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ABSTRACT 
The goal of this research is to implement network analysis 

using Markov chains in Python. Networks exist almost 

everywhere in life. There are networks of computers, people, 

articles, posts, etc. Network analysis is used to understand the 

structure, function, and performance of the network. Markov 

chains method is used to predict the future state based on the 

present state and not on the previous states. 

 

The basic steps of network analysis using Markov chains are 

explained: defining network (states, transition matrix, and 

distribution vector), performing matrix multiplication 

(computing stationary distribution vector and computing 

stationary transition vector), performing random walk 

(computing stationary distribution vector), comparing results, 

and plotting charts. 

 

The developed program was tested on an experimental data. 

The program has successfully performed the basic steps of 

network analysis using Markov chains and provided the 

required results. 

 

Keywords 
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1. INTRODUCTION 
In the recent years, machine learning has played a major role in 

the development of computer systems. Machine learning (ML) 

is a branch of Artificial Intelligence (AI) which is focused on 

the study of algorithms and methods to improve the 

performance and efficiency of computer programs [1-11]. 

  

Network analysis is an important area in the field of machine 

learning. It is sharing knowledge with many other fields like: 

programming, data science, mathematics, statistics, and 

numerical methods [12-15, 16-20]. 

 

 
 

Fig 1: Area of Network Analysis 

 

Network analysis is used to understand the structure, function, 

and performance of the network. It is performed using Markov 

chains to predict the future state based on the present state. It is 

applied in many applications, for example: prediction, 

generation, ranking, clustering, etc. 

 

2. LITERATURE REVIEW 
The literature was reviewed to explore the fundamental 

concepts, methods, and applications of network analysis using 

Markov chains [21-26, 27-33].  

 

Network analysis is an important area in machine learning. It 

has a wide range of applications in different areas like: 

technology, business, education, psychology, sociology, 

biology, environment, traffic, sports, etc.  

 

Networks exist everywhere in life. There are networks of 

computers, people, articles, posts, tweets, words, etc. Simply, 

network is a set of nodes (or states) and edges (or transitions). 

 

The network model is built to provide a basic representation of 

the network. Then, the network analysis is performed to 

understand the network structure, function, performance. It 

helps to predict the future behavior of the network.  

 

In this research, network analysis is performed using Markov 

chains. It is a powerful mathematical method used to predict 

the next state based on the current state and not on the previous 

states. 

 

Markov chains method was developed by the Russian 

mathematician Andrey Markov in 1906 [34]. It was used to 

solve the random processes for large numbers. Now, it is 

widely used in many fields: mathematics, statistics, computing, 

weather, sociology, communications, etc. 

 

The fundamental concepts of network analysis using Markov 

chains are explained in the following section. 

 

Network Analysis: 
Network analysis is the process of studying network to 

understand its structure, function, and performance. Networks 

exist almost everywhere in life. There are networks of 

computers, devices, mobiles, students, players, web pages, 

articles, elements, processes, animals, cities, countries, and so 

on. 

 

 
 

Fig 2: Concept of Network Analysis 
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Markov Chains: 
Markov chains is a mathematical method used to predict the 

next state based on the current state. The probability of moving 

from one state to another depends only on the current state and 

not on the previous states. Simply, Markov chains model is 

represented by the following formula: 

 

P = P(Xn+1 = Sn+1 | Xn = Sn, Xn-1 = Sn-1, …, X0 = S0)  

= P(Xn+1 = Sn+1 | Xn = Sn) 

 

Where: (X) is the random variable, and (S) is the state. 

 

The basic concepts of Markov chains are explained in the 

following section. 

 

Transition Diagram: 
Transition diagram is a graph that shows the states and 

transitions in the network. The state is drawn as a circle and the 

transition is drawn as an arrow. The following diagram 

represents a complete transition diagram:  

 

 
 

Fig 3: Representation of Transition Diagram 

 

Transition Matrix: 
Transition matrix is a matrix of size (n×n) that shows the 

probabilities of transition between states. It can be represented 

as shown in the following form: 
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Fig 4: Representation of Transition Matrix 

 

The rows represent the current states, and the columns 

represent the next states. The intersections of rows and columns 

represent the cells. For example, the cell (pi,j) represents the 

probability of transition from the current state (i) to the next 

state (j).  

 

The transition probability (pi,j) is represented by the following 

formula: 

 

p
i,j

 = P(Xn+1 = j | Xn = i) 

 

The transition matrix should satisfy the following two 

conditions: 

 

1 ≥  p
i,j
  ≥ 0 

and  

∑ p
i,j

j

 = 1 

 

Where each probability (pi,j) lies in the range [0, 1] and the sum 

of probabilities in each row is (1). 

 

Example: 
Assume a network of four states (A, B, C, and D) with the 

following transition diagram: 

 

 

 
 

Fig 5: Example of Transition Diagram 

 

Therefore, the transition matrix is represented as shown in the 

following form: 

 

                                         A      B      C       D   

P = 

A

B

C

D

 [

0.4 0 0.6 0

0.7 0.3 0 0

0 0.5 0.2 0.3

0.1 0.8 0 0.1

] 

 

Fig 6: Example of Transition Matrix 

 

Distribution Vector: 
Distribution vector is a vector of size (n) that shows the 

probabilities of states in the network. It can be represented as 

shown in the following form: 

 

π =[𝑝0, 𝑝1, ⋯ , 𝑝n-1] 
 

In this research, network analysis using Markov chains is 

performed by two methods: matrix multiplication and random 

walk. 

 

Matrix Multiplication: 
The matrix multiplication is used to compute the stationary 

distribution vector and the stationary transition matrix. 

 

1. Stationary Distribution Vector: 
The distribution vector (π) is computed for each iteration as 

shown in the following steps: 

 

π1 = π0 . P  

π2 = π1 . P  

π3 = π2 . P  

… 

               πn+1 = πn . P          (1) 
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After a long run, the distribution vector will be stable and will 

not change. This indicates that the distribution vector is 

converging to the stationary form.  

 

              ⸫  π = π . P             (2) 

 

Here, the implementation of matrix multiplication to compute 

the stationary distribution vector is explained step by step in the 

following algorithm: 

 

Algorithm 1: Matrix Multiplication to Compute the Stationary 

Distribution Vector 

# define states 

states = […] 

# define transition matrix 

T = [[…], 

         …  

        […]] 

# define distribution vector 

V = […] 

# start with V 

V_old = V 

# initialize distance 

D = [] 

# max number of iterations 

N = 10^6 

for t = 1 to N do 

        # compute V_new 

        V_new = multiply(V_old, T) 

        print(t, V_new) 

        # compute distance 

       d = distance(V_new, V_old) 

       # add distance 

       D.append(d) 

       # check if equal 

        if (V_new = V_old) then 

                break 

        # make V_new as V_old 

        V_old = V_new 

end for 

 

2. Stationary Transition Matrix 

The matrix multiplication is used to compute the stationary 

transition matrix. 

 

Using formula (1) to do further analysis as shown in the 

following steps: 

 

π1 = π0 . P  

π2 = π1 . P  

                                              = (π
0
 . P) . P  

                                              = π0 . P2 

π3 = π2 . P  

                                              = (π
0
 . P2) . P  

                                              = π0 . P3 

… 

                                         ⸫  πn = π0 . Pn         (3) 

 

This shows that the distribution vector at step "n" (πn) is the 

product of the initial distribution vector (π0) by the transition 

matrix raised to the power "n" (Pn). 

 

Here, the implementation of matrix multiplication to compute 

the stationary transition matrix is explained step by step in the 

following algorithm: 

 

Algorithm 2: Matrix Multiplication to Compute the Stationary 

Transition Matrix 

# define states 

states = […] 

# define transition matrix 

T = [[…], 

         …  

        […]] 

# start with T 

T_old = T 

# max number of iterations 

N = 10^6 

for t = 1 to N do 

        # compute T_new 

        T_new = multiply(T_old, T) 

        print(t, T_new) 

        # check if equal 

        if (T_new = T_old) then 

                break 

        # make T_new as T_old 

        T_old = T_new 

end for 

 

Random Walk: 
The random walk is a simulation method used to compute the 

stationary distribution vector. It assumes a random surfer that 

moves randomly between states based on their probabilities.  

 

After a long run, the distribution vector will be stable and will 

not change. This indicates that the distribution vector is 

converging to the stationary form.  

 

Here, the implementation of random walk to compute the 

stationary distribution vector is explained step by step in the 

following algorithm: 

 

Algorithm 3: Random Walk to Compute the Stationary 

Distribution Vector 

# define states 

states = […] 

# define transition matrix 

T = [[…], 

         … , 

        […]] 

# define distribution vector 

V = […] 

# start with state 

current_state = … 

# add state to walk path 

walk_path = [current_state] 

# number of iterations 

N = 10^6 

for t = 1 to N do 

        # select random state 

        next_state = random.choice(states, T[current_state]) 

        # update state count 

        V[next_state] += 1 

        # add state to walk path 

        walk_path.append(next_state) 

        # make next_state as current_state 

        current_state = next_state 

end for 
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# normalize V 

V = normalize(V) 

print(V) 

 

Network Analysis System: 
The network analysis system is summarized in the following 

outline: 

 

Input: Network. 

Output: Results.   

Processing: First, the network is defined (states, transition 

matrix, and distribution vector). Then, the matrix multiplication 

is performed to compute the stationary distribution vector and 

the stationary transition matrix. Next, the random walk is 

performed to compute the stationary distribution vector. After 

that, the results are compared and the charts are plotted. 

 

 
 

Fig 7: Network Analysis System 

 

Python: 
Python [35] is an open source, object-oriented, and general-

purpose programming language. It is simple to code, easy to 

learn, and powerful. It is the most popular programming 

language especially in the field of machine learning.  

 

Python provides many additional libraries for different 

purposes. For example: Numpy [36], Pandas [37], Matplotlib 

[38], Seaborn [39], SciPy [40], NLTK [41], and SK Learn [42]. 

 

3. RESEARCH METHODOLOGY 
The basic steps of network analysis using Markov chains are: 

(1) defining network: states, transition matrix, and distribution 

vector, (2) performing matrix multiplication: computing 

stationary distribution vector and computing stationary 

transition matrix, (3) performing random walk: computing 

stationary distribution vector, (4) comparing results, and (5) 

plotting charts. 

 

 
Fig 8: Basic Steps of Network Analysis 

 

 

 
 

Fig 9: Flowchart of Network Analysis 

 

The basic steps of network analysis using Markov chains are 

explained in the following section.  

 

Note: The program is developed using only the standard 

functions of Python without any additional library. 

 

1. Defining Network: 
The network is defined by the following steps: 

 

1.1. Defining States: 
The states are defined by the following code: 

 

states = [0, 1, ..., n-1] 

 

1.2. Defining Transition Matrix: 
The transition matrix (T) is defined by the following code: 

 
T = [[p0,0, p0,1, ..., p0,n-1], 

     [p1,0, p1,1, ..., p1,n-1], 

      ... 

     [pn-1,0, pn-1,1, ..., pn-1,n-1]] 

 

1.3. Defining Distribution Vector: 
The distribution vector (V) is defined by the following code: 

 
V = [p0, p1, ..., pn-1] 

 

2. Performing Matrix Multiplication: 
The matrix multiplication is performed to compute the 

stationary distribution vector (V) and the stationary transition 

matrix (T). 
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2.1. Computing Stationary Distribution 

Vector: 
The stationary distribution vector (V) is computed by the 

following code: 

 
# start with V 

V_old = V 

# initialize distance 

D = [] 

# max number of iterations 

N = 10**6 

for t in range(1, N): 

    # compute V_new     

    V_new = multiply_vm(V_old, T) 

    print(t, ":", V_new) 

    # compute distance 

    d = distance(V_new, V_old) 

    # add distance 

    D.append(d) 

    if equal_v(V_new, V_old, digits): 

        break 

    # make V_new as V_old 

    V_old = V_new 

 

The distance between the new and old distribution vectors is 

computed by the following code: 

 
def distance(v1, v2): 

    sum = 0 

    for i in range(len(v1)): 

        sum += (v1[i] - v2[i])**2 

    return sum**0.5 

 

2.2. Computing Stationary Transition 

Matrix: 
The stationary transition matrix (T) is computed by the 

following code: 

 
# start with T 

T_old = T 

# max number of iterations 

N = 10**6 

for t in range(1, N): 

    # compute T_new 

    T_new = multiply_mm(T_old, T) 

    print(t, ":") 

    print(T_new) 

    if equal_m(T_new, T_old, digits): 

        break 

    # make T_new as T_old 

    T_old = T_new 

 

The matrix multiplication functions (multiply_vm) and  

(multiply_mm) are done by the following code: 

 
# dot product of 2 vectors 

def dot(v1, v2): 

    sum = 0 

    for i in range(len(v1)): 

        sum += v1[i]*v2[i] 

    return sum 

# multiply vector by matrix 

def multiply_vm(v, m): 

    mt = transpose(m) 

    t = [] 

    for i in range(len(v)): 

        t.append(dot(v, mt[i])) 

    return t 

# multiply matrix by matrix 

def multiply_mm(m1, m2): 

    m2t = transpose(m2) 

    t = [] 

    for i in range(len(m1)): 

        row = [] 

        for j in range(len(m2t)): 

            row.append(dot(m1[i], m2t[j])) 

        t.append(row) 

    return t 

 

3. Performing Random Walk: 

Computing Stationary Distribution Vector: 
The random walk is performed to compute the stationary 

distribution vector (V). It is done by the following code: 

 
import numpy as np 

 

# select state 

current_state = 0 

# add state to walk path 

walk_path = [current_state] 

# number of iterations 

N = 10**6 

for t in range(1, N): 

    # select random state 

    next_state = np.random.choice(states,  

                 p=T[current_state]) 

    # update state count 

    V[next_state] += 1 

    # add state to walk_path 

    walk_path.append(next_state) 

    # make next_state as current_state  

    current_state = next_state    

# normalize V 

V = normalize(V) 

print("V = ", V) 

print("Walk Path :") 

print(walk_path) 

 

The distribution vector (V) is normalized by the following code: 

 
def normalize(v): 

    total = sum(v) 

    for i in range(len(v)): 

        v[i] /= total 

    return v 

 

4. Comparing Results: 
The results of performing matrix multiplication and random 

walk are printed by the following code: 

 
# Matrix Multiplication 

print("(1) Matrix Multiplication:") 

print("Stationary Distribution Vector (V):")  

print(V_new) 

print("Stationary Transition Matrix (T):") 

print(T_new) 

 

# Random Walk  

print("(2) Random Walk:") 

print("Stationary Distribution Vector (V):")  

print(V) 

 

Then, the results are compared to check if they match or not. 

 

5. Plotting Charts: 
The plotting libraries are imported by the following code: 

 
import matplotlib.pyplot as plt 

import seabron as sns 
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The distance between the new and old distribution vectors 

(V_new, and V_old) is plotted by the following code: 

 
plt.plot(D) 

plt.show() 

 

The distribution vector (V) is plotted by the following code: 

 
plt.bar(V) 

plt.show() 

 

The transition matrix (T) is plotted by the following code: 

 
sns.heatmap(T) 

plt.show() 

 

4. RESULTS AND DISCUSSION 
The developed program was tested on an experimental data. 

The program has successfully performed the basic steps of 

network analysis using Markov chains and provided the 

required results. The program output is explained step by step 

in the following section. 

 

Defining Network: 
The network is defined by the following steps: 

 

1. Defining States: 
The states are defined and printed as shown in the following 

view: 

 
States = [0, 1, 2, 3] 

 

2. Defining Transition Matrix: 
The transition matrix (T) is defined and printed as shown in the 

following view: 

 
Transition Matrix (T): 

[0.2, 0.1, 0.3, 0.4] 

[0.6, 0.1, 0.1, 0.2] 

[0.1, 0.2, 0.2, 0.5] 

[0.4, 0.1, 0.2, 0.3] 

 

3. Defining Distribution Vector: 
The distribution vector (V) is defined and printed as shown in 

the following view: 

 
Distribution Vector (V): 

[1, 0, 0, 0] 

 

Performing Matrix Multiplication: 
The matrix multiplication is performed to compute the 

stationary distribution vector (V) and the stationary transition 

matrix (T).  

 

1. Computing Stationary Distribution 

Vector: 
The distribution vector (V) is computed for each iteration and 

printed as shown in the following view: 

 
Distribution Vector (V): 

 1: [0.2, 0.1, 0.3, 0.4] 

 2: [0.29, 0.13, 0.21, 0.37] 

 3: [0.305, 0.121, 0.216, 0.358] 

 4: [0.2984, 0.1216, 0.2184, 0.3616] 

 5: [0.29912, 0.12184, 0.21768, 0.36136] 

 6: [0.29924, 0.121768, 0.217728, 0.361264] 

 7: [0.299187, 0.121773, 0.217747, 0.361293] 

 8: [0.299193, 0.121775, 0.217741, 0.361291] 

 9: [0.299194, 0.121774, 0.217742, 0.36129] 

10: [0.299193, 0.121774, 0.217742, 0.36129] 

... 

 

The stationary distribution vector (V) is computed and printed 

as shown in the following view: 

 
Stationary Distribution Vector (V): 

[0.299194, 0.121774, 0.217742, 0.36129]  

 

2. Computing Stationary Transition Matrix: 
The transition matrix (T) is computed for each iteration and 

printed as shown in the following view: 

 
Transition Matrix (T): 

1:   

[0.29, 0.13, 0.21, 0.37] 

[0.27, 0.11, 0.25, 0.37] 

[0.36, 0.12, 0.19, 0.33] 

[0.28, 0.12, 0.23, 0.37] 

 

2:  

[0.305, 0.121, 0.216, 0.358] 

[0.293, 0.125, 0.216, 0.366] 

[0.295, 0.119, 0.224, 0.362] 

[0.299, 0.123, 0.216, 0.362] 

 

3:  

[0.2984, 0.1216, 0.2184, 0.3616] 

[0.3016, 0.1216, 0.2168, 0.36] 

[0.2976, 0.1224, 0.2176, 0.3624] 

[0.3, 0.1216, 0.2176, 0.3608] 

... 

 

The stationary transition matrix (T) is computed and printed as 

shown in the following view: 

 
Stationary Transition Matrix (T): 

[0.299194, 0.121774, 0.217742, 0.36129] 

[0.299194, 0.121774, 0.217742, 0.36129] 

[0.299194, 0.121774, 0.217742, 0.36129] 

[0.299194, 0.121774, 0.217742, 0.36129] 

 

The stationary distribution vector (V) can also be computed 

using formula (3). It is computed and printed as shown in the 

following view: 

 
Stationary Distribution Vector (V): 

[0.299194, 0.121774, 0.217742, 0.36129] 

 

Performing Random Walk: 

Computing Stationary Distribution Vector: 
The random walk is performed to compute the stationary 

distribution vector (V). It is computed and printed as shown in 

the following view: 

 
Stationary Distribution Vector (V): 

[0.29901, 0.121713, 0.218088, 0.361189] 

 

The walk path is computed and printed as shown in the 

following view: 

 
Walk Path: 

[0, 1, 3, 0, 2, 3, 0, 3, 3, 2, 2, 0, 2, 3, ... 

 

Comparing Results: 
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The results of matrix multiplication and random walk are 

printed as shown in the following view: 

 
(1) Matrix Multiplication: 

Stationary Distribution Vector (V):  

[0.299194, 0.121774, 0.217742, 0.36129] 

 

Stationary Transition Matrix (T): 

[0.299194, 0.121774, 0.217742, 0.36129] 

[0.299194, 0.121774, 0.217742, 0.36129] 

[0.299194, 0.121774, 0.217742, 0.36129] 

[0.299194, 0.121774, 0.217742, 0.36129] 

 

(2) Random Walk: 

Stationary Distribution Vector (V):  

[0.29901, 0.121713, 0.218088, 0.361189] 

 

Now, by comparing the results, it is clear that they match. 

 

Plotting Charts: 
The distance between the new and old distribution vectors 

(V_new and V_old) is plotted as shown in the following chart: 

 
Fig 10: Distance Plot  

 

The plot shows that the distance is decreasing with iterations, 

which indicates that the distribution vector (V) is converging to 

the stationary form. 

 

Here, the stationary distribution vector (V) is plotted as shown 

in the following chart: 

 
Fig 11: Stationary Distribution Vector Plot  

 

The plot shows the importance of states. They sorted in the 

following order (3, 0, 2, 1) 

 

Now, the initial and stationary transition matrices (T and 

T_new) are plotted as shown in the following charts: 

 
Fig 12: Initial Transition Matrix Heatmap   

 

 
Fig 13: Stationary Transition Matrix Heatmap   

 

The heatmaps show that the transition matrix is converging to 

the stationary form. 

 

In summary, it is clear that the program has successfully 

performed the basic steps of network analysis using Markov 

chains and provided the required results. 

 

5. CONCLUSION 
In this research, the goal was to implement network analysis 

using Markov chains in Python. The literature was reviewed to 

explore the fundamental concepts of network analysis using 

Markov chains: network analysis, Markov chains, transition 

diagram, transition matrix, distribution vector, matrix 

multiplication, and random walk. 

 

The author developed a program in Python to perform the basic 

steps of network analysis using Markov chains: defining 

network (states, transition matrix, and distribution vector), 

performing matrix multiplication (computing stationary 

distribution vector and computing stationary transition matrix), 

performing random walk (computing stationary distribution 

vector), comparing results, and plotting charts. 

 

The developed program was tested on an experimental data. 

The program has successfully performed the basic steps of 

network analysis using Markov chains and provided the 

required results. 
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In the future, more work is needed to improve the current 

methods of network analysis using Markov chains. In addition, 

they should be more investigated on different fields and 

domains. 
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