
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

86

Implementation of Network Analysis using Markov
Chains in Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to implement network analysis

using Markov chains in Python. Networks exist almost

everywhere in life. There are networks of computers, people,

articles, posts, etc. Network analysis is used to understand the

structure, function, and performance of the network. Markov

chains method is used to predict the future state based on the

present state and not on the previous states.

The basic steps of network analysis using Markov chains are

explained: defining network (states, transition matrix, and

distribution vector), performing matrix multiplication

(computing stationary distribution vector and computing

stationary transition vector), performing random walk

(computing stationary distribution vector), comparing results,

and plotting charts.

The developed program was tested on an experimental data.

The program has successfully performed the basic steps of

network analysis using Markov chains and provided the

required results.

Keywords
Computer Science, Artificial Intelligence, Machine Learning,

Network Analysis, Markov Chains, Python, Programming.

1. INTRODUCTION
In the recent years, machine learning has played a major role in

the development of computer systems. Machine learning (ML)

is a branch of Artificial Intelligence (AI) which is focused on

the study of algorithms and methods to improve the

performance and efficiency of computer programs [1-11].

Network analysis is an important area in the field of machine

learning. It is sharing knowledge with many other fields like:

programming, data science, mathematics, statistics, and

numerical methods [12-15, 16-20].

Fig 1: Area of Network Analysis

Network analysis is used to understand the structure, function,

and performance of the network. It is performed using Markov

chains to predict the future state based on the present state. It is

applied in many applications, for example: prediction,

generation, ranking, clustering, etc.

2. LITERATURE REVIEW
The literature was reviewed to explore the fundamental

concepts, methods, and applications of network analysis using

Markov chains [21-26, 27-33].

Network analysis is an important area in machine learning. It

has a wide range of applications in different areas like:

technology, business, education, psychology, sociology,

biology, environment, traffic, sports, etc.

Networks exist everywhere in life. There are networks of

computers, people, articles, posts, tweets, words, etc. Simply,

network is a set of nodes (or states) and edges (or transitions).

The network model is built to provide a basic representation of

the network. Then, the network analysis is performed to

understand the network structure, function, performance. It

helps to predict the future behavior of the network.

In this research, network analysis is performed using Markov

chains. It is a powerful mathematical method used to predict

the next state based on the current state and not on the previous

states.

Markov chains method was developed by the Russian

mathematician Andrey Markov in 1906 [34]. It was used to

solve the random processes for large numbers. Now, it is

widely used in many fields: mathematics, statistics, computing,

weather, sociology, communications, etc.

The fundamental concepts of network analysis using Markov

chains are explained in the following section.

Network Analysis:
Network analysis is the process of studying network to

understand its structure, function, and performance. Networks

exist almost everywhere in life. There are networks of

computers, devices, mobiles, students, players, web pages,

articles, elements, processes, animals, cities, countries, and so

on.

Fig 2: Concept of Network Analysis

Network

Analysis

Mathematics

Numerical

Methods

Statistics

Machine

Learning

Data Science

Programming Network Results

Network

Analysis

using

Markov Chains

Matrix Multiplication

Random Walk

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

87

Markov Chains:
Markov chains is a mathematical method used to predict the

next state based on the current state. The probability of moving

from one state to another depends only on the current state and

not on the previous states. Simply, Markov chains model is

represented by the following formula:

P = P(Xn+1 = Sn+1 | Xn = Sn, Xn-1 = Sn-1, …, X0 = S0)

= P(Xn+1 = Sn+1 | Xn = Sn)

Where: (X) is the random variable, and (S) is the state.

The basic concepts of Markov chains are explained in the

following section.

Transition Diagram:
Transition diagram is a graph that shows the states and

transitions in the network. The state is drawn as a circle and the

transition is drawn as an arrow. The following diagram

represents a complete transition diagram:

Fig 3: Representation of Transition Diagram

Transition Matrix:
Transition matrix is a matrix of size (n×n) that shows the

probabilities of transition between states. It can be represented

as shown in the following form:

 0 1 … j … n-1

P =

0

1

⋮
i

⋮
n-1

[

p
0,0

p
0,1

⋯ p
0,j

⋯ p
0,n-1

p
1,0

p
1,1

⋯ p
1,j

⋯ p
1,n-1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
p

i,0
p

i,1
⋯ p

i,j
⋯ p

i,n-1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
p

n-1,0
p

n-1,1
⋯ p

n-1,j
⋯ p

n-1,n-1]

Fig 4: Representation of Transition Matrix

The rows represent the current states, and the columns

represent the next states. The intersections of rows and columns

represent the cells. For example, the cell (pi,j) represents the

probability of transition from the current state (i) to the next

state (j).

The transition probability (pi,j) is represented by the following

formula:

p
i,j

 = P(Xn+1 = j | Xn = i)

The transition matrix should satisfy the following two

conditions:

1 ≥ p
i,j
 ≥ 0

and

∑ p
i,j

j

 = 1

Where each probability (pi,j) lies in the range [0, 1] and the sum

of probabilities in each row is (1).

Example:
Assume a network of four states (A, B, C, and D) with the

following transition diagram:

Fig 5: Example of Transition Diagram

Therefore, the transition matrix is represented as shown in the

following form:

 A B C D

P =

A

B

C

D

 [

0.4 0 0.6 0

0.7 0.3 0 0

0 0.5 0.2 0.3

0.1 0.8 0 0.1

]

Fig 6: Example of Transition Matrix

Distribution Vector:
Distribution vector is a vector of size (n) that shows the

probabilities of states in the network. It can be represented as

shown in the following form:

π =[𝑝0, 𝑝1, ⋯ , 𝑝n-1]

In this research, network analysis using Markov chains is

performed by two methods: matrix multiplication and random

walk.

Matrix Multiplication:
The matrix multiplication is used to compute the stationary

distribution vector and the stationary transition matrix.

1. Stationary Distribution Vector:
The distribution vector (π) is computed for each iteration as

shown in the following steps:

π1 = π0 . P

π2 = π1 . P

π3 = π2 . P

…

 πn+1 = πn . P (1)

D C

A

State

A

Transition

B

D C

0.6

A B

0.7 0.3 0.4

0.2 0.3

0.1 0.5
0.8

0.1

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

88

After a long run, the distribution vector will be stable and will

not change. This indicates that the distribution vector is

converging to the stationary form.

 ⸫ π = π . P (2)

Here, the implementation of matrix multiplication to compute

the stationary distribution vector is explained step by step in the

following algorithm:

Algorithm 1: Matrix Multiplication to Compute the Stationary

Distribution Vector

define states

states = […]

define transition matrix

T = [[…],

 …

 […]]

define distribution vector

V = […]

start with V

V_old = V

initialize distance

D = []

max number of iterations

N = 10^6

for t = 1 to N do

 # compute V_new

 V_new = multiply(V_old, T)

 print(t, V_new)

 # compute distance

 d = distance(V_new, V_old)

 # add distance

 D.append(d)

 # check if equal

 if (V_new = V_old) then

 break

 # make V_new as V_old

 V_old = V_new

end for

2. Stationary Transition Matrix

The matrix multiplication is used to compute the stationary

transition matrix.

Using formula (1) to do further analysis as shown in the

following steps:

π1 = π0 . P

π2 = π1 . P

 = (π
0
 . P) . P

 = π0 . P2

π3 = π2 . P

 = (π
0
 . P2) . P

 = π0 . P3

…

 ⸫ πn = π0 . Pn (3)

This shows that the distribution vector at step "n" (πn) is the

product of the initial distribution vector (π0) by the transition

matrix raised to the power "n" (Pn).

Here, the implementation of matrix multiplication to compute

the stationary transition matrix is explained step by step in the

following algorithm:

Algorithm 2: Matrix Multiplication to Compute the Stationary

Transition Matrix

define states

states = […]

define transition matrix

T = [[…],

 …

 […]]

start with T

T_old = T

max number of iterations

N = 10^6

for t = 1 to N do

 # compute T_new

 T_new = multiply(T_old, T)

 print(t, T_new)

 # check if equal

 if (T_new = T_old) then

 break

 # make T_new as T_old

 T_old = T_new

end for

Random Walk:
The random walk is a simulation method used to compute the

stationary distribution vector. It assumes a random surfer that

moves randomly between states based on their probabilities.

After a long run, the distribution vector will be stable and will

not change. This indicates that the distribution vector is

converging to the stationary form.

Here, the implementation of random walk to compute the

stationary distribution vector is explained step by step in the

following algorithm:

Algorithm 3: Random Walk to Compute the Stationary

Distribution Vector

define states

states = […]

define transition matrix

T = [[…],

 … ,

 […]]

define distribution vector

V = […]

start with state

current_state = …

add state to walk path

walk_path = [current_state]

number of iterations

N = 10^6

for t = 1 to N do

 # select random state

 next_state = random.choice(states, T[current_state])

 # update state count

 V[next_state] += 1

 # add state to walk path

 walk_path.append(next_state)

 # make next_state as current_state

 current_state = next_state

end for

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

89

normalize V

V = normalize(V)

print(V)

Network Analysis System:
The network analysis system is summarized in the following

outline:

Input: Network.

Output: Results.

Processing: First, the network is defined (states, transition

matrix, and distribution vector). Then, the matrix multiplication

is performed to compute the stationary distribution vector and

the stationary transition matrix. Next, the random walk is

performed to compute the stationary distribution vector. After

that, the results are compared and the charts are plotted.

Fig 7: Network Analysis System

Python:
Python [35] is an open source, object-oriented, and general-

purpose programming language. It is simple to code, easy to

learn, and powerful. It is the most popular programming

language especially in the field of machine learning.

Python provides many additional libraries for different

purposes. For example: Numpy [36], Pandas [37], Matplotlib

[38], Seaborn [39], SciPy [40], NLTK [41], and SK Learn [42].

3. RESEARCH METHODOLOGY
The basic steps of network analysis using Markov chains are:

(1) defining network: states, transition matrix, and distribution

vector, (2) performing matrix multiplication: computing

stationary distribution vector and computing stationary

transition matrix, (3) performing random walk: computing

stationary distribution vector, (4) comparing results, and (5)

plotting charts.

Fig 8: Basic Steps of Network Analysis

Fig 9: Flowchart of Network Analysis

The basic steps of network analysis using Markov chains are

explained in the following section.

Note: The program is developed using only the standard

functions of Python without any additional library.

1. Defining Network:
The network is defined by the following steps:

1.1. Defining States:
The states are defined by the following code:

states = [0, 1, ..., n-1]

1.2. Defining Transition Matrix:
The transition matrix (T) is defined by the following code:

T = [[p0,0, p0,1, ..., p0,n-1],

 [p1,0, p1,1, ..., p1,n-1],

 ...

 [pn-1,0, pn-1,1, ..., pn-1,n-1]]

1.3. Defining Distribution Vector:
The distribution vector (V) is defined by the following code:

V = [p0, p1, ..., pn-1]

2. Performing Matrix Multiplication:
The matrix multiplication is performed to compute the

stationary distribution vector (V) and the stationary transition

matrix (T).

Network Analysis

System

Network

Results

• Defining Network:

- Defining States

- Defining Transition Matrix

- Defining Distribution Vector

• Performing Matrix Multiplication:

- Computing Stationary Distribution Vector

- Computing Stationary Transition Matrix

• Performing Random Walk:

- Computing Stationary Distribution Vector

• Comparing Results

• Plotting Charts

Define

Network

Perform
Matrix

Multiplication

Perform

Random
Walk

Plot

Charts

• States

• Transition Matrix

• Distribution Vector

• Stationary Distribution Vector

• Stationary Transition Matrix

• Stationary Distribution Vector

• Matrix Multiplication

• Random Walk

Compare

Results

• Distance

• Stationary Distribution Vector

• Stationary Transition Matrix

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

90

2.1. Computing Stationary Distribution

Vector:
The stationary distribution vector (V) is computed by the

following code:

start with V

V_old = V

initialize distance

D = []

max number of iterations

N = 10**6

for t in range(1, N):

 # compute V_new

 V_new = multiply_vm(V_old, T)

 print(t, ":", V_new)

 # compute distance

 d = distance(V_new, V_old)

 # add distance

 D.append(d)

 if equal_v(V_new, V_old, digits):

 break

 # make V_new as V_old

 V_old = V_new

The distance between the new and old distribution vectors is

computed by the following code:

def distance(v1, v2):

 sum = 0

 for i in range(len(v1)):

 sum += (v1[i] - v2[i])**2

 return sum**0.5

2.2. Computing Stationary Transition

Matrix:
The stationary transition matrix (T) is computed by the

following code:

start with T

T_old = T

max number of iterations

N = 10**6

for t in range(1, N):

 # compute T_new

 T_new = multiply_mm(T_old, T)

 print(t, ":")

 print(T_new)

 if equal_m(T_new, T_old, digits):

 break

 # make T_new as T_old

 T_old = T_new

The matrix multiplication functions (multiply_vm) and

(multiply_mm) are done by the following code:

dot product of 2 vectors

def dot(v1, v2):

 sum = 0

 for i in range(len(v1)):

 sum += v1[i]*v2[i]

 return sum

multiply vector by matrix

def multiply_vm(v, m):

 mt = transpose(m)

 t = []

 for i in range(len(v)):

 t.append(dot(v, mt[i]))

 return t

multiply matrix by matrix

def multiply_mm(m1, m2):

 m2t = transpose(m2)

 t = []

 for i in range(len(m1)):

 row = []

 for j in range(len(m2t)):

 row.append(dot(m1[i], m2t[j]))

 t.append(row)

 return t

3. Performing Random Walk:

Computing Stationary Distribution Vector:
The random walk is performed to compute the stationary

distribution vector (V). It is done by the following code:

import numpy as np

select state

current_state = 0

add state to walk path

walk_path = [current_state]

number of iterations

N = 10**6

for t in range(1, N):

 # select random state

 next_state = np.random.choice(states,

 p=T[current_state])

 # update state count

 V[next_state] += 1

 # add state to walk_path

 walk_path.append(next_state)

 # make next_state as current_state

 current_state = next_state

normalize V

V = normalize(V)

print("V = ", V)

print("Walk Path :")

print(walk_path)

The distribution vector (V) is normalized by the following code:

def normalize(v):

 total = sum(v)

 for i in range(len(v)):

 v[i] /= total

 return v

4. Comparing Results:
The results of performing matrix multiplication and random

walk are printed by the following code:

Matrix Multiplication

print("(1) Matrix Multiplication:")

print("Stationary Distribution Vector (V):")

print(V_new)

print("Stationary Transition Matrix (T):")

print(T_new)

Random Walk

print("(2) Random Walk:")

print("Stationary Distribution Vector (V):")

print(V)

Then, the results are compared to check if they match or not.

5. Plotting Charts:
The plotting libraries are imported by the following code:

import matplotlib.pyplot as plt

import seabron as sns

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

91

The distance between the new and old distribution vectors

(V_new, and V_old) is plotted by the following code:

plt.plot(D)

plt.show()

The distribution vector (V) is plotted by the following code:

plt.bar(V)

plt.show()

The transition matrix (T) is plotted by the following code:

sns.heatmap(T)

plt.show()

4. RESULTS AND DISCUSSION
The developed program was tested on an experimental data.

The program has successfully performed the basic steps of

network analysis using Markov chains and provided the

required results. The program output is explained step by step

in the following section.

Defining Network:
The network is defined by the following steps:

1. Defining States:
The states are defined and printed as shown in the following

view:

States = [0, 1, 2, 3]

2. Defining Transition Matrix:
The transition matrix (T) is defined and printed as shown in the

following view:

Transition Matrix (T):

[0.2, 0.1, 0.3, 0.4]

[0.6, 0.1, 0.1, 0.2]

[0.1, 0.2, 0.2, 0.5]

[0.4, 0.1, 0.2, 0.3]

3. Defining Distribution Vector:
The distribution vector (V) is defined and printed as shown in

the following view:

Distribution Vector (V):

[1, 0, 0, 0]

Performing Matrix Multiplication:
The matrix multiplication is performed to compute the

stationary distribution vector (V) and the stationary transition

matrix (T).

1. Computing Stationary Distribution

Vector:
The distribution vector (V) is computed for each iteration and

printed as shown in the following view:

Distribution Vector (V):

 1: [0.2, 0.1, 0.3, 0.4]

 2: [0.29, 0.13, 0.21, 0.37]

 3: [0.305, 0.121, 0.216, 0.358]

 4: [0.2984, 0.1216, 0.2184, 0.3616]

 5: [0.29912, 0.12184, 0.21768, 0.36136]

 6: [0.29924, 0.121768, 0.217728, 0.361264]

 7: [0.299187, 0.121773, 0.217747, 0.361293]

 8: [0.299193, 0.121775, 0.217741, 0.361291]

 9: [0.299194, 0.121774, 0.217742, 0.36129]

10: [0.299193, 0.121774, 0.217742, 0.36129]

...

The stationary distribution vector (V) is computed and printed

as shown in the following view:

Stationary Distribution Vector (V):

[0.299194, 0.121774, 0.217742, 0.36129]

2. Computing Stationary Transition Matrix:
The transition matrix (T) is computed for each iteration and

printed as shown in the following view:

Transition Matrix (T):

1:

[0.29, 0.13, 0.21, 0.37]

[0.27, 0.11, 0.25, 0.37]

[0.36, 0.12, 0.19, 0.33]

[0.28, 0.12, 0.23, 0.37]

2:

[0.305, 0.121, 0.216, 0.358]

[0.293, 0.125, 0.216, 0.366]

[0.295, 0.119, 0.224, 0.362]

[0.299, 0.123, 0.216, 0.362]

3:

[0.2984, 0.1216, 0.2184, 0.3616]

[0.3016, 0.1216, 0.2168, 0.36]

[0.2976, 0.1224, 0.2176, 0.3624]

[0.3, 0.1216, 0.2176, 0.3608]

...

The stationary transition matrix (T) is computed and printed as

shown in the following view:

Stationary Transition Matrix (T):

[0.299194, 0.121774, 0.217742, 0.36129]

[0.299194, 0.121774, 0.217742, 0.36129]

[0.299194, 0.121774, 0.217742, 0.36129]

[0.299194, 0.121774, 0.217742, 0.36129]

The stationary distribution vector (V) can also be computed

using formula (3). It is computed and printed as shown in the

following view:

Stationary Distribution Vector (V):

[0.299194, 0.121774, 0.217742, 0.36129]

Performing Random Walk:

Computing Stationary Distribution Vector:
The random walk is performed to compute the stationary

distribution vector (V). It is computed and printed as shown in

the following view:

Stationary Distribution Vector (V):

[0.29901, 0.121713, 0.218088, 0.361189]

The walk path is computed and printed as shown in the

following view:

Walk Path:

[0, 1, 3, 0, 2, 3, 0, 3, 3, 2, 2, 0, 2, 3, ...

Comparing Results:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

92

The results of matrix multiplication and random walk are

printed as shown in the following view:

(1) Matrix Multiplication:

Stationary Distribution Vector (V):

[0.299194, 0.121774, 0.217742, 0.36129]

Stationary Transition Matrix (T):

[0.299194, 0.121774, 0.217742, 0.36129]

[0.299194, 0.121774, 0.217742, 0.36129]

[0.299194, 0.121774, 0.217742, 0.36129]

[0.299194, 0.121774, 0.217742, 0.36129]

(2) Random Walk:

Stationary Distribution Vector (V):

[0.29901, 0.121713, 0.218088, 0.361189]

Now, by comparing the results, it is clear that they match.

Plotting Charts:
The distance between the new and old distribution vectors

(V_new and V_old) is plotted as shown in the following chart:

Fig 10: Distance Plot

The plot shows that the distance is decreasing with iterations,

which indicates that the distribution vector (V) is converging to

the stationary form.

Here, the stationary distribution vector (V) is plotted as shown

in the following chart:

Fig 11: Stationary Distribution Vector Plot

The plot shows the importance of states. They sorted in the

following order (3, 0, 2, 1)

Now, the initial and stationary transition matrices (T and

T_new) are plotted as shown in the following charts:

Fig 12: Initial Transition Matrix Heatmap

Fig 13: Stationary Transition Matrix Heatmap

The heatmaps show that the transition matrix is converging to

the stationary form.

In summary, it is clear that the program has successfully

performed the basic steps of network analysis using Markov

chains and provided the required results.

5. CONCLUSION
In this research, the goal was to implement network analysis

using Markov chains in Python. The literature was reviewed to

explore the fundamental concepts of network analysis using

Markov chains: network analysis, Markov chains, transition

diagram, transition matrix, distribution vector, matrix

multiplication, and random walk.

The author developed a program in Python to perform the basic

steps of network analysis using Markov chains: defining

network (states, transition matrix, and distribution vector),

performing matrix multiplication (computing stationary

distribution vector and computing stationary transition matrix),

performing random walk (computing stationary distribution

vector), comparing results, and plotting charts.

The developed program was tested on an experimental data.

The program has successfully performed the basic steps of

network analysis using Markov chains and provided the

required results.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.75, January 2026

93

In the future, more work is needed to improve the current

methods of network analysis using Markov chains. In addition,

they should be more investigated on different fields and

domains.

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of

Machine Learning". Springer.

[2] Jung, A. (2022). "Machine Learning: The Basics".

Springer.

[3] Kubat, M. (2021). "An Introduction to Machine

Learning". Springer.

[4] Li, H. (2023). "Machine Learning Methods". Springer.

[5] Zollanvari, A. (2023). " Machine Learning with Python".

Springer.

[6] Chopra, D., & Khurana, R. (2023). "Introduction to

Machine Learning with Python". Bentham Science

Publishers.

[7] Müller, A. C., & Guido, S. (2016). "Introduction to

Machine Learning with Python: A Guide for Data

Scientists". O'Reilly Media.

[8] Raschka, S. (2015). "Python Machine Learning". Packt

Publishing.

[9] Forsyth, D. (2019). "Applied Machine Learning".

Springer.

[10] Sarkar, D., Bali, R., & Sharma, T. (2018). "Practical

Machine Learning with Python". Apress.

[11] Bonaccorso, G. (2018). "Machine Learning Algorithms:

Popular Algorithms for Data Science and Machine

Learning". Packt Publishing.

[12] Igual, L., & Seguí, S. (2017). "Introduction to Data

Science: A Python Approach to Concepts, Techniques and

Applications". Springer.

[13] VanderPlas, J. (2017). "Python Data Science Handbook:

Essential Tools for Working with Data". O'Reilly Media.

[14] Muddana, A., & Vinayakam, S. (2024). "Python for Data

Science". Springer.

[15] Unpingco, J. (2021). "Python Programming for Data

Analysis". Springer.

[16] Zelle, J. (2017). "Python Programming: An Introduction

to Computer Science". Franklin, Beedle & Associates.

[17] Xanthidis, D., Manolas, C., Xanthidou, O. K., & Wang,

H. I. (2022). "Handbook of Computer Programming with

Python". CRC Press.

[18] Chun, W. (2001). "Core Python Programming". Prentice

Hall Professional.

[19] Padmanabhan, T. (2016). "Programming with Python".

Springer.

[20] Beazley, D. & Jones, B. (2013). "Python Cookbook:

Recipes for Mastering Python 3". O'Reilly Media.

[21] Newman, M. (2018). "Networks: An Introduction".

Oxford University Press.

[22] Estrada, E. & Knight, P. (2015). "A First Course in

Network Theory". Oxford University Press.

[23] Menczer, F., Fortunato, S., & Davis, C. A. (2020). "A First

Course in Network Science". Cambridge University Press.

[24] Lewis, T. (2009). "Network Science: Theory and

Applications". John Wiley & Sons.

[25] Barabasi, A. (2016). "Network Science". Cambridge

University Press

[26] Knickerbocker, D. (2023). "Network Science with

Python". Packt Publishing.

[27] Norris, J. (2009). "Markov Chains". Cambridge

University Press.

[28] Tolver, A. (2016). "An Introduction to Markov Chains".

Department of Mathematical Sciences, University of

Copenhagen.

[29] Weber, R. (2011). "Markov Chains". Department of Pure

Mathematics and Mathematical Statistics. University of

Cambridge.

[30] Gagniuc, P. (2017). "Markov Chains: From Theory to

Implementation and Experimentation". John Wiley &

Sons.

[31] Ching, W., Huang, S., Ng, M., & Siu, T. (2013). "Markov

Chains: Models, Algorithms, and Applications".

Springer.

[32] Privault, N. (2018). "Understanding Markov Chains:

Examples and Applications". Springer.

[33] Ankan, A., & Panda, A. (2018). "Hands-On Markov

Models with Python". Packt Publishing.

[34] Grinstead, C., & Snell, J. (1997). "Introduction to

Probability". American Mathematical Society.

[35] Python: http://www.python.org

[36] Numpy: http://www.numpy.org

[37] Pandas: http://pandas.pydata.org

[38] Matplotlib: http://www. matplotlib.org

[39] Seaborn: http://seaborn.pydata.org

[40] SciPy: http://scipy.org

[41] NLTK: http://www.nltk.org

[42] SK Learn: http://scikit-learn.org

https://open.umn.edu/opentextbooks/textbooks/21
https://open.umn.edu/opentextbooks/textbooks/21

