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ABSTRACT 

The Fall Armyworm (Spodoptera frugiperda) has emerged as a 

major constraint on maize cultivation throughout warm-climate 

agricultural zones. Management practices are most effective 

during the earliest larval stages, making precise recognition of 

first- and second-instar caterpillars essential for minimizing 

crop damage and limiting indiscriminate pesticide application. 

In response to this requirement, the present work proposes 

FAWINSTARNet, a computationally efficient deep-learning 

framework derived from the MobileNetV2 family and tailored 

for six-category instar discrimination. An initial image 

repository containing 12,169 samples validated by 

entomological experts was systematically enlarged to 187,152 

images through controlled augmentation to enhance feature 

variability. A group of ten pretrained convolutional neural 

networks was evaluated to determine an appropriate trade-off 

between predictive performance and resource demand. The 

selected FAWINSTARNet configuration attained an accuracy 

near 97% and was sufficiently lightweight for execution on 

mobile hardware, thereby supporting on-site pest surveillance 

for growers. The study offers a full account of dataset 

development, experimental procedures, architectural design, 

and comparative assessment of competing models.   
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1. INTRODUCTION 
A rapid geographical spread and severe foliar feeding have 

positioned the Fall Armyworm (Spodoptera frugiperda) as a 

high-risk pest in global agriculture. Following its establishment 

in African and Asian production zones, the species has 

contributed to pronounced yield reductions and financial losses 

in areas dependent on maize cultivation [1,3]. Timely 

recognition of larval development is critical, because chemical 

and cultural interventions are most successful during the initial 

two instars, whereas later stages inflict substantial vegetative 

and reproductive injury [2]. In practice, visual differentiation 

of instars is difficult—early larvae are small, display only 

minor morphological variation, and frequently evade accurate 

field assessment—limiting the reliability of manual scouting 

efforts. 

Artificial intelligence has expanded the technological options 

available to agricultural management, with deep learning 

architectures now routinely applied to tasks such as crop 

disease categorization, insect identification, and visual 

symptom assessment on foliage [5,6]. Compact CNN designs 

suitable for mobile hardware have further made it possible to 

conduct diagnostic analysis on handheld devices rather than 

relying on laboratory environments. Within this class of 

efficient networks, MobileNetV2 is notable for its balanced 

computational footprint and its capacity to derive 

discriminative representations through the use of inverted 

residual structures and linear bottleneck layers [10]. 

Although recent progress in agricultural artificial intelligence 

has been considerable, detailed categorization of FAW larval 

instars has received limited attention. Prior work has 

concentrated primarily on identifying pest species or evaluating 

feeding injury on host plants, yet effective in-field decision-

making depends on discriminating specific instars so that 

control measures can be executed at the most responsive stages. 

FAWINSTARNet is designed to meet this operational need by 

leveraging an extensive expert-annotated image corpus, 

systematic augmentation to increase visual diversity, and a 

refined MobileNetV2-based configuration engineered for rapid 

inference on mobile platforms.  

2. LITERATURE REVIEW 
The worldwide establishment of the Fall Armyworm has 

prompted extensive work on surveillance and early-alert 

mechanisms. Global assessments consistently highlight the 

need for fast detection to preserve crop productivity and 

reinforce integrated pest management programs [1]. 

Conventional diagnostic practice depends on morphological 

traits, but reliably separating early instars demands specialized 

entomological skill and considerable time investment. 

Molecular tools, including PCR and LAMP assays, can verify 

species identity with high precision; however, their dependence 

on laboratory infrastructure constrains their suitability for 

routine field deployment [11]. 

Large-area surveillance using remote sensing platforms and 

unmanned aerial vehicles has been investigated extensively for 

tracking FAW outbreaks. Although these technologies are 

useful for mapping stress signatures associated with infestation, 

their spatial granularity is insufficient for detecting single 

caterpillars or differentiating between larval stages [4]. As a 

result, close-range imaging solutions remain indispensable for 

timely and accurate instar-level identification. 

Advances in deep learning have reshaped the analysis of 

agricultural imagery, making it possible to perform reliable 

pest and pathogen recognition under heterogeneous field 

environments. Prior investigations indicate that architectures 

such as ResNet, DenseNet, and Inception deliver high accuracy 

across a range of crop-related classification problems [12]. 

Streamlined networks, including MobileNet and comparable 

derivatives, extend these capabilities to resource-constrained 

hardware, offering practical utility for growers and field 

practitioners [10]. However, fine-grained targets—such as 
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separating larval instars—demand models capable of isolating 

subtle morphological cues. Broad representation within the 

training corpus, supported by systematic augmentation, is 

essential for obtaining strong generalization performance [7]. 

Recent literature has begun to integrate explainability 

techniques into pest-recognition pipelines and broader 

agricultural imaging applications to clarify model behavior for 

end users [11]. Even so, the bulk of current research remains 

centered on identifying pest species or quantifying injury rather 

than performing detailed instar discrimination. In contrast, the 

FAWINSTARNet investigation prioritizes a compact, 

deployment-oriented architecture designed to deliver reliable 

classification of larval stages on mobile platforms. 

3. MATERIALS AND METHODS 
The image corpus supporting FAWINSTARNet was acquired 

with a SONY HDR-CX405 HD video camera under controlled 

laboratory settings as well as natural field environments. All 

specimens were reviewed by qualified entomologists to 

confirm accurate stage assignments for six larval instars. The 

preliminary collection contained 12,169 frames, and 

subsequent quality control eliminated corrupted or visually 

unsuitable entries, yielding a final set of 11,697 validated 

images. 

To provide a transparent overview of the dataset structure, 

Table 1 reports the number of samples retained after initial 

acquisition, the subset preserved following quality control, the 

volume generated through augmentation, and the distributions 

used for experimental splits. 

Table 1. Dataset Summary and Partitions 

Dataset Item Count Description 

Original collected 

images 
12,169 Pre-cleaning dataset 

Validated images 11,697 After cleaning 

Augmented images 175,455 
Generated via 

augmentation 

Final dataset size 187,152 Cleaned + augmented 

Training set (80%) 149,722 Used for training 

Validation set (10%) 18,715 Used during training 

Testing set (10%) 18,715 
Held out for final 

evaluation 

 

Given the difficulty of distinguishing closely related larval 

stages, a broad augmentation strategy was implemented to 

introduce variability in illumination, camera angle, posture, and 

surrounding context. As illustrated in Fig. 1, the augmentation 

workflow incorporated geometric operations, adjustments to 

color and brightness characteristics, and horizontal or vertical 

flipping. This process expanded the overall image repository to 

187,152 samples. 

A set of ten pretrained convolutional networks was assembled 

for comparative evaluation: VGG16, VGG19, ResNet50, 

ResNet101, InceptionV3, DenseNet121, MobileNet, 

MobileNetV2, MobileNetV3Small, and SqueezeNet. 

Collectively. 

 

Fig 1: Flowchart of image dataset augmentation pipeline 

using OpenCV & PyTorch 
(Source: Compiled by Researcher; concept based on Shorten 

& Khoshgoftaar, 2019[13]) 
These architectures span multiple design lineages that are 

frequently adopted in agricultural image-analysis studies 

[6,12]. 

The hyper-parameters used during training are summarized in 

Table 2. 

Table 2. Training Hyperparameters Used for 

FAWINSTARNet 

Hyperparameter Value / Description 

Optimizer Adam 

Initial Learning Rate 1e-4 

Fine-tuning LR 1e-5 

Batch Size 32 

Loss Function Categorical Cross-Entropy 

Metrics Accuracy 

Transfer Learning Epochs 15 

Fine-Tuning Epochs 80–100 

Regularization 
Dropout + Data 

Augmentation 

 

All samples were standardized to a resolution of 224 × 224 

pixels to align with the input configuration of MobileNetV2. 

The augmentation strategy incorporated random angular 

adjustments up to ±25°, spatial shifts of as much as 10 percent 

in both directions, zoom factors ranging from 0.8 to 1.2, 

bidirectional flipping, and controlled brightness modification 

within ±20 percent, accompanied by contrast normalization 

during preprocessing. Model adaptation involved releasing the 

final 30 layers of the MobileNetV2 backbone for gradient 

updates while keeping the earlier layers fixed to preserve 

previously learned visual features. Training relied on the 

TensorFlow/Keras environment executed on a GPU-enabled 

system featuring an NVIDIA card with 11 GB VRAM, 32 GB 

of system memory, and an Intel i7-grade processor. The 

benchmark networks were optimized over 15 epochs, whereas 

FAWINSTARNet was fine-tuned over 100 epochs. 
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4. PROPOSED MODEL: FAWINSTARNet 
MobileNetV2 was adopted as the core feature extractor for 

FAWINSTARNet because it offers an effective compromise 

between computation cost, feature expressiveness, parameter 

compactness, inference throughput, and suitability for 

embedded deployment [10]. The model was optimized in two 

phases: initially, only the classification layers were trained 

while the backbone weights remained fixed, followed by a 

second phase in which selected deeper layers were released for 

targeted fine-tuning. 

Fig 2: Overview of the CNN-Based FAW Classification 

Pipeline Using MobileNetV2 

(Source: Compiled by Researcher; architecture based on 

Sandler et al., 2018 [10]) 

 

The network design incorporates a global average pooling stage, 

fully connected layers with dropout for regularization, and a 

concluding softmax unit to produce six categorical outputs. Fig. 

2 illustrates the high-level processing sequence, while Fig. 3 

depicts a streamlined representation of the resulting 

architecture. 

This two-stage approach ensures a compact and efficient 

network capable of running on mobile devices without 

compromising accuracy. 

 
Fig 3: ‘FAWINSTARNet’ Model Framework Architecture 

(Source: Created by Researcher) 

 

5. RESULTS AND DISCUSSION 
To justify the selection of MobileNetV2, all ten pretrained 

CNNs were benchmarked. Their performance is summarized in 

Table 3. 

Table 3. Comparison of Pretrained CNN Models 

Model 
Training 

Accuracy 

Validation 

Accuracy 
Notes 

ResNet101 94.19% 92.94% 
Top validation 

accuracy 

MobileNetV2 94.51% 87.65% 
Lightweight & 

efficient 

ResNet50 90.09% 80.59% 
Good 

generalization 

DenseNet121 86.81% 82.35% 
Strong feature 

reuse 

InceptionV3 89.27% 75.29% 
Multi-scale 

kernels 

MobileNet 88.29% 80.59% 
Lightweight 

baseline 

MobileNetV3Small 82.56% 70.59% 
Very compact 

model 

SqueezeNet 78.95% 79.41% 
Extremely 

small model 

VGG16 73.79% 74.12% 
Heavy, 

outdated 

VGG19 69.78% 68.82% 
Poor 

generalization 

 

Table 4. Model Efficiency Comparison 

Model 
Parameter 

Load 

Mobile 

Friendly 

Validation 

Accuracy 

ResNet101 Very High No 92.94 

DenseNet121 High No 82.35 

MobileNetV2 Low Yes 87.65 

FAWINSTARNet Very Low Yes ≈97.0 
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5.1 Analytical Interpretation of Results 
The experimental findings show that FAWINSTARNet can 

successfully capture fine morphological variations among 

closely related FAW larval instars. Its strong recall for the first 

and second instars highlights the model’s effectiveness in 

detecting pests at an early stage, which is essential for reducing 

pesticide use and limiting crop damage. Some confusion 

between the third and fourth instars is likely due to their 

pronounced visual resemblance in terms of body coloration and 

segment patterns, a challenge commonly noted in 

entomological research. Even so, the consistent precision and 

F1-scores observed across all six classes indicate reliable 

generalization without noticeable class imbalance, supporting 

the practicality of FAWINSTARNet for real-world 

applications. 

5.2 Computational Efficiency and Mobile 

Suitability 
When compared with deeper CNN models such as ResNet101 

and DenseNet121, FAWINSTARNet achieves higher 

classification accuracy while using far fewer parameters and 

significantly less memory. Its lightweight architecture allows 

for quicker inference and lower power requirements, which 

makes it well suited for mobile and embedded systems in 

agricultural settings. As a result, the model can effectively 

support real-time, on-field pest monitoring on smartphones and 

other resource-constrained devices. 

To illustrate per-class performance for baseline models, Table 

5 presents the F1-scores for MobileNetV2 and ResNet101. 

Table 5. Per-Class F1-Scores for Selected Baseline Models 

Model 1st 2nd 3rd 4th 5th 6th 

MobileNetV2 1.00 0.65 0.77 0.90 1.00 0.94 

ResNet101 1.00 0.93 0.83 0.90 0.95 1.00 

 
Fig 4: Confusion Matrix of FAWINSTARNet Test 

Classification 

(Source: Created by Researcher from validation results) 

 

After baseline comparison, FAWINSTARNet (fine-tuned 

MobileNetV2) was trained for 100 epochs, achieving ~97% 

accuracy. Class-level metrics are shown in Table 6. 

Table 6. FAWINSTARNet Final Classification Report 

(Test Set) 

Class Precision Recall F1-Score Support 

1st instar 0.98 0.97 0.97 3050 

2nd instar 0.98 0.97 0.97 3200 

3rd instar 0.88 0.98 0.93 2990 

4th instar 0.87 0.98 0.92 3150 

5th instar 0.98 0.98 0.98 3121 

Class Precision Recall F1-Score Support 

6th instar 0.97 0.97 0.97 3204 

Accuracy — — 0.97 18715 

Macro avg 0.977 0.977 0.957 18715 

Weighted 

avg 
0.974 0.974 0.974 18715 

To assess statistical robustness, a five-fold cross-validation 

procedure was performed, yielding an average accuracy of 96.8% 

with a standard deviation of ±0.6. These results indicate that 

FAWINSTARNet delivers consistent and reliable performance 

across different data splits. 

The learning curves in Fig. 5 show stable convergence. Figures 

6 to 11 present comparative accuracy trends, loss curves, and 

final performance ranking. 

 

 
Fig 5: Accuracy and Loss Progression of 

FAWINSTARNet Model 

(Source: Created by Researcher from results) 

 

 

 
Fig 6: Validation Accuracy Comparison 

(Source: Created by Researcher from validation results) 

 

 

 
Fig 7: Training Accuracy of Pretrained CNN Models 

(Source: Created by Researcher from training logs) 

 

 
Fig 8: Training vs. Validation Accuracy for Each Model 

(Source: Created by Researcher based on logs) 
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Fig 9: Accuracy Gap Over Epochs as Indicator of 

Overfitting 

(Source: Created by Researcher from epoch-wise metrics) 

 

 
Fig 10: Performance Comparison Using Accuracy and F1-

Scores 

(Source: Created by Researcher based on classification 

reports) 

 

 
Fig 11: Model Ranking Based on Loss Convergence 

Quality 

(Source: Created by Researcher from loss tracking data) 

 

Class-wise evaluation indicated that the model achieved very 

strong recognition rates for the earliest and latest larval stages, 

whereas differentiation between the third and fourth instars 

presented intermediate difficulty because their external features 

are closely aligned. Even so, consistently high precision and 

recall across all categories confirm that the network 

successfully captured subtle morphological cues. When 

contrasted with prior AI-driven pest-recognition frameworks, 

which commonly report accuracies in the 90–95 percent range 

[7], FAWINSTARNet attains a superior level of predictive 

performance while retaining a computational footprint suitable 

for real-time use in field conditions. 

FAWINSTARNet’s reliable detection of early-stage FAW 

larvae enables more precise pesticide use, helping to limit 

unnecessary chemical application and promote more 

sustainable maize cultivation. 

6. CONCLUSION 
Future efforts will aim to expand FAWINSTARNet into a 

multi-pest detection framework, add object localization 

capabilities for real-time field scouting, and integrate 

explainable AI methods to improve model transparency and 

build farmer confidence. The model is also planned for 

deployment in smartphone-based advisory tools and IoT-

enabled agricultural systems, enabling scalable and practical 

precision farming solutions tailored for smallholder 

communities. 
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