International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

Icing Thickness Prediction Method for Overhead
Transmission Lines based on the NGO-VMD-GRU Model

Wangsheng Xu
Guizhou Bureau of EHV
Transmission Company, China
Southern Power Grid Co., Ltd.,
Guiyang Guizhou

ABSTRACT

Accurate prediction of icing thickness on overhead
transmission lines is crucial for ensuring the safe and stable
operation of the lines during extreme cold weather. This study
addresses the issue of significant non-stationary characteristics
in the icing thickness data due to the coupling effects of various
meteorological factors, such as wind speed and temperature.
The authors proposed a prediction method based on Northern
Goshawk Optimization (NGO) to optimize Variational Mode
Decomposition (VMD), combined with Gated Recurrent Unit
(GRU). First, NGO was used to adaptively optimize the key
hyperparameters of VMD, achieving effective decomposition
of the icing thickness data. Second, the optimized VMD
decomposed the icing thickness data into a series of
components with different central frequencies but local
stationarity, reducing its non-stationarity. Finally, the GRU
model independently predicted each decomposed component,
and the final prediction was obtained by aggregating the
components. The NGO-VMD-GRU model was compared with
several traditional prediction models using an overhead
transmission line in Henan Province as the case study. The
experimental results show that the prediction accuracy of the
NGO-VMD-GRU model achieves a Mean Absolute Percentage
Error (MAPE) of 3.12%, which is 17.27% lower than the
LSTM model, 21.45% lower than the BP neural network, and
12.83% lower than the non-optimized VMD-GRU model,
providing a new solution for accurately predicting icing
thickness on overhead transmission lines.
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1. INTRODUCTION

Under extreme cold weather conditions, severe ice
accumulation on overhead trans-mission lines significantly
increases the mechanical load on the towers, potentially leading
to wire breakage and tower collapse, thereby seriously
threatening the safe operation of the power grid[[1]-[2]]. To
effectively address this challenge, accurate prediction of ice
thickness has become a core requirement for grid operation and
maintenance. However, in practical engineering, ice accretion
is influenced by the coupled effects of multiple meteorological
factors such as wind speed, humidity, and ambient temperature,
resulting in a pronounced non-stationary characteristic in the
data. This makes it difficult for existing prediction models to
meet actual engineering accuracy requirements. Therefore,
reducing the non-stationarity of ice thickness data is crucial for
achieving accurate predictions.
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Currently, scholars both domestically and internationally have
conducted extensive research on the prediction of ice thickness
on power lines, covering various approaches such as physical
models [3], statistical models [4], and artificial intelligence
models [[5]-[9]]. Specifically, the predictive accuracy of
physical models heavily relies on the acquisition of parameters
such as line inclination [[3]]; however, this is often constrained
by experimental site limitations, making them difficult to apply
widely in practical engineering. To ad-dress this, some studies
have attempted to install micro-meteorological monitoring
instruments on transmission towers to directly obtain ice
thickness data and use statistical models [[4]] for prediction.
However, statistical models often employ linear prediction
functions to represent the regression relationship between ice
thickness data and micrometeorological data, which can easily
overlook the high-dimensional characteristics of the data,
resulting in poor prediction accuracy. With the rapid
development of computer technology, some researchers have
tried using artificial intelligence models based on high-
dimensional nonlinear mapping, such as BP neural networks
[[5]] and Least Squares Support Vector Machines (LS-SVM)
[[6]-[71], to predict ice thickness on lines. Nevertheless, the
predictive accuracy of traditional artificial intelligence models
excessively depends on the volume of data samples, rendering
them unsuitable for ice-covered lines with limited historical
data. In recent years, the Gated Recurrent Unit (GRU) model
[[8]], which excels in handling regression relationships within
small-sample data, has gradually been applied in the field of
transmission line ice prediction, offering new insights for ice
accretion fore-casting.

Although the GRU model holds certain advantages in small-
sample prediction, the complex and highly variable trends in
ice accretion on transmission lines mean that its non-stationary
nature can still significantly impair forecasting accuracy.
Relying solely on the GRU model for prediction is likely to
yield suboptimal results due to the neglect of this data non-
stationarity. To address this issue, some studies [[9]-[10]] have
attempted to employ the Variational Mode Decomposition
(VMD) algorithm. This approach decomposes the ice thickness
data into a series of components with different frequencies but
local [[11]] stationarity, thereby achieving data stabilization.
However, most existing research relies on empirical methods
[[9]-[10]] for selecting VMD hyperparameters. This approach
not only lacks a solid theoretical foundation but also struggles
to guarantee hyperparameter optimality. In practical
applications, inappropriate hyperparameter selection may lead
to mode mixing or over-decomposition phenomena. These
issues can attenuate the effectiveness of the VMD algorithm in
suppressing the non-stationarity of transmission line ice
thickness data [[12]], ultimately compromising the overall
performance of the prediction model.
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In light of this, this study proposes an integrated forecasting
method based on the Northern Goshawk Optimization (NGO)
[[13]] algorithm, Variational Mode Decomposition (VMD),
and Gated Recurrent Unit (GRU), namely the NGO-VMD-
GRU model. The method establishes a three-layer progressive
prediction framework: First, the powerful global search
capability and adaptive iteration mechanism of the NGO
algorithm are leveraged to optimize the hyperparameters of the
VMD algorithm, thereby ensuring the accuracy and
effectiveness of data decomposition at the source. Second, the
original ice thickness data is decomposed by VMD into
multiple locally stationary components, enabling in-depth
feature extraction and reconstruction. Finally, a separate GRU
prediction model is constructed for each stationary component,
and the final prediction is obtained by aggregating the
forecasted results of all components. A case study conducted
on an actual transmission line in Henan Province demonstrates
that the proposed model achieves a significant improvement in
prediction accuracy compared to traditional methods. It pro-
vides an innovative and engineering-applicable solution for
accurate ice thickness prediction on transmission lines, offering
important theoretical significance and practical value for
enhancing the disaster prevention and mitigation capabilities of
power grids.

2. PREDICTION METHODS FOR
TRANSMISSION LINE ICE THICKNESS
AND EXISTING DATA

2.1 Ice Thickness on Overhead
Transmission Lines and Its Data

Characteristics

Against the backdrop of the new power system development,
the large-scale interregional deployment of ultra-high voltage
(UHV) transmission networks has inevitably ex-tended
overhead transmission lines into high-altitude frigid zones and
areas prone to se-vere ice disasters. Conductor icing under
extreme low-temperature conditions is becoming a critical
issue threatening both the structural safety and electrical
performance of trans-mission lines. From a physical
perspective, ice accretion on conductors is a complex process
resulting from the coupling of multiple meteorological factors:
wind speed enhances convective heat transfer on the conductor
surface, accelerating the collision and freezing of supercooled
water droplets, thereby directly influencing the ice
accumulation rate; air humidity [[14]], as a key condition for
water vapor phase change, fluctuates diurnally and governs the
formation and evolution of the condensation water film on the
conductor sur-face—high humidity significantly exacerbates
the layered buildup of ice; ambient temperature regulates the
thermodynamic conditions for droplet freezing, governing the
physical transformation of the ice layer from porous rime ice to
dense glaze ice.

These meteorological factors exhibit significant heterogeneous
characteristics across temporal and spatial dimensions: wind
speed, influenced by topography and atmospheric circulation,
often demonstrates high-frequency pulsating behavior, with
substantial disparities between instantaneous intensity and
average levels; air humidity, subject to diurnal phase changes,
shows pronounced non-uniform fluctuations in mountainous
areas or transmission corridors with complex terrain; ambient
temperature follows periodic variation patterns, and in high-
latitude or high-altitude regions, the cyclical alternation of
daytime ice melting and nighttime ice formation creates a
unique temperature-driven ice accretion mode. The nonlinear
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interactions among these multiple meteorological factors result
in complex non-stationary characteristics in the ice thickness
time series.

Therefore, to achieve accurate prediction of transmission line
ice thickness, it is essential to fully account for the non-
stationary nature of the data and improve existing forecasting
methods based on this understanding to enhance prediction
accuracy.

2.2 Limitations of Existing Data-Driven
Prediction Methods and Improvement

Strategies

In the field of disaster prevention and mitigation for power
systems, accurate prediction [[15]-[16]] of ice thickness on
transmission lines is crucial for ensuring the safe operation of
the grid. As the icing process is influenced by multiple
meteorological factors such as atmospheric humidity, wind
speed, and ambient temperature, the resulting data exhibit
distinct non-stationary characteristics.

Currently, numerous studies employ the Variational Mode
Decomposition (VMD) algorithm to reduce the non-
stationarity of transmission line ice thickness data [[9]-[10]].
The core idea of this algorithm is to decompose the ice
thickness data into a series of components with different
frequencies but local stationarity. However, the decomposition
performance of VMD is highly dependent on two
hyperparameters: the number of decomposition modes k and
the penalty factor o [[17]]. At present, many studies typically
adjust these hyperparameters based on metrics such as root
mean square error or correlation co-efficient [[9]-[10]], which
essentially constitutes a local search within a limited parameter
space. Nevertheless, the empirical manual approach generally
suffers from two major is-sues: (1) The interaction between the
two hyperparameters results in a solution space with a complex
non-convex nature, containing numerous local optima, making
it difficult for manual trial-and-error to identify the globally
optimal parameter combination. (2) The characteristics of icing
data dynamically vary wunder different meteorological
conditions. Fixed hyperparameters cannot meet real-time
monitoring requirements. If each dataset requires manual
empirical determination of hyperparameters, it would consume
substantial human resources and time costs. Therefore, it is
necessary to introduce other methods to ensure the optimal
selection of VMD hyperparameters.

To address the aforementioned issues, converting the VMD
hyperparameter selection problem into a multivariate
optimization problem can effectively circumvent the
limitations of manual empirical methods [[18]]. Specifically,
an objective function that quantitatively characterizes the
quality of ice thickness data decomposition is first constructed.
This transforms the manual tuning of VMD hyperparameters
into a solution space traversal process solvable by intelligent
optimization algorithms. Subsequently, the powerful global
search capability of such algorithms is leveraged to explore the
solution space and identify the globally optimal
hyperparameters, thereby avoiding the local optima typically
encountered with traditional approaches.

The core advantage of this method lies in its establishment of a
closed-loop optimization mechanism that integrates '"data
characteristics —  hyperparameter solution space —
decomposition performance." Compared to traditional
empirical approaches, this technical pathway not only provides
a rigorous mathematical optimization framework for
hyperparameter selection but also, through the efficient search
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capabilities  of intelligent algorithms, achieves a
methodological upgrade from "subjective trial-and-error" to
"da-ta-driven precision optimization." It offers a more
universal solution for improving the prediction accuracy of
non-stationary transmission line icing data and demonstrates
significant engineering application value in the field of power
system disaster prevention and mitigation.

3. ALGORITHMIC PRINCIPLES
3.1 NGO Algorithm

Given the pronounced non-stationarity inherent in ice thickness
data of overhead transmission lines, it is necessary to employ
the Variational Mode Decomposition (VMD) algorithm for
decomposition processing. However, the performance of VMD
is highly de-pendent on the appropriate selection of its
hyperparameters. Therefore, it is essential to adopt a high-
performance optimization algorithm for the iterative
hyperparameter tuning of VMD.

The Northern Goshawk Optimization (NGO) algorithm has
been widely applied to various parameter optimization
problems due to its high search efficiency. The implementation
process of the NGO algorithm mainly consists of three stages:
initialization, prey identification and attack, and prey pursuit
and escape.

Step 1) Initialization

The population matrix of the northern goshawk swarm is
defined as:

X, X1 X1 X m
X=X = X Xy X (1)
_XN_NXm _xN’l xN,j xN,m_

In the formula: X is the population matrix of the current
northern goshawk swarm; X is the initial position of the i-th
northern goshawk; Xi; is the position of the i-th northern
goshawk in the j-th dimension; N is the number of northern
goshawks in the population; m is the dimension of the
optimization problem.
where:

xi,l = kmin + randi * (kmax _kmin) (2)

,=a,,, +rand, *(a,,,.-a

max min

In the formula: kmin and kmax are the lower and upper bounds of
the optimization range for k, respectively; oimin and omax are the
lower and upper bounds of the optimization range for o,
respectively; rand denotes the random generation function; i
represents the number of random generations.

Subsequently, an appropriate fitness function must be selected
to quantify the optimization effectiveness of different
hyperparameter combinations within the population matrix.
Given that the non-stationarity of transmission line ice
thickness data is primarily characterized by large disparities in
extreme values, the envelope entropy of the data can effectively
reflect variations in these extremes. Therefore, the minimum
envelope entropy of the ice thickness data [[19]] is chosen as
the fitness function to evaluate the optimization performance of
different hyperparameters in the population matrix:
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In the formula: E; is the sum of envelope entropy values for m
transmission line ice thick-ness data points; m is the sum of
envelope entropy values for m transmission line ice thickness
data points; p denotes the probability distribution; a(i) is the
envelope data sequence obtained via Hilbert demodulation of
the component data u(i); H[ -] represents the Hilbert transform.

Step 2) Prey Identification & Attack

The prey’s behavior is simulated using the following model:

E:X,,izl,Z,m,N;t:1,2,---,N (4)

In the formula: P; is the location of the target prey for the i-th
northern goshawk; X is the state of the northern goshawk at
iteration t; t is a natural number within the interval [1, N]
(iteration index); N is the population size of the northern
goshawk swarm.

The northern goshawk stochastically selects and attacks its prey,
simulated by the following expression:

X, - Ix,), Fy < F
X, trex; -p ) F, 2 F

new,pl __
Xi,j -

)

In the formula: Fy; is the ideal fitness value; Fi is the actual

fitness value of the i-th northern goshawk; X lfjw’p ! is the new

state of the i-th northern goshawk in the j-th dimension; r is an
arbitrary value within the interval [1,N], simulating the
stochastic behavior of the northern goshawk; I is an integer
parameter with possible values of 1 or 2.

Xyt prenrt <
Xi=0 0 st o (6)
X, E 2 F,

Lj’7 i,

new,pl
£ij
goshawk in the j-th dimension.

In the formula: is the fitness value of the northern

Step 3) Prey Pursuit & Escape

After capturing the prey, the northern goshawk engages in a
pursuit-evasion process where the prey attempts to escape.
During this interaction, the hunting dynamics are approximated
within an attack radius R, as described by the following
mathematical expression:

new,p2 __
Xi,j ? —xi,j+R(2r—l)xl.’j
R=0.02(1—-¢/T)

(7
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In the formula: X ,n ;W’p ? s the updated state of the i-th

northern goshawk in the j-th dimension during this phase; t
denotes the current iteration index; T represents the maxi-mum
iteration count.

3.2 VMD Algorithm

The VMD algorithm mitigates the non-stationary
characteristics of data by adaptively decomposing it into a
series of components with specific center frequencies and
band-widths. The procedure for decomposing transmission line
ice thickness data using the VMD algorithm is as follows:

First, construct a constrained variational set of equations with
the objective function of minimizing the sum of the bandwidths
of each ice thickness data component:

2

min h, [5(0 + ij *u, (1) CR
{uchioh| & 7t 2 3

s.t.%uk(t)zf(t)

In the formula: min{A},s.t.B is the optimization problem of
minimizing A subject to constraint B; uky is the k-th
component obtained from decomposing the ice thickness data;
Wk 1s the center frequency of the k-th component; o (t) is the
Dirac delta function; ht is the partial derivative operator with

respect to time; * is the convolution operator; j is the
2

imaginary unit; ” ”2 is the L2 paradigm operator; f{(t) is the

original ice thickness dataset.

Since Equation (8) involves multiple partial derivative
operations, its solution process is highly complex. Therefore,
to solve Equation (8), the Lagrange multiplier A and the penalty
factor o can be introduced to incorporate the constraint
conditions into the variational equation that minimizes the sum
of the bandwidths of the ice thickness data components. In this
way, the constrained variational problem described by
Equation (8) is transformed into a simpler unconstrained
variational form:

L{u Ao}, ) =« 2 h, |:(5(l) + Ltj *U, ([):|ejwkt
k T

z + [i(t),f(t) —%uk (t)}
©

+Hf(z)—%uk (1)
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In the formula: a is the penalty factor; k is the number of
decomposition components for ice thickness data; A is the
Lagrangian multiplier operator.

Considering that the Alternating Direction Method of
Multipliers (ADMM) exhibits excellent convergence
performance in solving unconstrained optimization problems,
it is employed to solve Equation (9).

L @- Sue
e (@)= 1+20¢(a)—a)k)2 (10)

C T u()Pdo

In the formula: n is the iteration count.

where the iteration termination condition is set as follows:

n+l n 2
k Uu —u, [J <

Zk=1 D M;’: DZZ
3.3 GRU Model

The ice thickness data of transmission lines exhibits significant
temporal characteristics, as the current icing state is influenced
not only by immediate meteorological conditions, but also by
complex nonlinear dependencies on historical environmental
parameters such as temperature, humidity, and wind speed
across multiple time points. This strong autocorrelation in the
time series places high demands on the predictive model’s
ability to capture temporal features and model long-term
dependencies.

/4 (11

As an improved variant of recurrent neural networks (RNNs)
[[20]], the Gated Recur-rent Unit (GRU) model demonstrates
distinct advantages in temporal data modeling. It combines the
forget gate and input gate from the Long Short-Term Memory
(LSTM) model [[21]] into a single “update gate” and introduces
a “reset gate.” Using sigmoid activation functions, these gates
output values between 0 and 1, enabling flexible control over
information retention and discarding. The update gate
dynamically determines the proportion of historical state
information to preserve, while the reset gate filters out
irrelevant historical information, thereby mitigating the
gradient vanishing problem. This innovative structure not only
simplifies the model and reduces computational complexity but
also significantly shortens training time when processing large
volumes of data. It meets re-al-time engineering requirements
while maintaining prediction accuracy.
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In summary, to address the strong temporal characteristics of
transmission line ice thickness, the GRU model achieves
efficient modeling of complex time series through its
innovative gating mechanism and lightweight architecture.
While retaining the long-term dependency handling
capabilities of LSTM [[22]], it significantly improves
computational efficiency, thereby providing an ideal solution
for capturing dynamic features in ice pre-diction.

The core formulas of the GRU model are as follows:

z, = sigmiod(W,[h,_,x1+b.)

v, = sigmiod(W [h_,x]+b,)

B = tanh(W,[rh_,x]+b,) (12)
h = (I-z)h, + Ztht¢)

Yo = tht + by

In the formula: x: is the input vector at timestep t; Wz, Wr, Wh
. Wy are the weight matrices of the update gate, reset gate,

candidate state, and output layer, respectively; bz, b, bn, by are
the bias terms of the update gate, reset gate, candidate state, and
output layer, respectively; ht, he, he.1 are the current hidden
state, candidate hidden state, and hidden state from the previous
timestep, respectively; zi, 1t, yt are the update gate, reset gate,
and final output, respectively; I is the identity matrix.

3.4 Overall Prediction Workflow

The specific steps of the overhead transmission line ice
thickness prediction method based on the NGO-VMD-GRU
model are as follows:

Step 1) Data Collection: Historical ice thickness data and
meteorological parameters such as wind speed, temperature,
and humidity were collected from an overhead trans-mission
line in Henan Province.

Step 2) Data Preprocessing: The data were first cleaned to
handle missing values and outliers. Normalization was then
applied to eliminate dimensional influences.

Step 3) Parameter Initialization: The initial parameters of the
VMD algorithm, including the number of modes k and the
penalty factor a, were set. The population size and maximum
number of iterations of the NGO algorithm were also randomly
initialized.

Step 4) Data Decomposition: The optimized VMD algorithm
was employed to de-compose the ice thickness data into
multiple locally stationary components.

Step 5) Model Construction: A GRU prediction model was
built for each component obtained from VMD decomposition.
Each GRU model independently predicted its corresponding
component, and the final prediction was reconstructed by
aggregating all com-ponent forecasts.

Step 6) Comparative Analysis: Comparative experiments were
conducted between the NGO-VMD-GRU model and
traditional prediction models. Multiple evaluation metrics were
used to assess prediction accuracy.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

4. CASE STUDY VALIDATION AND
ANALYSIS

4.1 Data Source Description

This study employs long-term monitoring data from the full-
scale transmission line test base in Xinmi City, Henan Province,
owned by State Grid Henan Electric Power Company. Located
in a transitional zone between the Central Plains hilly area and
mountainous terrain, the test site experiences an average of 37
days of icing per year, making it an ideal environment for
investigating transmission line icing mechanisms. The data
acquisition system consists of high-precision micro-
meteorological instruments that record meteorological factors
at 30-minute intervals, forming a long-term time-series dataset
encompassing multiple cold wave events, with a cumulative
total of over 240 valid samples. Based on the above, this paper
utilizes meteorological and ice thickness data collected from
the aforementioned test base in Xinmi City, Henan Province,
with measurements taken every 30 minutes. The recorded
transmission line ice thickness and corresponding
meteorological data are shown in Fig 3a to Fig 3d.
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4.2 Data Preprocessing and Selection of

Evaluation Metrics

To ensure the training effectiveness of the proposed model, a
systematic data preprocessing strategy was applied to optimize
the raw monitoring data. For possible missing values in the
historical meteorological and transmission line ice thickness
data collected at 30-minute intervals, cubic spline interpolation
was employed for imputation. This method constructs
piecewise cubic polynomial functions between adjacent valid
data points around the missing values, ensuring that the
interpolation curve maintains continuity in both first- and
second-order derivatives while faithfully capturing data trends.
It effectively preserves the fluctuation characteristics of the
original sequence, avoiding the abrupt distortions typical of
linear interpolation or the trend deviations caused by nearest-
neighbor approaches. The method is particularly suitable for
scenarios commonly observed in ice thickness data, such as
step-like growth or decay patterns.

Subsequently, to eliminate the influence of outliers and
dimensional discrepancies among different features, as well as
to accelerate the training speed of the proposed prediction
model, Min-Max normalization was applied to the collected
meteorological data and transmission line ice thickness data.
The specific processing method is as follows:
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yV — y xmm (13)
xmax - xmin

In the formula: y is the raw meteorological data or ice thickness

of transmission lines; y’ is the normalized data; Xmin is the

minimum value in the meteorological data or ice thickness

dataset; Xmax is the maximum value in the meteorological data

or ice thickness dataset.

Finally, to comprehensively evaluate the predictive
performance of the proposed model from multiple perspectives,
several metrics were selected for assessment. First, the Root
Mean Square Error (RMSE) was chosen as one of the
evaluation indicators due to its high sensitivity to large
prediction errors, effectively reflecting the impact of significant
deviations during forecasting. Second, the Mean Absolute
Percentage Error (MAPE) was selected given its scale-
independent nature and sensitivity to small errors, making it
suitable for evaluating relative accuracy across different
magnitudes of data. Third, the Mean Absolute Error (MAE)
was adopted as it captures the average absolute deviation
between predicted and actual values, providing a
straightforward measure of prediction accuracy. Finally, the
Coefficient of Determination (R?) was included to quantify the
goodness of fit of the predictive model to the training data,
indicating how well the model explains the variance in the
dataset. In summary, four metrics—RMSE, MAPE, MAE, and
R*>—were employed to evaluate the performance of the
forecasting model.

RMSE (14)
MAPE = L 312 =%/ 100% (15)
ni= -y,
)G
RE =1 (16)
E(yz _yt)z
1 n —
MAE =3 ]y, -7 (17)
i=1

In the formula: n is the total number of samples in the ice
thickness dataset; yi is the true value of the ice thickness data at

the i-th sample; y; is the predicted value of the ice thickness
data at the i-th sample.

4.3 Analysis of VMD Hyperparameter

Optimization Results

When thoroughly investigating the performance of the NGO
algorithm in optimizing the hyperparameters of the VMD
algorithm, this study selected the Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA) methods—referenced from
[[6]] and [[21]]—as benchmarking algorithms to ensure a
rigorous and comprehensive evaluation of NGO’s superiority.
Both PSO and GA are widely applied in the field of intelligent
optimization and possess well-established theoretical
foundations and extensive practical application, thereby
providing a solid reference for assessing the performance of the
NGO algorithm.
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In terms of experimental design, the conditions were strictly
controlled to ensure that all three algorithms operated under the
same VMD hyperparameter optimization setup. This means
they addressed the same objective function and optimized the
hyperparameters using the same set of transmission line ice
thickness data, guaranteeing fairness and comparability of the
experimental results. By continuously recording the changes in
fit-ness values during the iterative process of each algorithm, a
relationship curve between fitness and the number of iterations
was plotted, as shown in Fig 4.
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Fig 4 Global Forecasting Process.

Based on the evolutionary characteristics of the convergence
curves shown in Fig 4, the PSO, GA, and NGO algorithms
exhibit significant performance differences during the VMD
hyperparameter optimization process. From the perspective of
convergence speed, the fitness function values of the three
algorithms reached stable convergence at the 35th, 30th, and
16th iterations, respectively. The NGO algorithm reduced
convergence time by 54.3% and 46.7% compared to PSO and
GA, respectively. This discrepancy essentially reflects the
intrinsic characteristics of each algorithm’s search mechanism:

In terms of convergence accuracy, the NGO algorithm achieved
a fitness value of 0.0823 upon stabilization, which was 46.8%
and 40.9% lower than those of PSO (0.1547) and GA (0.1362),
respectively. During the initial iterations, the fitness values of
all three algorithms started closely around 5.12. As the
optimization progressed, distinct trends emerged: the PSO
algorithm decreased slowly, remaining nearly stable at 5.11
until the 14th iteration and converging to 5.108 by the 35th
iteration. The GA algorithm declined slightly faster, reducing
from 5.1094 to 5.1088 in the first five iterations and eventually
reaching 5.087 at the 30th iteration. In contrast, the NGO
algorithm exhibited a rapid and significant reduction [[23]],
dropping to 5.1 by the second iteration and achieving a con-
verged fitness value of 5.055 by the 16th iteration. These results
demonstrate that NGO converges more rapidly and accurately
toward the optimal solution, reflecting stronger global
exploration capability and improved identification of the
hyperparameters k and o.

In summary, the NGO algorithm achieves a synergistic
improvement in both con-vergence speed and accuracy in the
VMD hyperparameter optimization problem. Its technical
advantage lies not only in the order-of-magnitude reduction in
required iterations but, more importantly, in breaking through
the limitation of traditional intelligent algorithms easily trapped
in local optima via its adaptive search strategy. This
characteristic is of significant engineering value for handling
the non-stationary nature of icing data and establishes a solid
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data preprocessing foundation for building high-precision ice
prediction models.

4.4 Analysis of VMD Decomposition
Results

The ice thickness on transmission lines is influenced by the
coupled effects of three meteorological factors such as wind,
resulting in multiple extreme points with significant magnitude
variations over the overall time scale, which exhibits distinct
non-stationary characteristics. To mitigate these non-stationary
features, the VMD algorithm was applied to decompose the ice
thickness time-series data. The decomposition results are
shown in Fig 5.
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Fig 5 Decomposition Results of The VMD Algorithm.

Analysis of Fig 5 indicates that the VMD algorithm
decomposes the transmission line ice thickness data into six
components, each representing characteristic information at
different time scales within the original data. Among them,
Component 1 is the trend component, reflecting the long-term
variation trend of the ice thickness data. It exhibits the
smoothest amplitude variations and the lowest frequency,
making it the most stable of all components. Components 2 to
4 are periodic components, capturing the cyclical fluctuations
in ice thickness at medium time scales influenced by various
meteorological factors. Their frequencies are significantly
higher than that of the trend component but still demonstrate
strong regularity. Components 5 to 6 are random components,
primarily characterizing the short-term stochastic fluctuations
in ice thickness. Although their non-stationarity is higher than
that of the trend and periodic components, their non-stationary
peaks are significantly reduced compared to the original data.
From the perspective of data non-stationarity, each
decomposed component contributes [[24]] to reducing the non-
stationarity of the original data to some extent. The trend and
periodic components show a particularly notable reduction in
non-stationarity, while the non-stationary peaks of the random
components are also effectively suppressed. This multi-scale
decomposition capability allows VMD to decouple the
complex non-stationary characteristics of the original data into
locally stationary features across multiple components, thereby
facilitating improved prediction accuracy in subsequent
forecasting models.

4.5 Comparative Experiments

To demonstrate the prediction accuracy of the proposed model,
comparative experiments were conducted with the BP model
from Reference [[5]] and the GRU model from Reference [[8]].
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The prediction results of each model are shown in Fig 6, and
the evaluation metric results are presented in Fig 7.

To provide a more comprehensive evaluation, we extend the
baselines to include LS-SVM (traditional ML), LSTM and
BiLSTM/BiGRU (deep sequential models), and VMD-GRU
(hybrid decomposition—prediction), as well as PSO-VMD-
GRU and GA-VMD-GRU for optimization-based comparison
under the same VMD-+predict+reconstruct pipeline. All
methods share identical preprocessing (cubic spline
interpolation and Min—Max normalization), identical feature
inputs, and the same 30-min-ahead forecasting target. A
chronological split (80% training, 20% testing) is adopted to
avoid temporal leakage; deep models are trained with five
random seeds and the mean results are reported. Performance
is evaluated by RMSE, MAE, MAPE, and R?. The results in
Fig 8a to Fig 8d show that NGO-VMD-GRU achieves the best
performance across all metrics, indicating its advantage is
consistent across traditional ML, deep learning, and hybrid
baselines.
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Compared to traditional BP and GRU models, the prediction
results of the NGO-VMD-GRU model exhibit a higher
consistency with the actual variation trend of ice thickness,
particularly showing no significant deviation in the later stages
of prediction. This advantage is primarily attributed to the
effective handling of non-stationary features in the data by the
NGO-VMD algorithm. Specifically, VMD decomposes the
original ice thickness data into multiple components with
distinct physical interpretations by solving a constrained
variational problem. Among them, Trend Component 1
represents the long-term variation pattern of the data, Periodic
Components 2—4 reflect cyclical fluctuations driven by
meteorological factors, and Random Components 5—6 capture
the short-term low-peak variations. This multi-scale
decomposition significantly reduces the non-stationarity of the
original data and enhances the local stationarity of each
component, thereby providing more stable input features for
subsequent GRU modeling. In contrast, both the BP and GRU
models directly process the raw data without effectively
separating the trend, periodic, and random elements. As a result,
these models struggle to capture long-term dependencies in the
later stages of prediction, leading to noticeable deviations.

Furthermore, this study employs the Northern Goshawk
Optimization (NGO) algorithm to adaptively optimize the key
hyperparameters of VMD—the number of modes k and the
penalty factor o—thereby further enhancing the decomposition
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performance of VMD. Leveraging the global search capability
of NGO, the physical interpretability of each data component
is ensured, and the feature separation is made more thorough,
ultimately providing high-quality input features for the
subsequent prediction model. Analysis of the experimental
results demonstrates that the proposed NGO-VMD-GRU
model significantly outperforms traditional models across all
evaluation metrics. Specifically, the R? value in-creased by
35.95% and 15.27% compared to the BP and GRU models,
respectively; the MAPE decreased by 4.46% and 3.23%; the
MAE was reduced by 0.191 and 0.133; and the RMSE
decreased by 0.278 and 0.169. These results fully validate the
substantial advantage of the NGO-VMD-GRU model in
reducing data non-stationarity and improving prediction
accuracy.

In conclusion, through multi-scale decomposition and
hyperparameter optimization, the NGO-VMD-GRU model
effectively addresses the non-stationary and complex
characteristics of ice thickness data, offering more reliable
technical support for ice warning systems in power grids.

4.6 Multi-horizon Forecasting

To evaluate different practical scenarios, we conduct multi-
horizon forecasting with horizons of 30 min (H=1), 1 h (H=2),
2 h (H=4), and 4 h (H=8). A direct strategy is used (one model
per horizon) to avoid recursive error accumulation. As
expected, errors increase with the horizon; however, NGO-
VMD-GRU shows consistently lower errors and a slower
degradation rate, indicating improved stability for mid-to-
short-term forecasting.
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4.7 Ablation Experiments

An ablation study is a commonly used analytical method in
predictive modeling, aimed at evaluating the contribution of
individual algorithmic components within a model. By
systematically removing certain elements, this approach helps
clarify the role each algorithm plays in the overall prediction
performance [[25]]. Accordingly, this paper compares the
predictive performance of three model configurations: the
GRU model, the VMD-GRU model, and the NGO-VMD-GRU
model. The prediction curves of the three models are shown in
Fig 10, and the corresponding evaluation metrics are presented
in Fig 11.
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Fig 10 Comparative Analysis of Prediction Results from
Different Algorithms.
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This study compares the prediction accuracy of the GRU model,
the VMD-GRU model, and the proposed NGO-VMD-GRU
model in forecasting transmission line ice thickness, thereby
validating the performance differences among these models.
Experimental results indicate that the GRU model achieves
relatively low prediction accuracy, with an RMSE of 0.287,
MAE 0f 0.227, R? of 82.32%, and MAPE of 5.50%. Although
the gated mechanism of the GRU model enables it to capture
long-term dependencies in time series, it still exhibits
limitations in handling the non-stationary characteristics of ice
thickness. In contrast, the VMD-GRU model, which
incorporates the Variational Mode Decomposition (VMD)
algorithm to decompose ice thickness data into multiple scales,
effectively reduces data non-stationarity, achieving an RMSE
of 0.195, MAE of 0.161, R? of 92.50%, and MAPE of 3.89%.
This demonstrates the significant advantage of the VMD-GRU
model in processing the complex features of ice thickness.

The proposed NGO-VMD-GRU model, however, outperforms
both models across all evaluation metrics, with an RMSE of
0.118, MAE 0f 0.094, R? 0f 97.59%, and MAPE of 2.27%. The
superiority of this model can be attributed to the following
aspects: First, the VMD-based multi-scale decomposition
effectively separates components of different frequencies in the
original data, thereby reducing non-stationarity. Second, the
Northern Goshawk Optimization (NGO) algorithm optimizes
the hyperparameters of the GRU model, enhancing both its
generalization capability and prediction accuracy. Finally, the
GRU network serves as the core forecasting module,
thoroughly capturing temporal dependencies within the ice
thickness data. Experimental results confirm that the NGO-
VMD-GRU model effectively overcomes the non-stationary
nature of ice thickness data and achieves high prediction
accuracy.

In conclusion, the NGO-VMD-GRU model demonstrates
excellent performance in ice thickness forecasting. Its high
accuracy and strong stability provide reliable technical support
for ice warning and disaster prevention in power systems.

4.8 Cross-event Generalization

Since the dataset contains multiple cold-wave icing events, we
evaluate robustness via leave-one-event-out testing: each event
is held out for testing while the remaining events are used for
training, and results are reported as mean + std. As shown in
Fig 12ato Fig 12d, NGO-VMD-GRU achieves the best average
accuracy and the smallest standard deviation, indicating
reduced sensitivity to event-to-event variations and stronger
robustness under diverse scenarios.
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5. CONCLUSION

In response to the challenges of strong data non-stationarity and
insufficient prediction accuracy caused by the coupling of
multiple  meteorological  factors  affecting  overhead
transmission line ice thickness, this paper proposes an ice
thickness prediction method based on NGO-VMD-GRU. Its
superior predictive performance is demonstrated through
comparative and ablation experiments. The main conclusions
are as follows:

1)  Effectiveness of NGO in Optimizing VMD
Hyperparameters

By introducing the Northern Goshawk Optimization (NGO)
algorithm to adaptively optimize the mode number k and
penalty factor o of VMD, the limitations of traditional VMD
relying on empirical hyperparameter selection are effectively
addressed. Experimental results demonstrate that the NGO
algorithm converges rapidly to the global optimal solution, and
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the optimized VMD method improves the prediction accuracy
of'ice thickness by 5.09%.

2) Superiority of Component Prediction and Superposition
Strategy

Each stationary ice-thickness component is independently
predicted using a GRU model, and the final prediction is
obtained by superimposing these component predictions. This
strategy effectively mitigates the issue of poor prediction
accuracy caused by the inability of conventional models to
adequately capture non-stationary sequence characteristics.
Experimental results show that compared to traditional models,
the component-based prediction approach improves model
accuracy by 28.4%, confirming the ad-vantage of the
"decomposition-prediction-reconstruction" framework.

3) Experimental Validation of Model Predictive Performance

In ice thickness prediction experiments conducted on an
overhead transmission line in Henan Province, the proposed
NGO-VMD-GRU model achieved a Mean Absolute Per-
centage Error (MAPE) of 3.12%. This represents an
improvement of 17.27%, 21.45%, and 12.83% compared to the
LSTM model, BP neural network, and non-optimized VMD-
GRU model, respectively, demonstrating its superior
performance under non-stationary data conditions.

The innovation of this study lies in the effective integration of
an intelligent optimization algorithm, a data decomposition
technique, and a deep learning model, offering a
comprehensive solution that addresses both feature extraction
and non-stationary relationship modeling for ice thickness
prediction. Future research will further explore the dynamic
coupling mechanisms between multiple meteorological factors
and transmission line icing, and attempt to extend the proposed
model to icing forecasting in challenging environments such as
high-altitude and strong-wind areas.
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