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ABSTRACT

Automatic Speaker Diarization (ASD) is the task of
determining “who spoke when” in multi-speaker audio
recordings without prior speaker labels. This paper presents a
transparent, tunable, and GUI-driven diarization framework
that integrates MFCC + A + A? embeddings, adaptive
percentile-based Voice Activity Detection (VAD), and
Agglomerative  Hierarchical Clustering (AHC) with
configurable distance metrics and linkage strategies. The
system provides complete control over preprocessing,
segmentation, clustering, and post-processing, while offering
rich visual analytics including waveform-aligned speaker
timelines, spectrograms, MFCC heatmaps, PCA-based
embedding scatter plots, Silhouette-driven cluster diagnostics,
and conversational metrics. Experimental evaluation shows
that the proposed MFCC + AHC pipeline achieves stable
speaker grouping with clear cluster separation and reduced
fragmentation after post-processing, achieving a diarization
error rate between 5.8% and 8.1% on test recordings. The tool
supports RTTM/CSV/JSON export and is suitable for research,
education, conversational analysis, and domain-specific
diarization studies requiring interpretability and flexibility.
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1. INTRODUCTION

Automatic Speaker Diarization (ASD) aims to determine “who
spoke when ” in multi-speaker audio recordings and has become
a core component in meeting transcription, conversational
mining, call-center analytics, broadcast monitoring, human—
computer interaction, and multi-speaker ASR pipelines [1,2].
By segmenting the audio stream into speaker-homogeneous
regions and assigning a speaker label to each segment, ASD
enables downstream tasks such as automatic captioning,
keyword search, sentiment or emotion analysis, and
participation analysis in group interactions [1,15]. As large-
scale audio archives and conversational datasets continue to
grow, robust and efficient diarization systems are increasingly
important for both industrial applications and academic
research.

Early diarization systems were predominantly built on classical
statistical modeling, combining Mel-Frequency Cepstral
Coefficients (MFCCs) with Gaussian Mixture Models (GMMs)
and Bayesian Information Criterion (BIC)-based model
selection or segmentation [2,4,9]. These pipelines typically
extracted MFCC features from short-time frames, grouped
them using GMMs, and applied hierarchical clustering or BIC-
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driven merging to determine the number of speakers [2,12,25].
Although such methods were relatively simple and
interpretable, their performance degraded in noisy
environments, with overlapping speech, or when channel
variability was high [1,2,8]. Subsequent work introduced i-
vectors and Probabilistic Linear Discriminant Analysis
(PLDA), providing compact, low-dimensional speaker
representations that improved robustness and clustering quality
in diarization tasks [3,8,16,23].

The field has since been transformed by deep neural
embeddings and self-supervised models. x-vectors, computed
using Time-Delay Neural Networks (TDNNs), deliver highly
discriminative speaker embeddings that significantly improve
speaker recognition and diarization, particularly in challenging
acoustic conditions [17]. ECAPA-TDNN further enhances this
paradigm by incorporating emphasized channel attention,
propagation, and aggregation mechanisms, leading to more
robust speaker modeling under noise, reverberation, and
overlap [18]. In parallel, self-supervised learning (SSL)
approaches such as Wav2Vec 2.0 and HuBERT learn powerful
speech representations from raw audio without explicit frame-
level labels and have demonstrated state-of-the-art
performance on benchmark diarization challenges like
DIHARD and AMI [15,19,20]. These advances have pushed
diarization accuracy forward but often at the cost of increased
architectural complexity and reduced transparency.

Despite these advances, a practical and methodological gap
persists. Many modern diarization systems are delivered as
opaque, end-to-end pipelines in which internal stages—voice
activity detection (VAD), feature extraction, clustering
behavior, and hyper-parameter sensitivity—are difficult to
inspect or modify [1,15]. For researchers, students, and
practitioners working in low-resource or domain-specific
settings, there is a strong need for interpretable, flexible, and
user-friendly ~diarization tools that support controlled
experimentation with VAD thresholds, MFCC dimensionality,
clustering metrics, linkage strategies, and automatic speaker
number estimation (e.g., via Silhouette analysis) [10-12,22].
Moreover, most existing toolkits provide limited visual
feedback, making it hard to understand why clusters are
formed, when speakers are confused, or how segmentation
errors propagate.

This paper addresses these limitations by presenting an
interactive MFCC-based diarization framework with rich
visual analytics, built around a classical but carefully
engineered pipeline. The proposed system offers: (i) complete
control over VAD sensitivity, minimum speech and silence
durations, MFCC configuration, clustering mode (distance-
threshold, fixed-K, or Silhouette-based auto-K), distance
metrics, and linkage strategies; (ii) clear visualizations at each
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stage of the pipeline, including spectrograms, MFCC maps,
RMS+VAD  threshold plots, and PCA/UMAP-based
embedding scatter plots for assessing cluster separability
[21,22]; (iii) standard diarization outputs in RTTM, CSV, and
JSON formats compatible with established evaluation toolkits
and corpora [1,13—15]; and (iv) advanced conversational
analytics such as per-speaker talk ratios, turn counts, average
turn durations, activity density plots, and turn-taking transition
matrices for interaction modeling and meeting analysis [1,24].
By combining a transparent MFCC+clustering backbone with
an exploratory graphical interface, the framework serves as an
effective platform for learning, research prototyping, and
domain-specific diarization studies.

2. RELATED WORK

Speaker diarization has been studied extensively over the past
two decades, with research progressing from classical
statistical modeling to modern deep-learning and self-
supervised architectures. Early systems relied on MFCC
features combined with Gaussian Mixture Models (GMMs)
and hierarchical clustering or BIC-based segmentation
[2,4,9,12]. These pipelines provided an interpretable structure
and worked reasonably well in controlled acoustic conditions,
but performance declined significantly in noisy, reverberant, or
overlap-heavy recordings [1,2].

Subsequent advancements introduced i-vectors, which offered
compact low-dimensional speaker representations capable of
modeling channel and session variability [3,8,16,23]. These
representations improved clustering performance and became a
standard component in meeting diarization pipelines such as
the NIST Rich Transcription evaluations [13].

The next major shift came with deep neural embeddings,
particularly x-vectors, which captured highly discriminative
speaker characteristics using TDNN architectures [17]. x-
vectors rapidly became the backbone of state-of-the-art
diarization systems due to their robustness in real-world
acoustic conditions. ECAPA-TDNN further advanced this
paradigm, adding emphasized channel attention and aggregated
feature propagation, significantly improving speaker separation
in meeting and telephony data [18].

Parallel to these developments, self-supervised learning (SSL)
approaches such as Wav2Vec 2.0, HUBERT, and WavLM
delivered even stronger performance. These models learn
generalized acoustic representations directly from large
unlabeled corpora and have demonstrated state-of-the-art
results in DIHARD, AMI, and VoxConverse challenges
[15,19,20]. Despite their accuracy, these systems remain
computationally expensive and often opaque, limiting their

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.77, January 2026

interpretability and accessibility for educational or rapid
prototyping purposes.

In diarization clustering research, Agglomerative Hierarchical
Clustering (AHC) has been widely used because of its stability
and interpretability [1,10,11,12]. AHC supports multiple
distance metrics and linkage criteria, making it adaptable to
different embedding spaces. Studies comparing clustering
strategies show that average and complete linkages often
produce stable clusters when combined with cosine or
Euclidean distances [10-12]. Automatic estimation of the
number of speakers using Silhouette score analysis has also
been explored, offering an unsupervised method for
determining cluster boundaries [21,22].

Dimensionality reduction techniques such as Principal
Component Analysis (PCA) and UMAP have become valuable
tools for visualizing diarization embeddings and understanding
cluster separability [21,22]. PCA provides linear projection
insights, while UMAP captures non-linear structures and is
effective for cluster visualization in high-dimensional speech
embeddings.

Voice Activity Detection (VAD) remains a critical component
in diarization. Traditional VAD approaches relied on short-time
energy or zero-crossing rate [6], while more recent research
incorporated voicing features, long-term spectral variability, or
neural VADs [7]. The classical RMS-energy thresholding
combined with morphological smoothing, as implemented in
this work’s system, continues to be a strong baseline for clean
and moderately noisy conditions.

While numerous diarization toolkits exist—such as LIUM,
Kaldi recipes, and pyannote.audio—most provide limited
visualization or transparency, and their pipelines are not easily
adjustable by new researchers [1,2,24]. As deep-learning
pipelines grow more complex, the need for transparent,
interpretable, GUI-based diarization systems has become
increasingly clear.

This work contributes to this gap by offering an MFCC+AHC-
based diarization framework that supports parameter
experimentation, embedding  visualization,  clustering
diagnostics, and conversational analytics—all presented within
an interactive graphical interface.

3. SYSTEM ARCHITECTURE

The architecture comprises six modules: (i) audio
normalization, (ii) adaptive VAD, (iii)) MFCC-based
embeddings, (iv) clustering, (v) post-processing, and (vi)
visualization.

29



Audio Input

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.77, January 2026

Export (RTTM / CSV / JSON)

MFCC + A + A2
4 ; Embeddings

Preprocessing

Visualization (GUI)

AHC
Clustering

Adaptive VAD — (Threshol...

% Post-processing

Figure 1. System Architecture Overview

3.1 Audio Pre-processing
All audio signals x(t)are resampled to 16 kHz mono PCM,
producing:

X16x (t) = Resample(x(t), 16kHz)

This ensures uniform time-frequency resolution for feature
extraction.

3.2 Voice Activity Detection (VAD)
3.2.1 RMS Energy Computation

Audio is divided into overlapping frames x,, (k) of 25ms with
10ms hop.

The Root Mean Square (RMS) energy per frame is computed
as:

N
RMS(n) = j%Z Xy, (k)2
k=1

3.2.2  Adaptive Energy Threshold
The threshold for VAD is the 75th percentile of RMS values,
scaled by a user factor a

@ = «. Percentile;5(RMS)
Speech Frames Satisfy:

1, if RMS(n) >0

Speech(n) = {O, otherwise

3.2.3  Morphological Smoothing

Binary mask m(n)is smoothed using closing and opening:
Closing:

Meiose = (M @ B) OB

Opening:

Mopenea = (Mciosea D B) © B

With structuring element B of length 3-5 frames.
3.3 MFCC-Based Embedding Extraction

MFCCs are computed using the standard formulation.

3.3.1 Mel Filterbank Energies
After FFT, filterbank energy E,, for filter m is :

Ep = ) [ X (0P Hp ()

k
Where H,,(k) is the triangular mel filter.
3.3.2 MFCC Computation

MEFCC coefficients are obtained by Discrete Cosine Transform
(DCT):

MFCC, il (E,) ["C( !
.= og(Ep) cos|—(m — =
Z M 2

3.3.3 Delta and Delta -Delta

First Derivative( )

— Z§=lk(ct+k - Ct—k)
2%k 2

Second Derivative ( ):

le§=l k(Ct+k - Ct—k)

A

A3=

2Tk I
3.3.4  Statistics Pooling

For every segment:

Final embedding:
e = [uMFCC,oMFCC, ul, ol uA?, oA?]
3.3.5 L2 Normalization

e

>

[lell2
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3.4 Clustering Algorithm
The system uses Agglomerative Hierarchical Clustering
(AHO).

3.4.1 Distance Computation
Cosine distance:

a.b

deos(@,h) =1 — ——
«“ [lallllb1]

Euclidean Distance:
dg(a,b) = |la—bl|

Manhattan distance:

du(@b) =) la;= b
i

3.4.2  Conversation Analytics
Talk Ratio:
If speaker i speaks for duration d;

Raw Clustering Output
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13

TalkRatio; =
alkRatio; S q

Turn Count:

speaker(t) # speaker(t — 1)
A turn is counted when:

Turn — Taking Transition Matrix

T;j =+ { transitions from speaker i to speaker j}

3.5 Post-processing

The post-processing stage refines the raw clustering output to
produce coherent, temporally consistent diarization labels.
While VAD and clustering generate the initial segment
boundaries, natural conversational recordings often produce
short, fragmented, or noisy segments that degrade diarization
readability and evaluation metrics. To address these issues, the
system applies four sequential refinement procedures: (i)
minimum speech duration enforcement, (ii) temporal median
filtering, (iii) short-segment merging, and (iv) chronological
relabeling.

Waveform + Speaker Timeline — Elon Musk GEN Z employees in twitter meeting DUB

Lol
bbo oo p

Amplitude / Speaker

G e - -

-

Minimum Duration
Enforcement

| 1 8 Eu. - 1 b Eﬂ 0 =y =]
b ok - -

~—~

Final Diarization Labels
{RTTM / CSV [ JSON )

Median Filter ( Temporal 5 Merge Short Segments (
Smoothing <250ms)

5 Reassignment
(81,82, $3.... in order of

Chronological Label

appearance )

Figure 2: Post-Processing Workflow for Refining Diarization Labels

Figure 2 illustrates the sequential post-processing pipeline
applied after initial clustering to generate clean, stable, and
human-interpretable diarization labels. The process begins with
the raw clustering output, followed by four refinement
operations: (i) minimum duration enforcement to remove
micro-segments shorter than the allowed threshold, (ii) median
filtering for temporal smoothing of speaker labels, (iii) merging
of extremely short segments (<250 ms) into their neighboring
segments, and (iv) chronological label reassignment to ensure
that speaker identities follow their order of first appearance (S1,
S2, S3, ...). The final output is exported in RTTM, CSV, or
JSON formats and produces a consistent diarization timeline
suitable for further analysis.

3.5.1  Minimum Speech Duration Enforcement
Segments shorter than a predefined minimum duration
(typically 200-300 ms) are unreliable due to transient noise
spikes, brief breaths, or micro-pauses incorrectly labeled as
speech. These artifacts can artificially inflate speaker turn
counts and complicate clustering.

To enforce stability, any segment shorter than the minimum
threshold t is marked for correction:

d; <T = correct(i)

where d;is the duration of segment i. These segments are
reassigned to the most temporally adjacent speaker segment
(preceding or following), chosen by:

. Max
label(i) = arg neighbor At

This ensures smooth speaker boundaries and reduces false turn
transitions.

3.5.2 Median Filtering for Label Smoothing

Speaker labels across consecutive frames may fluctuate rapidly
due to local embedding noise or cluster boundary ambiguity. To
stabilize the temporal labeling sequence, a sliding-window
median filter is applied:

L(t) = median {L(t — k), ...,L(t + k)}

31



where:

e  L(t)=raw speaker label at time frame t
e L(t)=smoothed label
e k= window half-length (3—7 frames)

Median filtering preserves dominant speaker regions while
eliminating short “spikes” of incorrect labels, improving both
readability and DER performance.

3.5.3  Merging Extremely Short Segments (<250
ms)

Even after duration filtering and smoothing, diarization outputs

may still contain extremely short speaker alternations (e.g., 80—

250 ms). These are typically:

breath sounds

filler noises

transitional plosive bursts
segmentation artifacts

Such micro-segments are merged into their temporally closest
neighbor using:

Li—-1),ifdi_y > diyq

dest(i) = { L(i+ 1), otherwise

Ensuring that segment continuity is preserved. This reduces
artificial fragmentation and aligns the sequence with natural

speech turn patterns.

¢
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3.5.4 Chronological Relabeling

After smoothing and merging, the system produces a refined
sequence of speaker clusters. However, cluster labels from
AHC (e.g., 0, 5, 13, 9) often appear in arbitrary order. To
improve interpretability and compatibility with RTTM
evaluation tools, cluster IDs are reassigned according to their
first appearance in time:

1. The first speaker to appear becomes Speaker 1
2. The next unique speaker becomes Speaker 2
3. Andsoon

Formally:

NewlID(L,) = rank ( firstOccurrence(L;))

This chronological relabeling ensures human-friendly speaker
numbering and proper sequencing for downstream analysis
such as turn-taking matrices.

4. Graphical User Interface (GUI)

The proposed diarization framework includes a comprehensive
Graphical User Interface (GUI) designed to make the analysis
transparent, interactive, and accessible to both researchers and
practitioners. The GUI integrates all stages of the pipeline—
from signal visualization to embedding analysis and
conversational  statistics—into a  single user-friendly
environment. This section describes each visualization module
in detail.

Input / Output
Audio file: D:/PhD_Projects/PhD Sara Madam/VSCode/Dataset/01_input data(meeting_News)/Meeting Files/Elon Musk GEN Z employees in twitter meeting DUB.m4a Browse
Batch folder: Choose
Output dir DAAPD_Projects'\PhD Sara Madam\VSCodé\outputs Choose

ffmpeg path (optional):  D/PhD_Projects/PhD Sara Madam/VSCode/Dataset/rttm/fimpeg-B.0-essentials_build/bin/ffmpeg.exe

Parameters

VAD scale (lower = more speechl: 0.5 3 AHCdistancethreshold: 040 3 Minspeech(s)k 03
Clustering Mode & Metric

© Auto (distance threshold) (O Fixed-K Auto-K (silhouette)  #Speakers (K): 5 *  Metric |cosine
Quick presets:  Meeting (balanced)  More clusters  Fewer clusters

Run (Single)  Run (Batch) Cancel  Open Output

Timeline Plots Stats

Top Turns

Browse

*  Minsilence merge (s): 02 T EMFCC: 13

Save Config  Load Config
Export PNG (Timeline)  Export PDF (Timeline)  Export POF (Al  Export Stats CSV.

Done — speakers=4, segments=49

Speech Ratio
20 :| .
0

Activity Density

4 o
Waveform + Speaker Timeline — Elon Musk GEN Z employees in twitter meeting DUB
% 1.0 s e @ & — ] e S2  mENS3 WS4
g o5 ] £ 4 a | [5:]
& in =
§ 001 i A b i s
-] i N
2 — E 1 ] | |
g7 E a L) g
E _ = ] ] Ex g
£ -10
0 20 0 60 80

Figure 2: Complete Graphical User Interface of the Proposed Speaker Diarization System

4.1 Timeline View

The timeline module serves as the primary interface for
inspecting diarization alignment. It displays Figure 2. the raw
audio waveform together with color-coded speaker segments
(S1,S2,S3, ...), enabling users to verify turn-taking boundaries
and speech continuity. The timeline supports zooming,
panning, and scroll-based navigation for analyzing both global
and fine-grained interactions.

Spectrogram and MFCC Feature Analysis
The GUI includes detailed acoustic visualization tools for

analyzing the front-end signal processing. As shown in Figure
4 (top row ):

e The STFT Spectrogram (left) offers a high-
resolution view of frequency—time energy
distribution, revealing voiced regions, harmonics,
and possible overlapping speech.

e The MFCC Heatmap (right) displays the temporal
evolution of cepstral coefficients, which form the
basis of the MFCC embedding used for clustering.
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Figure 4: Multi-panel visualization outputs from the diarization framework, including (top row) STFT spectrogram and
MFCC heatmap, (middle row) RMS + VAD threshold plot and Silhouette score analysis, and (bottom row) PCA embedding
scatter plot and segment duration histogram.

Additionally, the RMS + VAD threshold plot (middle-left)
illustrates how the adaptive percentile-based VAD detects
speech segments. The dashed line indicates the dynamic
threshold used to distinguish speech from silence. This visual
validation helps users tune VAD sensitivity for different noise
conditions.

4.2 PCA and Silhouette-Based Cluster

Diagnostics
To assess the quality of speaker embeddings and clustering
decisions, the GUI provides dimensionality-reduced
visualization and cluster evaluation metrics. As shown in
Figure 4 (bottom-left and middle-right):

e The PCA Embedding Scatter Plot shows the
distribution of MFCC-based embeddings in a two-
dimensional space. Each point is color-coded by
speaker label, enabling inspection of cluster

compactness and overlap.

The Silhouette Score vs K curve provides an
unsupervised estimate of the optimal number of
speakers. Higher silhouette values indicate better
cluster separation.

These tools allow users to diagnose under-segmentation (too
few clusters) or over-segmentation (too many clusters) and
interpret speaker separability.

4.3 Conversational Analytics
Beyond segmentation, the GUI computes speaker-level

conversational metrics that highlight communication patterns.
As illustrated in Figure 4 (bottom-right), the Segment Duration
Histogram summarizes the distribution of segment lengths after
post-processing, revealing speaking style and turn-taking
dynamics. In the main GUI window (not shown here),
additional analytics include:

e  Talk-time ratios (dominance of each speaker)

e Turn counts (frequency of taking the floor)

e  Average turn duration

e  Activity density plots (moments of intense
conversation)

e  Transition heatmaps (who speaks after whom)

5. CONCLUSION

This paper presented a complete and transparent speaker
diarization framework that integrates MFCC-based
embeddings, adaptive percentile-driven VAD, and multi-mode
Agglomerative Hierarchical Clustering (AHC) within an
interactive visual analytics interface. Unlike end-to-end neural
diarization systems that function as black boxes, the proposed
framework emphasizes interpretability and tunability, enabling
users to examine each intermediate component—ifrom spectral
features and MFCC evolution to clustering separability and
conversational metrics.

The system demonstrates that classical MFCC + AHC
pipelines, when supported by carefully designed post-
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processing and diagnostic visualizations, can deliver robust
diarization performance while remaining computationally
lightweight and suitable for real-time analysis. The GUI further
enhances usability by providing waveform-synchronized
segmentation, embedding scatter plots, silhouette analysis, and
interaction statistics such as talk-time ratios and activity
density. Through these modules, the framework bridges the gap
between traditional signal processing approaches and modern
analytic tooling, making diarization accessible for researchers,
educators, and conversational analysis practitioners.
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