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ABSTRACT 

Accurate prediction of icing thickness on overhead 

transmission lines is crucial for ensuring the safe and stable 

operation of the lines during extreme cold weather. This study 

addresses the issue of significant non-stationary characteristics 

in the icing thickness data due to the coupling effects of various 

meteorological factors, such as wind speed and temperature. 

The authors proposed a prediction method based on Northern 

Goshawk Optimization (NGO) to optimize Variational Mode 

Decomposition (VMD), combined with Gated Recurrent Unit 

(GRU). First, NGO was used to adaptively optimize the key 

hyperparameters of VMD, achieving effective decomposition 

of the icing thickness data. Second, the optimized VMD 

decomposed the icing thickness data into a series of 

components with different central frequencies but local 

stationarity, reducing its non-stationarity. Finally, the GRU 

model independently predicted each decomposed component, 

and the final prediction was obtained by aggregating the 

components. The NGO-VMD-GRU model was compared with 

several traditional prediction models using an overhead 

transmission line in Henan Province as the case study. The 

experimental results show that the prediction accuracy of the 

NGO-VMD-GRU model achieves a Mean Absolute Percentage 

Error (MAPE) of 3.12%, which is 17.27% lower than the 

LSTM model, 21.45% lower than the BP neural network, and 

12.83% lower than the non-optimized VMD-GRU model, 

providing a new solution for accurately predicting icing 

thickness on overhead transmission lines. 
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1. INTRODUCTION 
Under extreme cold weather conditions, severe ice 

accumulation on overhead trans-mission lines significantly 

increases the mechanical load on the towers, potentially leading 

to wire breakage and tower collapse, thereby seriously 

threatening the safe operation of the power grid[[1]-[2]]. To 

effectively address this challenge, accurate prediction of ice 

thickness has become a core requirement for grid operation and 

maintenance. However, in practical engineering, ice accretion 

is influenced by the coupled effects of multiple meteorological 

factors such as wind speed, humidity, and ambient temperature, 

resulting in a pronounced non-stationary characteristic in the 

data. This makes it difficult for existing prediction models to 

meet actual engineering accuracy requirements. Therefore, 

reducing the non-stationarity of ice thickness data is crucial for 

achieving accurate predictions. 

Currently, scholars both domestically and internationally have 

conducted extensive research on the prediction of ice thickness 

on power lines, covering various approaches such as physical 

models [3], statistical models [4], and artificial intelligence 

models [[5]-[9]]. Specifically, the predictive accuracy of 

physical models heavily relies on the acquisition of parameters 

such as line inclination [[3]]; however, this is often constrained 

by experimental site limitations, making them difficult to apply 

widely in practical engineering. To ad-dress this, some studies 

have attempted to install micro-meteorological monitoring 

instruments on transmission towers to directly obtain ice 

thickness data and use statistical models [[4]] for prediction. 

However, statistical models often employ linear prediction 

functions to represent the regression relationship between ice 

thickness data and micrometeorological data, which can easily 

overlook the high-dimensional characteristics of the data, 

resulting in poor prediction accuracy. With the rapid 

development of computer technology, some researchers have 

tried using artificial intelligence models based on high-

dimensional nonlinear mapping, such as BP neural networks 

[[5]] and Least Squares Support Vector Machines (LS-SVM) 

[[6]-[7]], to predict ice thickness on lines. Nevertheless, the 

predictive accuracy of traditional artificial intelligence models 

excessively depends on the volume of data samples, rendering 

them unsuitable for ice-covered lines with limited historical 

data. In recent years, the Gated Recurrent Unit (GRU) model 

[[8]], which excels in handling regression relationships within 

small-sample data, has gradually been applied in the field of 

transmission line ice prediction, offering new insights for ice 

accretion fore-casting. 

Although the GRU model holds certain advantages in small-

sample prediction, the complex and highly variable trends in 

ice accretion on transmission lines mean that its non-stationary 

nature can still significantly impair forecasting accuracy. 

Relying solely on the GRU model for prediction is likely to 

yield suboptimal results due to the neglect of this data non-

stationarity. To address this issue, some studies [[9]-[10]] have 

attempted to employ the Variational Mode Decomposition 

(VMD) algorithm. This approach decomposes the ice thickness 

data into a series of components with different frequencies but 

local [[11]] stationarity, thereby achieving data stabilization. 

However, most existing research relies on empirical methods 

[[9]-[10]] for selecting VMD hyperparameters. This approach 

not only lacks a solid theoretical foundation but also struggles 

to guarantee hyperparameter optimality. In practical 

applications, inappropriate hyperparameter selection may lead 

to mode mixing or over-decomposition phenomena. These 

issues can attenuate the effectiveness of the VMD algorithm in 

suppressing the non-stationarity of transmission line ice 

thickness data [[12]], ultimately compromising the overall 

performance of the prediction model. 
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In light of this, this study proposes an integrated forecasting 

method based on the Northern Goshawk Optimization (NGO) 

[[13]] algorithm, Variational Mode Decomposition (VMD), 

and Gated Recurrent Unit (GRU), namely the NGO-VMD-

GRU model. The method establishes a three-layer progressive 

prediction framework: First, the powerful global search 

capability and adaptive iteration mechanism of the NGO 

algorithm are leveraged to optimize the hyperparameters of the 

VMD algorithm, thereby ensuring the accuracy and 

effectiveness of data decomposition at the source. Second, the 

original ice thickness data is decomposed by VMD into 

multiple locally stationary components, enabling in-depth 

feature extraction and reconstruction. Finally, a separate GRU 

prediction model is constructed for each stationary component, 

and the final prediction is obtained by aggregating the 

forecasted results of all components. A case study conducted 

on an actual transmission line in Henan Province demonstrates 

that the proposed model achieves a significant improvement in 

prediction accuracy compared to traditional methods. It pro-

vides an innovative and engineering-applicable solution for 

accurate ice thickness prediction on transmission lines, offering 

important theoretical significance and practical value for 

enhancing the disaster prevention and mitigation capabilities of 

power grids.  

2. PREDICTION METHODS FOR 

TRANSMISSION LINE ICE THICKNESS 

AND EXISTING DATA 

2.1 Ice Thickness on Overhead 

Transmission Lines and Its Data 

Characteristics 
Against the backdrop of the new power system development, 

the large-scale interregional deployment of ultra-high voltage 

(UHV) transmission networks has inevitably ex-tended 

overhead transmission lines into high-altitude frigid zones and 

areas prone to se-vere ice disasters. Conductor icing under 

extreme low-temperature conditions is becoming a critical 

issue threatening both the structural safety and electrical 

performance of trans-mission lines. From a physical 

perspective, ice accretion on conductors is a complex process 

resulting from the coupling of multiple meteorological factors: 

wind speed enhances convective heat transfer on the conductor 

surface, accelerating the collision and freezing of supercooled 

water droplets, thereby directly influencing the ice 

accumulation rate; air humidity [[14]], as a key condition for 

water vapor phase change, fluctuates diurnally and governs the 

formation and evolution of the condensation water film on the 

conductor sur-face—high humidity significantly exacerbates 

the layered buildup of ice; ambient temperature regulates the 

thermodynamic conditions for droplet freezing, governing the 

physical transformation of the ice layer from porous rime ice to 

dense glaze ice. 

These meteorological factors exhibit significant heterogeneous 

characteristics across temporal and spatial dimensions: wind 

speed, influenced by topography and atmospheric circulation, 

often demonstrates high-frequency pulsating behavior, with 

substantial disparities between instantaneous intensity and 

average levels; air humidity, subject to diurnal phase changes, 

shows pronounced non-uniform fluctuations in mountainous 

areas or transmission corridors with complex terrain; ambient 

temperature follows periodic variation patterns, and in high-

latitude or high-altitude regions, the cyclical alternation of 

daytime ice melting and nighttime ice formation creates a 

unique temperature-driven ice accretion mode. The nonlinear 

interactions among these multiple meteorological factors result 

in complex non-stationary characteristics in the ice thickness 

time series. 

Therefore, to achieve accurate prediction of transmission line 

ice thickness, it is essential to fully account for the non-

stationary nature of the data and improve existing forecasting 

methods based on this understanding to enhance prediction 

accuracy. 

2.2 Limitations of Existing Data-Driven 

Prediction Methods and Improvement 

Strategies 
In the field of disaster prevention and mitigation for power 

systems, accurate prediction [[15]-[16]] of ice thickness on 

transmission lines is crucial for ensuring the safe operation of 

the grid. As the icing process is influenced by multiple 

meteorological factors such as atmospheric humidity, wind 

speed, and ambient temperature, the resulting data exhibit 

distinct non-stationary characteristics. 

Currently, numerous studies employ the Variational Mode 

Decomposition (VMD) algorithm to reduce the non-

stationarity of transmission line ice thickness data [[9]-[10]]. 

The core idea of this algorithm is to decompose the ice 

thickness data into a series of components with different 

frequencies but local stationarity. However, the decomposition 

performance of VMD is highly dependent on two 

hyperparameters: the number of decomposition modes k and 

the penalty factor α [[17]]. At present, many studies typically 

adjust these hyperparameters based on metrics such as root 

mean square error or correlation co-efficient [[9]-[10]], which 

essentially constitutes a local search within a limited parameter 

space. Nevertheless, the empirical manual approach generally 

suffers from two major is-sues: (1) The interaction between the 

two hyperparameters results in a solution space with a complex 

non-convex nature, containing numerous local optima, making 

it difficult for manual trial-and-error to identify the globally 

optimal parameter combination. (2) The characteristics of icing 

data dynamically vary under different meteorological 

conditions. Fixed hyperparameters cannot meet real-time 

monitoring requirements. If each dataset requires manual 

empirical determination of hyperparameters, it would consume 

substantial human resources and time costs. Therefore, it is 

necessary to introduce other methods to ensure the optimal 

selection of VMD hyperparameters. 

To address the aforementioned issues, converting the VMD 

hyperparameter selection problem into a multivariate 

optimization problem can effectively circumvent the 

limitations of manual empirical methods [[18]]. Specifically, 

an objective function that quantitatively characterizes the 

quality of ice thickness data decomposition is first constructed. 

This transforms the manual tuning of VMD hyperparameters 

into a solution space traversal process solvable by intelligent 

optimization algorithms. Subsequently, the powerful global 

search capability of such algorithms is leveraged to explore the 

solution space and identify the globally optimal 

hyperparameters, thereby avoiding the local optima typically 

encountered with traditional approaches. 

The core advantage of this method lies in its establishment of a 

closed-loop optimization mechanism that integrates "data 

characteristics →  hyperparameter solution space → 

decomposition performance." Compared to traditional 

empirical approaches, this technical pathway not only provides 

a rigorous mathematical optimization framework for 

hyperparameter selection but also, through the efficient search 
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capabilities of intelligent algorithms, achieves a 

methodological upgrade from "subjective trial-and-error" to 

"da-ta-driven precision optimization." It offers a more 

universal solution for improving the prediction accuracy of 

non-stationary transmission line icing data and demonstrates 

significant engineering application value in the field of power 

system disaster prevention and mitigation. 

3. ALGORITHMIC PRINCIPLES 

3.1 NGO Algorithm 
Given the pronounced non-stationarity inherent in ice thickness 

data of overhead transmission lines, it is necessary to employ 

the Variational Mode Decomposition (VMD) algorithm for 

decomposition processing. However, the performance of VMD 

is highly de-pendent on the appropriate selection of its 

hyperparameters. Therefore, it is essential to adopt a high-

performance optimization algorithm for the iterative 

hyperparameter tuning of VMD. 

The Northern Goshawk Optimization (NGO) algorithm has 

been widely applied to various parameter optimization 

problems due to its high search efficiency. The implementation 

process of the NGO algorithm mainly consists of three stages: 

initialization, prey identification and attack, and prey pursuit 

and escape. 

Step 1) Initialization 

The population matrix of the northern goshawk swarm is 

defined as: 

1,1 1, 1,1
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In the formula: X is the population matrix of the current 

northern goshawk swarm; Xi is the initial position of the i-th 

northern goshawk; Xi,j is the position of the i-th northern 

goshawk in the j-th dimension; N is the number of northern 

goshawks in the population; m is the dimension of the 

optimization problem. 

where: 
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In the formula: kmin and kmax are the lower and upper bounds of 

the optimization range for k, respectively; αmin and αmax are the 

lower and upper bounds of the optimization range for α, 

respectively; rand denotes the random generation function; i 

represents the number of random generations. 

Subsequently, an appropriate fitness function must be selected 

to quantify the optimization effectiveness of different 

hyperparameter combinations within the population matrix. 

Given that the non-stationarity of transmission line ice 

thickness data is primarily characterized by large disparities in 

extreme values, the envelope entropy of the data can effectively 

reflect variations in these extremes. Therefore, the minimum 

envelope entropy of the ice thickness data [[19]] is chosen as 

the fitness function to evaluate the optimization performance of 

different hyperparameters in the population matrix: 
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In the formula: Ep is the sum of envelope entropy values for m 

transmission line ice thick-ness data points; m is the sum of 

envelope entropy values for m transmission line ice thickness 

data points; p denotes the probability distribution; a(i) is the 

envelope data sequence obtained via Hilbert demodulation of 

the component data u(i); H[·] represents the Hilbert transform. 

Step 2) Prey Identification & Attack 

The prey’s behavior is simulated using the following model: 

, 1,2, , ; 1,2, ,i tP X i N t N= = =  (4) 

 

In the formula: Pi is the location of the target prey for the i-th 

northern goshawk; Xt is the state of the northern goshawk at 

iteration t; t is a natural number within the interval [1, N] 

(iteration index); N is the population size of the northern 

goshawk swarm. 

The northern goshawk stochastically selects and attacks its prey, 

simulated by the following expression: 
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In the formula: Fpi is the ideal fitness value; Fi is the actual 

fitness value of the i-th northern goshawk;  
new, 1
,

p
i jX  is the new 

state of the i-th northern goshawk in the j-th dimension; r is an 

arbitrary value within the interval [1,N], simulating the 

stochastic behavior of the northern goshawk; I is an integer 

parameter with possible values of 1 or 2. 
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In the formula: 
new,p1

i, jF  is the fitness value of the northern 

goshawk in the j-th dimension. 

Step 3) Prey Pursuit & Escape 

After capturing the prey, the northern goshawk engages in a 

pursuit-evasion process where the prey attempts to escape. 

During this interaction, the hunting dynamics are approximated 

within an attack radius R, as described by the following 

mathematical expression: 
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In the formula: 
new, 2
,

p
i jX  is the updated state of the i-th 

northern goshawk in the j-th dimension during this phase; t 

denotes the current iteration index; T represents the maxi-mum 

iteration count. 

3.2 VMD Algorithm 
The VMD algorithm mitigates the non-stationary 

characteristics of data by adaptively decomposing it into a 

series of components with specific center frequencies and 

band-widths. The procedure for decomposing transmission line 

ice thickness data using the VMD algorithm is as follows: 

First, construct a constrained variational set of equations with 

the objective function of minimizing the sum of the bandwidths 

of each ice thickness data component: 
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In the formula: min{A},s.t.B is the optimization problem of 

minimizing A subject to constraint B; uk(t) is the k-th 

component obtained from decomposing the ice thickness data; 

wk(t) is the center frequency of the k-th component;   (t) is the 

Dirac delta function; ht is the partial derivative operator with 

respect to time;   is the convolution operator; j is the 

imaginary unit; 
2

2
 is the L2 paradigm operator; f(t) is the 

original ice thickness dataset. 

Since Equation (8) involves multiple partial derivative 

operations, its solution process is highly complex. Therefore, 

to solve Equation (8), the Lagrange multiplier λ and the penalty 

factor α can be introduced to incorporate the constraint 

conditions into the variational equation that minimizes the sum 

of the bandwidths of the ice thickness data components. In this 

way, the constrained variational problem described by 

Equation (8) is transformed into a simpler unconstrained 

variational form: 
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In the formula: α is the penalty factor; k is the number of 

decomposition components for ice thickness data; λ is the 

Lagrangian multiplier operator. 

Considering that the Alternating Direction Method of 

Multipliers (ADMM) exhibits excellent convergence 

performance in solving unconstrained optimization problems, 

it is employed to solve Equation (9). 
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In the formula: n is the iteration count. 

where the iteration termination condition is set as follows: 
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3.3 GRU Model 
The ice thickness data of transmission lines exhibits significant 

temporal characteristics, as the current icing state is influenced 

not only by immediate meteorological conditions, but also by 

complex nonlinear dependencies on historical environmental 

parameters such as temperature, humidity, and wind speed 

across multiple time points. This strong autocorrelation in the 

time series places high demands on the predictive model’s 

ability to capture temporal features and model long-term 

dependencies. 

As an improved variant of recurrent neural networks (RNNs) 

[[20]], the Gated Recur-rent Unit (GRU) model demonstrates 

distinct advantages in temporal data modeling. It combines the 

forget gate and input gate from the Long Short-Term Memory 

(LSTM) model [[21]] into a single “update gate” and introduces 

a “reset gate.” Using sigmoid activation functions, these gates 

output values between 0 and 1, enabling flexible control over 

information retention and discarding. The update gate 

dynamically determines the proportion of historical state 

information to preserve, while the reset gate filters out 

irrelevant historical information, thereby mitigating the 

gradient vanishing problem. This innovative structure not only 

simplifies the model and reduces computational complexity but 

also significantly shortens training time when processing large 

volumes of data. It meets re-al-time engineering requirements 

while maintaining prediction accuracy. 
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In summary, to address the strong temporal characteristics of 

transmission line ice thickness, the GRU model achieves 

efficient modeling of complex time series through its 

innovative gating mechanism and lightweight architecture. 

While retaining the long-term dependency handling 

capabilities of LSTM [[22]], it significantly improves 

computational efficiency, thereby providing an ideal solution 

for capturing dynamic features in ice pre-diction. 

The core formulas of the GRU model are as follows: 
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In the formula: xt is the input vector at timestep t; WZ､Wr､Wh

､Wy are the weight matrices of the update gate, reset gate, 

candidate state, and output layer, respectively; bz､br､bh､by are 

the bias terms of the update gate, reset gate, candidate state, and 

output layer, respectively; ht､ht’､ht-1 are the current hidden 

state, candidate hidden state, and hidden state from the previous 

timestep, respectively; zt､rt､yt are the update gate, reset gate, 

and final output, respectively; I is the identity matrix. 

3.4 Overall Prediction Workflow 
The specific steps of the overhead transmission line ice 

thickness prediction method based on the NGO-VMD-GRU 

model are as follows: 

Step 1) Data Collection: Historical ice thickness data and 

meteorological parameters such as wind speed, temperature, 

and humidity were collected from an overhead trans-mission 

line in Henan Province. 

Step 2) Data Preprocessing: The data were first cleaned to 

handle missing values and outliers. Normalization was then 

applied to eliminate dimensional influences. 

Step 3) Parameter Initialization: The initial parameters of the 

VMD algorithm, including the number of modes k and the 

penalty factor α, were set. The population size and maximum 

number of iterations of the NGO algorithm were also randomly 

initialized. 

Step 4) Data Decomposition: The optimized VMD algorithm 

was employed to de-compose the ice thickness data into 

multiple locally stationary components. 

Step 5) Model Construction: A GRU prediction model was 

built for each component obtained from VMD decomposition. 

Each GRU model independently predicted its corresponding 

component, and the final prediction was reconstructed by 

aggregating all com-ponent forecasts. 

Step 6) Comparative Analysis: Comparative experiments were 

conducted between the NGO-VMD-GRU model and 

traditional prediction models. Multiple evaluation metrics were 

used to assess prediction accuracy. 

4. CASE STUDY VALIDATION AND 

ANALYSIS 

4.1 Data Source Description 
This study employs long-term monitoring data from the full-

scale transmission line test base in Xinmi City, Henan Province, 

owned by State Grid Henan Electric Power Company. Located 

in a transitional zone between the Central Plains hilly area and 

mountainous terrain, the test site experiences an average of 37 

days of icing per year, making it an ideal environment for 

investigating transmission line icing mechanisms. The data 

acquisition system consists of high-precision micro-

meteorological instruments that record meteorological factors 

at 30-minute intervals, forming a long-term time-series dataset 

encompassing multiple cold wave events, with a cumulative 

total of over 240 valid samples. Based on the above, this paper 

utilizes meteorological and ice thickness data collected from 

the aforementioned test base in Xinmi City, Henan Province, 

with measurements taken every 30 minutes. The recorded 

transmission line ice thickness and corresponding 

meteorological data are shown in Fig 3a to Fig 3d. 

 

Fig 3a: Line Icing Thickness. 

 

Fig 3b Wind Speed Around The Line. 
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Fig 3c Temperature Around The Line. 

 

Fig 3d Air Humidity Around The Line. 

4.2 Data Preprocessing and Selection of 

Evaluation Metrics 
To ensure the training effectiveness of the proposed model, a 

systematic data preprocessing strategy was applied to optimize 

the raw monitoring data. For possible missing values in the 

historical meteorological and transmission line ice thickness 

data collected at 30-minute intervals, cubic spline interpolation 

was employed for imputation. This method constructs 

piecewise cubic polynomial functions between adjacent valid 

data points around the missing values, ensuring that the 

interpolation curve maintains continuity in both first- and 

second-order derivatives while faithfully capturing data trends. 

It effectively preserves the fluctuation characteristics of the 

original sequence, avoiding the abrupt distortions typical of 

linear interpolation or the trend deviations caused by nearest-

neighbor approaches. The method is particularly suitable for 

scenarios commonly observed in ice thickness data, such as 

step-like growth or decay patterns. 

Subsequently, to eliminate the influence of outliers and 

dimensional discrepancies among different features, as well as 

to accelerate the training speed of the proposed prediction 

model, Min-Max normalization was applied to the collected 

meteorological data and transmission line ice thickness data. 

The specific processing method is as follows: 

 

min

max min

y x
y

x x

−
=

−
  (13) 

In the formula: y is the raw meteorological data or ice thickness 

of transmission lines; y′is the normalized data; xmin is the 

minimum value in the meteorological data or ice thickness 

dataset; xmax is the maximum value in the meteorological data 

or ice thickness dataset. 

Finally, to comprehensively evaluate the predictive 

performance of the proposed model from multiple perspectives, 

several metrics were selected for assessment. First, the Root 

Mean Square Error (RMSE) was chosen as one of the 

evaluation indicators due to its high sensitivity to large 

prediction errors, effectively reflecting the impact of significant 

deviations during forecasting. Second, the Mean Absolute 

Percentage Error (MAPE) was selected given its scale-

independent nature and sensitivity to small errors, making it 

suitable for evaluating relative accuracy across different 

magnitudes of data. Third, the Mean Absolute Error (MAE) 

was adopted as it captures the average absolute deviation 

between predicted and actual values, providing a 

straightforward measure of prediction accuracy. Finally, the 

Coefficient of Determination (R²) was included to quantify the 

goodness of fit of the predictive model to the training data, 

indicating how well the model explains the variance in the 

dataset. In summary, four metrics—RMSE, MAPE, MAE, and 

R²—were employed to evaluate the performance of the 

forecasting model. 
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In the formula: n is the total number of samples in the ice 

thickness dataset; yi is the true value of the ice thickness data at 

the i-th sample; iy  is the predicted value of the ice thickness 

data at the i-th sample. 

4.3 Analysis of VMD Hyperparameter 

Optimization Results 
When thoroughly investigating the performance of the NGO 

algorithm in optimizing the hyperparameters of the VMD 

algorithm, this study selected the Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA) methods—referenced from 

[[6]] and [[21]]—as benchmarking algorithms to ensure a 

rigorous and comprehensive evaluation of NGO’s superiority. 

Both PSO and GA are widely applied in the field of intelligent 

optimization and possess well-established theoretical 

foundations and extensive practical application, thereby 

providing a solid reference for assessing the performance of the 

NGO algorithm. 
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In terms of experimental design, the conditions were strictly 

controlled to ensure that all three algorithms operated under the 

same VMD hyperparameter optimization setup. This means 

they addressed the same objective function and optimized the 

hyperparameters using the same set of transmission line ice 

thickness data, guaranteeing fairness and comparability of the 

experimental results. By continuously recording the changes in 

fit-ness values during the iterative process of each algorithm, a 

relationship curve between fitness and the number of iterations 

was plotted, as shown in Fig 4. 

 

Fig 4 Global Forecasting Process. 

Based on the evolutionary characteristics of the convergence 

curves shown in Fig 4, the PSO, GA, and NGO algorithms 

exhibit significant performance differences during the VMD 

hyperparameter optimization process. From the perspective of 

convergence speed, the fitness function values of the three 

algorithms reached stable convergence at the 35th, 30th, and 

16th iterations, respectively. The NGO algorithm reduced 

convergence time by 54.3% and 46.7% compared to PSO and 

GA, respectively. This discrepancy essentially reflects the 

intrinsic characteristics of each algorithm’s search mechanism: 

In terms of convergence accuracy, the NGO algorithm achieved 

a fitness value of 0.0823 upon stabilization, which was 46.8% 

and 40.9% lower than those of PSO (0.1547) and GA (0.1362), 

respectively. During the initial iterations, the fitness values of 

all three algorithms started closely around 5.12. As the 

optimization progressed, distinct trends emerged: the PSO 

algorithm decreased slowly, remaining nearly stable at 5.11 

until the 14th iteration and converging to 5.108 by the 35th 

iteration. The GA algorithm declined slightly faster, reducing 

from 5.1094 to 5.1088 in the first five iterations and eventually 

reaching 5.087 at the 30th iteration. In contrast, the NGO 

algorithm exhibited a rapid and significant reduction [[23]], 

dropping to 5.1 by the second iteration and achieving a con-

verged fitness value of 5.055 by the 16th iteration. These results 

demonstrate that NGO converges more rapidly and accurately 

toward the optimal solution, reflecting stronger global 

exploration capability and improved identification of the 

hyperparameters k and α. 

In summary, the NGO algorithm achieves a synergistic 

improvement in both con-vergence speed and accuracy in the 

VMD hyperparameter optimization problem. Its technical 

advantage lies not only in the order-of-magnitude reduction in 

required iterations but, more importantly, in breaking through 

the limitation of traditional intelligent algorithms easily trapped 

in local optima via its adaptive search strategy. This 

characteristic is of significant engineering value for handling 

the non-stationary nature of icing data and establishes a solid 

data preprocessing foundation for building high-precision ice 

prediction models. 

4.4 Analysis of VMD Decomposition 

Results 
The ice thickness on transmission lines is influenced by the 

coupled effects of three meteorological factors such as wind, 

resulting in multiple extreme points with significant magnitude 

variations over the overall time scale, which exhibits distinct 

non-stationary characteristics. To mitigate these non-stationary 

features, the VMD algorithm was applied to decompose the ice 

thickness time-series data. The decomposition results are 

shown in Fig 5. 

 

Fig 5 Decomposition Results of The VMD Algorithm. 

Analysis of Fig 5 indicates that the VMD algorithm 

decomposes the transmission line ice thickness data into six 

components, each representing characteristic information at 

different time scales within the original data. Among them, 

Component 1 is the trend component, reflecting the long-term 

variation trend of the ice thickness data. It exhibits the 

smoothest amplitude variations and the lowest frequency, 

making it the most stable of all components. Components 2 to 

4 are periodic components, capturing the cyclical fluctuations 

in ice thickness at medium time scales influenced by various 

meteorological factors. Their frequencies are significantly 

higher than that of the trend component but still demonstrate 

strong regularity. Components 5 to 6 are random components, 

primarily characterizing the short-term stochastic fluctuations 

in ice thickness. Although their non-stationarity is higher than 

that of the trend and periodic components, their non-stationary 

peaks are significantly reduced compared to the original data. 

From the perspective of data non-stationarity, each 

decomposed component contributes [[24]] to reducing the non-

stationarity of the original data to some extent. The trend and 

periodic components show a particularly notable reduction in 

non-stationarity, while the non-stationary peaks of the random 

components are also effectively suppressed. This multi-scale 

decomposition capability allows VMD to decouple the 

complex non-stationary characteristics of the original data into 

locally stationary features across multiple components, thereby 

facilitating improved prediction accuracy in subsequent 

forecasting models. 

4.5 Comparative Experiments 
To demonstrate the prediction accuracy of the proposed model, 

comparative experiments were conducted with the BP model 

from Reference [[5]] and the GRU model from Reference [[8]]. 
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The prediction results of each model are shown in Fig 6, and 

the evaluation metric results are presented in Fig 7. 

To provide a more comprehensive evaluation, we extend the 

baselines to include LS-SVM (traditional ML), LSTM and 

BiLSTM/BiGRU (deep sequential models), and VMD-GRU 

(hybrid decomposition–prediction), as well as PSO-VMD-

GRU and GA-VMD-GRU for optimization-based comparison 

under the same VMD+predict+reconstruct pipeline. All 

methods share identical preprocessing (cubic spline 

interpolation and Min–Max normalization), identical feature 

inputs, and the same 30-min-ahead forecasting target. A 

chronological split (80% training, 20% testing) is adopted to 

avoid temporal leakage; deep models are trained with five 

random seeds and the mean results are reported. Performance 

is evaluated by RMSE, MAE, MAPE, and 𝑅2. The results in 

Fig 8a to Fig 8d show that NGO-VMD-GRU achieves the best 

performance across all metrics, indicating its advantage is 

consistent across traditional ML, deep learning, and hybrid 

baselines. 

 

Fig 6 Comparative Analysis of Prediction Results from 

Different Models. 

 

Fig 7 Prediction performance indicators of different 

models. 

 

Fig 8a RMSE of 30-min-ahead Forecasting. 

 

Fig 8b MAE of 30-min-ahead Forecasting. 

 

Fig 8c MAPE (%) of 30-min-ahead Forecasting. 

 

Fig 8d R² (%) of 30-min-ahead Forecasting. 

Compared to traditional BP and GRU models, the prediction 

results of the NGO-VMD-GRU model exhibit a higher 

consistency with the actual variation trend of ice thickness, 

particularly showing no significant deviation in the later stages 

of prediction. This advantage is primarily attributed to the 

effective handling of non-stationary features in the data by the 

NGO-VMD algorithm. Specifically, VMD decomposes the 

original ice thickness data into multiple components with 

distinct physical interpretations by solving a constrained 

variational problem. Among them, Trend Component 1 

represents the long-term variation pattern of the data, Periodic 

Components 2–4 reflect cyclical fluctuations driven by 

meteorological factors, and Random Components 5–6 capture 

the short-term low-peak variations. This multi-scale 

decomposition significantly reduces the non-stationarity of the 

original data and enhances the local stationarity of each 

component, thereby providing more stable input features for 

subsequent GRU modeling. In contrast, both the BP and GRU 

models directly process the raw data without effectively 

separating the trend, periodic, and random elements. As a result, 

these models struggle to capture long-term dependencies in the 

later stages of prediction, leading to noticeable deviations. 

Furthermore, this study employs the Northern Goshawk 

Optimization (NGO) algorithm to adaptively optimize the key 

hyperparameters of VMD—the number of modes k and the 

penalty factor α—thereby further enhancing the decomposition 
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performance of VMD. Leveraging the global search capability 

of NGO, the physical interpretability of each data component 

is ensured, and the feature separation is made more thorough, 

ultimately providing high-quality input features for the 

subsequent prediction model. Analysis of the experimental 

results demonstrates that the proposed NGO-VMD-GRU 

model significantly outperforms traditional models across all 

evaluation metrics. Specifically, the R² value in-creased by 

35.95% and 15.27% compared to the BP and GRU models, 

respectively; the MAPE decreased by 4.46% and 3.23%; the 

MAE was reduced by 0.191 and 0.133; and the RMSE 

decreased by 0.278 and 0.169. These results fully validate the 

substantial advantage of the NGO-VMD-GRU model in 

reducing data non-stationarity and improving prediction 

accuracy. 

In conclusion, through multi-scale decomposition and 

hyperparameter optimization, the NGO-VMD-GRU model 

effectively addresses the non-stationary and complex 

characteristics of ice thickness data, offering more reliable 

technical support for ice warning systems in power grids. 

4.6 Multi-horizon Forecasting 
To evaluate different practical scenarios, we conduct multi-

horizon forecasting with horizons of 30 min (H=1), 1 h (H=2), 

2 h (H=4), and 4 h (H=8). A direct strategy is used (one model 

per horizon) to avoid recursive error accumulation. As 

expected, errors increase with the horizon; however, NGO-

VMD-GRU shows consistently lower errors and a slower 

degradation rate, indicating improved stability for mid-to-

short-term forecasting. 

 

Fig 9a RMSE under Multi-horizon Forecasting. 

 

Fig 9b MAE under Multi-horizon Forecasting. 

 

Fig 9c MAPE (%) under Multi-horizon Forecasting. 

 

Fig 9d R² (%) under Multi-horizon Forecasting. 

4.7 Ablation Experiments 
An ablation study is a commonly used analytical method in 

predictive modeling, aimed at evaluating the contribution of 

individual algorithmic components within a model. By 

systematically removing certain elements, this approach helps 

clarify the role each algorithm plays in the overall prediction 

performance [[25]]. Accordingly, this paper compares the 

predictive performance of three model configurations: the 

GRU model, the VMD-GRU model, and the NGO-VMD-GRU 

model. The prediction curves of the three models are shown in 

Fig 10, and the corresponding evaluation metrics are presented 

in Fig 11. 

 

Fig 10 Comparative Analysis of Prediction Results from 

Different Algorithms. 
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Fig 11 Prediction Performance Metrics of Different 

Algorithms 

This study compares the prediction accuracy of the GRU model, 

the VMD-GRU model, and the proposed NGO-VMD-GRU 

model in forecasting transmission line ice thickness, thereby 

validating the performance differences among these models. 

Experimental results indicate that the GRU model achieves 

relatively low prediction accuracy, with an RMSE of 0.287, 

MAE of 0.227, R² of 82.32%, and MAPE of 5.50%. Although 

the gated mechanism of the GRU model enables it to capture 

long-term dependencies in time series, it still exhibits 

limitations in handling the non-stationary characteristics of ice 

thickness. In contrast, the VMD-GRU model, which 

incorporates the Variational Mode Decomposition (VMD) 

algorithm to decompose ice thickness data into multiple scales, 

effectively reduces data non-stationarity, achieving an RMSE 

of 0.195, MAE of 0.161, R² of 92.50%, and MAPE of 3.89%. 

This demonstrates the significant advantage of the VMD-GRU 

model in processing the complex features of ice thickness. 

The proposed NGO-VMD-GRU model, however, outperforms 

both models across all evaluation metrics, with an RMSE of 

0.118, MAE of 0.094, R² of 97.59%, and MAPE of 2.27%. The 

superiority of this model can be attributed to the following 

aspects: First, the VMD-based multi-scale decomposition 

effectively separates components of different frequencies in the 

original data, thereby reducing non-stationarity. Second, the 

Northern Goshawk Optimization (NGO) algorithm optimizes 

the hyperparameters of the GRU model, enhancing both its 

generalization capability and prediction accuracy. Finally, the 

GRU network serves as the core forecasting module, 

thoroughly capturing temporal dependencies within the ice 

thickness data. Experimental results confirm that the NGO-

VMD-GRU model effectively overcomes the non-stationary 

nature of ice thickness data and achieves high prediction 

accuracy. 

In conclusion, the NGO-VMD-GRU model demonstrates 

excellent performance in ice thickness forecasting. Its high 

accuracy and strong stability provide reliable technical support 

for ice warning and disaster prevention in power systems. 

4.8 Cross-event Generalization 
Since the dataset contains multiple cold-wave icing events, we 

evaluate robustness via leave-one-event-out testing: each event 

is held out for testing while the remaining events are used for 

training, and results are reported as mean ± std. As shown in 

Fig 12a to Fig 12d, NGO-VMD-GRU achieves the best average 

accuracy and the smallest standard deviation, indicating 

reduced sensitivity to event-to-event variations and stronger 

robustness under diverse scenarios. 

 

Fig 12a Cross-event RMSE (mean ± std). 

 

Fig 12b Cross-event MAE (mean ± std). 

 

Fig 12c Cross-event MAPE (%) (mean ± std). 

 

Fig 12d Cross-event R² (%) (mean ± std). 

5. CONCLUSION 
In response to the challenges of strong data non-stationarity and 

insufficient prediction accuracy caused by the coupling of 

multiple meteorological factors affecting overhead 

transmission line ice thickness, this paper proposes an ice 

thickness prediction method based on NGO-VMD-GRU. Its 

superior predictive performance is demonstrated through 

comparative and ablation experiments. The main conclusions 

are as follows: 

1) Effectiveness of NGO in Optimizing VMD 

Hyperparameters 

By introducing the Northern Goshawk Optimization (NGO) 

algorithm to adaptively optimize the mode number k and 

penalty factor α of VMD, the limitations of traditional VMD 

relying on empirical hyperparameter selection are effectively 

addressed. Experimental results demonstrate that the NGO 

algorithm converges rapidly to the global optimal solution, and 
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the optimized VMD method improves the prediction accuracy 

of ice thickness by 5.09%. 

2) Superiority of Component Prediction and Superposition 

Strategy 

Each stationary ice-thickness component is independently 

predicted using a GRU model, and the final prediction is 

obtained by superimposing these component predictions. This 

strategy effectively mitigates the issue of poor prediction 

accuracy caused by the inability of conventional models to 

adequately capture non-stationary sequence characteristics. 

Experimental results show that compared to traditional models, 

the component-based prediction approach improves model 

accuracy by 28.4%, confirming the ad-vantage of the 

"decomposition-prediction-reconstruction" framework. 

3) Experimental Validation of Model Predictive Performance 

In ice thickness prediction experiments conducted on an 

overhead transmission line in Henan Province, the proposed 

NGO-VMD-GRU model achieved a Mean Absolute Per-

centage Error (MAPE) of 3.12%. This represents an 

improvement of 17.27%, 21.45%, and 12.83% compared to the 

LSTM model, BP neural network, and non-optimized VMD-

GRU model, respectively, demonstrating its superior 

performance under non-stationary data conditions. 

The innovation of this study lies in the effective integration of 

an intelligent optimization algorithm, a data decomposition 

technique, and a deep learning model, offering a 

comprehensive solution that addresses both feature extraction 

and non-stationary relationship modeling for ice thickness 

prediction. Future research will further explore the dynamic 

coupling mechanisms between multiple meteorological factors 

and transmission line icing, and attempt to extend the proposed 

model to icing forecasting in challenging environments such as 

high-altitude and strong-wind areas. 
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