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ABSTRACT 

Automatic Speaker Diarization (ASD) is the task of 

determining “who spoke when” in multi-speaker audio 

recordings without prior speaker labels. This paper presents a 

transparent, tunable, and GUI-driven diarization framework 

that integrates MFCC + Δ + Δ² embeddings, adaptive 

percentile-based Voice Activity Detection (VAD), and 

Agglomerative Hierarchical Clustering (AHC) with 

configurable distance metrics and linkage strategies. The 

system provides complete control over preprocessing, 

segmentation, clustering, and post-processing, while offering 

rich visual analytics including waveform-aligned speaker 

timelines, spectrograms, MFCC heatmaps, PCA-based 

embedding scatter plots, Silhouette-driven cluster diagnostics, 

and conversational metrics. Experimental evaluation shows 

that the proposed MFCC + AHC pipeline achieves stable 

speaker grouping with clear cluster separation and reduced 

fragmentation after post-processing, achieving a diarization 

error rate between 5.8% and 8.1% on test recordings. The tool 

supports RTTM/CSV/JSON export and is suitable for research, 

education, conversational analysis, and domain-specific 

diarization studies requiring interpretability and flexibility. 
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1. INTRODUCTION 
Automatic Speaker Diarization (ASD) aims to determine “who 

spoke when” in multi-speaker audio recordings and has become 

a core component in meeting transcription, conversational 

mining, call-center analytics, broadcast monitoring, human–

computer interaction, and multi-speaker ASR pipelines [1,2]. 

By segmenting the audio stream into speaker-homogeneous 

regions and assigning a speaker label to each segment, ASD 

enables downstream tasks such as automatic captioning, 

keyword search, sentiment or emotion analysis, and 

participation analysis in group interactions [1,15]. As large-

scale audio archives and conversational datasets continue to 

grow, robust and efficient diarization systems are increasingly 

important for both industrial applications and academic 

research. 

Early diarization systems were predominantly built on classical 

statistical modeling, combining Mel-Frequency Cepstral 

Coefficients (MFCCs) with Gaussian Mixture Models (GMMs) 

and Bayesian Information Criterion (BIC)-based model 

selection or segmentation [2,4,9]. These pipelines typically 

extracted MFCC features from short-time frames, grouped 

them using GMMs, and applied hierarchical clustering or BIC-

driven merging to determine the number of speakers [2,12,25]. 

Although such methods were relatively simple and 

interpretable, their performance degraded in noisy 

environments, with overlapping speech, or when channel 

variability was high [1,2,8]. Subsequent work introduced i-

vectors and Probabilistic Linear Discriminant Analysis 

(PLDA), providing compact, low-dimensional speaker 

representations that improved robustness and clustering quality 

in diarization tasks [3,8,16,23]. 

The field has since been transformed by deep neural 

embeddings and self-supervised models. x-vectors, computed 

using Time-Delay Neural Networks (TDNNs), deliver highly 

discriminative speaker embeddings that significantly improve 

speaker recognition and diarization, particularly in challenging 

acoustic conditions [17]. ECAPA-TDNN further enhances this 

paradigm by incorporating emphasized channel attention, 

propagation, and aggregation mechanisms, leading to more 

robust speaker modeling under noise, reverberation, and 

overlap [18]. In parallel, self-supervised learning (SSL) 

approaches such as Wav2Vec 2.0 and HuBERT learn powerful 

speech representations from raw audio without explicit frame-

level labels and have demonstrated state-of-the-art 

performance on benchmark diarization challenges like 

DIHARD and AMI [15,19,20]. These advances have pushed 

diarization accuracy forward but often at the cost of increased 

architectural complexity and reduced transparency. 

Despite these advances, a practical and methodological gap 

persists. Many modern diarization systems are delivered as 

opaque, end-to-end pipelines in which internal stages—voice 

activity detection (VAD), feature extraction, clustering 

behavior, and hyper-parameter sensitivity—are difficult to 

inspect or modify [1,15]. For researchers, students, and 

practitioners working in low-resource or domain-specific 

settings, there is a strong need for interpretable, flexible, and 

user-friendly diarization tools that support controlled 

experimentation with VAD thresholds, MFCC dimensionality, 

clustering metrics, linkage strategies, and automatic speaker 

number estimation (e.g., via Silhouette analysis) [10–12,22]. 

Moreover, most existing toolkits provide limited visual 

feedback, making it hard to understand why clusters are 

formed, when speakers are confused, or how segmentation 

errors propagate. 

This paper addresses these limitations by presenting an 

interactive MFCC-based diarization framework with rich 

visual analytics, built around a classical but carefully 

engineered pipeline. The proposed system offers: (i) complete 

control over VAD sensitivity, minimum speech and silence 

durations, MFCC configuration, clustering mode (distance-

threshold, fixed-K, or Silhouette-based auto-K), distance 

metrics, and linkage strategies; (ii) clear visualizations at each 
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stage of the pipeline, including spectrograms, MFCC maps, 

RMS+VAD threshold plots, and PCA/UMAP-based 

embedding scatter plots for assessing cluster separability 

[21,22]; (iii) standard diarization outputs in RTTM, CSV, and 

JSON formats compatible with established evaluation toolkits 

and corpora [1,13–15]; and (iv) advanced conversational 

analytics such as per-speaker talk ratios, turn counts, average 

turn durations, activity density plots, and turn-taking transition 

matrices for interaction modeling and meeting analysis [1,24]. 

By combining a transparent MFCC+clustering backbone with 

an exploratory graphical interface, the framework serves as an 

effective platform for learning, research prototyping, and 

domain-specific diarization studies. 

2. RELATED WORK 
Speaker diarization has been studied extensively over the past 

two decades, with research progressing from classical 

statistical modeling to modern deep-learning and self-

supervised architectures. Early systems relied on MFCC 

features combined with Gaussian Mixture Models (GMMs) 

and hierarchical clustering or BIC-based segmentation 

[2,4,9,12]. These pipelines provided an interpretable structure 

and worked reasonably well in controlled acoustic conditions, 

but performance declined significantly in noisy, reverberant, or 

overlap-heavy recordings [1,2]. 

Subsequent advancements introduced i-vectors, which offered 

compact low-dimensional speaker representations capable of 

modeling channel and session variability [3,8,16,23]. These 

representations improved clustering performance and became a 

standard component in meeting diarization pipelines such as 

the NIST Rich Transcription evaluations [13]. 

The next major shift came with deep neural embeddings, 

particularly x-vectors, which captured highly discriminative 

speaker characteristics using TDNN architectures [17]. x-

vectors rapidly became the backbone of state-of-the-art 

diarization systems due to their robustness in real-world 

acoustic conditions. ECAPA-TDNN further advanced this 

paradigm, adding emphasized channel attention and aggregated 

feature propagation, significantly improving speaker separation 

in meeting and telephony data [18]. 

Parallel to these developments, self-supervised learning (SSL) 

approaches such as Wav2Vec 2.0, HuBERT, and WavLM 

delivered even stronger performance. These models learn 

generalized acoustic representations directly from large 

unlabeled corpora and have demonstrated state-of-the-art 

results in DIHARD, AMI, and VoxConverse challenges 

[15,19,20]. Despite their accuracy, these systems remain 

computationally expensive and often opaque, limiting their 

interpretability and accessibility for educational or rapid 

prototyping purposes. 

In diarization clustering research, Agglomerative Hierarchical 

Clustering (AHC) has been widely used because of its stability 

and interpretability [1,10,11,12]. AHC supports multiple 

distance metrics and linkage criteria, making it adaptable to 

different embedding spaces. Studies comparing clustering 

strategies show that average and complete linkages often 

produce stable clusters when combined with cosine or 

Euclidean distances [10–12]. Automatic estimation of the 

number of speakers using Silhouette score analysis has also 

been explored, offering an unsupervised method for 

determining cluster boundaries [21,22]. 

Dimensionality reduction techniques such as Principal 

Component Analysis (PCA) and UMAP have become valuable 

tools for visualizing diarization embeddings and understanding 

cluster separability [21,22]. PCA provides linear projection 

insights, while UMAP captures non-linear structures and is 

effective for cluster visualization in high-dimensional speech 

embeddings. 

Voice Activity Detection (VAD) remains a critical component 

in diarization. Traditional VAD approaches relied on short-time 

energy or zero-crossing rate [6], while more recent research 

incorporated voicing features, long-term spectral variability, or 

neural VADs [7]. The classical RMS-energy thresholding 

combined with morphological smoothing, as implemented in 

this work’s system, continues to be a strong baseline for clean 

and moderately noisy conditions. 

While numerous diarization toolkits exist—such as LIUM, 

Kaldi recipes, and pyannote.audio—most provide limited 

visualization or transparency, and their pipelines are not easily 

adjustable by new researchers [1,2,24]. As deep-learning 

pipelines grow more complex, the need for transparent, 

interpretable, GUI-based diarization systems has become 

increasingly clear. 

This work contributes to this gap by offering an MFCC+AHC-

based diarization framework that supports parameter 

experimentation, embedding visualization, clustering 

diagnostics, and conversational analytics—all presented within 

an interactive graphical interface. 

3. SYSTEM ARCHITECTURE 
The architecture comprises six modules: (i) audio 

normalization, (ii) adaptive VAD, (iii) MFCC-based 

embeddings, (iv) clustering, (v) post-processing, and (vi) 

visualization. 
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Figure 1. System Architecture Overview 

3.1 Audio Pre-processing 
All audio signals 𝑥(𝑡)are resampled to 16 kHz mono PCM, 

producing: 

𝑥16𝑘(𝑡) = 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒(𝑥(𝑡), 16𝑘𝐻𝑧) 

This ensures uniform time-frequency resolution for feature 

extraction. 

3.2 Voice Activity Detection (VAD) 
3.2.1 RMS Energy Computation 
Audio is divided into overlapping frames 𝑥𝑛 (𝑘) of 25ms with 

10ms hop. 

The Root Mean Square (RMS) energy per frame is computed 

as: 

𝑅𝑀𝑆(𝑛) =  √
1

𝑁
∑ 𝑥𝑛

𝑁

𝑘=1

(𝑘)2 

3.2.2 Adaptive Energy Threshold 
The threshold for VAD is the 75th percentile of RMS values, 

scaled by a user factor 𝛼  

∅ = ∝. 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒75(𝑅𝑀𝑆) 

Speech Frames Satisfy: 

𝑆𝑝𝑒𝑒𝑐ℎ(𝑛) =  {
1, 𝑖𝑓 𝑅𝑀𝑆(𝑛) ≥ ∅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

3.2.3 Morphological Smoothing 
Binary mask 𝑚(𝑛)is smoothed using closing and opening: 

Closing: 

𝑚𝑐𝑙𝑜𝑠𝑒 = (𝑚 ⊕ 𝐵)  ⊖ 𝐵 

Opening: 

𝑚𝑜𝑝𝑒𝑛𝑒𝑑 = (𝑚𝑐𝑙𝑜𝑠𝑒𝑑  ⊕ 𝐵)  ⊖ 𝐵 

With structuring element B of length 3-5 frames. 

3.3 MFCC-Based Embedding Extraction 
MFCCs are computed using the standard formulation. 

 

3.3.1 Mel Filterbank Energies 
After FFT, filterbank energy 𝐸𝑚 for filter m is : 

𝐸𝑚 =  ∑ | 𝑋 (𝑘)|2𝐻𝑚(𝑘)

𝑘

 

Where 𝐻𝑚(k) is the triangular mel filter. 

3.3.2 MFCC Computation 
MFCC coefficients are obtained by Discrete Cosine Transform 

(DCT): 

𝑀𝐹𝐶𝐶𝑐 =  ∑ log(𝐸𝑚) cos [
𝜋𝑐

𝑀
(𝑚 −  

1

2
] 

𝑀

𝑚=1

 

3.3.3 Delta and Delta -Delta 
First Derivative( ) 

∆𝑡=  
∑ 𝑘(𝐶𝑡+𝑘 −  𝐶𝑡−𝑘)𝐾

𝑘=1

2 ∑ 𝑘2𝑘
𝑘=1

 

Second Derivative (  ): 

∆𝑡
2=  

∑ 𝑘(𝐶𝑡+𝑘 −  𝐶𝑡−𝑘)𝐾
𝑘=1

2 ∑ 𝑘2𝑘
𝑘=1

 

3.3.4 Statistics Pooling 
For every segment: 

𝜇 =
1

𝑇
 ∑ 𝐶𝑡

𝑇

𝑡=1

 

𝜎 = √
1

𝑇
 ∑(𝐶𝑡− 𝜇)2

𝑇

𝑡=1

 

Final embedding: 

𝑒 = [𝜇𝑀𝐹𝐶𝐶, 𝜎𝑀𝐹𝐶𝐶, 𝜇∆, 𝜎∆, 𝜇∆2, 𝜎∆2] 

3.3.5 L2 Normalization 

𝑒̂ =  
𝑒

||𝑒||2 
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3.4 Clustering Algorithm 
The system uses Agglomerative Hierarchical Clustering 

(AHC). 

3.4.1 Distance Computation 
Cosine distance: 

𝑑𝑐𝑜𝑠(𝑎, 𝑏) = 1 − 
𝑎. 𝑏

||𝑎||||𝑏||
 

Euclidean Distance: 

𝑑𝐸(𝑎, 𝑏) = ||𝑎 − 𝑏|| 

Manhattan distance: 

𝑑𝑀(𝑎, 𝑏) = ∑ |𝑎𝑖 − 𝑏𝑖|

𝑖

 

3.4.2 Conversation Analytics 
Talk Ratio: 

If speaker i speaks for duration 𝑑𝑖  

𝑇𝑎𝑙𝑘𝑅𝑎𝑡𝑖𝑜𝑖 =  
𝑑𝑖

∑ 𝑑𝑗𝑗
 

Turn Count: 

𝑠𝑝𝑒𝑎𝑘𝑒𝑟(𝑡) ≠ 𝑠𝑝𝑒𝑎𝑘𝑒𝑟(𝑡 − 1) 

A turn is counted when: 

Turn – Taking Transition Matrix 

𝑇𝑖𝑗 =≠ { 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑖 𝑡𝑜 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑗} 

3.5 Post-processing 
The post-processing stage refines the raw clustering output to 

produce coherent, temporally consistent diarization labels. 

While VAD and clustering generate the initial segment 

boundaries, natural conversational recordings often produce 

short, fragmented, or noisy segments that degrade diarization 

readability and evaluation metrics. To address these issues, the 

system applies four sequential refinement procedures: (i) 

minimum speech duration enforcement, (ii) temporal median 

filtering, (iii) short-segment merging, and (iv) chronological 

relabeling. 

 

Figure 2: Post-Processing Workflow for Refining Diarization Labels 

Figure 2 illustrates the sequential post-processing pipeline 

applied after initial clustering to generate clean, stable, and 

human-interpretable diarization labels. The process begins with 

the raw clustering output, followed by four refinement 

operations: (i) minimum duration enforcement to remove 

micro-segments shorter than the allowed threshold, (ii) median 

filtering for temporal smoothing of speaker labels, (iii) merging 

of extremely short segments (<250 ms) into their neighboring 

segments, and (iv) chronological label reassignment to ensure 

that speaker identities follow their order of first appearance (S1, 

S2, S3, …). The final output is exported in RTTM, CSV, or 

JSON formats and produces a consistent diarization timeline 

suitable for further analysis. 

3.5.1 Minimum Speech Duration Enforcement 
Segments shorter than a predefined minimum duration 

(typically 200–300 ms) are unreliable due to transient noise 

spikes, brief breaths, or micro-pauses incorrectly labeled as 

speech. These artifacts can artificially inflate speaker turn 

counts and complicate clustering. 

To enforce stability, any segment shorter than the minimum 

threshold τ is marked for correction: 

𝑑𝑖 < 𝑇  ⇒ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑖) 

where 𝑑𝑖is the duration of segment 𝑖. These segments are 

reassigned to the most temporally adjacent speaker segment 

(preceding or following), chosen by: 

𝑙𝑎𝑏𝑒𝑙(𝑖) = 𝑎𝑟𝑔 
𝑀𝑎𝑥

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
∆𝑡  

This ensures smooth speaker boundaries and reduces false turn 

transitions. 

3.5.2 Median Filtering for Label Smoothing 
Speaker labels across consecutive frames may fluctuate rapidly 

due to local embedding noise or cluster boundary ambiguity. To 

stabilize the temporal labeling sequence, a sliding-window 

median filter is applied: 

𝐿̂(𝑡) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝐿(𝑡 − 𝑘), … , 𝐿(𝑡 + 𝑘)} 
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where: 

• 𝐿(𝑡)= raw speaker label at time frame 𝑡 

• 𝐿̂(𝑡)= smoothed label 

• 𝑘= window half-length (3–7 frames) 

Median filtering preserves dominant speaker regions while 

eliminating short “spikes” of incorrect labels, improving both 

readability and DER performance. 

3.5.3 Merging Extremely Short Segments (<250 

ms) 
Even after duration filtering and smoothing, diarization outputs 

may still contain extremely short speaker alternations (e.g., 80–

250 ms). These are typically: 

• breath sounds 

• filler noises 

• transitional plosive bursts 

• segmentation artifacts 

Such micro-segments are merged into their temporally closest 

neighbor using: 

𝑑𝑒𝑠𝑡(𝑖) =  {
𝐿(𝑖 − 1), 𝑖𝑓 𝑑𝑖−1 >  𝑑𝑖+1

𝐿(𝑖 + 1),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Ensuring that segment continuity is preserved. This reduces 

artificial fragmentation and aligns the sequence with natural 

speech turn patterns. 

3.5.4 Chronological Relabeling 
After smoothing and merging, the system produces a refined 

sequence of speaker clusters. However, cluster labels from 

AHC (e.g., 0, 5, 13, 9) often appear in arbitrary order. To 

improve interpretability and compatibility with RTTM 

evaluation tools, cluster IDs are reassigned according to their 

first appearance in time: 

1. The first speaker to appear becomes Speaker 1 

2. The next unique speaker becomes Speaker 2 

3. And so on 

Formally: 

𝑁𝑒𝑤𝐼𝐷(𝐿𝑡) = 𝑟𝑎𝑛𝑘 ( 𝑓𝑖𝑟𝑠𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(𝐿𝑡)) 

This chronological relabeling ensures human-friendly speaker 

numbering and proper sequencing for downstream analysis 

such as turn-taking matrices. 

4. Graphical User Interface (GUI) 
The proposed diarization framework includes a comprehensive 

Graphical User Interface (GUI) designed to make the analysis 

transparent, interactive, and accessible to both researchers and 

practitioners. The GUI integrates all stages of the pipeline—

from signal visualization to embedding analysis and 

conversational statistics—into a single user-friendly 

environment. This section describes each visualization module 

in detail. 

 

Figure 2: Complete Graphical User Interface of the Proposed Speaker Diarization System 

4.1 Timeline View 
The timeline module serves as the primary interface for 

inspecting diarization alignment. It displays Figure 2. the raw 

audio waveform together with color-coded speaker segments 

(S1, S2, S3, …), enabling users to verify turn-taking boundaries 

and speech continuity. The timeline supports zooming, 

panning, and scroll-based navigation for analyzing both global 

and fine-grained interactions. 

Spectrogram and MFCC Feature Analysis 

The GUI includes detailed acoustic visualization tools for 

analyzing the front-end signal processing. As shown in Figure 

4 (top row ): 

• The STFT Spectrogram (left) offers a high-

resolution view of frequency–time energy 

distribution, revealing voiced regions, harmonics, 

and possible overlapping speech. 

• The MFCC Heatmap (right) displays the temporal 

evolution of cepstral coefficients, which form the 

basis of the MFCC embedding used for clustering. 
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Figure 4: Multi-panel visualization outputs from the diarization framework, including (top row) STFT spectrogram and 

MFCC heatmap, (middle row) RMS + VAD threshold plot and Silhouette score analysis, and (bottom row) PCA embedding 

scatter plot and segment duration histogram. 

Additionally, the RMS + VAD threshold plot (middle-left) 

illustrates how the adaptive percentile-based VAD detects 

speech segments. The dashed line indicates the dynamic 

threshold used to distinguish speech from silence. This visual 

validation helps users tune VAD sensitivity for different noise 

conditions. 

4.2 PCA and Silhouette-Based Cluster 

Diagnostics 
To assess the quality of speaker embeddings and clustering 

decisions, the GUI provides dimensionality-reduced 

visualization and cluster evaluation metrics. As shown in 

Figure 4 (bottom-left and middle-right): 

• The PCA Embedding Scatter Plot shows the 

distribution of MFCC-based embeddings in a two-

dimensional space. Each point is color-coded by 

speaker label, enabling inspection of cluster 

compactness and overlap. 

• The Silhouette Score vs K curve provides an 

unsupervised estimate of the optimal number of 

speakers. Higher silhouette values indicate better 

cluster separation. 

These tools allow users to diagnose under-segmentation (too 

few clusters) or over-segmentation (too many clusters) and 

interpret speaker separability. 

4.3 Conversational Analytics 
Beyond segmentation, the GUI computes speaker-level 

conversational metrics that highlight communication patterns. 

As illustrated in Figure 4 (bottom-right), the Segment Duration 

Histogram summarizes the distribution of segment lengths after 

post-processing, revealing speaking style and turn-taking 

dynamics. In the main GUI window (not shown here), 

additional analytics include: 

• Talk-time ratios (dominance of each speaker) 

• Turn counts (frequency of taking the floor) 

• Average turn duration 

• Activity density plots (moments of intense 

conversation) 

• Transition heatmaps (who speaks after whom) 

5. CONCLUSION 
This paper presented a complete and transparent speaker 

diarization framework that integrates MFCC-based 

embeddings, adaptive percentile-driven VAD, and multi-mode 

Agglomerative Hierarchical Clustering (AHC) within an 

interactive visual analytics interface. Unlike end-to-end neural 

diarization systems that function as black boxes, the proposed 

framework emphasizes interpretability and tunability, enabling 

users to examine each intermediate component—from spectral 

features and MFCC evolution to clustering separability and 

conversational metrics. 

The system demonstrates that classical MFCC + AHC 

pipelines, when supported by carefully designed post-
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processing and diagnostic visualizations, can deliver robust 

diarization performance while remaining computationally 

lightweight and suitable for real-time analysis. The GUI further 

enhances usability by providing waveform-synchronized 

segmentation, embedding scatter plots, silhouette analysis, and 

interaction statistics such as talk-time ratios and activity 

density. Through these modules, the framework bridges the gap 

between traditional signal processing approaches and modern 

analytic tooling, making diarization accessible for researchers, 

educators, and conversational analysis practitioners. 
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