated cyber incident response, with a focus on identifying
and mitigating insider threats. Using the CERT 6.2 dataset, the
model consistently outperformed traditional classifiers by
achieving higher accuracy, stronger F1 scores, and improved
MCC values. The framework integrates smoothly with Security
Orchestration, Automation and Response systems by learning
which actions to apply under different behavioural conditions.
Automating part of the response process helps reduce the
workload of security analysts and improves response speed,
especially in environments where insider behaviour changes
over time.

The results indicate that adaptive systems of this kind can
enhance the next generation of Security Operations Centers,
where human analysts provide oversight instead of managing
repetitive alert reviews. Practical challenges remain, however.
Reinforcement learning models require sufficient feedback and
training episodes to build stable policies, and poor quality
feedback can weaken learning outcomes. Synthetic datasets
like CERT r6.2 are useful but cannot fully capture the
complexity of real organisations, so operational deployment
will require continuous testing and careful monitoring.

This work demonstrates that reinforcement learning can
significantly enhance automated incident response by making
it more accurate, more adaptable, and more scalable for modern
cybersecurity operations. Future development will focus on
deeper and more flexible learning models such as Deep Q
Networks for recognising complex behavioural patterns,
prioritized experience replay for more efficient training, and
continual learning methods that adjust to real time changes in
user activity. Integrating reinforcement learning with
explainable Al and fairness based evaluation will further
improve accountability and trust, especially in environments
where automated actions carry operational or organisational
risks. These improvements will help ensure that adaptive
response systems behave responsibly and remain aligned with
the long term goals of security teams..
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