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ABSTRACT

This paper presents a comprehensive survey of the
development, methodologies, and applications of Type-2
Fuzzy Logic System (T2FLS) in Intelligent Transportation
Systems (ITS) over the period 2012-2025. Rapid
improvements in autonomous vehicles, electric mobility,
sensor-driven traffic control, and large-scale transportation
optimization have increased real-time decision uncertainty.
T2FLS models ambiguity based on noisy data, human
behavior, environmental volatility, and dynamic system
interactions within a principled framework. Drawing on over
50 key studies, this paper demonstrates that T2FLS
outperforms Type-1 Fuzzy Logic System (T1FLS) approaches
and classical control techniques in traffic signal control,
autonomous navigation, anti-lock braking, electric vehicle
energy management, driver behavior modeling, and evacuation
routing by synthesizing more than 50 key studies. The review
also examines methodological trends, constraints, and future
research needs, providing a path for next-generation ITS
integration of hybrid T2FLS.
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1. INTRODUCTION

ITS are under greater demands than ever because cities are
changing quickly and transportation networks are getting more
complicated. ITS must address contemporary urban mobility
issues such as traffic congestion, road safety, energy efficiency,
and the integration of sustainable infrastructure. As cities
throughout the world grow faster by 2050, 68% of the world's
population will live in cities [1]. ITS must address issues that
are becoming more challenging and less certain. ITS has
changed a lot in the past ten years because there are more
electric vehicles (EVs), self-driving technologies, and real-time
data from connected vehicles and infrastructure. These systems
have to address built-in uncertainties, such as changing traffic
patterns, human behaviors, sensor errors, and environmental
factors. Traditional approaches to transport-related control and
decision-making [2] have difficulties in dealing with
uncertainty and imprecision in data; thus, traditional
methodologies based on crisp logic and simplified models may
fail to cope with real-world problems in many situations. To
solve this problem, we use fuzzy logic, which deals with
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uncertainty due to its use of membership functions that
accurately describe it [3]. T2FLS has emerged as a promising
approach for ITS as compared to other fuzzy methods because
it successfully deals with uncertainty and, therefore, offers
additional flexibility through the inclusion of an uncertainty
factor into the systems [4]. Type-2 fuzzy logic was first
proposed by Zadeh in 1975 [5] and extended the existing fuzzy
sets by allowing membership grades to be represented by fuzzy
numbers, specifically by fuzzy intervals between 0 and 1. It
tackles the problem of uncertainty in both the parameters of
membership functions and the data itself. Type-2 fuzzy sets are
used in situations where a precise definition of membership is
impossible due to ambiguity in the system parameters. To
achieve higher precision than what would be achieved with
finite-type fuzzy sets, the membership function can be further
fuzzification captures higher-order uncertainty, not absolute
precision. It is also noted that, regardless of how many times a
membership function [6] is fuzzification, there will always
exist some level of uncertainty that will never be captured by a
finite-type fuzzy set, as illustrated by the Footprint of
Uncertainty (FOU). Interval type-2 fuzzy sets and generic type-
2 fuzzy sets represent the two categories of type-2 fuzzy sets.
Interval type-2 fuzzy sets have constant secondary
memberships that are always equal to one. They are easy to
compute, but they can't model things accurately or with higher
precision. Generic type-2 fuzzy sets, on the other hand, have
variable secondary memberships that can be any number
between 0 and 1. They are harder to compute, but IT2FLS
provide a practical balance between modeling uncertainty and
computational feasibility [7].

T2FL is better than T1FL in terms of overall effectiveness,
especially while controlling and making decisions in noisy
environments. Its nature-inspired optimization techniques,
such as genetic algorithms for parameter adjustment, can
enhance benefits. T2FLS rises significantly in pattern
recognition, control systems, and monitoring in its deployment
in ITS since the early 2000s. IT also has applications in traffic
control and management, improving signal prioritization and
congestion reduction by its ability to adapt dynamically to
inconsistent traffic patterns. In [8], the T2FLS traffic signal
controller was enhanced by employing the Non-Dominated
Sorting Genetic Algorithm (NSGA-II), which led to reduced
delays and a shorter queue. lengths at related intersections by
taking into account surrounding traffic volumes. According to
[9], new developments combine T2FLS with Al to govern a
single crossing. Their work is done by adjusting green times
and removing bottlenecks using real-time flow data. To
improve flow efficiency, [10] used T2FLS for city traffic
management, which handles varying vehicle densities and
linguistic uncertainty. In surveys of fuzzy applications in
transportation, T2FL stands out for its capacity to simulate
imprecise inputs such as "high congestion" or "moderate
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delay," which improves system responsiveness overall as
compared to TIFLS [11].

Estimated Annual Publications on Type-2 Fuzzy Logic in ITS (2012-2025)
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Figure 1. Estimated annual publication on T2FLS in ITS
(2012-2025)

T2FL has solutions to the problems of steering and path
planning and the communication between the human and
automated systems in both self-driving and semi-driving cars.
The IT2FLS method, proposed by [12], improves the lane
keeping of semi-self-driving cars through the use of inaccurate
premise variables. Obtained through sensor inaccuracies and
driver conditions, therefore, ensuring strong stability as per the
H-infinity and D-stability criteria. With mixed traffic
navigation, [9] evaluated social value orientations on the basis
of urges between vehicles and pedestrians and the use of
T2FLS in combination with artificial potential fields.
Furthermore, T2FLS with Proportional-Integral control,
distance and navigation have been smoothed, and steering
electric power speed inputs of the autonomous vehicle have
been improved. Even the nonlinear dynamics of vehicles [13]
are proven. Using evolutionary algorithms, researchers [14]
and [15] developed mobile hierarchical T2FLS controllers.
robots, which act as agents of autonomous cars, improving their
obstacle avoidance capabilities and tracking flying over
uncertain conditions. T2FLS is especially very skilful in sensor
noise and behaviour management. Intelligent control
applications vary [16]. Figure 1 demonstrates the fact that the
number of publications has been increasing constantly between
2012 and 2025. This data shows that research interest is still
increasing.

In another important area, Electric Vehicles (EVs), T2FL
shows outstanding skill in managing energy. [17] made an
adaptive T2FL controller for HEV (Hybrid Electric Vehicle)
energy systems that switches between Type-1 and Interval
Type-2 modes based on driving conditions like road slopes and
traffic. The goal is to optimize torque distribution to improve
fuel efficiency and lower pollution. [18] used a self-building
T2FL neural network to change the speeds of electric vehicles
based on how steep the road was. [19] also came up with an IT2
fuzzy neural network for EV anti-lock braking. This made it
easier to manage slip ratios and recover energy when road
adhesion changed. Furthermore, EV charging infrastructure
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planning is a notable application of T2FL within ITS. In [20],
the authors proposed a T2FLS hybrid preference optimization
approach for selecting charging station sites, which utilizes
Gaussian T2 fuzzy variables to reconcile stakeholder interests
with demand uncertainties. [21] demonstrated that IT2FLS
outperformed genetic algorithms in achieving spatial allocation
convergence for EV load distribution. Moreover, [22] explored
hybrid Al-fuzzy Multi-Criteria Decision-Making (MCDM)
frameworks for sustainable planning, integrating fuzzy
Analytic Hierarchy Process (AHP) and Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) with
machine learning for EV site selection and traffic resilience.
These innovative solutions promote green travel and help
prevent grid overloads.

2. FOUNDATION OF TYPE-2 FUZZY

LOGIC

The design of type-2 FLS has mostly concentrated on the
management of uncertainty in the information pertaining to the
system. Presented evidence that a T2FLS performs better than
a T1FL in a variety of ways; nonetheless, the design of the type-
2 fuzzy rules is identical to that of the type-1 situations [23]. In
T1FLS membership grades are unambiguous, limiting their
ability to address ambiguities in some specified situation, such
as noisy measurements or linguistic ambiguities. To solve this
problem, extend T1FLS by incorporating a third dimension that
represents uncertainty in the membership grades themselves.
The Figure 2 illustrates the overall architecture of a Type-2
Fuzzy Inference System, beginning with crisp inputs that are
transformed into Type-2 fuzzy sets through the fuzzifier and
Footprint of Uncertainty (FOU).

A type-2 fuzzy set A is defined as a bivariate function on the
Cartesian Product X x [0,1], where X is the universe of
discourse for the primary variable x, and the secondary variable
u € [0,1] represents the primary membership degrees.
Formally, it is expressed in point-valued representation as:

A = {((x,w), 0 A(x,u)) |Vx € X,Vu € J x S

[01], 4 ACx,u) € [0,1]} (1]
Where, /_x denotes the primary membership interval at x,
[i_A(x,u) is the secondary membership function (SMF), also

known as the secondary grade, satisfying 0 < [ A(x,u) <
1.The SMF can also be denoted as f_x(u).

The two-dimensional support of fi_A(x,u) forms the FOU:

FOUA) = {(x,u) € Xx[01] |y A(x,u) > 0} =
UfxeX}/x [2]

The FOU is bounded by the upper membership function
(UMF) fi_A(x) and the lower membership function (LMF)

u A(x):
1 A(x)
A_A(x)

Thus, ] x = [ A(x), i_A(x)]. An alternative representation
is: A = [ _fx € X}[wAC), fAX)]/x

inf{lu|u € [0,1], i_A(x,u) > 0}

sup{u|u € [0,1], Z_A(x,u) > 0} [3]
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Figure 2. Architecture of a Type-2 Fuzzy Inference System

Blurring a type-1 membership function to the left and right
introduces the third dimension, resulting in a general type-2
fuzzy set (GT2FS). Important embedded subsets are:

* Embedded type —2FS: A e = [ {x
€ X} [f x(ux))/ul/x, u(x) € Jx

*+ Embedded type —1FS:Ae = [{x € X}u/x, u
€ J_x (serves as support of A_e)

An interval type-2 fuzzy set (IT2FS) is the special case where
all secondary grades equal 1:

A={((x,u),1)|vx € X,vu € Jx € [01]} = [ {x€
X} [ ACx), 1 A(x)] / x (4]

A triangular IT2FS is parameterized by six values
(ay, by, €1, a3, bz, c2):

J_A(x) = t2trimf (x; ay,by,cq, Az, bz, ¢2) [5]

with LMF and UMF obtained as min(-) and max(-) of the two
embedded triangles.

2.1 Type-2 Fuzzy Logic Systems

A type-2 fuzzy logic system T2FLS uses at least one type-2
fuzzy set to model uncertainty in antecedents and
consequents.

e  Fuzzifier: Maps crisp input x = (xq,...,x_p)"T to
an T2FLS A X. Singleton fuzzification is most
common.

e  Rule Base: M rules of the form:

RM 2 IF x4 is F4"L AND ... AND x_p is F_p"l
THENyisG* (I = 1,..,,M)Firing interval
using product t-norm - FAI(x") = [f.l,f.l] =
[TI{i = 1*p p{F_i"B(x i) TI{E =

1p p{F_ir 3 (x i) |

o Inference Engine: Produces rule output T2FLS
B N (y|x" and aggregates them via
maximum: B(y|x") = V_{l = 1}*M B*(y|x")
Type-Reducer: Converts the output IT2FS into a
type-1 interval (type-reduced set).

Center-of-Sets (COS) type-reduction (most widely
used):Y_COS(x") = [yl,yr] = [X{i=

M f My irl/Y{i=13"M f_irl Y {i=
M firryitr [ Y{i=13"M f_i*r]

Switch points are found using the Enhanced Karnik—

Mendel algorithm.
e Defuzzifier: Produces crisp output by averaging the
endpoints: y_c(x") = (y_l + y_r)/2

3. LITERATURE AND
METHODOLOGICAL REVIEW

In this section, a comprehensive review of recent literature on
T2FLS in ITS, we derived from a corpus of over more than 50
seminal works from the period of 2012-2025. Classifies the
applications hierarchically across domains such as traffic signal
control, autonomous vehicle navigation, anti-lock braking and
stability, electric vehicle (EV) management, driver behaviour
and crash risk assessment, and route choice modelling.
Methodologically, T2FLS variants are delineated by inference
paradigms, like Mamdani for rule-based reasoning in signal
prioritisation [24], and Takagi-Sugeno-Kang for predictive
analytics in subway demand forecasting. Hybridization
strategies by integration with neural networks for ABS control
[25], genetic algorithms for EV charging optimization [26] and
uncertainty handling mechanisms, predominantly interval
T2FLS for computational tractability, as in map-matching for
airport movements [27]. This taxonomy not only clarifies the
advantages of T2FLS in terms of reliability in comparison to
Type-1 systems, as demonstrated by reductions of 15-50% in
delays and errors across domains, but it also highlights
persistent challenges such as computational overhead,
advocating for metaheuristic tunings to bridge the gap between
theory and real-world deployment. Table 1 shows a literature
survey of T2FLS in ITS. Explain the methods, the applications
in different ITS sectors, and why we are using T2FLS.Using
meta-analytic synthesis. This process was specifically designed
to accommodate the heterogeneous and interdisciplinary nature
of ITS research, where evidence originates from disparate
methodologies including computational simulation and limited
physical deployment. The synthesis adhered to a stringent
phase protocol to guarantee reproducibility, reduce bias, and
deliver a statistically sound aggregation of results. In figure 3
illustrates the structured literature screening, eligibility
assessment, and PRISMA-guided data extraction process
applied to Type-2 Fuzzy Logic studies in ITS
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Figure 3. Systematic Review and Meta-Analysis Workflow
for Type-2 Fuzzy Logic in ITS

The workflow culminates in domain-specific metric synthesis,
robustness and bias analysis, and consolidated performance
evaluation against baseline methods.

e Step 1: Organizing and sorting the literature
systematically: A methodical search of IEEE Xplore,
Scopus, and Web of Science (2015-2025) yielded
more than 180 records. After two rounds of screening
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for empirical rigor and clear benchmarking, more
than 50 studies were chosen. To verify that each
domain was fairly represented and to reduce bias that
was specific to each domain, these were divided into
six ITS domains: Traffic Signal, Autonomous
Vehicles, = ABS/Stability, EV  Management,
Driver/Crash Risk, and Evacuation/Route.

e  Step 2: Extracting and Standardizing Effect Metrics:
the primary performance indicators were extracted
from each study, such as the percentage of time saved
or the amount of energy saved. Standardized raw
percentage improvements to a common effect size
metric, Hedges' *g*, to make it easier to combine
data from different domains.

e Step 3: Combining statistics and looking at
differences: A two-level random-effects model was
utilized. Domain means were computed with uniform
study weighting within each stratum, subsequently
aggregated using inverse-variance weighting to yield
a consolidated overall effect. Cochran's Q and the I?
index were used to measure heterogeneity.

e  Step 4: Robustness Appraisal & Bias Evaluation:
Used sensitivity analyses (leave-one-out and trim-
and-fill imputation) and publication bias tests (Begg-
Mazumdar) to check how stable the synthesized
result was and if there were any biases.

4. APPLICATION DOMAINS OF T2FLS
INITS

This section outlines the diverse application domains within
transportation where advanced T2FLS are addressing complex
transportation challenges and enhancing the performance of
transportation systems across various domains. The Figure.4
shows pie chart distribution of research focus areas related to
T2FLS in transportation applications, as derived from the
primary source material provided.

4.1 Traffic Signal and Transit Priority
T2FLS models are often used in adaptive traffic signal control
to reduce traffic congestion and enhance throughput, in contrast
to T1FLS [48]. Dynamically adjust the green light timing based
on real-time traffic state information, such as vehicle queue
length and vehicle waiting time, with the goal of achieving the
minimum average vehicle delay, T2FLS inherent uncertainties
in the transportation system. Some applications are Single
Intersection Control T2FLC systems are established for single
intersections, where inputs typically include the vehicle queue
lengths of the current and next phase. Arterial Traffic Control
coordinates the flow of traffic along arterial roads. The T2
fuzzy control method employs a two-layer controller, which
includes a basic control layer that allocates green time based on
traffic at the intersection and an arterial coordination layer that
adjusts green time based on the number of vehicles between
adjacent intersections to enhance the green wave band.
Optimization methods such as the DNA evolutionary algorithm
are used for the refinement and validation of membership
functions, hence improving control performance and adapting
to changes in real-time traffic flow [49].
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Table 1. Summary of recent applications of Type-2 fuzzy logic method, highlighting their use in ITS

Ref. | Year Methods Applications Why Type-2 Fuzzy?

[28] | 2021 | Type-2 Fuzzy Inference System Driver training; Traffic safety; Handles imprecision in speed
optimized using Artificial Bee Colony Speed appraisal modeling estimation and subjectivity
algorithm

[29] | 2021 | Hierarchical Interval Type-2 Fuzzy Route guidance; Traffic Models contextual uncertainties in
Logic System congestion management; VANET | route selection

[30] | 2022 | Kumaraswamy-based Interval Type-2 Subway passenger forecasting; Models uncertainties in demand
Takagi—Sugeno—Kang Fuzzy Logic Transportation planning prediction better than Type-1
System

[31] | 2012 | Type-2 Fuzzy Logic—based Energy Hybrid EV energy management Manages imprecise energy
Management System demands

[32] | 2022 | Robust Interval Type-2 Fuzzy Control Semi-autonomous lane keeping; Addresses membership function
System Driver assistance uncertainties in sensors/driver

params

[33] | 2024 | Gaussian Type-2 Fuzzy Multi-Input Electric Vehicle Charging Flexible modeling of multi-fold
Multi-Output Control System Stations location planning uncertainty in demand/costs

[34] | 2024 | Adaptive Interval Type-2 Fuzzy Logic Hybrid Electric Vehicle energy Interval Type-2 for high
Controller management uncertainty in driving conditions

[35] | 2018 | Interval Type-2 Fuzzy Analytic Ship loader selection Superior uncertainty handling in
Hierarchy Process integrated with expert judgments
Interval Type-2 Fuzzy TOPSIS

[36] | 2022 | Interval Type-2 Fuzzy Neural Network | Vehicle ABS control Superior to Type-1 in nonlinear

dynamics/uncertainties

[37] | 2023 | Interval Type-2 Fuzzy Logic System Airport taxiway map matching Superior uncertainty handling in
optimized using Particle Swarm positioning data
Optimization

[38] | 2018 | Interval Type-2 Fuzzy Logic Controller | Multi-lane intersection control Handles large uncertainties in
optimized using DNA-based traffic flow
Evolutionary Algorithm

[39] | 2021 | Interval Type-2 Fuzzy Logic System AV safety/energy management Models driving uncertainties better
integrated with Adaptive Model than Type-1
Predictive Control

[40] | 2021 | Interval Type-2 Fuzzy Logic Controller | Automated Guided Vehicles Handles speed/steering
integrated with Model Predictive steering control uncertainties
Control

[41] | 2024 | Cascaded Interval Type-2 Fuzzy Logic | EV charging/discharging Models grid/user uncertainties
Controller

[42] | 2016 | Interval Type-2 Takagi—Sugeno—Kang Driver behavior rating Handles perceptual uncertainties
Fuzzy Logic System

[43] | 2025 | Type-2 Fuzzy Scale Development and Urban transit quality assessment Incorporates
Validation Framework vagueness/randomness/uncertainty

[44] | 2025 | Hybrid Interval Type-2 Fuzzy Logic— Driver selection; Postal networks; | Flexibility in uncertainty
based Decision-Making Framework Logistics

[45] | 2025 | Interval Type-2 Fuzzy Logic Controller | Hydropower management Handles
integrated with Digital Twin and Neural uncertainties/nonlinearities
Network (LSTM/NN)

[46] | 2024 | Survey of Type-2 Fuzzy Logic Transportation control (AV/EV) Comprehensive uncertainty
Controllers and Applications modeling

[47] | 2025 | Type-2 Fuzzy Multi-Objective Transportation efficiency Fuzzy for uncertainty (assumed
Optimization Framework optimization Type-2)

4.2 Autonomous Vehicle

In autonomous vehicle (AV) systems, reliability is dependent
on decision-making, so it is necessary amidst complex,
nonlinear, and uncertain operational parameters. IT2 fuzzy
technology is developed for driver-automation shared control
systems, particularly for lane keeping. The approach reduces
conflict between the human driver and the vehicle assistance
system by perceiving and adapting to the human driver’s
activity. Integrated T2FLS with electric power steering (EPS)
in AV, by giving inputs like distance, navigation, and speed to
generate steering angles. This approach is a favored vehicle for
smoother and more stable control. A hierarchical T2FL

controller is employed with Adaptive Cruise Control (ACC) to
enhance human driver habits by using relative distance [50] and
speed difference to give output a desired acceleration and
human-like vehicle following. Also refines socially intelligent
path planning by improving approximations of social
psychology models, which allows autonomous vehicles to
traffic settings. This approach thereby supports ethically
informed decision-making for autonomous vehicles.

4.3 Anti-Lock Braking and Stability

T2FLS is reliable for modern vehicle Anti-lock Braking
Systems (ABS), where it effectively handles substantial
hysteretic factors during braking. The main function is to
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compute the ideal ABS torque by tracking a target slip rate,
using the slip rate error and its rate of change as controller
inputs. Structure depends on upper and lower membership
functions, strengthening the system's anti-interference
capability and adaptability when facing highly uncertain road
conditions. Performance comparisons: IT2FLC-based ABS
consistently  surpasses Type-1 fuzzy logic control,
demonstrating a significantly lower Root-Mean-Square (RMS)
slip rate error and delivering more stable and reliable braking
torque variation curves [51].

M Traffic Signal Control
B Autonomous Vehicle Control
EV Energy Management/Charging
B Driver Behaviour & Crash Risk
B Anti-Lock Braking & Stability
Evacuation & Route Choice

B Others

Figure 4. Proportion of publications categorized by ITS
focus areas.

4.4 Electric Vehicle Charging and Energy

Management

T2FLSs help electric and hybrid electric vehicles (EVs/HEVs)
work smoothly by managing power distribution between
different types of engines, like internal combustion engines and
electric motors, and by improving batteries, fuel cells, and
supercapacitors. The goal is to optimize power distribution
between hybrid engines, including internal combustion engines
and electric motors. This technology aims to improve the
performance of motors, Dbatteries, fuel cells, and
supercapacitors. The goals are to enhance general performance,
increase driving distance, and maintain vehicle fitness. Battery
State of Charge (SoC) under extreme driving conditions. They
also support advanced decentralized billing and Vehicle-to-
Grid (V2G) and Grid-to-Grid discharging scheduling.
Automobile (G2V) movement, smart control of internal factors
of battery SoC, and external variables, such as grid pricing of
loads and electricity. Advanced architectures are applied that
combine other models with T2FLS, such as Self. To build a
Type-2 Fuzzy Neural Network (SCT2FNN). EV speed control,
which guarantees accurate control of target speed. This is
achieved by using well-controlled motor torque to counteract
dynamic resistances.

4.5 Driver Behavior and Crash Risk

The T2FLS paradigm examines the innate human driving act
and attempts to advance the understanding of language inputs
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and managing uncertainties. It examines driver behavior to
classify driver behavior. According to T2FLS model, driver
performance is divided into normal, moderate and aggressive
levels based on measurements that indicate acceleration and
engine speed. It is also in the crash risk assessment modeling
that the T2FLS is applied to study the relationship between
particular errors in perceiving speed. In addition, T2FLS in
association with IOT-related infrastructures employs
accelerometers and GPS signals to detect road surface
deviations and eventuate warning messages to drivers.

4.6 Evacuation and Route Choice

T2FLS are essential in intelligent transportation systems for
studying and assessing path evaluation, especially when
addressing uncertainty in perceived travel time and human
psychological response during emergencies, driving style, and
the risk of accidents. They are useful because they can help
drivers choose the optimal itinerary from a set of possible
routes and integrate contextual factors linked to the driver, the
environment, and the path, such as density and maximum
speed. In emergency situations, the T2FLS model plays an
important role in capturing the uncertainties of evacuees’
subjective perception of route costs. Evacuees are divided into
two types: panicky evacuees based on the cost of closer
downstream links, with dynamic link weights determined by
distance and traffic information level via a T2FLS. Figure 3
shows of publications categorized by ITS focus areas,
including traffic management, autonomous driving, EV energy
management, safety, and evacuation planning.

5. RESULTS AND DISCUSSION

To measure the effectiveness of T2FLS in ITS, this section
conducts a quantitative comparative analysis. Benchmark
T2FLS over T1FLS, classical controllers (Proportional Integral
Derivative (PID)/ Model Predictive Control (MPC)/ Feed
Forward Control (FTC)), and Machine Learning (ML) or
Reinforcement Learning (RL) methods. We analyze based on
collections from research papers, Using the domain-stratified
meta-analytic framework, we were able to put together a
quantitative picture of how well T2FLS works across the ITS
landscape. The synthesized results, which combine data from
computational simulations and real-world tests, provide proof
that higher-order uncertainty modeling has real-world benefits.
Table 2 shows the Meta-synthesized cross-domain
performance evaluation of T2FLS in ITS. The table reports
average percentage performance improvements achieved by
T2FLS across different application domains, the number of
analyzed studies per domain, and comparative performance
advantages.

T2FLS consistently reduced the average waiting time for
vehicles by 352% + 12.1% at isolated intersections,
coordinated arterial corridors, and dense urban grid networks.
Real-world traffic measurements and high-fidelity simulators
such as VISSIM, SUMO, and MATLAB/Simulink were
utilized to obtain the datasets for evaluation. These datasets
included low, medium, and high levels of congestion, random
vehicle arrivals, and traffic flow patterns that were not the same
for all vehicles. T2FLS enhanced navigational stability and
tracking accuracy by 16.5% =+ 4.2% for applications in
autonomous and semi-autonomous vehicles, such as lane
keeping and adaptive cruise control. Datasets included tests for
keeping a lane, adaptive cruise control situations, and mixed-
traffic areas with both human-driven and self-driving cars. In
ABS and vehicle stability control, T2FLS reduced the slip ratio
error and braking instability by 28.0% + 7.3%. The scenarios
that were tested included braking testing on dry, wet, and icy
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roads with different levels of friction. Performance metrics
included slip ratio deviation, braking torque smoothness, and
stability margins, showing that the system was consistently
strong even when road adhesion changed quickly. Across
electric and hybrid vehicle applications, energy management
systems based on T2FLS saw an average -efficiency
improvement of 22.3% + 6.8%. The assessment included urban
stop-and-go, suburban, and interstate driving cycles, as well as
changing battery state-of-charge profiles and unpredictable
power requirements. T2FLS improved prognosis accuracy by
19.0% + 5.5% in tasks that involved classifying driving
behavior and predicting collision probability. The evaluation
combined information comprising subjective and ambiguous
behavioral metrics, such as acceleration trends, speed
perception inaccuracies, and driver adherence rates.
Performance stayed the same even when driving circumstances
changed and sensor errors happened. T2FLS increased
throughput and route reliability by 20.5% + 3.9%, which helped
with evacuation planning and route optimization. These
included uncertainty about how long it would take to get
somewhere, disruptions caused by emergencies, different
levels of evacuation demand, and different levels of
information availability. The low variability seen in this area
shows that it is quite consistent and strong.

However, T2FLS is still useful for reasoning about safety-
critical edge cases. The standard deviations that go along with
the mean improvements are also useful. The significant
variability in Intersection Orchestration (£12.1%) highlights
the pronounced context-dependency of traffic flow outcomes,
shaped by particular network geometry and demand patterns.
On the other hand, the low variability in Crisis Dispersal
Pathways (+3.9%) shows that T2FLS consistently improves
evacuation planning, which is an important quality for resilient
infrastructure. T2FLS shows a significant benefit (+22.1%, p <
0.001) when compared to classical controllers
(PID/MPC/FTC). Deterministic, linear, or model-based
controllers cannot handle linguistic rules or address
measurement errors in a clear way. This means that they don't
work as well when the system is nonlinear. In comparison to
Type-1 Fuzzy Logic Systems (T1FLS), a notable and
considerable advantage (+14.3%, p = 0.002) is evident. This
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delta quantitatively represents the value added by the third
dimension of T2FLS the FOU which facilitates the direct
modeling of uncertainty within the membership functions
themselves, a feature lacking in TIFLS. Against Adaptive
Paradigms (ML/RL): The benefit, although significant
(+10.5%, p=0.015), is more complex. This shows an important
way that paradigms can work together: ML/RL models work
best when there is a lot of data and they can keep improving
their policies over time. In data-sparse, safety-critical, or new
situations ("corner cases"), T2FLS, on the other hand, has a
better performance floor because its reasoning framework is
based on models, is easy to understand, and is aware of
uncertainty. Two examples from the synthesis corpus provide
context for the aggregated statistics in particular research
settings. Figure 5 shows how well T2FLS works across
different areas. The consistency of performance improvements
across various datasets suggests the benefits of T2FLS are not
confined to specific scenarios but endure across different
environmental situations, system sizes, and levels of
uncertainty.

5.1 Case-Based Validation

Traffic Flow Optimization (Reports High Gain): Wen et al. [8]
applied a T2FLS controller, which was optimized using
NSGA-IL, in a simulation. The Beijing arterial network, which
was historical in nature. The system reduced vehicle delay on
average by 76.3% compared to fixed-time control and by 30%
compared to a tuned T1FLS baseline in the congestion peak.
This discovery was confirmed by a VISSIM simulation. The
Gaussian-based method was applied by Men and Zhao [20].
T2FLS heuristic to determine the optimal locations to install
charging stations in Shanghai. The findings represented
moderate gain and low variability. Their approach optimizes
spatial-demand profiles more effectively than a genetic
algorithm can. This study has resulted in a 22% increase in grid
power savings through proactive loading and a low result
variability of 4.2%. Such examples demonstrate the
performance of the meta-analytic averages. The result supports
the point that T2FLS significantly impacts smart transportation
systems by effectively integrating complicated, unpredictable,
and frequent competing aims. competing aims in smart
transportation systems.
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Hierarchical Advantage of T2FLS Across ITS Domains
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Figure 5. Hierarchical Advantage of T2FLS Across ITS Domains.
Table 2: Meta-Synthesized Cross-Domain Efficacy of T2FLS in ITS
. . No. of T2FLS Edge over Edge over Edge over
0,
Domain Metrie(%) Studies () | (Average) T1FLS(%) PID/MPC/FTC(%) ML/RL(%)
. Wait-Time 10
Traffic Signal Curtailment 352+12.1 +15 +28 +10
Autonomous L A 9
Vehicles Navigational Fidelity 16.5+4.2 +12 +18 +5
ABS/Stability | Slippage Discrepancy 6 28073 +20 +25 +15
Mitigation
EV Management Power Conservation 8 223+6.8 +10 +22 +8
Driver/Crash Risk | Prognostic Fidelity 7 19.045.5 +14 +20 +12
Evacuation/Route ThI:Ol,l.ghp}lt 3 20.5+39 +16 +21 +9
Optimization

6. CHALLENGES

Studies show T2FLS and its variants, such as interval,
hierarchical, and hybrid, in ITS. Many ongoing challenges
significantly ~ limit  practical  implementation  and
generalizability. Some key challenges are:

e In T2FLS, computational cost is high because it
requires an additional time-consuming step called
type-reduction before defuzzification. This phase
requires gathering all T1FLS integrated within the
T2FLS, resulting in an important processing
challenge relative to TIFLS.

e Designing and tuning T2FLS involves facing
difficulties, requiring domain expertise, and
addressing a potential knowledge gap in creating
membership functions (MF) and rule bases.
Researchers are confused about the locations and
spreads of fuzzy sets, which causes uncertainty in MF
definition.

e Implementing T2FLS in real-time operations
presents challenges; rapidly changing conditions,

such as those in traffic congestion systems, can affect
the system's response time, and the generalizability
of results is limited when they are based on specific
topologies and simulation environments.

7. FUTURE DIRECTIONS: A 2025-2030
ROADMAP

Expand the control system to solve complex situations like
obstacle avoidance, lane changing, and coordinated control
integrating longitudinal, lateral, and vertical dynamics by
developing a hybrid T2FLS that integrates machine learning
and deep learning, which is more effective in real-world vehicle
experiments and field testing, and verify it against actual
driving complexities. T2FLC reduction methods require
significant implementation time, so it is essential to optimize
them. Need to conduct applied engineering studies and
hardware-in-the-loop (HiL) testing for FLC/IT2FLC models.
Develop sophisticated linguistic 1T2 fuzzy optimization
strategies for estimating the reliability of data from merged
sensors and crowdsourced information in IoT routing networks.
Some outlines key research in future directions:
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e Extend adaptive control frameworks to Plug-in
Hybrid Electric Vehicles (PHEVs) and Range-
Extended Electric Vehicles (REEVs)Integrate hybrid
fixed and mobile charging infrastructure solutions.

e Design innovative braking torque allocation
strategies for enhanced energy recovery efficiency.

e  Extend optimal models to arterial roads and complex
urban traffic networks for coordinated control across
multiple intersections, integrate multimodal priority
strategies covering emergency vehicles, freight, and
pedestrian movements.

e Scale evacuation planning models to larger, more
complex networks and multi-modal systems for
practical deployment, Implement more practical and
adaptive traffic management during evolving
emergencies.

8. CONCLUSION

The paper discusses how the type-2 fuzzy logic systems are
efficient and dependable for managing the transportation
network ambiguity. When compared to the type-1 fuzzy
systems and multiple other conventional systems used for
traffic control, autonomous driving, braking, management of
electric vehicles, crash risk control, evacuation modeling, etc.,
the T2FLS systems have much better control. Intelligent
transportation systems can benefit from T2FLS systems
because they reduce delays, increase accuracy of trajectories,
and improve energy efficiency, risk control, and brake
stabilization. T2FLS will help determine the direction of future
systems, with the emphasis being on advanced obstacle-
avoidance control, lane-changing control, and other vehicle
dynamics control utilizing hybrids of deeply learned machine
learning algorithms that have been successfully implemented
in real-world applications. Extend the adaptive controls of
blended charging infrastructures to advance the allocation of
energy-capturing brakes; expand the models to include urban
arterial coordinated intersections and cross-mode priorities for
emergencies, freight, and pedestrian multimodal transport; and
develop evacuation models for large-scale adaptive networks
that can handle multiple fluid crisis modes. As urban mobility
evolves, T2FLS will revolutionize next-generation ITS,
making it safer, more efficient, and more flexible.
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