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ABSTRACT 

This paper explains how product-focused data engineering fits 

into today's data systems. Its main goal is to turn raw data into 

insights that improve user experiences and guide company 

decisions. By reviewing relevant studies and industry reports 

from 2017 to 2024, the paper shares best practices about the 

frameworks, tools, and methods companies use for 

instrumenting their products, building a solid metrics layer, and 

measuring how decisions are affected. The study is divided into 

three sections: Section 1 describes how to analyze business 

impact in data-driven decision making; Section 2 discusses best 

practices in instrumentation that yield clear signals about 

product performance; and Section 3 describes the metrics and 

semantic-layer designs that keep definitions consistent across 

organizations. Recent advances are discussed in feature stores, 

data contracts, data observability, and data mesh approaches to 

increase safe business use. Key advances in how product data 

is represented drive interests of product strategy. Empirical 

studies link two key goals of data engineering-speedier 

decision-making and increased organizational agility-to better 

quality data. Common challenges are multiple toolsets, cost 

management as data scale, and juggling flexibility with 

consistency in decentralized systems. Semantic layers, 

automated data governance, and AI-assisted decision-making 

frameworks can improve practices from data collection to 

measurement of business impact. 
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1. INTRODUCTION 
Recent industry moves treat data as a key driver for both 

making products and guiding operations in tech-focused 

organizations. As products get more complex and user behavior 

data grows-data that used to seem hard to access-there's more 

of it than ever. This gap between collecting data and using it 

successfully increases the challenge for making informed 

choices. The speed and level of detail product teams want 

cannot be met by old data management methods that rely on 

central control and batch work. So, teams are moving from 

infrastructure-centered ideas to product-centered ones, where 

data is treated as a true product asset that needs its own 

engineering discipline. If one phrase fits this shift, it's the rise 

of a new kind of product-focused data engineering that 

formalizes how product teams use data to improve resource 

use, feature work, and how users engage with the product. In 

more detail, this transformation will be a combination of 

several interconnected components: tools that capture 

meaningful signals from the users, clear and comparable 

metrics, which can be analyzed; governance to keep the data 

quality and meaning intact, and a way to value data-driven 

decisions by whether they lead to real business outcomes. This 

is the backdrop where different organizational and tech trends 

come together. Theoretically, cloud data warehouses are 

supposed to make the processing of larger data sets with a 

reduced operational burden possible. Semantic layers and 

metrics repositories provide an abstraction over the underlying 

technology for end users. Increasing maturity and wide 

adoption of capabilities for product analytics have triggered 

demand for self-service data access without sacrificing 

reliability or control. Economic constraints and exponential 

growth of data volumes often trigger the prioritization of which 

data are captured and the search for efficiency in the processing 

of data. 

2. PROBLEM STATEMENT AND 

JUSTIFICATION  
Businesses face several interrelated challenges while 

developing product-facing data architecture.   First, there has 

been a significant rise in complexity without a matching gain 

in decision speed due to the extensive use of data tools. 

According to research, 37% of organizations use 11 or more 

observability and monitoring tools in parallel, while only 11% 

report their entire environment to be truly observable [1]. This 

is due in part to the proliferation of point solutions that address 

narrow needs without offering holistic governance over the 

chain of value. While generative AI has enormous potential, 

data quality is still the single biggest barrier to the successful 

deployment of generative AI and data-informed decision-

making today [2]. In fact, according to survey data from 2023, 

organizations are experiencing an average of 67 data incidents 

per month, 68% of which take four or more hours to detect and 

an average of 15 hours to resolve 6. Critically, business 

stakeholders identify 74% of data quality issues before 

technical teams can detect them, demonstrating large systemic 

gaps in proactive incident monitoring. Third, organizations 

need to balance the advantages of independence and velocity in 

distributed data architecture with the quality and consistency 

needs at scale for an enterprise. Where principles of data mesh 

promise faster innovation due to domain ownership, their 

implementations have unveiled tensions between standard 

enforcement and the maintainability of flexibility. Any 

organization that does distribute governance needs to set up 

mechanisms for enforcing data contracts, semantic agreements, 

and impact measurement without turning themselves into 

bottlenecks [3].  Lastly, quantification in terms of business 

impact for data-driven decisions remains an issue in the 

majority of organizations. While nearly 31% of the revenue of 

an organization is estimated to be at risk due to issues in data 

quality, most firms still cannot correlate specific enhancements 

in data to measurable business outcomes today [4]. This 

measurement gap justifies investment in data infrastructure 
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enhancement and creates misalignment between data teams and 

business stakeholders.  

3. OBJECTIVES  
This review follows three main objectives: first, to synthesize 

the architectural patterns and technical tools that organizations 

have adopted to provide reliable metrics, semantic layers, and 

instrumentation frameworks; second, to distill from scholarly 

and industry practice how this discipline of data engineering 

directly impacts the velocity and quality of product decision-

making; and third, to identify salient lacunae in the current 

state-of-the-art and new frontiers for product-facing data 

engineering with particular regard for cost optimization, AI-

assisted governance, and quantification of business impact.  

4. APPROACH AND SCOPE  
This review covers peer-reviewed literature, industry reports, 

and case studies with a particular focus on materials published 

between 2021 and 2024 to capture recent developments within 

the area [5]. The areas this discussion will cover include metrics 

architecture and semantic layers, data instrumentation and 

event collection, data observability and quality monitoring, 

data governance structures including contracts and mesh 

architectures, and measurement models illustrating the impact 

of decision-making. Preference is given to sources describing 

implementation practices rather than those of a purely 

theoretical nature, as product-oriented data engineering is 

ultimately concerned with what can be deployed at scale by 

organizations.  

5. SIGNIFICANCE  
Understanding the practices of product data engineering has a 

serious practical implication for organizations to operationalize 

their decision-making on data. Besides technical 

considerations, this topic entails organizational challenges 

associated with the democratization of data, scaling 

governance, and quality standards for decision processes [6]. 

There is evidence that companies which achieve 

comprehensive full-stack observability release 60% more 

products from engineering teams compared with observability 

beginners, and with a mean time to resolution faster by 69%. 

Companies using data contracts and semantic-layer governance 

also report reduced cycle times and lower incident-resolution 

costs. Results of this nature justify investments in systematic 

approaches to the engineering of product data.  

6. RESEARCH QUESTIONS  
This research seeks to answer the following key questions:  

How do organizations balance standardization with flexibility 

in defining metrics and governing data across distributed 

teams?  

For the identified signals, what are the instrumentation patterns 

and event-collection strategies that yield the highest fidelity, 

taking data volume and cost into consideration?  

How do data observability and quality-monitoring systems 

support faster discovery and troubleshooting of data incidents, 

and which organizational configurations correlate with mature 

observability practices?   

Which quantification methodologies of the business impact of 

data-driven decisions have been effective in translating 

improvements in data into measurable value?  

7. DEFINITION OF TERMS  
Metrics Layer - Semantic Layer: An explicitly defined 

abstraction layer for business metrics, defined once and 

uniformly consumed by analytics, business intelligence, and 

machine learning applications. Illustrative examples include 

dbt metrics, the semantic model of Looker, and specialist tools 

such as Zenlytic [7]. 

Data Contract: A mutual agreement between data producers 

and consumers about expected structure, quality attributes, 

schema specifications, and terms of data use. Contracts encode 

semantic understanding that can be automatically checked for 

validity and governance. 

Data Observability: It is a systematic way of monitoring data 

throughout pipelines, schemas, and quality metrics to identify 

anomalies; it helps incident response much faster. 

Observability encompasses the monitoring of metadata as well 

as analysis of data content.  

Feature Store: A centralized system responsible for processing, 

storing, and serving machine learning features for inference 

and model training. In this context, the feature stores enable 

feature discovery, offer versioning, and maintain consistency 

between training and serving. 

Data Mesh: This decentralized data architecture paradigm 

redistributes data ownership to the pertinent business domains 

while enforcing federated governance through contracts and 

data products. 

8. REVIEW OF RELATED WORK AND 

RESEARCH  

8.1 Metrics Architecture and Semantic 

Layers  
Explicit metric layers are one of the most important 

architectural advances driven by the product-oriented data 

engineering paradigm. Before the introduction of such a formal 

layer, metrics were extracted implicitly by organizations from 

SQL queries, dashboards, and analytical notebooks [8]. 

Implicitly derived metrics created silos of analyses and 

inconsistent definitions of metrics. As the name suggests, a 

metric layer codifies metric definitions into sharable, version-

controlled assets backed by explicitly documented business 

logic. Recent implementations vary on multiple vectors. DBT's 

framework for metrics lets teams define metrics in code next to 

the related data transformations, leveraging versioning, and 

complete integration with CI/CD. Looker pioneered semantic 

modeling with their semantic layer, initially embedded in a BI 

platform [9] to define the metric definitions. New challengers 

like Zenlytic and Lightdash have created semantic layers as 

independent platforms; this allows them to use downstream in 

more tools. 

Semantic layers and centralized metric definitions avoid 

ambiguity and increase organizational alignment but also raise 

coordination costs. The central bottleneck-slowing rate of 

experimentation often inhibits organizations with rapidly 

changing product surfaces from easily making changes to 

metrics, which requires central approval. Decentralized 

ownership of metrics accelerates analytics velocity at the cost 

of heightened semantic drift and inconsistent decision-making. 

Research evidence shows that good organizations use clear 

rules for defining metrics but stay flexible in how those metrics 

are used later. This would separate who governs metric 

definitions from who governs how they are used. The idea is 

that metrics architecture is not only a technical issue but a 

strategic choice for the organization, influencing how quickly 

experiments can run and how trustworthy decisions are. 
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Table 1. List of Papers Reviewed 

Year Reference Summary of Focus / Contribution 

2021 Michiel, O., Marten, S., Slinger, J., & Sjaak, B. (2021). An empirical 

characterization of event-sourced systems and their schema evolution—

Lessons from industry. JSS. https://doi.org/10.1016/j.jss.2021.110970 

Empirical evaluation of event-sourced 

architectures and schema evolution challenges in 

production systems. 

2022 Bartocci, E., et al. (2022). Information-flow interfaces. LNCS. 

https://doi.org/10.1007/978-3-030-99429-7_1 

Introduces formal information-flow abstractions 

for safe data exchange across distributed systems. 

2023 Bode, J., et al. (2023). Towards Avoiding the Data Mess. arXiv. 

https://doi.org/10.48550/arxiv.2302.01713 

Insights from Data Mesh implementations, 

focusing on decentralised data ownership and 

quality. 

2023 Oliveira, M. A., et al. (2023). Semantic Modelling of Organizational 

Knowledge for Data Governance 4.0. 

https://doi.org/10.48550/arXiv.2311.02082 

Semantic modelling to unify enterprise clinical 

data and support governance frameworks. 

2023 Tang, D., et al. (2023). Transactional panorama. PVLDB. 

https://doi.org/10.14778/3583140.3583162 

Framework for understanding how users interpret 

analytical systems through transactional 

interactions. 

2024 Azeroual, O. (2024). Can generative AI transform data quality? 

Academia Engineering. https://doi.org/10.20935/acadeng7407 

Evaluates strengths and limitations of LLMs like 

ChatGPT in data-quality workflows. 

2024 Prasad, A. (2024). Impact of Poor Data Quality on Business 

Performance. SSRN. https://doi.org/10.2139/ssrn.4843991 

Reviews cost, risks, and organizational impacts of 

poor data quality. 

2024 Busany, N., et al. (2024). Automating BI Requirements with Generative 

AI. https://doi.org/10.48550/arXiv.2412.07668 

Explores GenAI-driven automation for BI 

requirement gathering and semantic search. 

2024 Hyde, J., & Fremlin, J. (2024). Measures in SQL. arXiv. 

https://doi.org/10.48550/arXiv.2406.00251 

Technical foundations for designing reliable 

analytical measures in SQL. 

2024 Puebla, I., & Lowenberg, D. (2024). Building trust: Data metrics and 

stewardship. HDSR. https://doi.org/10.1162/99608f92.e1f349c2 

Highlights governance and trust through clear 

stewardship metrics. 

2024 Li, X., & Chen, M. (2024). RT-Cabi: IoT anomaly detection via edge 

collaboration. PeerJ CS. https://doi.org/10.7717/peerj-cs.2306 

Edge-based dynamic feature fusion for real-time 

anomaly detection. 

2024 Hallur, J. (2024). From monitoring to observability. IJSR. 

https://doi.org/10.21275/sr241004083612 

Explains the shift from traditional monitoring to 

observability for reliability improvement. 

2024 Rosário, A. T., & Cruz, R. (2024). Ethical practices in digital 

transformation. https://doi.org/10.1007/978-3-031-86079-9_22 

Provides a five-year view of ethical frameworks 

for data-driven transformations. 

2023 Hirsch, D. D., et al. (2023). Business Data Ethics. Springer. 

https://doi.org/10.1007/978-3-031-21491-2 

Comprehensive text on ethical data governance, 

privacy, and responsible data usage. 

2024 Casolari, F., et al. (2024/2023 online). Improving smart contracts in EU 

Data Act. Digital Society. https://doi.org/10.1007/s44206-023-00038-2 

Examines contract-driven governance for 

compliant and transparent data exchange. 

 

Research from 2023–2024 points to a widespread adoption 

trend. More fundamentally, companies understand that a single 

well-governed metric definition frequently benefits several 

stakeholders: business stakeholders gain confidence from 

auditable metric computation, analysts unlock productivity 

thanks to pre-computed metrics, and data scientists receive 

consistency in training data that aligns with what the product 

has defined [10]. This metrics layer then serves as a sort of 

social contract, elaborating what "revenue," "engagement," and 

"retention" mean for the organization. Implementation research 

puts in evidence a wide set of issues related to deployment. 

First, an organization must create governance processes for 

changes to metrics, because metric definitions are susceptible 

to revision and thus may break downstream consumers. Aside 

from the deployment of semantic layers, other difficulties relate 

to the political and organizational issues of owning metric 

definitions, a workflow for approving changes, and the velocity 

of teams revising metric definitions to keep pace with a 

dynamic set of business questions.  

8.2 Data Instrumentation and Event 

Architecture  

Both the efficacy of decision-making procedures and the 

validity of measurements depend on strong instrumentation.  

The existing research identifies two main approaches for 

orienting instrumentation around events: (1) capturing user 

interactions through well-structured events, and (2) post hoc 

metrics derivation from operational data. With a primary focus 

on operational efficiency, hybrid techniques that integrate 

batch processing with real-time event stream processing are 

widely used in organizational practice today. Scalable 

instrumentation strategies are made public by companies such 

as Uber, Pinterest, and Intuit.   

Event taxonomies allow for consistency in event types and 

nomenclature as events scale. Explicit versioning and central 

governance of event schemas are the most popular methods for 

achieving this, allowing the downstream consumer to control 
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schema evolution and modifications without causing 

unanticipated effects on dependent applications.   

The expense of the equipment is a practical issue. Cloud 

processing and storage expenses rise in direct proportion to the 

expansion of data collection to encompass a greater variety of 

event kinds. According to a 2024 study, 52% of participants 

desired it was simpler to comprehend the overall cost of 

monitoring, and 64% of respondents had scanted inbound 

observability data because of high gathering costs. These 

results indicate a clear trade-off between lots of instrumentation 

roll-out to support good decisions and efforts to cut costs. 

Instrumentation choices reveal a basic conflict between how 

accurate the signal is and what is affordable. Tracking many 

small events improves diagnostics and makes downstream 

analysis more flexible but also means higher, non-linear costs 

for storage, processing, and visibility. The reviewed literature 

suggests that promiscuous event capture is usually associated 

with rapidly diminishing analytical returns; marginal signals 

generally cannot justify their operational overhead. Thus, data 

engineering directed toward product objectives emphasizes 

instrumentation of decision-critical events, scoping 

instrumentation by decision impact rather than technical 

completeness. In this view, instrumentation becomes a problem 

of value optimization rather than data collection. In-product 

data quality analysis is one of the most sophisticated 

approaches to instrumentation and is relatively easy to 

implement; it is also recommended to happen everywhere 

during data gathering, as anomalies may point to 

malfunctioning equipment or peculiar user behavior.  

Identifying issues earlier in the life cycle means starting 

quality-assurance work earlier, effectively shrinking the 

research footprint at later stages. 

8.3 Data Quality and Observability 

Within the larger discipline of infrastructure observability, 

observability has become a separate area of scholarly research.   

Data observability focuses on the quality, freshness, and 

statistical properties of the data itself, while the other 

approaches are concerned with system performance measures 

such as latency and throughput. Corresponding market 

projections indicate a growth from $278 million in 2022 to an 

expected $2.1 billion in 2023 and $4.7 billion by 2030 [12].  

Market data supports expansion by showing how technology 

adoption helps. That includes organizations using observability 

as a distributed capability. In a recent survey, 87% of the 

respondents favored platform engineering approaches for 

delivering services with observability in mind. After incidents, 

analyses of business impact show clear outcomes when 

observability is lacking. The 2024 Observability Pulse report 

finds that 82% of production problems took more than one hour 

to recover on average, up from 74% last year. This suggests that 

just buying new tools does not by itself improve recovery times. 

The same study also found that organizational observability cut 

MTTR by 69%, indicating that coordinated observability 

efforts pay off financially  [13]. Real-world examples of good 

observability use multilayered monitoring: monitoring data 

freshness to keep latency low, using statistical monitoring to 

detect unusual distributions, and monitoring schemas to catch 

breaking data structure changes. Monitoring allows for 

automated incident detection and routing of alerts, and cuts 

down on the need for manual investigation. And even as more 

observability tools are in use, having tools does not equate to 

better outcomes. Organizations suffering from fragmented 

ownership struggle to act on observability signals due to alert 

fatigue and unresolved incidents. Teams whose operating plans 

include observability metrics-such as service level objectives 

tied to business impact-resolve incidents much faster. These 

findings demonstrate that observability maturity depends as 

much on organizational capability as technology, where clear 

incentives and explicit ownership help make platform 

investments more effective. 

8.4 Data Governance and Contracts  
Data contracts can be understood as a formalization of 

governance principles rooted in software engineering, 

extending the concept of interface specifications to data 

exchanges. Instead of implicit assumptions about the structure 

and quality of the data, contracts make the expectations explicit 

and verifiable [14].  A data contract can be understood as a 

specification of the schema-structured format of the data, 

including semantic meaning - what columns represent, quality 

attributes like completeness, uniqueness, timeliness 

requirements and terms of use - intended applications and 

limitations. There is a duality of purpose for the contracts: first, 

to communicate between the data producers and data 

consumers at development time; second, to enable automated 

testing that checks compliance with contracts at production 

time. Still, there are studies on the scalability challenges of the 

data mesh architectures in terms of governance. Contracts 

support the enforcement of global policies in highly 

decentralized architectures that distribute ownership of data 

across domain units, while preserving their autonomy. Success 

reports provide evidence for a reduction in the number of 

schema related data incidents, which are a significant portion 

of the data quality issues.  Research on the execution of 

contracts identifies tension between flexibility and 

standardization: excessively rigid contracts make it difficult for 

domain teams to adapt to the continuously changing business 

needs [15]. The best practices from practitioners emphasize 

pragmatism: contracts should enforce the essential quality and 

compatibility requirements while allowing evolution in 

dimensions considered less critical.  

8.5 Feature Stores and Reusable Metrics  
Feature stores provide a solution to the computational problem 

of consistency, versioning, and discoverability of features in 

machine learning pipelines. In addition, they address two inter-

related problems that arise when placing models in product 

contexts: (i) ensuring consistent feature computation between 

model training and serving environments, and (ii) offering a 

marketplace of reusable features which help accelerate model 

development. Feature store adoptions have increased 

significantly: Tecton and Feast are popular platforms, while 

managed feature store offerings can be found for each of the 

major cloud providers. Research in 2023–2024 has underlined 

their significant benefit to organizations doing real-time 

personalization and recommendation systems where 

consistency between training- and serving-side feature stores 

reduces the risk of model degradation at significant cost.  A 

natural extension of the feature store is to product-facing 

metrics. Increasingly, organizations think about metric stores 

as specialized feature stores that calculate, version, and serve 

business metrics to dashboards, analytics tools, and ML 

systems. This convergence represents the basic idea that 

metrics are at their very core feature-calculated, versioned, and 

business-relevant data assets.  

9. COMPARATIVE EVALUATION OF 

PRODUCT-FACING DATA 

ENGINEERING PRACTICES 
This study also provides, based on the literature review, a table 

of the most recent data engineering practices for product data. 

The review focuses on practical deployment concerns such as 
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scalability, governance work, cost efficiency, speed of 

decision-making, and impact measurement. Taken together, 

these provide a clear view of the trade-offs and when different 

approaches best fit at the architectural and organizational 

levels. This focus is important because product data systems 

always run in mixed environments. 

9.1 Evaluation Dimensions 
These common ideas in the reviewed works build on the 

following key factors for any data engineering-focused 

product: i) the ability to scale with more data and bigger 

organizations; ii) strong governance and clear, consistent 

meanings of data; iii) lower costs and sustainable operations; 

iv) enabling fast, low-latency decisions; and v) measuring 

business impact. These involve both technical and 

organizational issues and are repeatedly noted as the 

differentiators in making deployments successful or 

unsuccessful across industries. 

9.2 Comparative Evaluation Across 

Practices 
Architecture of Metrics and Semantic Layers:  

Explicit metric layers work well for semantic consistency and 

reliable decisions, especially for large organizations with many 

analytical users. However, the study also shows that very strict 

centralized governance can add overhead and slows down how 

metrics evolve. A mix of centralized metric definitions 

combined with decentralized usage offers the best balance 

between scaling and quick decisions.  

Instrumentation and Event Collection: While fine-grained 

instrumentation can give richer analytics and better 

observability, using it everywhere raises costs. Comparing 

different setups, studies have found that the best practice is 

selective instrumentation focused on decisions, as it retains 

most of the value of event data and reduces storage and 

processing needs. This selective approach has helped 

scalability by avoiding an explosion in event schemas.  

Observability, contracts, and governance: Data observability 

and contract frameworks improve incident detection and 

semantic stability, especially in distributed systems, but 

governance-heavy deployments can slow them down when 

teams are not ready. Federated governance with automated 

contract enforcement performs better on scalability and 

governance with reasonable operational overhead. 

9.3 Evaluation Summary 
The findings show that no architecture or governance 

framework best fits every dimension. High-performing 

organizations clearly align data engineering practices with how 

important the decisions are, how mature the organization is, and 

what the cost limits are. The multidimensional assessment is 

therefore a necessary precondition to the design of sustainable 

product-facing data systems, reinforcing contextual rather than 

prescriptive adoption. 

9.4 Scenario-Based Evaluation Across 

Data Environments 
Given real-world variability in data environments, this review 

examines product facing data engineering practices across 

scenarios that reflect representative organizational and data 

settings commonly described in the literature. In contrast with 

research focused on a single dataset, this review considers 

conditions at both structural and operational levels that define 

the actual effectiveness of data engineering decisions. A 

scenario-based framework is employed to derive generalizable 

insights within the scope of the review. 

Scenario 1: High-Scale Consumer Product Analytics  
Fine-grained instrumentation and real-time observability grant 

significant analytical advantages in large-scale consumer-

facing products with high volumes of events and rapid iteration 

of features. The environments also experience unsustainable 

growth in storage and monitoring costs without event 

prioritization and other retention policies that are cost sensitive. 

Hybrid metrics architectures run best at scale in conditions of 

high load and provide optimal value for money: pre-

aggregation of core metrics with on-demand exploratory 

analysis. 

Scenario 2: B2B SaaS and platform analytics 
Governance and consistency of metrics turn out to be prime 

determinants for the success of B2B products and analytics 

platforms that typically have low event velocities with high 

semantic complexity. The related literature reviewed above 

corroborates that semantic layers and data contracts 

significantly lessen the misinterpretation of metrics among the 

sales, product, and customer success teams. This is because 

semantic alignment, in this paradigm, imposes a stronger 

latency constraint than real-time processing, making 

governance-centric architectures comparatively more effective. 

Scenario 3: Regulated and Enterprise Data Environments 
In regulated industries such as finance, healthcare, and large 

platforms, data governance, auditability, and traceability go 

hand in hand with fast data analysis. Real-world tests show that 

data contracts, lineage tracking, and observability tools help 

with compliance and reducing risk. Admittedly, these controls 

add to the extra work, but they make systems more dependable 

and cut downstream risk when wrong decisions might have 

huge regulatory or financial consequences. 

Scenario 4: Cost-Constrained and Early-Stage 

Organizations 
Companies with very tight cost control or those in the process 

of maturing in respect of data receive less value from high 

levels of observability and instrumentation. Outcomes indicate 

that a lean approach to instrumentation is typically better value 

when early adoption of enterprise platforms is not being 

pursued, concentrating on a few core decision metrics with 

light governance. This would imply that investment in data 

engineering should be performed based on readiness rather than 

best practice, as product-facing data engineering practices vary 

significantly dependent upon context. No single architectural 

pattern or governance model dominates in different 

environments. Successful implementations emerge from an 

intended alignment of data characteristics, organizational 

maturity, regulatory constraints, and decision-criticality. This 

emphasizes the need for scenario-aware evaluation when 

interpreting best practices into actionable system design. 
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10. TECHNICAL INVESTIGATION: 

METRICS IMPLEMENTATION 

PATTERNS  

 

Fig.1: End-to-End Architecture of Product-Facing Data 

Engineering 

Figure 1 illustrates the end-to-end architecture of product-

facing data engineering, showing how product instrumentation 

generates events that flow through metric layers, observability 

systems, governance mechanisms, and feature stores to support 

analytics, machine learning, and decision-making. The 

architecture emphasizes the linkage between data quality 

controls and measurable business impact. 

Organizations using product-facing metrics use a number of 

different architectural patterns. Metrics-on-demand pattern: In 

this pattern, metrics are calculated at runtime from base data, 

favoring freshness at the expense of computation. Pre-

aggregated pattern: Scheduled metric calculations are built, and 

some freshness is traded for computational efficiency. Most 

successful organizations actually use hybrid methods, pre-

aggregating the most frequently accessed metrics, and offering 

query time computation for exploratory analytics. The 

integration points between metrics, feature stores, and 

observability systems have become increasingly sophisticated. 

Critical thinking is the process by which one figures things out 

for oneself as opposed to simply finding an explanation 

supplied by somebody else.   

The use of lineage information embedded within organizational 

structures enables accelerated root-cause analysis when metrics 

behave anomalously, thus enabling traceability to source 

systems. These lineages combine data catalogs and governance 

tools to provide a harmonized view on the usage and 

interdependencies of the data assets.  Cost optimization is a 

major technical objective for many studies in 2024. Similarly, 

companies that have migrated to Apache Iceberg, Delta Lake, 

and Apache Hudi have experienced significant performance 

increases and cost decreases for the data lake table format 7. 

Moreover, AWS's introduction of S3 Tables, powered by 

Iceberg, has the potential to yield up to a three-time 

improvement in query performance by unifying the storage and 

compute layers 7. Together, these innovations in format allow 

organizations to retain their rich history while keeping query 

costs in check.  

11. DECISION IMPACT 

MEASUREMENT  
Organizations find it difficult to measure how gains in data 

translate into business effect, even with significant investments 

in data infrastructure. Recent research indicates that only 27% 

of the organizations include business context in telemetry data 

to quantify event impact. This represents a critical frontier in 

product-facing data engineering. New practices tie data quality 

metrics to business outcomes. More recently, organizations 

have started to define SLOs that detail acceptable thresholds for 

data latency, completeness, and accuracy in terms of business 

impact. These SLOs complete the link between technical 

metrics on data and business objectives, enabling teams to 

justify investments in data infrastructure via measurement of 

business impact. Framework development for measuring 

impact has accelerated. Whereas some organizations conduct 

controlled experiments that isolate the impact of decisions 

based on data by comparing the outcomes for decisions made 

using high-quality versus degraded data, others have gone on 

to develop business impact metrics that quantify the 

improvements in the decision velocity and productivity of 

analytics teams related to organizational agility.  

The continued struggle in measuring business impact is a 

structural separation of data-infrastructure metrics from 

decision-making accountability. While organizations 

increasingly instrument data quality, latency, and reliability, 

such metrics are routinely decoupled from the decisions they 

inform. The studies described here indicate that impact 

measurement improves only when telemetry explicitly encodes 

the context of the decisions it informs, facilitating the 

attributions between quality states and decision outcomes. 

Without such linkages, investments in data infrastructure are 

bound to be directed toward technical excellence rather than 

organizational effectiveness, thereby limiting their strategic 

value. 

12. LIMITATIONS OF CURRENT 

APPROACHES  
There are a variety of limitations that characterize modern 

product-facing data engineering practice. First, most 

organizations have not solved the cost optimization challenge 

in data infrastructure. While there have been advances in table 

formats and query optimization, 91% of organizations report 

using methods to cut back observability spend. Cost remains 

one of the main constraints on data exploration and 

comprehensive monitoring. Second, tool proliferation 

continues despite consolidation attempts. Organizations report 

difficulty correlating data across multiple tools and struggle 

with operational complexity of managing diverse tooling. 

There has not been a dominant platform that comprehensively 

addresses metrics, observability, governance, and serving 

requirements, thus forcing organizations into multi-tool stacks. 

Third, business impact is largely decoupled from the 

measurement of investments in data engineering. While there 

are some studies that track improvements in incident resolution 

speed with a corresponding increase in observability, far fewer 

measure the business value created through more effective 

data-driven decisions. The lack of measurement makes it 

difficult to determine priorities for infrastructure investments. 

Fourth, the adoption of data contracts and mesh architectures 

faces practical resistance. Theoretical advantages are 

understandable, but partial explanations for limited uptake 

include organizational readiness and demands of change 

management. Where there is no strong discipline in data 

governance within organizations, they are sure to face 
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Decision Consumers

BI, ML Models, Product Decisions
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problems arising from the strict requirements encapsulated in 

the contracts.  

13. CONCLUSIONS AND INSIGHTS  
Product-facing data engineering has changed a lot from ad hoc 

practices in 2017 to a systematic architecture foregrounding 

metrics governance, observability, and decision quality in 

2024. Some main findings based on the convergence of 

contemporary research are:  

First, metrics architecture has emerged as a core engineering 

discipline. Organizations more and more recognize that 

defining business metrics once and then consistently reutilizing 

them within analytics, machine learning, and product 

development creates tremendous value for the organization. 

Semantic layers and metrics stores are transitioning from 

novelty to baseline infrastructure. Second, observability 

represents a necessary capability for data-driven organizations. 

Organizations achieving full-stack observability demonstrate 

60% higher product velocity and 69% faster incident 

resolution. Observability serves as a prerequisite for reliable 

metrics and decision-making at scale. Third, data governance 

at scale is both technical and organizational discipline. Data 

contracts provide a technical mechanism for governance, but 

their success depends upon organizational alignment on data 

ownership and data quality standards. Neither purely technical 

nor purely organizational solutions suffice. Fourth, the need for 

cost optimization has become a dominant factor in architecture 

design. It has simply become too expensive for organizations 

to collect and retain all data. Product data engineering had to 

make strategic choices around what instrument, how to 

aggregate, and how long to retain data.  Fifth, the full value of 

data infrastructure materializes only through disciplined 

connection of data investments to business impact 

measurement. In other words, organizations that establish clear 

relationships between data quality improvements and business 

outcomes make more effective infrastructure investment 

decisions.  

14. PROS AND CONS ANALYSIS  
Advantages of contemporary product-facing data 

engineering approaches include:  

• Improved decision velocity by applying consistent 

metrics   

• Improved data quality through automated 

observability.  
• Organizational scalability through self-service data 

access.  

• Cost optimization attained by strategic architectural 

decision-making.  

• Democratization of knowledge enabled by data 

products and semantic layers. 

Disadvantages and challenges include:  

• Complete infrastructure investment usually involves 

a great deal of upfront investment. 

• Requirements regarding organizational change 

management.   

• Operating complexity rises due to multi-tool 

environments.  

• Ongoing cost pressure despite optimization efforts  

• Difficulty in quantifying business return on 

infrastructure investments   

• Ongoing gaps between infrastructure capability and 

the quality of decision-making  

15. PROPOSED SCOPE FOR FURTHER 

WORK 
There are some gaps in the existing literature that need to be 

addressed.   First, by making it possible to trace the business 

impact of improvements in metrics governance and 

observability investments across several years, a longitudinal 

design would aid in the development of the business case for 

infrastructure investment.   Second, it would be evident which 

strategies are most effective in organizational situations by 

comparative studies of governance models, such as centralized 

vs federated structures and rigid versus flexible contracts. 

Third, cost-optimizing evaluations of associated trade-offs 

would support ethical decision-making over the extent of data 

collection and retention. Fourth, leaders would be better able to 

predict what change-management programs will be required 

and what characteristics contribute to success if they conducted 

research on the organizational readiness requirements for using 

data mesh.  Fifth, standardized frameworks that connect data 

infrastructure expenditures to business KPIs like revenue 

impact, decision velocity, and market response would help with 

data infrastructure prioritization and justification. 
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