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ABSTRACT

The Fall Armyworm (Spodoptera frugiperda) has emerged as a
major constraint on maize cultivation throughout warm-climate
agricultural zones. Management practices are most effective
during the earliest larval stages, making precise recognition of
first- and second-instar caterpillars essential for minimizing
crop damage and limiting indiscriminate pesticide application.
In response to this requirement, the present work proposes
FAWINSTARNet, a computationally efficient deep-learning
framework derived from the MobileNetV2 family and tailored
for six-category instar discrimination. An initial image
repository  containing 12,169 samples validated by
entomological experts was systematically enlarged to 187,152
images through controlled augmentation to enhance feature
variability. A group of ten pretrained convolutional neural
networks was evaluated to determine an appropriate trade-off
between predictive performance and resource demand. The
selected FAWINSTARNet configuration attained an accuracy
near 97% and was sufficiently lightweight for execution on
mobile hardware, thereby supporting on-site pest surveillance
for growers. The study offers a full account of dataset
development, experimental procedures, architectural design,
and comparative assessment of competing models.
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1. INTRODUCTION

A rapid geographical spread and severe foliar feeding have
positioned the Fall Armyworm (Spodoptera frugiperda) as a
high-risk pest in global agriculture. Following its establishment
in African and Asian production zones, the species has
contributed to pronounced yield reductions and financial losses
in areas dependent on maize cultivation [1,3]. Timely
recognition of larval development is critical, because chemical
and cultural interventions are most successful during the initial
two instars, whereas later stages inflict substantial vegetative
and reproductive injury [2]. In practice, visual differentiation
of instars is difficult—early larvae are small, display only
minor morphological variation, and frequently evade accurate
field assessment—Iimiting the reliability of manual scouting
efforts.

Artificial intelligence has expanded the technological options
available to agricultural management, with deep learning
architectures now routinely applied to tasks such as crop
disease categorization, insect identification, and visual
symptom assessment on foliage [5,6]. Compact CNN designs
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suitable for mobile hardware have further made it possible to
conduct diagnostic analysis on handheld devices rather than
relying on laboratory environments. Within this class of
efficient networks, MobileNetV2 is notable for its balanced
computational footprint and its capacity to derive
discriminative representations through the use of inverted
residual structures and linear bottleneck layers [10].

Although recent progress in agricultural artificial intelligence
has been considerable, detailed categorization of FAW larval
instars has received limited attention. Prior work has
concentrated primarily on identifying pest species or evaluating
feeding injury on host plants, yet effective in-field decision-
making depends on discriminating specific instars so that
control measures can be executed at the most responsive stages.
FAWINSTARNEet is designed to meet this operational need by
leveraging an extensive expert-annotated image corpus,
systematic augmentation to increase visual diversity, and a
refined MobileNetV2-based configuration engineered for rapid
inference on mobile platforms.

2. LITERATURE REVIEW

The worldwide establishment of the Fall Armyworm has
prompted extensive work on surveillance and early-alert
mechanisms. Global assessments consistently highlight the
need for fast detection to preserve crop productivity and
reinforce integrated pest management programs [1].
Conventional diagnostic practice depends on morphological
traits, but reliably separating early instars demands specialized
entomological skill and considerable time investment.
Molecular tools, including PCR and LAMP assays, can verify
species identity with high precision; however, their dependence
on laboratory infrastructure constrains their suitability for
routine field deployment [11].

Large-area surveillance using remote sensing platforms and
unmanned aerial vehicles has been investigated extensively for
tracking FAW outbreaks. Although these technologies are
useful for mapping stress signatures associated with infestation,
their spatial granularity is insufficient for detecting single
caterpillars or differentiating between larval stages [4]. As a
result, close-range imaging solutions remain indispensable for
timely and accurate instar-level identification.

Advances in deep learning have reshaped the analysis of
agricultural imagery, making it possible to perform reliable
pest and pathogen recognition under heterogeneous field
environments. Prior investigations indicate that architectures
such as ResNet, DenseNet, and Inception deliver high accuracy
across a range of crop-related classification problems [12].
Streamlined networks, including MobileNet and comparable
derivatives, extend these capabilities to resource-constrained
hardware, offering practical utility for growers and field
practitioners [10]. However, fine-grained targets—such as
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separating larval instars—demand models capable of isolating
subtle morphological cues. Broad representation within the
training corpus, supported by systematic augmentation, is
essential for obtaining strong generalization performance [7].

Recent literature has begun to integrate explainability
techniques into pest-recognition pipelines and broader
agricultural imaging applications to clarify model behavior for
end users [11]. Even so, the bulk of current research remains
centered on identifying pest species or quantifying injury rather
than performing detailed instar discrimination. In contrast, the
FAWINSTARNet investigation prioritizes a compact,
deployment-oriented architecture designed to deliver reliable
classification of larval stages on mobile platforms.

3. MATERIALS AND METHODS

The image corpus supporting FAWINSTARNet was acquired
with a SONY HDR-CX405 HD video camera under controlled
laboratory settings as well as natural field environments. All
specimens were reviewed by qualified entomologists to
confirm accurate stage assignments for six larval instars. The
preliminary collection contained 12,169 frames, and
subsequent quality control eliminated corrupted or visually
unsuitable entries, yielding a final set of 11,697 validated
images.

To provide a transparent overview of the dataset structure,
Table 1 reports the number of samples retained after initial
acquisition, the subset preserved following quality control, the
volume generated through augmentation, and the distributions
used for experimental splits.

Table 1. Dataset Summary and Partitions

| Dataset Item “ Count || Description |

Original collected
images

| Validated images || 11,697

12,169 Pre-cleaning dataset

After cleaning |

Generated via
augmentation

Augmented images 175,455

| Final dataset size ” 187,152 || Cleaned + augmented I
| Training set (80%) ” 149,722 || Used for training l
| Validation set (10%) || 18,715 || Used during training |

Held out for final
evaluation

Testing set (10%) 18,715

Given the difficulty of distinguishing closely related larval
stages, a broad augmentation strategy was implemented to
introduce variability in illumination, camera angle, posture, and
surrounding context. As illustrated in Fig. 1, the augmentation
workflow incorporated geometric operations, adjustments to
color and brightness characteristics, and horizontal or vertical
flipping. This process expanded the overall image repository to
187,152 samples.

A set of ten pretrained convolutional networks was assembled
for comparative evaluation: VGG16, VGG19, ResNet50,
ResNet101, InceptionV3,  DenseNet121,  MobileNet,
MobileNetV2,  MobileNetV3Small, and  SqueezeNet.
Collectively.
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Fig 1: Flowchart of image dataset augmentation pipeline
using OpenCV & PyTorch
(Source: Compiled by Researcher; concept based on Shorten
& Khoshgofiaar, 2019[13])
These architectures span multiple design lineages that are
frequently adopted in agricultural image-analysis studies
[6,12].

The hyper-parameters used during training are summarized in
Table 2.

Table 2. Training Hyperparameters Used for

FAWINSTARNet
Hyperparameter Value / Description
Optimizer Adam
Initial Learning Rate le-4
Fine-tuning LR le-5
Batch Size 32
Loss Function Categorical Cross-Entropy
Metrics Accuracy
Transfer Learning Epochs 15
Fine-Tuning Epochs 80-100
Regularization DArSggquetn:a]t)igga

All samples were standardized to a resolution of 224 x 224
pixels to align with the input configuration of MobileNetV2.
The augmentation strategy incorporated random angular
adjustments up to £25°, spatial shifts of as much as 10 percent
in both directions, zoom factors ranging from 0.8 to 1.2,
bidirectional flipping, and controlled brightness modification
within £20 percent, accompanied by contrast normalization
during preprocessing. Model adaptation involved releasing the
final 30 layers of the MobileNetV2 backbone for gradient
updates while keeping the earlier layers fixed to preserve
previously learned visual features. Training relied on the
TensorFlow/Keras environment executed on a GPU-enabled
system featuring an NVIDIA card with 11 GB VRAM, 32 GB
of system memory, and an Intel i7-grade processor. The
benchmark networks were optimized over 15 epochs, whereas
FAWINSTARNet was fine-tuned over 100 epochs.
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4. PROPOSED MODEL: FAWINSTARNet

MobileNetV2 was adopted as the core feature extractor for
FAWINSTARNet because it offers an effective compromise
between computation cost, feature expressiveness, parameter
compactness, inference throughput, and suitability for
embedded deployment [10]. The model was optimized in two
phases: initially, only the classification layers were trained
while the backbone weights remained fixed, followed by a

second phase in which selected deeper layers were released for
targeted fine-tuning.
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Fig 2: Overview of the CNN-Based FAW Classification
Pipeline Using MobileNetV2
(Source: Compiled by Researcher; architecture based on
Sandler et al., 2018 [10])

The network design incorporates a global average pooling stage,
fully connected layers with dropout for regularization, and a
concluding softmax unit to produce six categorical outputs. Fig.
2 illustrates the high-level processing sequence, while Fig. 3

depicts a streamlined representation of the

resulting
architecture.

This two-stage approach ensures a compact and efficient
network capable of running on mobile devices without
compromising accuracy.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.76, January 2026

ﬂ'\WINSTARNet Model Architecture

(MobileNetV2-Based FAW Larval Stage
Classifier)

Input
Image (224x224x3)

N
[ Pretrained MobileNetV2 ‘

(Top layers removed, weights frozen)

{

GlobalAveragePooling2D

4

‘ Dense(6, activation="softmax)

--> Classification layer (6 classes)

N
Larval Stage Predictions

Fig 3: ‘FAWINSTARNet’ Model Framework Architecture

(Source: Created by Researcher)

(Probabilities)

5. RESULTS AND DISCUSSION
To justify the selection of MobileNetV2, all ten pretrained
CNNs were benchmarked. Their performance is summarized in
Table 3.

Table 3. Comparison of Pretrained CNN Models

Training Validation

Model Accuracy Accuracy Notes
ResNet101 94.19%  92.949, 1op validation
accuracy
MobileNetV2 ~ 9451%  87.65% Lightweight&
efficient
ResNet50 90.09%  80.59% Good
generalization
DenseNet12]  86.81% 82350, Stong feature
reuse
InceptionV3 8927% 7520  Multi-scale
kernels
MobileNet 8820%  80.50v  ightweight
baseline
MobileNetV3Small  82.56%  70.59% YOy compact
model
SqueezeNet 78.95% 79419  Cxtemely
small model
VGG16 73.79%  74.12% Heavy,
outdated
VGG19 69.78%  68.82% Poor
generalization

Table 4. Model Efficiency Comparison

Parameter

Model Mobile Validation
Load Friendly Accuracy
ResNet101 Very High No 92.94
DenseNet121 High No 82.35
MobileNetV2 Low Yes 87.65
FAWINSTARNet Very Low Yes ~97.0
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5.1 Analytical Interpretation of Results

The experimental findings show that FAWINSTARNet can
successfully capture fine morphological variations among
closely related FAW larval instars. Its strong recall for the first
and second instars highlights the model’s effectiveness in
detecting pests at an early stage, which is essential for reducing
pesticide use and limiting crop damage. Some confusion
between the third and fourth instars is likely due to their
pronounced visual resemblance in terms of body coloration and
segment patterns, a challenge commonly noted in
entomological research. Even so, the consistent precision and
Fl-scores observed across all six classes indicate reliable
generalization without noticeable class imbalance, supporting
the practicality of FAWINSTARNet for real-world
applications.

5.2 Computational Efficiency and Mobile
Suitability

When compared with deeper CNN models such as ResNet101
and DenseNet121, FAWINSTARNet achieves higher
classification accuracy while using far fewer parameters and
significantly less memory. Its lightweight architecture allows
for quicker inference and lower power requirements, which
makes it well suited for mobile and embedded systems in
agricultural settings. As a result, the model can effectively
support real-time, on-field pest monitoring on smartphones and
other resource-constrained devices.

To illustrate per-class performance for baseline models, Table
5 presents the F1-scores for MobileNetV2 and ResNet101.

Table 5. Per-Class F1-Scores for Selected Baseline Models

Model Ist 2nd 3rd 4th 5Sth 6th
MobileNetV2  1.00 0.65 0.77 090 1.00 0.94
ResNet101 1.00 093 0.83 090 095 1.00
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Fig 4: Confusion Matrix of FAWINSTARNet Test
Classification
(Source: Created by Researcher from validation results)

After baseline comparison, FAWINSTARNet (fine-tuned
MobileNetV2) was trained for 100 epochs, achieving ~97%
accuracy. Class-level metrics are shown in Table 6.

Table 6. FAWINSTARNet Final Classification Report

(Test Set)
Class Precision  Recall F1-Score Support
1st instar 0.98 0.97 0.97 3050
2nd instar 0.98 0.97 0.97 3200
3rd instar 0.88 0.98 0.93 2990
4th instar 0.87 0.98 0.92 3150
Sth instar 0.98 0.98 0.98 3121
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Class Precision  Recall F1-Score Support
6th instar 0.97 0.97 0.97 3204
Accuracy — — 0.97 18715

Macro avg 0.977 0.977 0.957 18715
Weighted

0.974 0.974 0.974 18715
avg

To assess statistical robustness, a five-fold cross-validation
procedure was performed, yielding an average accuracy of 96.8%
with a standard deviation of +0.6. These results indicate that
FAWINSTARNet delivers consistent and reliable performance
across different data splits.

The learning curves in Fig. 5 show stable convergence. Figures

6 to 11 present comparative accuracy trends, loss curves, and
final performance ranking.
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Fig 5: Accuracy and Loss Progression of
FAWINSTARNet Model
(Source: Created by Researcher from results)
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Fig 6: Validation Accuracy Comparison
(Source: Created by Researcher from validation results)

Training Accuracy of Different Models

Training Accuracy (%)

Fig 7: Training Accuracy of Pretrained CNN Models
(Source: Created by Researcher from training logs)

Training v Validation Accuracy for Different Models

Fig 8: Training vs. Validation Accuracy for Each Model
(Source: Created by Researcher based on logs)
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Overfitting Gap (Train - Validation Accuracy) Across Epochs.

Fig 9: Accuracy Gap Over Epochs as Indicator of
Overfitting
(Source: Created by Researcher from epoch-wise metrics)

CNN Model Performance Comparison

Fig 10: Performance Comparison Using Accuracy and F1-
Scores
(Source: Created by Researcher based on classification
reports)

Madel Ranking by Loss Convergence (Higher = Better)

Fig 11: Model Ranking Based on Loss Convergence
Quality

(Source: Created by Researcher from loss tracking data)

Class-wise evaluation indicated that the model achieved very
strong recognition rates for the earliest and latest larval stages,
whereas differentiation between the third and fourth instars
presented intermediate difficulty because their external features
are closely aligned. Even so, consistently high precision and
recall across all categories confirm that the network
successfully captured subtle morphological cues. When
contrasted with prior Al-driven pest-recognition frameworks,
which commonly report accuracies in the 90-95 percent range
[7], FAWINSTARNet attains a superior level of predictive
performance while retaining a computational footprint suitable
for real-time use in field conditions.

FAWINSTARNet’s reliable detection of early-stage FAW
larvae enables more precise pesticide use, helping to limit
unnecessary chemical application and promote more

sustainable maize cultivation.

6. CONCLUSION

Future efforts will aim to expand FAWINSTARNet into a
multi-pest detection framework, add object localization
capabilities for real-time field scouting, and integrate
explainable Al methods to improve model transparency and
build farmer confidence. The model is also planned for
deployment in smartphone-based advisory tools and IoT-
enabled agricultural systems, enabling scalable and practical
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precision farming solutions tailored for smallholder
communities.
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