International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

Implementation of Network Analysis using Markov
Chains in Python

Ahmad Farhan AlIShammari
Department of Computer and Information Systems
College of Business Studies, PAAET

ABSTRACT

The goal of this research is to implement network analysis
using Markov chains in Python. Networks exist almost
everywhere in life. There are networks of computers, people,
articles, posts, etc. Network analysis is used to understand the
structure, function, and performance of the network. Markov
chains method is used to predict the future state based on the
present state and not on the previous states.

The basic steps of network analysis using Markov chains are
explained: defining network (states, transition matrix, and
distribution vector), performing matrix multiplication
(computing stationary distribution vector and computing
stationary transition vector), performing random walk
(computing stationary distribution vector), comparing results,
and plotting charts.

The developed program was tested on an experimental data.
The program has successfully performed the basic steps of
network analysis using Markov chains and provided the
required results.

Keywords
Computer Science, Artificial Intelligence, Machine Learning,
Network Analysis, Markov Chains, Python, Programming.

1. INTRODUCTION

In the recent years, machine learning has played a major role in
the development of computer systems. Machine learning (ML)
is a branch of Artificial Intelligence (AI) which is focused on
the study of algorithms and methods to improve the
performance and efficiency of computer programs [1-11].

Network analysis is an important area in the field of machine
learning. It is sharing knowledge with many other fields like:
programming, data science, mathematics, statistics, and
numerical methods [12-15, 16-20].

Machine Mathematics
Learning
) Network Statistics
Programming Analysis
Numerical
Data Science Methods

Fig 1: Area of Network Analysis

Network analysis is used to understand the structure, function,
and performance of the network. It is performed using Markov
chains to predict the future state based on the present state. It is
applied in many applications, for example: prediction,
generation, ranking, clustering, etc.

Kuwait

2. LITERATURE REVIEW

The literature was reviewed to explore the fundamental
concepts, methods, and applications of network analysis using
Markov chains [21-26, 27-33].

Network analysis is an important area in machine learning. It
has a wide range of applications in different areas like:
technology, business, education, psychology, sociology,
biology, environment, traffic, sports, etc.

Networks exist everywhere in life. There are networks of
computers, people, articles, posts, tweets, words, etc. Simply,
network is a set of nodes (or states) and edges (or transitions).

The network model is built to provide a basic representation of
the network. Then, the network analysis is performed to
understand the network structure, function, performance. It
helps to predict the future behavior of the network.

In this research, network analysis is performed using Markov
chains. It is a powerful mathematical method used to predict
the next state based on the current state and not on the previous
states.

Markov chains method was developed by the Russian
mathematician Andrey Markov in 1906 [34]. It was used to
solve the random processes for large numbers. Now, it is
widely used in many fields: mathematics, statistics, computing,
weather, sociology, communications, etc.

The fundamental concepts of network analysis using Markov
chains are explained in the following section.

Network Analysis:

Network analysis is the process of studying network to
understand its structure, function, and performance. Networks
exist almost everywhere in life. There are networks of
computers, devices, mobiles, students, players, web pages,
articles, elements, processes, animals, cities, countries, and so
on.

Network Results
Network
Analysis
/_'_ using
Markov Chains

Matrix Multiplication
Random Walk

Fig 2: Concept of Network Analysis

86

Markov Chains:

Markov chains is a mathematical method used to predict the
next state based on the current state. The probability of moving
from one state to another depends only on the current state and
not on the previous states. Simply, Markov chains model is
represented by the following formula:

p= P(Xnﬂ = Sn+1 | Xn = Sn' Xn-l = Sn-]l ceey XO = SO)
= P(Xn+l = Sn+[I Xn = Sn)

Where: (X) is the random variable, and (S) is the state.

The basic concepts of Markov chains are explained in the
following section.

Transition Diagram:

Transition diagram is a graph that shows the states and
transitions in the network. The state is drawn as a circle and the
transition is drawn as an arrow. The following diagram
represents a complete transition diagram:

A +-——» B/)
A
State l l
—
Transition C =-—— »

C/ b
Fig 3: Representation of Transition Diagram
Transition Matrix:
Transition matrix is a matrix of size (nxn) that shows the

probabilities of transition between states. It can be represented
as shown in the following form:

0 1 e J e -1
0 [po,o Por 0 Po; T po,n-l]
] |p1,(1 Py Pyt Praa |
L
i | P Pis D;; Dini

I

I

Lo

n-1 [pn-l,() pn-],] pn-],j pn-l,n-IJ

Fig 4: Representation of Transition Matrix

The rows represent the current states, and the columns
represent the next states. The intersections of rows and columns
represent the cells. For example, the cell (pi;) represents the
probability of transition from the current state (7) to the next
state (f).

The transition probability (p:) is represented by the following
formula:

p[J’:P(Xn+l :j | Xn :l)

The transition matrix should satisfy the following two
conditions:

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

12pLj >0

pr =1
J

Where each probability (pi;) lies in the range [0, 1] and the sum
of probabilities in each row is (1).

and

Example:
Assume a network of four states (4, B, C, and D) with the
following transition diagram:

Fig 5: Example of Transition Diagram

Therefore, the transition matrix is represented as shown in the
following form:

A B C D
A[04 0 06 0
_Bl07 03 0 0

P_c 0 05 02 03

D10.1 08 0 0.1

Fig 6: Example of Transition Matrix

Distribution Vector:
Distribution vector is a vector of size (n) that shows the
probabilities of states in the network. It can be represented as
shown in the following form:

n=[Po» P s Pnil

In this research, network analysis using Markov chains is
performed by two methods: matrix multiplication and random
walk.

Matrix Multiplication:
The matrix multiplication is used to compute the stationary
distribution vector and the stationary transition matrix.

1. Stationary Distribution Vector:
The distribution vector (n) is computed for each iteration as
shown in the following steps:

m =m.P
my=m .P
m3=m,.P

Tn+1 = Ty P (1)

87

After a long run, the distribution vector will be stable and will
not change. This indicates that the distribution vector is
converging to the stationary form.

~m=mn.P 2)
Here, the implementation of matrix multiplication to compute

the stationary distribution vector is explained step by step in the
following algorithm:

Algorithm 1: Matrix Multiplication to Compute the Stationary
Distribution Vector

define states
states =[...]
define transition matrix

T=I[...1,
[...]]
define distribution vector
V=I[...]
start with V
Vold=V
initialize distance
D=]]
max number of iterations
N=106
forz=1to Ndo
compute V_new
V_new = multiply(V _old, T)
print(¢, V_new)
compute distance
d = distance(V_new, V_old)
add distance
D.append(d)
check if equal
if (V_new =7V _old) then
break
make V_new as V_old
V old=7V new
end for

2. Stationary Transition Matrix
The matrix multiplication is used to compute the stationary
transition matrix.

Using formula (1) to do further analysis as shown in the
following steps:

TEIZT[().P

TEZZTEI.P
=(m,.P).P
:TIZ().P2

7[3:ﬂ2.P
=(m,.P%.P
:T[0.P3

LMy =T . P 3)
This shows that the distribution vector at step "n" (mn) is the

product of the initial distribution vector (mo) by the transition
matrix raised to the power "n" (P").

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

Here, the implementation of matrix multiplication to compute
the stationary transition matrix is explained step by step in the
following algorithm:

Algorithm 2: Matrix Multiplication to Compute the Stationary
Transition Matrix
define states
states = [...]
define transition matrix
T=I[...],
[...]]
start with T
T old=T
max number of iterations
N=10"6
for t=1to Ndo
compute T _new
T new =multiply(T old, T)
print(z, T_new)
check if equal
if (T_new =T old) then
break
#make T newas T old
T old=T new
end for

Random Walk:

The random walk is a simulation method used to compute the
stationary distribution vector. It assumes a random surfer that
moves randomly between states based on their probabilities.

After a long run, the distribution vector will be stable and will
not change. This indicates that the distribution vector is
converging to the stationary form.

Here, the implementation of random walk to compute the
stationary distribution vector is explained step by step in the
following algorithm:

Algorithm 3: Random Walk to Compute the Stationary
Distribution Vector

define states
states =[...]
define transition matrix
r=[[...],
[...]]
define distribution vector
V=I...]
start with state
current_state = ...
add state to walk path
walk_path = [current_state]
number of iterations
N=10"6
for t=1to Ndo
select random state
next_state = random.choice(states, T[current_state])
update state count
Vinext state] +=1
add state to walk path
walk_path.append(next_state)
make next_state as current_state
current_state = next_state
end for

88

normalize V
V = normalize(V)

print(¥)

Network Analysis System:
The network analysis system is summarized in the following
outline:

Input: Network.

Output: Results.

Processing: First, the network is defined (states, transition
matrix, and distribution vector). Then, the matrix multiplication
is performed to compute the stationary distribution vector and
the stationary transition matrix. Next, the random walk is
performed to compute the stationary distribution vector. After
that, the results are compared and the charts are plotted.

Network

l

Network Analysis
System

l

Results

Fig 7: Network Analysis System

Python:

Python [35] is an open source, object-oriented, and general-
purpose programming language. It is simple to code, easy to
learn, and powerful. It is the most popular programming
language especially in the field of machine learning.

Python provides many additional libraries for different
purposes. For example: Numpy [36], Pandas [37], Matplotlib
[38], Seaborn [39], SciPy [40], NLTK [41], and SK Learn [42].

3. RESEARCH METHODOLOGY

The basic steps of network analysis using Markov chains are:
(1) defining network: states, transition matrix, and distribution
vector, (2) performing matrix multiplication: computing
stationary distribution vector and computing stationary
transition matrix, (3) performing random walk: computing
stationary distribution vector, (4) comparing results, and (5)
plotting charts.

e Defining Network:
- Defining States
- Defining Transition Matrix
- Defining Distribution Vector
e Performing Matrix Multiplication:
- Computing Stationary Distribution Vector
- Computing Stationary Transition Matrix
e Performing Random Walk:
- Computing Stationary Distribution Vector
e Comparing Results
e Plotting Charts

Fig 8: Basic Steps of Network Analysis

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

o States
o Transition Matrix Define
o »| Network
e Distribution Vector
\
e Stationary Distribution Vector < Perform

»| Matrix
Multiplication

e Stationary Transition Matrix

Perform
e Stationary Distribution Vector D | Random
Walk
\
e Matrix Multiplication - Compare
e Random Walk » Results
\
e Distance
o Stationary Distribution Vector Plot
»| Charts

o Stationary Transition Matrix

Fig 9: Flowchart of Network Analysis

The basic steps of network analysis using Markov chains are
explained in the following section.

Note: The program is developed using only the standard
functions of Python without any additional library.

1. Defining Network:
The network is defined by the following steps:

1.1. Defining States:
The states are defined by the following code:

states = [0, 1, ..., n-1]

1.2. Defining Transition Matrix:
The transition matrix (7) is defined by the following code:

.y Po,n-1]
.7 pl,n—l]

T = [[po,0o, Po,1s
[p1,0, P11,

’
’

[Pn-1,0, Pn-1,1, .7 Pn-1,n-1]]

1.3. Defining Distribution Vector:
The distribution vector (V) is defined by the following code:

V = [po, p1, .7 Pn-1]

2. Performing Matrix Multiplication:

The matrix multiplication is performed to compute the
stationary distribution vector (V) and the stationary transition
matrix (7).

89

2.1. Computing Stationary Distribution

Vector:
The stationary distribution vector (V) is computed by the
following code:

start with Vv

V_old =V

initialize distance

D = []

max number of iterations

N = 10**6

for t in range(l, N):
compute V_new
V_new = multiply vm(V_old, T)
print(t, ":", V_new)
compute distance
d = distance(V_new, V_old)
add distance

D.append (d)
if equal v(V_new, V old, digits):
break

make V_new as V_old
V_old = V_new

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

t =[]
for i in range(len(ml)):
row = []
for j in range(len(m2t)):
row.append (dot (m1[i], m2t[j]))
t.append (row)
return t

3. Performing Random Walk:

Computing Stationary Distribution Vector:
The random walk is performed to compute the stationary
distribution vector (). It is done by the following code:

The distance between the new and old distribution vectors is
computed by the following code:

def distance(vl, v2):
sum = 0
for i in range(len(vl)):
sum += (v1[i] - v2[di])**2
return sum**0.5

2.2. Computing Stationary Transition

Matrix:

The stationary transition matrix (7) is computed by the
following code:

import numpy as np

select state
current state = 0
add state to walk path
walk path = [current state]
number of iterations
N = 10**6
for t in range(l, N):
select random state
next state = np.random.choice(states,
p=T[current state])
update state count
V[next state] += 1
add state to walk path
walk path.append(next state)
make next state as current state
current state = next state
normalize V
V = normalize (V)
print("v = ", V)
print ("Walk Path :")
print (walk path)

The distribution vector (¥) is normalized by the following code:

start with T
T old =T
max number of iterations
N = 10**6
for t in range(l, N):
compute T new
T new = multiply mm(T old, T)
print(t, ":")
print (T_new)
if equal m(T_new, T_old, digits):
break
make T new as T old
T old = T new

def normalize (v):
total = sum(v)
for i in range(len(v)):
v[i] /= total
return v

4. Comparing Results:
The results of performing matrix multiplication and random
walk are printed by the following code:

The matrix multiplication functions (multiply vm) and
(multiply_mm) are done by the following code:

dot product of 2 vectors
def dot(vl, v2):
sum = 0
for i in range(len(vl)):
sum += v1[i]*v2[1i]
return sum
multiply vector by matrix
def multiply vm(v, m):
mt = transpose (m)
t =11
for i in range(len(v)):
t.append(dot (v, mt[i]))
return t
multiply matrix by matrix
def multiply mm(ml, m2):
m2t = transpose (m2)

Matrix Multiplication

print (" (1) Matrix Multiplication:")

print ("Stationary Distribution Vector (V):")
print (V_new)

print ("Stationary Transition Matrix (T):")
print (T_new)

Random Walk

print (" (2) Random Walk:")

print ("Stationary Distribution Vector (V) :")
print (V)

Then, the results are compared to check if they match or not.

S. Plotting Charts:
The plotting libraries are imported by the following code:

import matplotlib.pyplot as plt
import seabron as sns

90

The distance between the new and old distribution vectors
(V_new, and V_old) is plotted by the following code:

plt.plot (D)
plt.show ()

The distribution vector (V) is plotted by the following code:

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

6: [0.29924, 0.121768, 0.217728, 0.361264]
7: [0.299187, 0.121773, 0.217747, 0.361293]
8: [0.299193, 0.121775, 0.217741, 0.361291]
9: [0.299194, 0.121774, 0.217742, 0.36129]
10: [0.299193, 0.121774, 0.217742, 0.36129]

plt.bar (V)
plt.show ()

The stationary distribution vector (¥) is computed and printed
as shown in the following view:

The transition matrix (7) is plotted by the following code:

Stationary Distribution Vector (V):
[0.299194, 0.121774, 0.217742, 0.36129]

sns.heatmap (T)
plt.show ()

4. RESULTS AND DISCUSSION

The developed program was tested on an experimental data.
The program has successfully performed the basic steps of
network analysis using Markov chains and provided the
required results. The program output is explained step by step
in the following section.

Defining Network:
The network is defined by the following steps:

1. Defining States:
The states are defined and printed as shown in the following
view:

2. Computing Stationary Transition Matrix:
The transition matrix (7) is computed for each iteration and
printed as shown in the following view:

States = [0, 1, 2, 3]

2. Defining Transition Matrix:
The transition matrix (7) is defined and printed as shown in the
following view:

Transition Matrix (T):

[0.29, 0.13, 0.21, O
[0.27, 0.11, 0.25, O
[0.36, 0.12, 0.19, 0.33
[0.28, 0.12, 0.23, O

2:
[0.305, 0.121, 0.216,
[0.293, 0.125, 0.216,
[0 .119, 0.224,
[0

.123, 0.216,

.295,
.299,

o O o o
o O oo
w
()}

o

0.2984, 0.1216, 0.2184, 0.3616]
0.3016, 0.1216, 0.2168, 0.36]
0.2976, 0.1224, 0.2176, 0.3624]
0.3, 0.1216, 0.2176, 0.3608]

The stationary transition matrix (7)) is computed and printed as
shown in the following view:

Transition Matrix (T):
[0.2, 0.1, 0.3, 0.4]
[0.6, 0.1, 0.1, 0.2]
[0.1, 0.2, 0.2, 0.5]
[0.4, 0.1, 0.2, 0.3]

Stationary Transition Matrix (T

)t
[0.299194, 0.121774, 0.217742, 0.36129]
[0.299194, 0.121774, 0.217742, 0.36129]
[0.299194, 0.121774, 0.217742, 0.36129]
[0.299194, 0.121774, 0.217742, 0.36129]

3. Defining Distribution Vector:
The distribution vector () is defined and printed as shown in
the following view:

The stationary distribution vector (V) can also be computed
using formula (3). It is computed and printed as shown in the
following view:

Distribution Vector (V) :
(1, 0, 0, 0]

Stationary Distribution Vector (V):
[0.299194, 0.121774, 0.217742, 0.36129]

Performing Matrix Multiplication:

The matrix multiplication is performed to compute the
stationary distribution vector (V) and the stationary transition
matrix (7).

1. Computing Stationary Distribution

Vector:
The distribution vector (V) is computed for each iteration and
printed as shown in the following view:

Performing Random Walk:

Computing Stationary Distribution Vector:
The random walk is performed to compute the stationary
distribution vector (V). It is computed and printed as shown in
the following view:

Stationary Distribution Vector (V):
[0.29901, 0.121713, 0.218088, 0.361189]

Distribution Vector (V)
1: [0.2, 0.1, 0.3, 0.4]
: 29, 0.13, 0.21, 0.37]

2: [O.
3: [0.305, 0.121, 0.216, 0.358]
4: [O0.
5: [0.

2984, 0.1216, 0.2184, 0.3616]
29912, 0.12184, 0.21768, 0.36136]

The walk path is computed and printed as shown in the
following view:

Walk Path:
0, 1, 3, 0, 2, 3, 0, 3, 3, 2, 2, 0, 2, 3,

Comparing Results:

91

The results of matrix multiplication and random walk are
printed as shown in the following view:

(1) Matrix Multiplication:
Stationary Distribution Vector (V):
[0.299194, 0.121774, 0.217742, 0.36129]

Stationary Transition Matrix (T):
[0.299194, 0.121774, 0.217742, 0.36129]
[0.299194, 0.121774, 0.217742, 0.36129]
[0.299194, 0.121774, 0.217742, 0.36129]
[0.299194, 0.121774, 0.217742, 0.36129]
(2) Random Walk:

Stationary Distribution Vector (V):
[0.29901, 0.121713, 0.218088, 0.361189]

Now, by comparing the results, it is clear that they match.

Plotting Charts:

The distance between the new and old distribution vectors
(V_new and V_old) is plotted as shown in the following chart:

Distance Plot

0.8

0.6

Value

0.4 4

0.2 4

0.01

T T T T T T T T
0 2 4 6 8 10 12 14
Iterations

Fig 10: Distance Plot

The plot shows that the distance is decreasing with iterations,
which indicates that the distribution vector (V) is converging to
the stationary form.

Here, the stationary distribution vector (V) is plotted as shown
in the following chart:

10 Stationary Distribution Vector Plot

0.9 4

0.8 1

0.7

0.6 q

0.59

Value

0.4 4

0.34

0.2 4

0.14

0.0 -

States

Fig 11: Stationary Distribution Vector Plot

The plot shows the importance of states. They sorted in the
following order (3, 0,2, 1)

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

Now, the initial and stationary transition matrices (7" and
T new) are plotted as shown in the following charts:

Initial Transition Matrix

1.0

o- 02 0.1 03 04
08

01 0.1 0.2
- 06
~- 01 02 02 -0-4
-0.2

w04 01 0.2 03
' , ' ' -0.0

0 1 2 3

Fig 12: Initial Transition Matrix Heatmap

Stationary Transition Matrix

1.0

o - 0.299194 0.121774 0.217742 0.361290
0.8
~ - 0.299194 0.121774 0.217742 0.361290 0.6
o~ - 0299194 0.121774 0.217742 0.361290 0.4
-0.2

m - 0.299194 0.121774 0.217742 0.361290
i] i i -0.0

Fig 13: Stationary Transition Matrix Heatmap

The heatmaps show that the transition matrix is converging to
the stationary form.

In summary, it is clear that the program has successfully
performed the basic steps of network analysis using Markov
chains and provided the required results.

5. CONCLUSION

In this research, the goal was to implement network analysis
using Markov chains in Python. The literature was reviewed to
explore the fundamental concepts of network analysis using
Markov chains: network analysis, Markov chains, transition
diagram, transition matrix, distribution vector, matrix
multiplication, and random walk.

The author developed a program in Python to perform the basic
steps of network analysis using Markov chains: defining
network (states, transition matrix, and distribution vector),
performing matrix multiplication (computing stationary
distribution vector and computing stationary transition matrix),
performing random walk (computing stationary distribution
vector), comparing results, and plotting charts.

The developed program was tested on an experimental data.
The program has successfully performed the basic steps of
network analysis using Markov chains and provided the
required results.

92

In the future, more work is needed to improve the current
methods of network analysis using Markov chains. In addition,
they should be more investigated on different fields and
domains.

6. REFERENCES
[1] Sammut, C., & Webb, G. L. (2011). "Encyclopedia of
Machine Learning". Springer.

[2] Jung, A. (2022). "Machine Learning: The Basics".
Springer.

[3] Kubat, M. (2021). "An Introduction to Machine
Learning". Springer.

[4] Li, H. (2023). "Machine Learning Methods". Springer.

[5] Zollanvari, A. (2023). " Machine Learning with Python".
Springer.

[6] Chopra, D., & Khurana, R. (2023). "Introduction to
Machine Learning with Python". Bentham Science
Publishers.

[7] Miiller, A. C., & Guido, S. (2016). "Introduction to
Machine Learning with Python: A Guide for Data
Scientists". O'Reilly Media.

[8] Raschka, S. (2015). "Python Machine Learning". Packt
Publishing.

[9] Forsyth, D. (2019). "Applied Machine Learning".
Springer.

[10] Sarkar, D., Bali, R.,, & Sharma, T. (2018). "Practical
Machine Learning with Python". Apress.

[11] Bonaccorso, G. (2018). "Machine Learning Algorithms:
Popular Algorithms for Data Science and Machine
Learning". Packt Publishing.

[12] Igual, L., & Segui, S. (2017). "Introduction to Data
Science: A Python Approach to Concepts, Techniques and
Applications". Springer.

[13] VanderPlas, J. (2017). "Python Data Science Handbook:
Essential Tools for Working with Data". O'Reilly Media.

[14] Muddana, A., & Vinayakam, S. (2024). "Python for Data
Science". Springer.

[15] Unpingco, J. (2021). "Python Programming for Data
Analysis". Springer.

[16] Zelle, J. (2017). "Python Programming: An Introduction
to Computer Science". Franklin, Beedle & Associates.

[17] Xanthidis, D., Manolas, C., Xanthidou, O. K., & Wang,
H. I. (2022). "Handbook of Computer Programming with
Python". CRC Press.

[18] Chun, W. (2001). "Core Python Programming". Prentice
Hall Professional.

[19] Padmanabhan, T. (2016). "Programming with Python".
Springer.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.75, January 2026

[20] Beazley, D. & Jones, B. (2013). "Python Cookbook:
Recipes for Mastering Python 3". O'Reilly Media.

[21] Newman, M. (2018). "Networks: An Introduction".
Oxford University Press.

[22] Estrada, E. & Knight, P. (2015). "A First Course in
Network Theory". Oxford University Press.

[23] Menczer, F., Fortunato, S., & Davis, C. A. (2020). "A First
Course in Network Science". Cambridge University Press.

[24] Lewis, T. (2009). "Network Science: Theory and
Applications". John Wiley & Sons.

[25] Barabasi, A. (2016). "Network Science". Cambridge
University Press

[26] Knickerbocker, D. (2023). "Network Science with
Python". Packt Publishing.

[27] Norris, J. (2009). "Markov Chains". Cambridge
University Press.

[28] Tolver, A. (2016). "An Introduction to Markov Chains".
Department of Mathematical Sciences, University of
Copenhagen.

[29] Weber, R. (2011). "Markov Chains". Department of Pure
Mathematics and Mathematical Statistics. University of
Cambridge.

[30] Gagniuc, P. (2017). "Markov Chains: From Theory to

Implementation and Experimentation”. John Wiley &
Sons.

[31] Ching, W., Huang, S., Ng, M., & Siu, T. (2013). "Markov
Chains: Models, Algorithms, and Applications".
Springer.

[32] Privault, N. (2018). "Understanding Markov Chains:
Examples and Applications". Springer.

[33] Ankan, A., & Panda, A. (2018). "Hands-On Markov
Models with Python". Packt Publishing.

[34] Grinstead, C., & Snell, J. (1997). "Introduction to
Probability". American Mathematical Society.

[35] Python: http://www.python.org

[36] Numpy: http://www.numpy.org

[37] Pandas: http://pandas.pydata.org

[38] Matplotlib: http://www. matplotlib.org
[39] Seaborn: http://seaborn.pydata.org
[40] SciPy: http://scipy.org

[41] NLTK: http://www.nltk.org

[42] SK Learn: http://scikit-learn.org

93

https://open.umn.edu/opentextbooks/textbooks/21
https://open.umn.edu/opentextbooks/textbooks/21

