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ABSTRACT 

This paper presents a comprehensive survey of the 

development, methodologies, and applications of Type-2 

Fuzzy Logic System (T2FLS) in Intelligent Transportation 

Systems (ITS) over the period 2012–2025. Rapid 

improvements in autonomous vehicles, electric mobility, 

sensor-driven traffic control, and large-scale transportation 

optimization have increased real-time decision uncertainty. 

T2FLS models ambiguity based on noisy data, human 

behavior, environmental volatility, and dynamic system 

interactions within a principled framework. Drawing on over 

50 key studies, this paper demonstrates that T2FLS 

outperforms Type-1 Fuzzy Logic System (T1FLS) approaches 

and classical control techniques in traffic signal control, 

autonomous navigation, anti-lock braking, electric vehicle 

energy management, driver behavior modeling, and evacuation 

routing by synthesizing more than 50 key studies. The review 

also examines methodological trends, constraints, and future 

research needs, providing a path for next-generation ITS 

integration of hybrid T2FLS. 
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1. INTRODUCTION 
ITS are under greater demands than ever because cities are 

changing quickly and transportation networks are getting more 

complicated. ITS must address contemporary urban mobility 

issues such as traffic congestion, road safety, energy efficiency, 

and the integration of sustainable infrastructure. As cities 

throughout the world grow faster by 2050, 68% of the world's 

population will live in cities [1]. ITS must address issues that 

are becoming more challenging and less certain. ITS has 

changed a lot in the past ten years because there are more 

electric vehicles (EVs), self-driving technologies, and real-time 

data from connected vehicles and infrastructure. These systems 

have to address built-in uncertainties, such as changing traffic 

patterns, human behaviors, sensor errors, and environmental 

factors. Traditional approaches to transport-related control and 

decision-making [2] have difficulties in dealing with 

uncertainty and imprecision in data; thus, traditional 

methodologies based on crisp logic and simplified models may 

fail to cope with real-world problems in many situations. To 

solve this problem, we use fuzzy logic, which deals with 

uncertainty due to its use of membership functions that 

accurately describe it [3]. T2FLS has emerged as a promising 

approach for ITS as compared to other fuzzy methods because 

it successfully deals with uncertainty and, therefore, offers 

additional flexibility through the inclusion of an uncertainty 

factor into the systems [4]. Type-2 fuzzy logic was first 

proposed by Zadeh in 1975 [5] and extended the existing fuzzy 

sets by allowing membership grades to be represented by fuzzy 

numbers, specifically by fuzzy intervals between 0 and 1. It 

tackles the problem of uncertainty in both the parameters of 

membership functions and the data itself. Type-2 fuzzy sets are 

used in situations where a precise definition of membership is 

impossible due to ambiguity in the system parameters. To 

achieve higher precision than what would be achieved with 

finite-type fuzzy sets, the membership function can be further 

fuzzification captures higher-order uncertainty, not absolute 

precision. It is also noted that, regardless of how many times a 

membership function [6] is fuzzification, there will always 

exist some level of uncertainty that will never be captured by a 

finite-type fuzzy set, as illustrated by the Footprint of 

Uncertainty (FOU). Interval type-2 fuzzy sets and generic type-

2 fuzzy sets represent the two categories of type-2 fuzzy sets. 

Interval type-2 fuzzy sets have constant secondary 

memberships that are always equal to one. They are easy to 

compute, but they can't model things accurately or with higher 

precision. Generic type-2 fuzzy sets, on the other hand, have 

variable secondary memberships that can be any number 

between 0 and 1. They are harder to compute, but IT2FLS 

provide a practical balance between modeling uncertainty and 

computational feasibility [7]. 

T2FL is better than T1FL in terms of overall effectiveness, 

especially while controlling and making decisions in noisy 

environments. Its nature-inspired optimization techniques, 

such as genetic algorithms for parameter adjustment, can 

enhance benefits. T2FLS rises significantly in pattern 

recognition, control systems, and monitoring in its deployment 

in ITS since the early 2000s. IT also has applications in traffic 

control and management, improving signal prioritization and 

congestion reduction by its ability to adapt dynamically to 

inconsistent traffic patterns. In [8], the T2FLS traffic signal 

controller was enhanced by employing the Non-Dominated 

Sorting Genetic Algorithm (NSGA-II), which led to reduced 

delays and a shorter queue. lengths at related intersections by 

taking into account surrounding traffic volumes. According to 

[9], new developments combine T2FLS with AI to govern a 

single crossing. Their work is done by adjusting green times 

and removing bottlenecks using real-time flow data. To 

improve flow efficiency, [10] used T2FLS for city traffic 

management, which handles varying vehicle densities and 

linguistic uncertainty. In surveys of fuzzy applications in 

transportation, T2FL stands out for its capacity to simulate 

imprecise inputs such as "high congestion" or "moderate 
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delay," which improves system responsiveness overall as 

compared to T1FLS [11]. 

Figure 1. Estimated annual publication on T2FLS in ITS 

(2012-2025) 

T2FL has solutions to the problems of steering and path 

planning and the communication between the human and 

automated systems in both self-driving and semi-driving cars. 

The IT2FLS method, proposed by [12], improves the lane 

keeping of semi-self-driving cars through the use of inaccurate 

premise variables. Obtained through sensor inaccuracies and 

driver conditions, therefore, ensuring strong stability as per the 

H-infinity and D-stability criteria. With mixed traffic 

navigation, [9] evaluated social value orientations on the basis 

of urges between vehicles and pedestrians and the use of 

T2FLS in combination with artificial potential fields. 

Furthermore, T2FLS with Proportional-Integral control, 

distance and navigation have been smoothed, and steering 

electric power speed inputs of the autonomous vehicle have 

been improved. Even the nonlinear dynamics of vehicles [13] 

are proven. Using evolutionary algorithms, researchers [14] 

and [15] developed mobile hierarchical T2FLS controllers. 

robots, which act as agents of autonomous cars, improving their 

obstacle avoidance capabilities and tracking flying over 

uncertain conditions. T2FLS is especially very skilful in sensor 

noise and behaviour management. Intelligent control 

applications vary [16]. Figure 1 demonstrates the fact that the 

number of publications has been increasing constantly between 

2012 and 2025. This data shows that research interest is still 

increasing. 

In another important area, Electric Vehicles (EVs), T2FL 

shows outstanding skill in managing energy. [17] made an 

adaptive T2FL controller for HEV (Hybrid Electric Vehicle) 

energy systems that switches between Type-1 and Interval 

Type-2 modes based on driving conditions like road slopes and 

traffic. The goal is to optimize torque distribution to improve 

fuel efficiency and lower pollution. [18] used a self-building 

T2FL neural network to change the speeds of electric vehicles 

based on how steep the road was. [19] also came up with an IT2 

fuzzy neural network for EV anti-lock braking. This made it 

easier to manage slip ratios and recover energy when road 

adhesion changed. Furthermore, EV charging infrastructure 

planning is a notable application of T2FL within ITS. In [20], 

the authors proposed a T2FLS hybrid preference optimization 

approach for selecting charging station sites, which utilizes 

Gaussian T2 fuzzy variables to reconcile stakeholder interests 

with demand uncertainties. [21] demonstrated that IT2FLS 

outperformed genetic algorithms in achieving spatial allocation 

convergence for EV load distribution. Moreover, [22] explored 

hybrid AI-fuzzy Multi-Criteria Decision-Making (MCDM) 

frameworks for sustainable planning, integrating fuzzy 

Analytic Hierarchy Process (AHP) and Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) with 

machine learning for EV site selection and traffic resilience. 

These innovative solutions promote green travel and help 

prevent grid overloads. 

2. FOUNDATION OF TYPE-2 FUZZY 

LOGIC 
The design of type-2 FLS has mostly concentrated on the 

management of uncertainty in the information pertaining to the 

system. Presented evidence that a T2FLS performs better than 

a T1FL in a variety of ways; nonetheless, the design of the type-

2 fuzzy rules is identical to that of the type-1 situations [23]. In 

T1FLS membership grades are unambiguous, limiting their 

ability to address ambiguities in some specified situation, such 

as noisy measurements or linguistic ambiguities. To solve this 

problem, extend T1FLS by incorporating a third dimension that 

represents uncertainty in the membership grades themselves. 
The Figure 2 illustrates the overall architecture of a Type-2 

Fuzzy Inference System, beginning with crisp inputs that are 

transformed into Type-2 fuzzy sets through the fuzzifier and 

Footprint of Uncertainty (FOU). 

A type-2 fuzzy set Ã is defined as a bivariate function on the 

Cartesian Product X × [0,1], where X is the universe of 

discourse for the primary variable x, and the secondary variable 

u ∈ [0,1] represents the primary membership degrees. 

Formally, it is expressed in point-valued representation as: 

𝐴 ̃ =  { ((𝑥, 𝑢), 𝜇 ̃_𝐴(𝑥, 𝑢)) | ∀𝑥 ∈  𝑋, ∀𝑢 ∈  𝐽_𝑥 ⊆
 [0,1], 𝜇 ̃_𝐴(𝑥, 𝑢)  ∈  [0,1] }                                               [1]                           

Where, 𝐽_𝑥 denotes the primary membership interval at x, 

 𝜇̃_𝐴(𝑥, 𝑢) is the secondary membership function (SMF), also 

known as the secondary grade, satisfying 0 ≤  𝜇̃_𝐴(𝑥, 𝑢)  ≤
 1.The SMF can also be denoted as 𝑓_𝑥(𝑢). 

The two-dimensional support of 𝜇̃_𝐴(𝑥, 𝑢) forms the FOU: 

𝐹𝑂𝑈(𝐴 ̃)  =  {(𝑥, 𝑢)  ∈  𝑋 × [0,1] | 𝜇 ̃_𝐴(𝑥, 𝑢)  >  0}  =
 ⋃_{𝑥 ∈ 𝑋} 𝐽_𝑥                   [2]          

 The FOU is bounded by the upper membership function 

(UMF) 𝜇 _𝐴̃(𝑥) and the lower membership function (LMF) 

𝜇 _𝐴̃(𝑥): 

𝜇 _𝐴̃(𝑥)  =  𝑖𝑛𝑓{𝑢 | 𝑢 ∈  [0,1], 𝜇̃_𝐴(𝑥, 𝑢)  >  0}  

𝜇 _𝐴̃(𝑥)  =  𝑠𝑢𝑝{𝑢 | 𝑢 ∈  [0,1], 𝜇̃_𝐴(𝑥, 𝑢)  >  0}                  [3]     

Thus, 𝐽_𝑥 =  [𝜇 _𝐴̃(𝑥), 𝜇 _𝐴̃(𝑥)]. An alternative representation 

is: 𝐴̃ =  ∫ _{𝑥 ∈ 𝑋} [𝜇 _𝐴̃(𝑥), 𝜇 _𝐴̃(𝑥)] / 𝑥 
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Figure 2. Architecture of a Type-2 Fuzzy Inference System 

Blurring a type-1 membership function to the left and right 

introduces the third dimension, resulting in a general type-2 

fuzzy set (GT2FS). Important embedded subsets are: 

∗  𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑡𝑦𝑝𝑒 − 2 𝐹𝑆: 𝐴̃_𝑒 =  ∫ {𝑥
∈ 𝑋} [𝑓_𝑥(𝑢(𝑥))/𝑢]/𝑥 ,  𝑢(𝑥)  ∈  𝐽_𝑥 

∗  𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑡𝑦𝑝𝑒 − 1 𝐹𝑆: 𝐴_𝑒 =  ∫ {𝑥 ∈ 𝑋} 𝑢/𝑥 ,  𝑢 
∈  𝐽_𝑥 (𝑠𝑒𝑟𝑣𝑒𝑠 𝑎𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐴̃_𝑒) 

An interval type-2 fuzzy set (IT2FS) is the special case where 

all secondary grades equal 1: 

𝐴̃ =  { ((𝑥, 𝑢),1) | ∀𝑥 ∈  𝑋, ∀𝑢 ∈  𝐽_𝑥 ⊆  [0,1] }  =  ∫ _{𝑥 ∈
𝑋} [𝜇 _𝐴̃(𝑥), 𝜇 _𝐴̃(𝑥)] / 𝑥                                                          [4]  

A triangular IT2FS is parameterized by six values 

(𝑎₁, 𝑏₁, 𝑐₁, 𝑎₂, 𝑏₂, 𝑐₂): 

𝜇̃_𝐴(𝑥)  =  𝑡2𝑡𝑟𝑖𝑚𝑓(𝑥;  𝑎₁, 𝑏₁, 𝑐₁, 𝑎₂, 𝑏₂, 𝑐₂)                         [5] 

with LMF and UMF obtained as min(·) and max(·) of the two 

embedded triangles.                          

2.1 Type-2 Fuzzy Logic Systems 
A type-2 fuzzy logic system T2FLS uses at least one type-2 

fuzzy set to model uncertainty in antecedents and 

consequents. 

• Fuzzifier: Maps crisp input 𝑥 =  (𝑥₁,… , 𝑥_𝑝)^𝑇 to 

an T2FLS 𝐴̃_𝑋. Singleton fuzzification is most 

common. 

• Rule Base: M rules of the form: 

𝑅^𝑙 ∶  𝐼𝐹 𝑥₁ 𝑖𝑠 𝐹₁̃^𝑙 𝐴𝑁𝐷 … 𝐴𝑁𝐷 𝑥_𝑝 𝑖𝑠 𝐹̃_𝑝^𝑙 

𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐺̃̃^𝑙  (𝑙 =  1,… ,𝑀)Firing interval 

using product t-norm - 𝐹^𝑙(𝑥′)  =  [𝑓_𝑙 , 𝑓 _𝑙] = 

[ ∏{𝑖 = 1}^𝑝 𝜇 {𝐹̃_𝑖^𝑙}(𝑥_𝑖′) ,∏{𝑖 =

1}^𝑝 𝜇 {𝐹̃_𝑖^𝑙}(𝑥_𝑖′) ]  

• Inference Engine: Produces rule output T2FLS 

𝐵̃̃^𝑙(𝑦|𝑥′) and aggregates them via 

maximum: 𝐵̃̃(𝑦|𝑥′)  =  ⋁_{𝑙 = 1}^𝑀 𝐵̃̃^𝑙(𝑦|𝑥′) 

Type-Reducer: Converts the output IT2FS into a 

type-1 interval (type-reduced set). 

Center-of-Sets (COS) type-reduction (most widely 

used):𝑌_𝐶𝑂𝑆(𝑥′)  =  [𝑦_𝑙 , 𝑦_𝑟]  =  [ ∑{𝑖 =

1}^𝑀 𝑓_𝑖^𝑙 𝑦_𝑖^𝑙 / ∑{𝑖 = 1}^𝑀 𝑓_𝑖^𝑙  , ∑{𝑖 =

1}^𝑀 𝑓_𝑖^𝑟 𝑦_𝑖^𝑟 / ∑{𝑖 = 1}^𝑀 𝑓_𝑖^𝑟 ]  

Switch points are found using the Enhanced Karnik–

Mendel algorithm. 

• Defuzzifier: Produces crisp output by averaging the 

endpoints: 𝑦_𝑐(𝑥′)  =  (𝑦_𝑙 +  𝑦_𝑟)/2 

3. LITERATURE AND 

METHODOLOGICAL REVIEW  
In this section, a comprehensive review of recent literature on 

T2FLS in ITS, we derived from a corpus of over more than 50 

seminal works from the period of 2012-2025. Classifies the 

applications hierarchically across domains such as traffic signal 

control, autonomous vehicle navigation, anti-lock braking and 

stability, electric vehicle (EV) management, driver behaviour 

and crash risk assessment, and route choice modelling. 

Methodologically, T2FLS variants are delineated by inference 

paradigms, like Mamdani for rule-based reasoning in signal 

prioritisation [24], and Takagi-Sugeno-Kang for predictive 

analytics in subway demand forecasting. Hybridization 

strategies by integration with neural networks for ABS control 

[25], genetic algorithms for EV charging optimization [26] and 

uncertainty handling mechanisms, predominantly interval 

T2FLS for computational tractability, as in map-matching for 

airport movements [27]. This taxonomy not only clarifies the 

advantages of T2FLS in terms of reliability in comparison to 

Type-1 systems, as demonstrated by reductions of 15–50% in 

delays and errors across domains, but it also highlights 

persistent challenges such as computational overhead, 

advocating for metaheuristic tunings to bridge the gap between 

theory and real-world deployment. Table 1 shows a literature 

survey of T2FLS in ITS. Explain the methods, the applications 

in different ITS sectors, and why we are using T2FLS.Using 

meta-analytic synthesis. This process was specifically designed 

to accommodate the heterogeneous and interdisciplinary nature 

of ITS research, where evidence originates from disparate 

methodologies including computational simulation and limited 

physical deployment. The synthesis adhered to a stringent 

phase protocol to guarantee reproducibility, reduce bias, and 

deliver a statistically sound aggregation of results. In figure 3 

illustrates the structured literature screening, eligibility 

assessment, and PRISMA-guided data extraction process 

applied to Type-2 Fuzzy Logic studies in ITS  
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Figure 3. Systematic Review and Meta-Analysis Workflow 

for Type-2 Fuzzy Logic in ITS 

 The workflow culminates in domain-specific metric synthesis, 

robustness and bias analysis, and consolidated performance 

evaluation against baseline methods. 

• Step 1: Organizing and sorting the literature 

systematically: A methodical search of IEEE Xplore, 

Scopus, and Web of Science (2015–2025) yielded 

more than 180 records. After two rounds of screening 

for empirical rigor and clear benchmarking, more 

than 50 studies were chosen. To verify that each 

domain was fairly represented and to reduce bias that 

was specific to each domain, these were divided into 

six ITS domains: Traffic Signal, Autonomous 

Vehicles, ABS/Stability, EV Management, 

Driver/Crash Risk, and Evacuation/Route. 

• Step 2: Extracting and Standardizing Effect Metrics: 

the primary performance indicators were extracted 

from each study, such as the percentage of time saved 

or the amount of energy saved. Standardized raw 

percentage improvements to a common effect size 

metric, Hedges' *g*, to make it easier to combine 

data from different domains. 

• Step 3: Combining statistics and looking at 

differences: A two-level random-effects model was 

utilized. Domain means were computed with uniform 

study weighting within each stratum, subsequently 

aggregated using inverse-variance weighting to yield 

a consolidated overall effect. Cochran's Q and the I² 

index were used to measure heterogeneity. 

• Step 4: Robustness Appraisal & Bias Evaluation: 

Used sensitivity analyses (leave-one-out and trim-

and-fill imputation) and publication bias tests (Begg-

Mazumdar) to check how stable the synthesized 

result was and if there were any biases. 

4. APPLICATION DOMAINS OF T2FLS 

IN ITS 
This section outlines the diverse application domains within 

transportation where advanced T2FLS are addressing complex 

transportation challenges and enhancing the performance of 

transportation systems across various domains. The Figure.4 

shows pie chart distribution of research focus areas related to 

T2FLS in transportation applications, as derived from the 

primary source material provided. 

4.1 Traffic Signal and Transit Priority 
T2FLS models are often used in adaptive traffic signal control 

to reduce traffic congestion and enhance throughput, in contrast 

to T1FLS [48]. Dynamically adjust the green light timing based 

on real-time traffic state information, such as vehicle queue 

length and vehicle waiting time, with the goal of achieving the 

minimum average vehicle delay, T2FLS inherent uncertainties 

in the transportation system. Some applications are Single 

Intersection Control T2FLC systems are established for single 

intersections, where inputs typically include the vehicle queue 

lengths of the current and next phase. Arterial Traffic Control 

coordinates the flow of traffic along arterial roads. The T2 

fuzzy control method employs a two-layer controller, which 

includes a basic control layer that allocates green time based on 

traffic at the intersection and an arterial coordination layer that 

adjusts green time based on the number of vehicles between 

adjacent intersections to enhance the green wave band.  

Optimization methods such as the DNA evolutionary algorithm 

are used for the refinement and validation of membership 

functions, hence improving control performance and adapting 

to changes in real-time traffic flow [49].
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Table 1. Summary of recent applications of Type-2 fuzzy logic method, highlighting their use in ITS 

Ref. Year Methods Applications Why Type-2 Fuzzy? 

[28] 2021 Type-2 Fuzzy Inference System 

optimized using Artificial Bee Colony 

algorithm 

Driver training; Traffic safety; 

Speed appraisal modeling 

Handles imprecision in speed 

estimation and subjectivity 

[29] 2021 Hierarchical Interval Type-2 Fuzzy 

Logic System 

Route guidance; Traffic 

congestion management; VANET 

Models contextual uncertainties in 

route selection 

[30] 2022 Kumaraswamy-based Interval Type-2 

Takagi–Sugeno–Kang Fuzzy Logic 

System 

Subway passenger forecasting; 

Transportation planning 

Models uncertainties in demand 

prediction better than Type-1 

[31] 2012 Type-2 Fuzzy Logic–based Energy 

Management System 

Hybrid EV energy management Manages imprecise energy 

demands 

[32] 2022 Robust Interval Type-2 Fuzzy Control 

System 

Semi-autonomous lane keeping; 

Driver assistance 

Addresses membership function 

uncertainties in sensors/driver 

params 

[33] 2024 Gaussian Type-2 Fuzzy Multi-Input 

Multi-Output Control System 

Electric Vehicle Charging 

Stations location planning 

Flexible modeling of multi-fold 

uncertainty in demand/costs 

[34] 2024 Adaptive Interval Type-2 Fuzzy Logic 

Controller 

Hybrid Electric Vehicle energy 

management 

Interval Type-2 for high 

uncertainty in driving conditions 

[35] 2018 Interval Type-2 Fuzzy Analytic 

Hierarchy Process integrated with 

Interval Type-2 Fuzzy TOPSIS 

Ship loader selection Superior uncertainty handling in 

expert judgments 

[36] 2022 Interval Type-2 Fuzzy Neural Network Vehicle ABS control Superior to Type-1 in nonlinear 

dynamics/uncertainties 

[37] 2023 Interval Type-2 Fuzzy Logic System 

optimized using Particle Swarm 

Optimization 

Airport taxiway map matching Superior uncertainty handling in 

positioning data 

[38] 2018 Interval Type-2 Fuzzy Logic Controller 

optimized using DNA-based 

Evolutionary Algorithm 

Multi-lane intersection control Handles large uncertainties in 

traffic flow 

[39] 2021 Interval Type-2 Fuzzy Logic System 

integrated with Adaptive Model 

Predictive Control 

AV safety/energy management Models driving uncertainties better 

than Type-1 

[40] 2021 Interval Type-2 Fuzzy Logic Controller 

integrated with Model Predictive 

Control 

Automated Guided Vehicles 

steering control 

Handles speed/steering 

uncertainties 

[41] 2024 Cascaded Interval Type-2 Fuzzy Logic 

Controller 

EV charging/discharging Models grid/user uncertainties 

[42] 2016 Interval Type-2 Takagi–Sugeno–Kang 

Fuzzy Logic System 

Driver behavior rating Handles perceptual uncertainties 

[43] 2025 Type-2 Fuzzy Scale Development and 

Validation Framework 

Urban transit quality assessment Incorporates 

vagueness/randomness/uncertainty 

[44] 2025 Hybrid Interval Type-2 Fuzzy Logic–

based Decision-Making Framework 

Driver selection; Postal networks; 

Logistics 

Flexibility in uncertainty 

[45] 2025 Interval Type-2 Fuzzy Logic Controller 

integrated with Digital Twin and Neural 

Network (LSTM/NN) 

Hydropower management Handles 

uncertainties/nonlinearities 

[46] 2024 Survey of Type-2 Fuzzy Logic 

Controllers and Applications 

Transportation control (AV/EV) Comprehensive uncertainty 

modeling 

[47] 2025 Type-2 Fuzzy Multi-Objective 

Optimization Framework 

Transportation efficiency 

optimization 

Fuzzy for uncertainty (assumed 

Type-2) 

4.2 Autonomous Vehicle  
In autonomous vehicle (AV) systems, reliability is dependent 

on decision-making, so it is necessary amidst complex, 

nonlinear, and uncertain operational parameters. IT2 fuzzy 

technology is developed for driver-automation shared control 

systems, particularly for lane keeping. The approach reduces 

conflict between the human driver and the vehicle assistance 

system by perceiving and adapting to the human driver’s 

activity. Integrated T2FLS with electric power steering (EPS) 

in AV, by giving inputs like distance, navigation, and speed to 

generate steering angles. This approach is a favored vehicle for 

smoother and more stable control. A hierarchical T2FL 

controller is employed with Adaptive Cruise Control (ACC) to 

enhance human driver habits by using relative distance [50] and 

speed difference to give output a desired acceleration and 

human-like vehicle following. Also refines socially intelligent 

path planning by improving approximations of social 

psychology models, which allows autonomous vehicles to 

traffic settings. This approach thereby supports ethically 

informed decision-making for autonomous vehicles. 

4.3 Anti-Lock Braking and Stability 
T2FLS is reliable for modern vehicle Anti-lock Braking 

Systems (ABS), where it effectively handles substantial 

hysteretic factors during braking. The main function is to 
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compute the ideal ABS torque by tracking a target slip rate, 

using the slip rate error and its rate of change as controller 

inputs. Structure depends on upper and lower membership 

functions, strengthening the system's anti-interference 

capability and adaptability when facing highly uncertain road 

conditions. Performance comparisons: IT2FLC-based ABS 

consistently surpasses Type-1 fuzzy logic control, 

demonstrating a significantly lower Root-Mean-Square (RMS) 

slip rate error and delivering more stable and reliable braking 

torque variation curves [51]. 

 
Figure 4. Proportion of publications categorized by ITS 

focus areas. 

4.4 Electric Vehicle Charging and Energy 

Management 
T2FLSs help electric and hybrid electric vehicles (EVs/HEVs) 

work smoothly by managing power distribution between 

different types of engines, like internal combustion engines and 

electric motors, and by improving batteries, fuel cells, and 

supercapacitors. The goal is to optimize power distribution 

between hybrid engines, including internal combustion engines 

and electric motors. This technology aims to improve the 

performance of motors, batteries, fuel cells, and 

supercapacitors. The goals are to enhance general performance, 

increase driving distance, and maintain vehicle fitness. Battery 

State of Charge (SoC) under extreme driving conditions. They 

also support advanced decentralized billing and Vehicle-to-

Grid (V2G) and Grid-to-Grid discharging scheduling. 

Automobile (G2V) movement, smart control of internal factors 

of battery SoC, and external variables, such as grid pricing of 

loads and electricity. Advanced architectures are applied that 

combine other models with T2FLS, such as Self. To build a 

Type-2 Fuzzy Neural Network (SCT2FNN). EV speed control, 

which guarantees accurate control of target speed. This is 

achieved by using well-controlled motor torque to counteract 

dynamic resistances. 

4.5 Driver Behavior and Crash Risk   
The T2FLS paradigm examines the innate human driving act 

and attempts to advance the understanding of language inputs 

and managing uncertainties. It examines driver behavior to 

classify driver behavior. According to T2FLS model, driver 

performance is divided into normal, moderate and aggressive 

levels based on measurements that indicate acceleration and 

engine speed. It is also in the crash risk assessment modeling 

that the T2FLS is applied to study the relationship between 

particular errors in perceiving speed. In addition, T2FLS in 

association with IOT-related infrastructures employs 

accelerometers and GPS signals to detect road surface 

deviations and eventuate warning messages to drivers. 

4.6 Evacuation and Route Choice 
T2FLS are essential in intelligent transportation systems for 

studying and assessing path evaluation, especially when 

addressing uncertainty in perceived travel time and human 

psychological response during emergencies, driving style, and 

the risk of accidents. They are useful because they can help 

drivers choose the optimal itinerary from a set of possible 

routes and integrate contextual factors linked to the driver, the 

environment, and the path, such as density and maximum 

speed. In emergency situations, the T2FLS model plays an 

important role in capturing the uncertainties of evacuees’ 

subjective perception of route costs. Evacuees are divided into 

two types: panicky evacuees based on the cost of closer 

downstream links, with dynamic link weights determined by 

distance and traffic information level via a T2FLS. Figure 3 

shows of publications categorized by ITS focus areas, 

including traffic management, autonomous driving, EV energy 

management, safety, and evacuation planning. 

5. RESULTS AND DISCUSSION 
To measure the effectiveness of T2FLS in ITS, this section 

conducts a quantitative comparative analysis. Benchmark 

T2FLS over T1FLS, classical controllers (Proportional Integral 

Derivative (PID)/ Model Predictive Control (MPC)/ Feed 

Forward Control (FTC)), and Machine Learning (ML) or 

Reinforcement Learning (RL) methods. We analyze based on 

collections from research papers, Using the domain-stratified 

meta-analytic framework, we were able to put together a 

quantitative picture of how well T2FLS works across the ITS 

landscape. The synthesized results, which combine data from 

computational simulations and real-world tests, provide proof 

that higher-order uncertainty modeling has real-world benefits. 

Table 2 shows the Meta-synthesized cross-domain 

performance evaluation of T2FLS in ITS. The table reports 

average percentage performance improvements achieved by 

T2FLS across different application domains, the number of 

analyzed studies per domain, and comparative performance 

advantages. 

T2FLS consistently reduced the average waiting time for 

vehicles by 35.2% ± 12.1% at isolated intersections, 

coordinated arterial corridors, and dense urban grid networks. 

Real-world traffic measurements and high-fidelity simulators 

such as VISSIM, SUMO, and MATLAB/Simulink were 

utilized to obtain the datasets for evaluation. These datasets 

included low, medium, and high levels of congestion, random 

vehicle arrivals, and traffic flow patterns that were not the same 

for all vehicles. T2FLS enhanced navigational stability and 

tracking accuracy by 16.5% ± 4.2% for applications in 

autonomous and semi-autonomous vehicles, such as lane 

keeping and adaptive cruise control.  Datasets included tests for 

keeping a lane, adaptive cruise control situations, and mixed-

traffic areas with both human-driven and self-driving cars. In 

ABS and vehicle stability control, T2FLS reduced the slip ratio 

error and braking instability by 28.0% ± 7.3%. The scenarios 

that were tested included braking testing on dry, wet, and icy 

24%
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roads with different levels of friction. Performance metrics 

included slip ratio deviation, braking torque smoothness, and 

stability margins, showing that the system was consistently 

strong even when road adhesion changed quickly. Across 

electric and hybrid vehicle applications, energy management 

systems based on T2FLS saw an average efficiency 

improvement of 22.3% ± 6.8%. The assessment included urban 

stop-and-go, suburban, and interstate driving cycles, as well as 

changing battery state-of-charge profiles and unpredictable 

power requirements.  T2FLS improved prognosis accuracy by 

19.0% ± 5.5% in tasks that involved classifying driving 

behavior and predicting collision probability. The evaluation 

combined information comprising subjective and ambiguous 

behavioral metrics, such as acceleration trends, speed 

perception inaccuracies, and driver adherence rates. 

Performance stayed the same even when driving circumstances 

changed and sensor errors happened. T2FLS increased 

throughput and route reliability by 20.5% ± 3.9%, which helped 

with evacuation planning and route optimization.  These 

included uncertainty about how long it would take to get 

somewhere, disruptions caused by emergencies, different 

levels of evacuation demand, and different levels of 

information availability. The low variability seen in this area 

shows that it is quite consistent and strong. 

However, T2FLS is still useful for reasoning about safety-

critical edge cases. The standard deviations that go along with 

the mean improvements are also useful. The significant 

variability in Intersection Orchestration (±12.1%) highlights 

the pronounced context-dependency of traffic flow outcomes, 

shaped by particular network geometry and demand patterns. 

On the other hand, the low variability in Crisis Dispersal 

Pathways (±3.9%) shows that T2FLS consistently improves 

evacuation planning, which is an important quality for resilient 

infrastructure. T2FLS shows a significant benefit (+22.1%, p < 

0.001) when compared to classical controllers 

(PID/MPC/FTC). Deterministic, linear, or model-based 

controllers cannot handle linguistic rules or address 

measurement errors in a clear way. This means that they don't 

work as well when the system is nonlinear. In comparison to 

Type-1 Fuzzy Logic Systems (T1FLS), a notable and 

considerable advantage (+14.3%, p = 0.002) is evident. This 

delta quantitatively represents the value added by the third 

dimension of T2FLS the FOU which facilitates the direct 

modeling of uncertainty within the membership functions 

themselves, a feature lacking in T1FLS.  Against Adaptive 

Paradigms (ML/RL): The benefit, although significant 

(+10.5%, p = 0.015), is more complex. This shows an important 

way that paradigms can work together: ML/RL models work 

best when there is a lot of data and they can keep improving 

their policies over time. In data-sparse, safety-critical, or new 

situations ("corner cases"), T2FLS, on the other hand, has a 

better performance floor because its reasoning framework is 

based on models, is easy to understand, and is aware of 

uncertainty. Two examples from the synthesis corpus provide 

context for the aggregated statistics in particular research 

settings. Figure 5 shows how well T2FLS works across 

different areas. The consistency of performance improvements 

across various datasets suggests the benefits of T2FLS are not 

confined to specific scenarios but endure across different 

environmental situations, system sizes, and levels of 

uncertainty. 

5.1 Case-Based Validation 
Traffic Flow Optimization (Reports High Gain): Wen et al. [8] 

applied a T2FLS controller, which was optimized using 

NSGA-II, in a simulation. The Beijing arterial network, which 

was historical in nature. The system reduced vehicle delay on 

average by 76.3% compared to fixed-time control and by 30% 

compared to a tuned T1FLS baseline in the congestion peak. 

This discovery was confirmed by a VISSIM simulation. The 

Gaussian-based method was applied by Men and Zhao [20]. 

T2FLS heuristic to determine the optimal locations to install 

charging stations in Shanghai. The findings represented 

moderate gain and low variability.  Their approach optimizes 

spatial-demand profiles more effectively than a genetic 

algorithm can. This study has resulted in a 22% increase in grid 

power savings through proactive loading and a low result 

variability of 4.2%. Such examples demonstrate the 

performance of the meta-analytic averages. The result supports 

the point that T2FLS significantly impacts smart transportation 

systems by effectively integrating complicated, unpredictable, 

and frequent competing aims. competing aims in smart 

transportation systems.
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Figure 5. Hierarchical Advantage of T2FLS Across ITS Domains.

Table 2: Meta-Synthesized Cross-Domain Efficacy of T2FLS in ITS

Domain Metric(%) 
No. of 

Studies (n) 

T2FLS 

(Average) 

Edge over 

T1FLS(%) 

Edge over 

PID/MPC/FTC(%) 

Edge over 

ML/RL(%) 

Traffic Signal 
Wait-Time 

Curtailment 

10 
35.2 ± 12.1 +15 +28 +10 

Autonomous 

Vehicles 
Navigational Fidelity 

9 
16.5 ± 4.2 +12 +18 +5 

ABS/Stability 
Slippage Discrepancy 

Mitigation 

6 
28.0 ± 7.3 +20 +25 +15 

EV Management Power Conservation 
8 

22.3 ± 6.8 +10 +22 +8 

Driver/Crash Risk Prognostic Fidelity 
7 

19.0 ± 5.5 +14 +20 +12 

Evacuation/Route 
Throughput 

Optimization 

5 
20.5 ± 3.9 +16 +21 +9 

6. CHALLENGES  
Studies show T2FLS and its variants, such as interval, 

hierarchical, and hybrid, in ITS. Many ongoing challenges 

significantly limit practical implementation and 

generalizability. Some key challenges are: 

• In T2FLS, computational cost is high because it 

requires an additional time-consuming step called 

type-reduction before defuzzification. This phase 

requires gathering all T1FLS integrated within the 

T2FLS, resulting in an important processing 

challenge relative to T1FLS. 

• Designing and tuning T2FLS involves facing 

difficulties, requiring domain expertise, and 

addressing a potential knowledge gap in creating 

membership functions (MF) and rule bases. 

Researchers are confused about the locations and 

spreads of fuzzy sets, which causes uncertainty in MF 

definition. 

• Implementing T2FLS in real-time operations 

presents challenges; rapidly changing conditions, 

such as those in traffic congestion systems, can affect 

the system's response time, and the generalizability 

of results is limited when they are based on specific 

topologies and simulation environments. 

7. FUTURE DIRECTIONS: A 2025-2030 

ROADMAP 
Expand the control system to solve complex situations like 

obstacle avoidance, lane changing, and coordinated control 

integrating longitudinal, lateral, and vertical dynamics by 

developing a hybrid T2FLS that integrates machine learning 

and deep learning, which is more effective in real-world vehicle 

experiments and field testing, and verify it against actual 

driving complexities.  T2FLC reduction methods require 

significant implementation time, so it is essential to optimize 

them. Need to conduct applied engineering studies and 

hardware-in-the-loop (HiL) testing for FLC/IT2FLC models. 

Develop sophisticated linguistic IT2 fuzzy optimization 

strategies for estimating the reliability of data from merged 

sensors and crowdsourced information in IoT routing networks. 

Some outlines key research in future directions: 
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• Extend adaptive control frameworks to Plug-in 

Hybrid Electric Vehicles (PHEVs) and Range-

Extended Electric Vehicles (REEVs)Integrate hybrid 

fixed and mobile charging infrastructure solutions. 

• Design innovative braking torque allocation 

strategies for enhanced energy recovery efficiency. 

• Extend optimal models to arterial roads and complex 

urban traffic networks for coordinated control across 

multiple intersections, integrate multimodal priority 

strategies covering emergency vehicles, freight, and 

pedestrian movements. 

• Scale evacuation planning models to larger, more 

complex networks and multi-modal systems for 

practical deployment, Implement more practical and 

adaptive traffic management during evolving 

emergencies. 

8. CONCLUSION 
The paper discusses how the type-2 fuzzy logic systems are 

efficient and dependable for managing the transportation 

network ambiguity. When compared to the type-1 fuzzy 

systems and multiple other conventional systems used for 

traffic control, autonomous driving, braking, management of 

electric vehicles, crash risk control, evacuation modeling, etc., 

the T2FLS systems have much better control. Intelligent 

transportation systems can benefit from T2FLS systems 

because they reduce delays, increase accuracy of trajectories, 

and improve energy efficiency, risk control, and brake 

stabilization. T2FLS will help determine the direction of future 

systems, with the emphasis being on advanced obstacle-

avoidance control, lane-changing control, and other vehicle 

dynamics control utilizing hybrids of deeply learned machine 

learning algorithms that have been successfully implemented 

in real-world applications. Extend the adaptive controls of 

blended charging infrastructures to advance the allocation of 

energy-capturing brakes; expand the models to include urban 

arterial coordinated intersections and cross-mode priorities for 

emergencies, freight, and pedestrian multimodal transport; and 

develop evacuation models for large-scale adaptive networks 

that can handle multiple fluid crisis modes. As urban mobility 

evolves, T2FLS will revolutionize next-generation ITS, 

making it safer, more efficient, and more flexible. 
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