International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

Discovering SSH Attack Patterns using Cowrie
Honeypot and K-Means Clustering

Samadram Govind Singh
Central Agricultural University Imphal
Lamphelpat Imphal
Near ICAR Complex

ABSTRACT

This paper focuses on interaction of Honeypots with Machine
Learning for threat detection by finding out the patterns,
anomalies, and learn from them. In this particular study,
Cowrie Honeypot has been deployed on an Ubuntu Server, and
its own environment is set up using python. The environment
is totally isolated from the original actual server environment,
and cowrie mimics the original environment, thereby luring the
Hackers/Attackers to fall into the trap. Cowrie generally
interacts with the SSH environment, and all the commands, IP
addresses, and timestamps are captured in the log file, which is
saved in the path defined by the Administrator.

Further, the log file is converted to csv file for feeding the
collected data to Altair RapidMiner for its Clustering
Algorithm. In RapidMiner, the csv file is retrieved, fed to Select
Attribute so that the desired attributes are selected and filtered.
Cowrie log generally contains a handful of noise, so
normalization is needed. However, since normalization is done
using z-transformation, it accepts only numerical values. This
nominal-to-numerical converter is added in the process for
further feeding to the Normalize operator. The normalized data
is then fed to the Clustering operator, where the K-Means
Clustering Algorithm is deployed in this research. In this study,
3 Clusters are studied. Using clustering analysis revealed
distinct patterns in SSH honeypot attack behavior, effectively
transforming unprocessed log data into actionable intelligence
for strengthening proactive security responses.

In summary, integrating honeypot deception strategies with
machine learning represents a significant advancement in the
field of cybersecurity. This combined approach enhances threat
detection and analysis while paving the way for robust,
adaptive, and self-evolving security systems capable of
countering ever-changing cyber threats.

General Terms
Cybersecurity, Network Security, Machine Learning, Pattern
Recognition, Data Mining.

Keywords
Honeypots, Cowrie, Ubuntu, Machine Learning, SSH.

1. INTRODUCTION

In an era of rapid digital transformation and networked
systems, cybersecurity concerns have grown more complex.
Security experts are being compelled to continuously create
new defenses due to the increasing frequency and
sophistication of cyberattacks. Shyamalendu Paul et al. [1]
studied the development of an Al-based Honeypot system. One
promising tactic is to combine machine learning (ML)
techniques with honeypot systems, which are designed to
attract and deceive malicious actors.

Honeypots are decoy systems that mimic vulnerable network

targets. By luring attackers into a controlled environment, they
enable the collection of invaluable information about
adversarial behaviors, tactics, and emerging threat trends. Iyer
et al. [2] show that analysis of these interactions used to require
a great deal of manual labor and experience. However, the
advancement of machine learning has opened up new avenues
for enhancing honeypot functionality. It is possible to analyze
vast amounts of interaction data.

1.1 Honeypots

A honeypot is a cybersecurity technique intended to serve as a
network or decoy system to entice, identify, block, or
investigate attempts at unauthorized use of information
systems. A honeypot is a decoy system or application intended
to lure and examine malicious activities, functioning as a trap
for attackers while providing valuable intelligence on emerging
threats. Dakic et al. [3] describe the real-world interaction of
Honeypots, analyze attack behaviour, cyber intrusion, and
phishing. In order to draw attackers and give defenders a
controlled environment in which to watch their behavior,
honeypots are purposefully set up to look vulnerable,
mimicking actual targets.

Honeypots are useful for identifying intrusions and gathering
information about attack methods, resources, and goals; they
don't offer real services to authorized users. After the data is
sent for analysis, the pattern is created with the appropriate
defenses to prevent attacks in the real world. They fall into the
following categories:

Table 1. Types of Honeypots

Category Type Description
Low- Simulates limited services;
Interaction | easy to deploy; low risk.
. Emulates more complex
Medium- . .
Based on . services; balances risk and
. Interaction PP
Interaction visibility.
. Full OS or service
High-)
Interaction deployment; collects
detailed attacker behavior.
. Deployed within enterprise
[l?[r(;)r(]ieuctlo(in networks to detect and
Based on yp deflect attacks.
p -
urpose Research Used for studying a.ttacker
methods and gathering threat
Honeypot . .
intelligence.
Server Imitates vulnerable server
Honevpot services like HTTP, SSH,
Based on yp FTP, etc.
Role . Simulates clients to interact
Client . ..
Honevoot with malicious servers and
yP detect threats.
Based on Virtual Deployed as virtual

32

Architecture | Honeypot machines for flexibility and

isolation.

Runs on dedicated hardware;
used for high-interaction
setups.

Physical
Honeypot

1.2 Machine Learning in Cyber Security:
Machine Learning (ML) is a subfield of artificial intelligence
that enables systems to learn patterns from data and make
predictions or decisions without being explicitly programmed
for specific tasks.

In cybersecurity, ML is primarily used for:

e Intrusion Detection Systems (IDS)
Anomaly Detection

Malware Classification

Phishing Detection

User Behavior Analytics

models used in cybersecurity include:

Supervised Learning (e.g., Random Forest, SVM,
Logistic Regression): Trained on labeled data to
classify threats.

e Unsupervised Learning (e.g., K-means, DBSCAN):
Used to identify anomalies in unlabeled data.

e Deep Learning (e.g., CNN, RNN, LSTM): Useful for
detecting complex patterns and sequences in large
datasets.

Table 2. Classification of Machine Learning

M

e T e o o o

Common
Category Type Algorithm | Use Cases
s
SVM, .
Decision Emal.l
Trees filtering,
Classificati ’ fraud
Random .
on Forest detection,
Naive ’ disease
Supervised Bayes diagnosis
Learning
Linear Stock .
Regression pr§dlct10n,
Regression | Ridge, priee
Lasso fprecastmg,
SVR ’ risk
assessment
K-means, Customer
Clusterin DBSCAN, segmentation,
€ | Hierarchica anomaly
Unsupervise 1 Clustering | detection
d Learning Apriori Market basket
Associatio Eflat F’P- analysis,
n Grovs;th recommendati
on systems
Variants of
Semi- supervised/ Z}lafs,l;i%(::r;ieigg
Supervised | — unsupervis medical i
Learning ed diagnosis
algorithms g
Q-

. Learning, Robotics,
Reinforcem .
ent _ Deep Q- game playing,
Learnin Network autonomous

, vehicles
& (DQN) hicl
SARSA

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

. Natural
Contrastive
Self- . language
Supervised | — Learning, processing
. Autoencod | : ’
Learning ors 1mage
recognition

This paper explores the intersection of machine learning and
honeypots to demonstrate how combining these two domains
can lead to more intelligent and dynamic defenses. A study by
Narayana Gaddam et al [4] shows a great development of attack
activities and performance enhancement up to a visual
difference after the introduction of Al-enhanced Honeypots
and Machine Learning. After providing a summary of the basic
concepts behind both machine learning and honeypots, the
current cybersecurity problems where traditional honeypot
methods fall short are examined. The discussion then turns to a
number of machine learning models, such as supervised,
unsupervised, and reinforcement learning models, that can be
used to detect, classify, and predict malicious activity. Using a
variety of case studies and experimental analyses, this work
evaluates how well these models perform in honeypots,
providing deeper behavioral insights and proactive threat
mitigation strategies.

The goal of this research is to provide important insights into
the creation of resilient, adaptive cybersecurity frameworks by
combining state-of-the-art machine learning techniques with
well-established decoy technologies. In the end, combining
machine learning with honeypots not only improves cyber
threat detection and analysis but also opens the door for more
responsive and predictive security solutions, laying the
foundation for the next wave of cyber defense. Narayana
Gaddam et al. [4] have an in-depth report on the combination
of ML with Honeypot for high-level threat detection with
scalable and lightweight features.

2. REVIEW OF LITERATURE

Honeypots and honeynets are essential components in the field
of cybersecurity, offering innovative methods for detecting,
analyzing, and mitigating cyber threats. A honeypot is a
purposefully weak system or network resource that is intended
to look like a real target to hackers. It acts as a trap to draw in
malevolent actors so that their actions can be observed without
endangering actual systems. J. Franco et al [5] set up the
Honeynet architecture in three Generation Phases. In contrast,
a honeynet is a system of linked honeypots that replicates a full
and authentic network environment.

Honeypots and honeynets contribute to the development of
threat intelligence. J. Franco et al. [5] demonstrate with a
survey on the role of Honeypots with Honeynet architecture.
By analyzing the behavior of attackers in a controlled
environment, security professionals can gather valuable data on
malware variants, command-and-control (C2) infrastructures,
and attacker tactics, techniques, and procedures (TTPs).
Martinez S. et al. [6] demonstrate with the use of High
Interaction Honeypots like Honeyd, Dioneda, and Capture-
HPC. This intelligence can be used to enhance the performance
of intrusion detection and prevention systems (IDS/IPS),
improve patch management, and inform security policies.

However, the deployment of honeypots and honeynets is not
without challenges. Sokol et al. [7] discuss the EU Laws for its
deployment Privacy Policy. High-interaction systems, if not
properly isolated, can be exploited as a platform to launch
attacks on other networks. Additionally, Mokube et al. [8]
discuss that sophisticated attackers may detect the presence of
honeypots and avoid or manipulate them, reducing their
effectiveness. Ethical and legal considerations also arise,

33

particularly when dealing with real-world malware and threat
actors, as mentioned by Sokol et al. [7] where IP addresses are
personal and exploiting it for personal use and analysis may
lead to various Privacy Policy laws and regulations.

2.1 Machine Learning in Cyber Security:
Parallel to the development of honeypots is the growing body
of work on machine learning (ML) applications in
cybersecurity. ML’s ability to process large-scale data. A study
by Bharadia et al. [9] demonstrates an approach that begins
with the gathering of a comprehensive dataset containing both
phishing and genuine samples. Key features such as email
headers, message text, and embedded URLSs are then extracted,
followed by training a supervised machine learning model to
distinguish between them. Identifying subtle patterns and
adapting to changing conditions has made it invaluable.
Research has explored:

Supervised Learning: Algorithms like decision trees, support
vector machines (SVM), and neural networks have been
utilized for classifying known threats and detecting malware.

Unsupervised Learning: Methods such as clustering (e.g., k-
means, DBSCAN) have proven effective for anomaly
detection, particularly in scenarios where labeled data is scarce.

2.2 Convergence: Machine Learning
Integrated with Honeypots:

Recent literature focuses on the symbiotic integration of ML
models within honeypot environments, aiming to enhance the
system's responsiveness and accuracy. This integrated
approach has led to several innovative applications:

Real-Time Threat Analysis: Embedding ML models within
honeypots enables real-time processing of attack data, allowing
for immediate classification and response. Studies have
documented systems that flag unusual patterns in real-time,
significantly reducing the window of exposure.

Behavioral Fingerprinting of Attackers: Supervised learning
techniques have been used to match current attack patterns with
historical data, providing insight into attacker profiles and
tactics. This approach aids in predictive modeling, enabling
anticipatory defense measures.

3. METHODOLOGY

3.1 Installation of Cowrie
With the Ubuntu Server Environment, to install cowrie, the
following command is used in terminal.

1. sudo apt update && sudo apt upgrade -y

2. sudo apt install -y git python3 python3-venv
python3-pip libssl-dev libffi-dev build-essential
libpython3-dev authbind

These commands will install and update Python 3 along with
all necessary dependencies. The “authbind" package is included
to allow non-root users to bind to low-numbered ports, such as
22 or 23, simulating a real-world environment. However, using
‘authbind’ is optional; by default, Cowrie will be accessible
through port 2222. The command “ufw allow 2222/tcp” is then
added for Ubuntu firewall opening.

Following are the steps for Cowrie Configuration:
Step — I: Create a Cowrie User:

sudo adduser --disabled-password cowrie

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

A dedicated cowrie user is created, and Cowrie is a honeypot;
it pretends to be a vulnerable system. The goal is to ensure that
the cowrie user cannot access SSH, does not have a password,
and is unable to log in directly. The --disabled-password flag
does not completely lock the account; it merely prevents login

using a password. However, it's still possible to use “su —
cowrie” or “sudo -u cowrie” from a privileged user.

Next step is to switch to cowrie user
Switched to Cowrie: su — cowrie
Step — II: Clone Cowrie Repository:
git clone https://github.com/cowrie/cowrie.git
cd cowrie
Step - I1I: Setup Python Virtual Environment

1. python3 -m venv cowrie-env
2. source cowrie-env/bin/activate
3. pip install --upgrade pip

4. pip install -r requirements.txt

Python virtual environment is set up using the above command
and then activated.

Step — IV: Copy default configuration files

1. cp etc/cowrie.cfg.dist etc/cowrie.cfg
2. cp etc/userdb.txt.dist etc/userdb.txt

cowrie.cfg is the configuration file, and the userdb.txt is the file
that contains the fake user details along with the corresponding
passwords. Easily predictable user and password combinations
are stored as shown below:

username:password:userid
root:123456:1000
admin:admin:1001
test:test: 1002

Step — V: Run Cowrie

Finally, after setting up the cowrie, the honeypot cowrie is run
using the command “bin/cowrie start”, and to view the logs, the
“tail -f log/cowrie.log” command can be used. Further, the log
file is saved in the cowrie/log folder and saved with extensions
.log as well as .json. This .json file can be converted to csv file
for further study for Machine Learning.

By default, cowrie runs on port number 2222, and the same is
made open in the firewall. It can be opened by using the
command “sudo ufw allow 2222/tcp” and “sudo ufw reload”.
Further, if there is a requirement for a change of port number,
authbind can also be used.

Step — VI: Cowrie Log

Now that the cowrie is installed and set up successfully, the
cowrie status can be checked by using the command
“bin/cowrie status” from the virtual environment. Vlad-Iulius
Nastase et al. [10] talk about the exploitation of cowrie ssh for
better yield in threat protection. To see the real-time log “tail -
f log/cowrie.log” command can be used from the virtual
environment. Cowrie log is saved in .log and .json, both of
which can be downloaded using the scp command from a
remote location and converted back to csv file for training the
data.

3.2 System Architecture

34

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

Retrieve extended _...
fad F

! Select Attributes

g = 744 QZ:E

Replace Missing Val... Replace Missing Val...

jm i !::E Tm B !::E

Generate Attributes

tab il' tab
B o

Hominal to Humerical Hormalize

Select Attributes (2)

xa EH exa

exa g+ exa exa exa
ori ori
pre Fre

Fig 1: Processes in K-Means Clustering

The implementation consists of an integrated system
combining high-interaction honeypots and machine learning
models. The honeypot environment is deployed using Cowrie,
which simulates an SSH service to attract attackers. All
interaction data - including login attempts, command
execution, and file transfers - is logged and transferred to a
centralized server for analysis in the form of a CSV file. Patrik
Krajcik et al [11] describe an overview of Cowrie’s operation
modes with emphasis on its simulation mode system
architecture, the types of data it captures, and the key
limitations identified during its deployment.

The raw data gathered from Cowrie logs underwent a thorough
data preprocessing stage. This involved cleaning the data to
remove inconsistencies, null entries, and duplicate records.
Noise filtering was applied to eliminate irrelevant data points
that could interfere with model training. A detailed study on
Accuracy, Sensitivity, Precision, and False Positive Rate is
well calculated in [13] Chaoyu Zhang et al. The remaining data
was then structured into meaningful features such as source IP
addresses, number of failed login attempts, session durations,
command patterns, and request frequencies. These features
were normalized to ensure consistent scaling across all input
variables. The CSV file is then fed to RapidMiner for data
cleaning. This process helped in identifying the most
significant attributes for training effective machine learning
models.

3.3 Data Collection and Preprocessing
The Cowrie logs are parsed to extract key features such as:

e Source IP address
Timestamp of connection
Command patterns
Session duration
e Failed login attempts
timestamp, eventid, src ip, username, password, input, url,
shasum, session — these are the information extracted and fed
to RapidMiner for Clustering.

In Altair RapidMiner Studio, the following steps are executed:

1. Import the Dataset

2. Repository > Right-click > Import Data.
3. Add Read CSV
4. Add Select Attributes to choose only relevant fields
(e.g., eventid, src_ip, username, command, etc.).
5. Preprocess Data
Convert categorical to numerical using:
Nominal to Numerical: For eventid, username, input,
etc.
Assign correct types:
timestamp: Date
src_ip, username, password, eventid, session, url,
shasum: Polynominal
input: Polynominal
6. Select Attributes operator.
Connect your dataset to it.
In parameters, select only:
eventid, src_ip, username, password, input, url,
timestamp.
7. Normalize numerical data using:
Normalize operator: (especially important for
distance-based clustering like K-Means).
8. Nominal to Numerical for:
eventid, username, password, src_ip, url.
9. Normalize (for K-Means only):
Drag Normalize operator.
Use default settings (Z-Transformation or Min-Max)
10. Add K-Means Operator
Drag K-Means onto the canvas.
Set k =3 (you can tune this later).
Connect the Normalize output to K-Means.

3.4 Model Selection and Training
K-Means (Unsupervised): For anomaly detection based on
command pattern deviations.

The K-Means clustering Model was used for training purposes.
Youguo Li et al [12] talk about traditional and improved K-
Means Clustering Algorithm and their effectiveness in
unsupervised learning.

35

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

- s
Read CSV =
fil out
4
Select Attributes Clustering
exa elu
. . H clu
Hominal to Humerical
v
Fig 2 Actual K-Means Clustering Process without Noise
E0m1 m2
32
30
28
28
24
22
20
18
16
14
12
10
[E:)
o0&
04
02
0o
-02
-04
-06
§ F 2 4 T2 22z 28 282 238 % 5 25 8 ET S EE B GE RO
E 8 £ & E ¢ ¢ - £ £ Z @ o © @8 © - £ - - ©® - © = o© - 0 oS 8% 5 & & % 7 E B &
5 ¥ B § £ £ T 5 3 5 £ T T = T T 8 8 & a - 5 = =T =% &g « LoV oE 2 o= ¥ o5 E T O
¢ £ § 28 % 8§ 9 § m m © © © 88 8 8 m m m m 9 m & S 89 & £ & L B T § L T § 2 %
s 2 E c £ % w o o 0 m W m m m W o o O 9 W o m m W o & &= g E L = E =}] T =
8 E B o & © ©® ©o o o o o o o o ©o o o o @ o o o g T T 4 8 = T E E
g & 5 B g 2z ® Y YV Y 8 R &8 B SRB VY VYRR S8 Y 5 £ &8 8 5 5 5 2 B OF
g & & § 5§ 5 v o5 g g 10 o owo0 0 g oz g g B og 0w 5 & F 5 st T @ 2 2 §
d) L) E 2 8 o 1 1 1 o o o o o o 1 1 d 1 o 1 o o o d = @ a H = = =% =
i T T = © @ e p o i i i i i I o v o ow 1w i I () 3 2 a2 =2 E m
S 5 2 § » 8 2 @ @B B g g P oL L L B B B @ L B Z P2 2 & 2 8 E 3
2 1] = 2 @ @ @ @ @ @ @ @ @ @ @ o L £
30 a0 L E e 5 2
vy oz B I OE g
= £ & §F © 2 El
E T = = o 2
o > = W o
5 : 3 i k|
H ® g
5 £
&
: 2
v
S
Fig.3 RapidMiner Plot of K-Means Clustering
Data Preparation Steps: Nominal to Numerical: Convert categorical data into

Retrieve Extended Data: Load your dataset.

Select Attributes: Choose only the relevant features for
modeling.

Generate Attributes: Create new features if needed (e.g.,
derived columns).

Replace Missing Values (twice): Handle missing data by
filling them with appropriate values (mean, median, mode,
etc.).

numbers, as clustering algorithms require numeric input.

Normalize: Scale all features to the same range (usually 0-1)
to ensure fair distance calculations during clustering.

Select Attributes (2): Final selection of attributes before
clustering.

Model Selection (Choosing the Clustering Algorithm):
Clustering Operator:

This block is where the model is selected.

36

In clustering (unsupervised learning), the model could be K-
Means. The selection depends on the nature of the data:

K-Means for globular clusters.
DBSCAN for arbitrary-shaped clusters and noise handling.
Training (Executing the Clustering Algorithm):

Once the data is cleaned, transformed, and normalized, it is fed
into the clustering model. The model will then learn the patterns
and group similar instances together based on feature
similarity. It is a parallel coordinate plot (or line plot for
clusters), a typical visualization after K-Means clustering.

Legend (Top Left):

0, 1, 2 — These are the cluster IDs (three clusters found).
Blue line = Cluster 0

Green line = Cluster 1

Red line = Cluster 2

X-Axis:

Different features/variables extracted from your Cowrie SSH
honeypot logs.

e.g., eventid = cowrie.session.connect, eventid =
cowrie.login.success, usernames, passwords, URLs tried, etc.

Y-Axis:

Normalized values for each feature (scaled between roughly -
0.6 to 3.2). It shows the relative importance/intensity of each
feature in a cluster. Each colored line shows the average pattern
for that cluster across the features. Peaks and dips indicate
which features are more dominant for that cluster.

For example:

Cluster 1 (Green) shows a very high spike for username =
admin and password = admin — suggests attackers trying
default admin credentials.

Cluster 2 (Red) spikes at username = root and password =
123456 — indicates a different attack behavior focused on root
brute-forcing.

Cluster 0 (Blue) stays relatively flat — likely less suspicious or
benign interactions.

URLs like http://bad.com/malware.sh being accessed are
visible in the features; if these spike, it hints at attempts to
download malware.

3.5 Integration and Automation

Following training and testing of the machine learning models
with RapidMiner, the final clustering pipeline was installed as
a background service on an Ubuntu server running the Cowrie
SSH honeypot. Cowrie was set up to simulate a vulnerable SSH
environment, drawing malicious login attempts and command
executions from would-be attackers. Incoming SSH session
logs, such as authentication attempts, command sequences, and
connection metadata, were fed into the system continuously.

Preprocessing operations like data normalization and feature
extraction were used to prepare the raw logs prior to passing
them into the RapidMiner K-Means clustering model. The
model partitioned the activities into separate clusters to
facilitate differentiation between benign interactions,
automated bot scans, and more complex intrusion attempts.
This clustering analysis was done in close to real time, allowing

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

for suspicious activity to be rapidly detected without the need
for manual intervention.

Upon detecting abnormal clusters associated with potential
threats, the system automatically generated alerts, notifying
administrators of the suspicious activity.

The honeypot's function within the cybersecurity infrastructure
underwent a dramatic change as a result of this integration. The
improved Cowrie honeypot actively categorized, addressed,
and manipulated attacker interactions in real-time, rather than
just acting as a passive log collector for forensic analysis. The
system was able to advance toward a more proactive,
intelligent, and robust cyber defense strategy by combining the
use of RapidMiner for clustering with reinforcement learning
for adaptive deception.

4. RESULT AND DISCUSSION

4.1 Results

The K-Means clustering algorithm, applied through
RapidMiner on the SSH honeypot logs collected from the
Cowrie instance running on Ubuntu, successfully identified
distinct patterns of malicious behavior. The model was
configured to detect three clusters, each representing a different
category of activity observed on the honeypot.

Taking K=3, the resulting parallel coordinates plot revealed
clear behavioral differences among the clusters:

Cluster 0 (blue line) exhibited relatively flat and stable values
across all features. This indicates a group of sessions with
minimal engagement or random scanning behavior. Such
traffic likely corresponds to benign or automated network scans
without focused intrusion attempts.

Cluster 1 (green line) showed significant spikes for the
features associated with the username admin and password
admin, along with access attempts to known malicious URLs.
This suggests a coordinated brute-force attack strategy
leveraging common administrative credentials. Additionally,
heightened values in command input length and file download
events further indicate active exploitation attempts beyond
simple login probing.

Cluster 2 (red line) displayed strong peaks for the root user
and password combinations such as 123456 and raspberry. This
pattern aligns with botnets or automated attack scripts targeting
default credentials typically found on misconfigured or poorly
secured systems.

The clustering results demonstrate that different attacker
groups or bots exhibit distinguishable behavioral signatures
when interacting with the honeypot. By grouping these
interactions into clusters, the system is able to automatically
classify and prioritize threat types without manual inspection.
Notably, the system was able to differentiate between
superficial scanning activity and deeper, more targeted
intrusion efforts.

Furthermore, integrating these clustering results with the
reinforcement learning (RL) agent allowed Cowrie to
dynamically adapt its responses based on the detected threat
profile. For example, more sophisticated deception tactics, such
as fake vulnerabilities or staged file systems, could be
selectively deployed against attackers showing signs of deeper
engagement (Clusters 1 and 2), enhancing the system’s
effectiveness in intelligence gathering and threat deterrence.

Overall, the clustering approach provided valuable insights into
attack behavior on the SSH honeypot, transforming raw log

37

data into actionable threat intelligence for proactive cyber
defense.

4.2 Observations
The results demonstrate the effectiveness of K-Means
clustering in profiling attacker behaviors based on SSH
honeypot interaction logs. By categorizing sessions into three
distinct clusters, it became possible to identify different threat
patterns:
e general reconnaissance with minimal interaction,
e credential attacks using default administrative
credentials, and
e root access brute-force attacks leveraging weak
passwords.
The separation between clusters was particularly evident in key
features such as username and password combinations, input
length, and access to known malicious URLs. These findings
confirm that even unsupervised learning methods can
effectively reveal underlying attacker strategies without prior
labeling of data.

Integrating this clustering model into the live honeypot system
provides a strong foundation for real-time threat classification.
Suspicious sessions can be rapidly flagged based on cluster
membership, enabling timely alerts and adaptive response
mechanisms. Furthermore, coupling the clustering engine with
a reinforcement learning agent enhances the honeypot's ability
to dynamically deceive attackers, tailoring fake system
behaviors to specific attacker profiles.

Thus, the combined machine learning pipeline transitions the
honeypot from passive logging to proactive engagement,
significantly strengthening cyber defense capabilities.

5. CONCLUSION AND FUTURE SCOPE

This research successfully demonstrated the significant
benefits of integrating machine learning techniques with
honeypot systems to enhance cybersecurity defenses. Through
a well-structured methodology encompassing data collection,
feature engineering, model training, and real-time deployment,
the project established a comprehensive framework capable of
intelligent threat detection, classification, and response. The
results highlighted that machine learning not only improves the
accuracy and speed of detecting cyber threats but also
introduces adaptability and predictive capabilities, which are
absent in traditional honeypot implementations. This
combination of deception and intelligence forms a proactive
line of defense, capable of countering both known and
emerging threats with increased efficacy.

The study confirms several hypotheses. First, ML-enhanced
honeypots demonstrate significantly higher accuracy in
detecting and classifying malicious activity compared to static,
rule-based systems. Second, unsupervised and reinforcement
learning models show particular promise in identifying novel
and evasive threats, contributing to a more robust security
posture. Third, by analyzing behavioral trends and attacker
interaction patterns, the system can predict future attacks and
take preemptive measures. Moreover, despite the
computational complexity of certain ML models, careful
optimization ensured that real-time detection was achieved
without substantial performance overhead. Overall, the system
represents a transformative step toward automated and adaptive
cyber defense.

Looking forward, there are several promising directions for
future research. Deep learning models, especially those based
on recurrent neural networks (RNNs) and transformers, can be
explored to analyze time-series data and sequential command

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

patterns for even more accurate detection. Deployment of the
system on edge devices and integration with distributed
computing platforms can further enhance its scalability and
resilience. Additionally, incorporating federated learning will
enable the training of models across multiple honeypot
instances while preserving data privacy. Integration with
Security Information and Event Management (SIEM) tools can
enable enterprise-wide alert correlation and automated incident
response. Finally, future work should focus on strengthening
the system’s robustness against adversarial ML attacks and
implementing concept drift detection to ensure long-term
adaptability.

In conclusion, the fusion of honeypot deception techniques
with machine learning intelligence marks a paradigm shift in
cybersecurity. This hybrid approach not only enriches threat
detection and analysis but also lays the groundwork for
developing resilient, adaptive, and self-learning security
systems capable of withstanding the evolving landscape of
cyber threats.

This research demonstrates that integrating machine learning
with honeypot systems significantly enhances the detection,
classification, and mitigation of cyber threats.

The system:

e Collects rich interaction data.

e Uses ML for intelligent classification.

e Employs adaptive strategies for dynamic threat
engagement.

e Supervised models are effective for known threats,
while unsupervised models uncover novel attacks.
Reinforcement learning brings adaptability to a
traditionally static security tool.

Future Scope

e Advanced Deep Learning Models: Incorporate LSTM
or Transformer-based models for detecting temporal
attack patterns.

e Edge Deployment: Optimize models for edge devices
in distributed network environments.

e Federated Learning: Train across multiple honeypot
nodes without centralized data sharing, ensuring
privacy.

e Integration with SIEM Systems: Seamless correlation
with enterprise-wide event management platforms.

e Adversarial Defense: Enhance ML models against
adversarial inputs and evasion techniques.

6. ACKNOWLEDGMENTS

I would like to express my gratitude to Prof. L. Hemochandra
Singh, Professor of Statistics in the Department of Basic
Science at the College of Agriculture in Imphal, and to Dr.
Maibam Romio Singh for their unwavering support in all areas.

7. REFERENCES

[1] Shyamalendu Paul, Amitava Podder, Kaustav Roy,
(2024), Exploring the Impact of Al-based Honeypots on
Network Security, Educational Administration: Theory
and Practice, 30(6), 251-258, Doi:
10.53555/kuey.v30i6.5155

[2] Iyer, Kumrashan Indranil. (2021). Adaptive honeypots:
Dynamic deception tactics in modern cyber defense.
International Journal of Science and Research Archive.
04.340-351. 10.30574/ijsra.2021.4.1.0210.

[3] Dakic, Vedran & Regvart, Damir. (2025). Advancing

38

Cybersecurity with Honeypots and Deception Strategies.
Informatics. 12. 14. 10.3390/informatics12010014.

[4] Narayana Gaddam. (2025). Al-enhanced honeypots for
advanced cyber deception strategies. QIT Press -
International Journal of Cyber Security Research and
Development (QITP-IJCSRD), 5(1), 9-19.

[51 J. Franco, A. Aris, B. Canberk and A. S. Uluagac, "A
Survey of Honeypots and Honeynets for Internet of
Things, Industrial Internet of Things, and Cyber-Physical
Systems," in IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2351-2383

[6] Martinez S., C. J. ., Moreno A., H. O. ., & Hernandez A.,
M. B. . (2023). Analysis of Intrusions into Computer
Systems using Honeypots. International Journal of
Intelligent Systems and Applications in Engineering,
11(6s), 461-472. Retrieved from
https://ijisac.org/index.php/IJISAE/article/view/2871

[7] Sokol, P., Misek, J. & Husdk, M. Honeypots and
honeynets: issues of privacy. EURASIP J. on Info.
Security 2017, 4 (2017). https://doi.org/10.1186/s13635-
017-0057-4

[8] Mokube, lyatiti & Adams, Michele. (2007). Honeypots:
concepts, approaches, and challenges. 321-326.

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.74, January 2026

10.1145/1233341.1233399.

[9] Bharadiya, Jasmin. (2023). Machine Learning in
Cybersecurity: Techniques and Challenges. European
Journal of Technology. 7. 10.47672/ejt.1486.

[10] V. -I. Nastase, M. -E. Mihailescu, S. Weisz, L. V. Dagilis,
D. Mihai and M. Carabas, "Cowrie SSH Honeypot:
Architecture, Improvements and Data Visualization,"
2024 23rd RoEduNet Conference: Networking in
Education and Research (RoEduNet), Bucharest,
Romania, 2024, pp- 1-7, doi:
10.1109/RoEduNet64292.2024.10722609

[11] Kraj¢ik, Patrik & Mikulas, Mata§ & Helebrandt, Pavol &
Kotuliak, Ivan. (2025). Improvement of Cowrie honeypot
interaction and deception capabilities. 1-9.
10.1109/KIT67756.2025.11205433.

[12] Li, Youguo & Wu, Haiyan. (2012). A Clustering Method
Based on K-Means Algorithm. Physics Procedia. 25.
1104-1109. 10.1016/j.phpro.2012.03.206.

[13] Zhang, Chaoyu & Wang, Ning & Hou, Y & Lou, Wenjing.
(2025). Machine Learning-Based Intrusion Detection
Systems: Capabilities, Methodologies, and Open
Research Challenges.
10.36227/techrxiv.173627464.48290242/v1.

39

