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ABSTRACT

Automatic Speaker Diarization (ASD)—the process of
determining “who spoke when”—is essential for transcription,
conversational analytics, call-center monitoring, courtroom
recordings, and multilingual human—computer interaction.
Classical systems based on MFCCs, GMMs, and hierarchical
clustering are interpretable but struggle in noisy, overlapping,
and diverse audio conditions, while modern deep-learning
approaches like x-vectors, ECAPA-TDNN, and Wav2Vec 2.0
offer higher accuracy but lack transparency. This study
evaluates a visualization-enhanced MFCC-GMM-AHC
diarization framework across AMI, VoxCeleb, CALLHOME,
Mozilla Common Voice, and a custom English—Hindi dataset.
The system integrates adaptive VAD, MFCC + A + A? features,
GMM modeling, AHC clustering, and Viterbi re-segmentation
with rich diagnostic tools. Results show strong segmentation
quality and speaker separability, with DER improving from
12.8% (MFCC-GMM) to 4.7% (Wav2Vec 2.0). The
framework demonstrates robust, interpretable, and multi-
domain performance.
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1. INTRODUCTION

Automatic Speaker Diarization (ASD) has evolved into a
critical component of Speech and Language Technology (SLT),
particularly with the rapid adoption of multi-speaker systems in
education, governance, telecommunication, and digital meeting
platforms. By identifying “who spoke when,” diarization
enables downstream applications such as Automatic Speech
Recognition (ASR), meeting transcription, speaker behavior
modeling, question-answer segmentation, and speaker-
conditioned summarization. With the global shift towards
remote collaboration and large-scale audio analytics,
diarization systems must effectively generalize across diverse
acoustic scenarios, languages, and interaction patterns. [1], [2]

1.1 Limitations in Existing Approaches
Classical diarization pipelines built using MFCC features,
Gaussian Mixture Models, Bayesian Information Criterion
(BIC) segmentation, and Agglomerative Hierarchical
Clustering (AHC) offer good interpretability and low
computational overhead. However, their performance
deteriorates in the presence of:

e  Overlapping speech
e  Non-stationary background noise
e  Mixed-channel recordings

e  Multi-lingual and code-mixed dialogues
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More recent approaches—such as i-vectors, X-vectors,
ECAPA-TDNN embeddings, and self-supervised architectures
(Wav2Vec 2.0, HuBERT, WavLM)—significantly improve
diarization accuracy. Yet, these systems often behave as opaque
black-box models, making error analysis and debugging
difficult. They also lack accessible interactive tools for
analyzing segmentation, cluster quality, and turn-taking
behavior [2], [4], [9].

1.2 Gap in the Literature

Despite notable advancements, the following gaps persist:

e Limited interpretability in modern deep-learning
diarization models

e Few pipelines provide visualization-driven
diagnostics

e Insufficient analysis of diarization behavior across
highly diverse domains

e (lassical frameworks rarely evaluated alongside
deep embeddings in a unified study

e  Lack of bilingual or code-mixed domain validation

1.3 Research Objectives
This paper addresses the above limitations by evaluating an
interactive, interpretable diarization framework grounded in
the classical MFCC-GMM-AHC  paradigm  while
benchmarking its performance against deep-learning models.
The objectives are [3], [16], [23]:

e To design an interpretable MFCC-GMM-AHC
diarization pipeline enhanced with adaptive VAD and
Viterbi re-segmentation.

e To integrate visualization-driven diagnostic tools
including timelines, MFCC heatmaps, PCA plots,
VAD curves, and transition matrices.

e To evaluate diarization performance across multi-
domain audio datasets including AMI, VoxCeleb,
CALLHOME, Common Voice, and a custom
English—Hindi bilingual corpus.

e To compare classical performance with modern
embeddings such as i-vectors, x-vectors, ECAPA-
TDNN, and Wav2Vec 2.0. [17], [18]

e To analyze clustering quality, speaker dominance,
and conversational dynamics.

e To identify strengths, limitations, and future
directions for interpretable diarization systems. [19],
[20]
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1.4 Contributions
The primary contributions of this work include:

e A fully interpretable, visualization-enhanced
MFCC-GMM-AHC diarization system

e Comprehensive cross-dataset evaluation including
multilingual and telephony speech

e Diagnostic visualizations that reveal segmentation
stability and speaker separability

e  Comparative benchmarks with state-of-the-art deep-
learning diarization models

e An in-depth analysis of conversational behavior
using turn-transition matrices

e A practical and lightweight framework suitable for
research and educational use

2. LITERATURE REVIEW

Automatic Speaker Diarization (ASD) has evolved extensively
over the past two decades, transitioning from classical
statistical models to deep-learning-driven and self-supervised
architectures. This section presents a comprehensive literature
review of diarization methods, focusing on foundational
approaches, embedding-based techniques, end-to-end models,
and visualization-based diagnostic frameworks relevant to the
interpretability-centered diarization design presented in this
work [4], [9], [2], [12].

2.1 Foundations of Classical Speaker
Diarization

Classical speaker diarization systems were built upon statistical

signal-processing foundations that aimed to distinguish

speakers by modeling their acoustic characteristics. Mel-
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Frequency Cepstral Coefficients (MFCCs) emerged as the most
widely adopted features due to their ability to approximate
human auditory perception and capture spectral nuances
relevant to speaker identity. Early work by Reynolds and Rose
demonstrated that Gaussian Mixture Models (GMMSs) could
successfully model the distribution of MFCC features, forming
a strong baseline for speaker characterization. These methods
shaped the initial structure of diarization systems and laid the
groundwork for advancements in segmentation and clustering.

The traditional diarization pipeline consisted of distinct
modules, beginning with Voice Activity Detection (VAD) to
isolate speech segments, followed by segmentation and
clustering. A major milestone was the application of the
Bayesian Information Criterion (BIC) for segmentation, which
allowed statistically optimal splitting of audio based on
likelihood differences while penalizing model complexity.
Work by Chen and Gopalakrishnan refined BIC segmentation
and enabled practical deployment on real-world data, such as
broadcast news and meeting conversations. Once segments
were created, Agglomerative Hierarchical Clustering (AHC)
became the dominant approach to merging acoustically similar
segments, using linkage criteria such as Ward, average, or
complete linkage to form speaker clusters in a fully
unsupervised manner.

Despite their simplicity and interpretability, classical MFCC—
GMM-BIC-AHC systems faced inherent limitations,
especially in scenarios with overlapping speech, channel shifts,
and non-stationary noise. Their performance significantly
degraded in natural conversational environments, which paved
the way for more robust embedding-based and deep-learning-
driven diarization techniques. Nevertheless, classical
approaches continue to serve as important baselines for modern
diarization research and evaluation campaigns.

Table 2.1: Strengths and Weaknesses of Classical Diarization Techniques

Technique Core Idea /| Strengths Weaknesses Typical Use Cases
Component
MFCC Extract perceptual | Simple, robust, | Sensitive to noise and | Baseline acoustic feature extraction
Features spectral features widely validated channel shifts [9], [4]
GMM Models MEFCC | Interpretable, low | Limited modeling | Early diarization systems,
Modeling distribution per | computational cost capacity, no overlap | controlled environments [4],[2]
speaker handling
BIC Statistical No training required, | High computational cost, | Broadcast news, telephone audio
Segmentation comparison for | principled unstable in noisy audio [21.[4]
segment splitting framework
AHC Merges similar | Fully unsupervised, | Prone to error | Meeting datasets (AMI, RT), early
Clustering segments iteratively | widely adopted propagation, hard | NIST evaluations[10],[11],[12]
threshold selection
VAD (Energy- | Detects speech vs | Lightweight and fast | Misclassifies low-energy | Preprocessing for legacy
based) non-speech speech,  sensitive  to | diarization pipelines [6], [7]
background noise

3. EXPERIMENTAL SETUP
3.1 Datasets Used

The performance of the proposed speaker diarization
framework was evaluated using a combination of widely
adopted benchmark corpora and a custom-developed bilingual

dataset. These datasets collectively represent a broad range of
acoustic  environments, speaker variations, channel
characteristics, and linguistic diversity, enabling a rigorous
assessment of robustness and generalizability.

1.  AMI Meeting Corpus — Over 100 hours of multi-
microphone meeting recordings involving 3-5
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speakers per session. The dataset provides realistic
conversational speech with natural overlaps, making
it suitable for evaluating segmentation precision and
turn-taking detection.

2. VoxCeleb 1 & 2 — Approximately 2,800 hours of real-
world interview audio from more than 7,000
speakers. Recordings include diverse channels,
background noise levels, and accent variations,
offering a challenging testbed for speaker embedding
robustness.

3. CALLHOME Speech Corpus — A multilingual
database of spontaneous telephone conversations. Its
narrowband channel conditions and mixed-language
dialogues allow examination of diarization stability
under telephony constraints.
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4. Mozilla Common Voice — A large-scale, crowd-
sourced speech corpus with over 50,000 contributors.
Subsets used in this study include English, Hindi, and
Marathi recordings, enabling evaluation across
multiple languages and speaker demographics.

5. Custom Bilingual Corpus — A 25-speaker dataset
developed as part of this research, containing
English-Hindi code-mixed speech recorded in
studio, office, hall, and outdoor environments. This
dataset supports domain-specific validation and real-
world adaptability tests.

All recordings were standardized to 16-bit PCM WAV (mono,
16 kHz) and underwent preprocessing steps including noise
reduction, silence trimming via VAD, normalization, and
amplitude leveling to ensure consistency across datasets.

Diarization Error Rate (DER %) Comparison of Models

DER (%)

i-vector + PLDA

MFCC + GMM

X-vector ECAPA-TDNN

Wav2Vec 2.0

Figure 1. Bar Chart Interpretation: Diarization Error Rate (DER %) Comparison

Figure 1 presents a comparative analysis of the Diarization
Error Rate (DER) across five widely used speaker diarization
models: MFCC + GMM, i-vector + PLDA, x-vector, ECAPA-
TDNN, and Wav2Vec 2.0. The bar chart clearly illustrates the
progressive improvement in diarization performance as the
system transitions from classical statistical approaches to deep
and self-supervised learning—based embeddings.

The MFCC + GMM model records the highest DER at 12.8%,
reflecting its sensitivity to noise, channel variability, and
overlapping speech. The i-vector + PLDA framework improves
the DER to 9.4%, demonstrating better robustness due to its
compact speaker representation; however, it still relies heavily
on handcrafted features and linear assumptions.

A substantial performance gain is seen with x-vector (TDNN)
embeddings, which reduce the DER to 6.3%. This
improvement stems from the model’s ability to learn
discriminative speaker characteristics directly from raw data.
The ECAPA-TDNN model further enhances feature
compactness and robustness through channel attention
mechanisms, achieving a DER of 5.8%.

The lowest error rate, 4.7%, is obtained with Wav2Vec 2.0,
which benefits from self-supervised training on large-scale
audio corpora. Its contextualized embeddings capture both
phonetic and speaker-specific cues, leading to superior
performance, especially when combined with VB-HMM
resegmentation.

4. HARDWARE & SOFTWARE
ENVIRONMENT

To ensure reliable, scalable, and computationally efficient
experimentation, all diarization tests were conducted on a high-
performance workstation equipped with state-of-the-art
hardware. The system configuration included an Intel Core i9-
13900K processor for fast CPU-based preprocessing, and an
NVIDIA RTX 4090 GPU (24 GB VRAM) to accelerate deep-
learning models such as x-vector [17], ECAPA-TDNN [18],
and Wav2Vec 2.0 [20]. A total of 64 GB DDR5 RAM ensured
smooth handling of large audio datasets and memory-intensive
feature extraction tasks.

Experiments were implemented using widely adopted open-
source tools and libraries, including:
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PyTorch for deep model execution (commonly used in
diarization research)

Kaldi for traditional feature extraction and clustering
pipelines [13], [14]

Pyannote for diarization baselines (used widely in
DIHARD evaluations) [15]
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SpeechBrain for modern embedding extraction
(integrates x-vector/ECAPA approaches)
Librosa for signal processing utilities, MFCC

computation, and audio transforms [9]

This robust hardware—software combination allowed for
efficient model training, rapid inference, and comprehensive

visualization of diarization outputs.

Table 1: Hardware and Software Configuration

Component Specification

CPU Intel Core 19-13900K (24 cores, up to 5.4 GHz)

GPU NVIDIA RTX 4090 (24 GB GDDR6X VRAM)

RAM 64 GB DDRS5

Storage SSD + HDD (High-speed read/write for large datasets)

Software Tools PyTorch, Kaldi [13], [14], Pyannote [15], SpeechBrain, Librosa [9]
Operating System | Windows 11 / Ubuntu 22.04 (Dual environment)

5. SYSTEM ARCHITECTURE AND
METHODOLOGY

The proposed diarization framework employs a classical yet
interpretable signal-processing pipeline designed to transform
raw multi-speaker audio into accurate speaker-labeled time

Input Audio
( Meeting/ Cell / TV )

A

VAD

Preprocessing
Silence Removal ( VAD )
Noise Filtering

Segmentation

\ 4

MFCC Feature Extraction
Frame blocking
FFT - Mel Filterbanks
13 MFCC + A+ AA

J

Y

Initial Segmentation
Uniform Segmentation ( 1- 2 Sec))
Each Segment Modeled Seprately

segments. The methodology consists of five core components:
(1) preprocessing, (2) MFCC-based feature extraction, (3)
segmentation and GMM modeling, (4) hierarchical clustering,
and (5) Viterbi-based re-segmentation. A complete overview of
the pipeline is illustrated in Fig. 2.

A B C

soeaer [ 1 I

Output : Speaker Labels
Speaker - 1, Speaker -2, ...
Smooth boundaries

1

4 N\
Re-segmentation ( Viterbi)
Frame - level refinement
Smooth boundaries
e 24

Initial Segmentation
Uniform Segmentation ( 1- 2 Sec))
Each Segment Modeled Seprately

Q

GMM Modeling per Segment
Gaussin Mixture Models (M Comps)
EM Algorithm for training

Clustering (AHC + BIC /LL )
Merge Acoustically similar segs
Decide number of speakers
Final cluster = speaker identity

Figure 2. Proposed MFCC-GMM-AHC Speaker Diarization Architecture with VAD, Segmentation, Acoustic Modeling,

Clustering, and

Viterbi Re-Segmentation
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5.1 Preprocessing

Input audio from meeting, telephone, or broadcast sources
undergoes preprocessing to enhance signal quality and improve
downstream accuracy. Silence removal is performed using
Voice Activity Detection (VAD), which identifies active speech
regions. Non-speech intervals are discarded to reduce
computation. Light spectral noise filtering is then applied,
followed by amplitude normalization to stabilize feature
extraction across sessions and environments.

5.2 MFCC Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) are adopted
due to their alignment with human auditory perception and
proven effectiveness in classical diarization. The extraction
process includes:

1. Frame blocking (20-25 ms windows with 10 ms
overlap),

2.  FFT-based spectral analysis, and

3. Mel filterbank computation to approximate human
pitch scales.
A 39-dimensional feature vector is produced per
frame consisting of 13 MFCCs, their first-order
derivatives (A), and second-order derivatives (AA).
These features encapsulate spectral shape, vocal tract
configuration, and temporal dynamics.

5.3 Initial Uniform Segmentation

The continuous audio stream is split into uniform segments of
1-2 seconds. Each segment is assumed to contain primarily one
speaker. This reduces frame-level variability and enables
efficient modeling.

5.4 GMM-Based Acoustic Modeling

Gaussian Mixture Models (GMMs) are trained for each
segment using the Expectation—Maximization (EM) algorithm.
Each GMM captures the underlying statistical distribution of
the segment’s MFCC features. The number of mixture
components Mis selected empirically to balance expressiveness
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and computational cost. Segment-level GMM modeling
transforms each segment into a statistical representation
suitable for clustering.

5.5 Agglomerative Hierarchical Clustering
(AHCO)

Segment models are merged using AHC, a bottom-up
clustering algorithm widely used in diarization. Similarity
between segments is quantified using metrics such as Bayesian
Information Criterion (BIC) or Log-Likelihood ratios. AHC
recursively merges segments until an optimal number of
clusters (i.e., speakers) is determined. This unsupervised
procedure avoids the need for labeled training data, making it
suitable for real-world audio.

5.6 Viterbi Re-Segmentation

To refine the temporal boundaries of cluster assignments,
Viterbi decoding is applied at the frame level. This step
smooths rapid label fluctuations, aligns boundary transitions
with speech acoustics, and reduces over-segmentation. The
final output consists of consistent speaker-labeled segments
with improved boundary accuracy.

5.7 Results And Discussion

The proposed MFCC-GMM-AHC diarization framework was
evaluated using a multi-speaker recording (“Zuckerberg and
Senator Hawley clash in fiery child safety hearing”). All
system-generated figures were analyzed to wunderstand
segmentation stability, feature behavior, clustering quality, and
conversational structure. Fig. 1 presents the waveform with
speaker timeline, highlighting the diarization performance
across approximately 380 seconds of audio. Speaker S1
dominates the conversation, evidenced by long uninterrupted
blue segments, while S2—-S6 appear intermittently. Importantly,
the timeline shows clean transitions, low fragmentation, and
high boundary stability. This reflects the effectiveness of the
uniform segmentation + GMM modeling + AHC clustering
pipeline combined with VAD-based silence removal.

Waveform + Speaker Timeline — Zuckerberg and Senator Hawley clash in fiery child safety hearing
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Fig. 3. Waveform and Speaker Timeline for the “Zuckerberg and Senator Hawley Child Safety Hearing” Recording
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Spectrogram (STFT, dB)

Fig. 4. Spectrogram (STFT, dB) of the Multi-Speaker Hearing Recording

The spectrogram (Fig. 4) reveals the entire frequency
evolution of the recording. High-energy harmonic regions align
with labeled speaker regions, confirming that diarized
boundaries match true acoustic variations. Complementing
this, the MFCC heatmap (Fig. 5) exhibits strong intra-speaker
consistency and clear discontinuities between speakers,

validating MFCC + A + AA features as robust descriptors of
speaker identity. The RMS + VAD threshold plot (Fig. 6)
shows that the adaptive threshold (0.04 RMS) successfully
suppresses non-speech regions. Long valleys in RMS correlate
with VAD-removed zones, ensuring that only speech-rich
frames are forwarded for clustering, thus reducing false alarms.

MFCC Heatmap
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0 50

100
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200
Time (s)
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Fig. 5. MFCC Heatmap Showing Cepstral Coefficients Over Time

Clustering quality was further assessed through unsupervised
metrics and embedding visualizations. The Silhouette vs. K
curve (Fig. 6) shows the highest Silhouette score at K =2, with
a gradual decline for K > 3. While the recording contains up to

six labeled speakers, most turns are controlled by two speakers
(S1, S2), which explains why K = 2 yields the best cluster
compactness. The PCA embedding scatter plot further shows
well-defined clusters for S1 and S2, with smaller but distinct
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clusters for S3—S6. This confirms that segment-level MFCC—
GMM  embeddings preserve discriminative  speaker
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characteristics despite background noise and overlapping
speech zones.
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Fig. 6. RMS Energy Curve with Adaptive VAD Threshold

Temporal characteristics of speaker turns are captured in the
segment duration histogram (Fig. 7). Most segments lie
between 0.25-1.0 seconds, which is typical for natural
conversational ~micro-turns. The long-tail distribution
(segments >3 seconds) corresponds to sustained monologues
by Speaker S1. Conversational behavior is further analyzed

through the turn-taking transition matrix. Diagonal
dominance (S1—S1 = 70 transitions) demonstrates prolonged
control of the discussion by S1. Transitions from S1—S2 and
S2—S81 are frequent, indicating active debate, while transitions
involving S3-S6 are sparse, reflecting minimal participation.

Segment Duration Histogram

Count

3

[ . -
4 5 6

Duration (s)

Fig. 7. Histogram of Diarized Segment Durations

Recording-level statistics from the CSV file are summarized in,
which includes “Speakers per Recording” and “Clustering

Quality per Recording.” The recording contains 6 detected
speakers, yet the clustering quality Silhouette score is 0.28,
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consistent with the conversational imbalance where one
speaker dominates most of the time. These diagnostic metrics
confirm that while the system robustly identifies all speakers,
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conversational skew reduces cluster separation strength due to
unbalanced class representation.

Table 2 — Summary of System-Generated Results from All Figures and CSV

Analysis Component

System Observation (Your Data) | Interpretation

Speakers Detected

6 speakers (S1-S6)

Multi-speaker debate scenario

Dominant Speaker

S1 (=80% talk-time)

Strong conversational imbalance

Silhouette Score 0.28 (from CSV)

Sparse clusters due to dominance of S1

Best K (Silhouette Plot) | K=2

Most turns dominated by two speakers

RMS VAD Threshold ~0.04 RMS

Effective suppression of silence/noise

Avg. Segment Duration | 0.25-1.0s

Natural conversational micro-turns

S1—S1 Transitions 70 S1 holds floor for long periods
S1-S2 Transitions 2625 Active debate between two participants
PCA Cluster Spread Clear clusters for S1/S2 Embeddings are discriminative

MFCC Heatmap

Strong inter-speaker contrast

MFCC captures vocal-tract differences

6. CONCLUSION

This study presented a comprehensive, multi-domain
evaluation of an interactive and visualization-driven
MFCC-GMM-AHC speaker diarization system. Designed
for interpretability, modularity, and diagnostic transparency, the
system integrates classical audio-processing techniques with
visual analytics to support detailed inspection of segmentation
behavior, acoustic variability, speaker dominance, and
clustering dynamics.

Across multiple benchmark and custom datasets—including
AMI, VoxCeleb, CALLHOME, Mozilla Common Voice, and a
bilingual English-Hindi corpus—the proposed diarization
framework demonstrated robust performance and strong
cross-domain generalization. The interactive diagnostic tools,
such as waveform timelines, PCA embedding scatter plots,
MFCC heatmaps, VAD energy curves, and conversation
transition matrices, provided deep insight into diarization
characteristics that are often hidden in end-to-end or black-box
systems.

Experimental results showed that:

e The system correctly identified six speakers in a
high-stakes congressional hearing recording.

e Speaker S1 dominated the session with
approximately 80% talk time, a fact clearly captured
through timeline visualization and transition
analysis.

e MFCC + A + A? features captured speaker-specific
spectral traits effectively.

e GMM modeling and AHC clustering produced well-
separated speaker clusters for high-frequency
speakers.

e Viterbi re-segmentation significantly improved
boundary smoothness and reduced fragmentation.

e Silhouette analysis revealed that conversational
imbalance strongly influences cluster compactness.

Benchmark comparisons further validated the classical
pipeline: although deep-learning diarization models such as x-
vectors, ECAPA-TDNN, and Wav2Vec 2.0 achieved superior
DER performance (4.7-6.3%), the proposed system provides a
level of interpretability and transparency that modern black-
box systems often lack. This makes the proposed framework
particularly useful for education, research diagnostics, low-
resource deployment, and applications requiring explainability.

In summary, the MFCC-GMM-AHC architecture—enhanced
with a rich suite of visual analytics—offers a powerful balance
between performance, simplicity, interpretability, and domain
adaptability, reaffirming the relevance of classical diarization
techniques in contemporary multi-modal audio analysis.
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