
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

32

Discovering SSH Attack Patterns using Cowrie

Honeypot and K-Means Clustering

Samadram Govind Singh
Central Agricultural University Imphal

Lamphelpat Imphal
Near ICAR Complex

ABSTRACT

This paper focuses on interaction of Honeypots with Machine

Learning for threat detection by finding out the patterns,

anomalies, and learn from them. In this particular study,

Cowrie Honeypot has been deployed on an Ubuntu Server, and

its own environment is set up using python. The environment

is totally isolated from the original actual server environment,

and cowrie mimics the original environment, thereby luring the

Hackers/Attackers to fall into the trap. Cowrie generally

interacts with the SSH environment, and all the commands, IP

addresses, and timestamps are captured in the log file, which is

saved in the path defined by the Administrator.

Further, the log file is converted to csv file for feeding the

collected data to Altair RapidMiner for its Clustering

Algorithm. In RapidMiner, the csv file is retrieved, fed to Select

Attribute so that the desired attributes are selected and filtered.

Cowrie log generally contains a handful of noise, so

normalization is needed. However, since normalization is done

using z-transformation, it accepts only numerical values. This

nominal-to-numerical converter is added in the process for

further feeding to the Normalize operator. The normalized data

is then fed to the Clustering operator, where the K-Means

Clustering Algorithm is deployed in this research. In this study,

3 Clusters are studied. Using clustering analysis revealed

distinct patterns in SSH honeypot attack behavior, effectively

transforming unprocessed log data into actionable intelligence

for strengthening proactive security responses.

In summary, integrating honeypot deception strategies with

machine learning represents a significant advancement in the

field of cybersecurity. This combined approach enhances threat

detection and analysis while paving the way for robust,

adaptive, and self-evolving security systems capable of

countering ever-changing cyber threats.

General Terms

Cybersecurity, Network Security, Machine Learning, Pattern

Recognition, Data Mining.

Keywords

Honeypots, Cowrie, Ubuntu, Machine Learning, SSH.

1. INTRODUCTION
In an era of rapid digital transformation and networked

systems, cybersecurity concerns have grown more complex.

Security experts are being compelled to continuously create

new defenses due to the increasing frequency and

sophistication of cyberattacks. Shyamalendu Paul et al. [1]

studied the development of an AI-based Honeypot system. One

promising tactic is to combine machine learning (ML)

techniques with honeypot systems, which are designed to

attract and deceive malicious actors.

Honeypots are decoy systems that mimic vulnerable network

targets. By luring attackers into a controlled environment, they

enable the collection of invaluable information about

adversarial behaviors, tactics, and emerging threat trends. Iyer

et al. [2] show that analysis of these interactions used to require

a great deal of manual labor and experience. However, the

advancement of machine learning has opened up new avenues

for enhancing honeypot functionality. It is possible to analyze

vast amounts of interaction data.

1.1 Honeypots
A honeypot is a cybersecurity technique intended to serve as a

network or decoy system to entice, identify, block, or

investigate attempts at unauthorized use of information

systems. A honeypot is a decoy system or application intended

to lure and examine malicious activities, functioning as a trap

for attackers while providing valuable intelligence on emerging

threats. Dakic et al. [3] describe the real-world interaction of

Honeypots, analyze attack behaviour, cyber intrusion, and

phishing. In order to draw attackers and give defenders a

controlled environment in which to watch their behavior,

honeypots are purposefully set up to look vulnerable,

mimicking actual targets.

Honeypots are useful for identifying intrusions and gathering

information about attack methods, resources, and goals; they

don't offer real services to authorized users. After the data is

sent for analysis, the pattern is created with the appropriate

defenses to prevent attacks in the real world. They fall into the

following categories:

Table 1. Types of Honeypots

Category Type Description

Based on

Interaction

Low-

Interaction

Simulates limited services;

easy to deploy; low risk.

Medium-

Interaction

Emulates more complex

services; balances risk and

visibility.

High-

Interaction

Full OS or service

deployment; collects

detailed attacker behavior.

Based on

Purpose

Production

Honeypot

Deployed within enterprise

networks to detect and

deflect attacks.

Research

Honeypot

Used for studying attacker

methods and gathering threat

intelligence.

Based on

Role

Server

Honeypot

Imitates vulnerable server

services like HTTP, SSH,

FTP, etc.

Client

Honeypot

Simulates clients to interact

with malicious servers and

detect threats.

Based on Virtual Deployed as virtual

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

33

Architecture Honeypot machines for flexibility and

isolation.

Physical

Honeypot

Runs on dedicated hardware;

used for high-interaction

setups.

1.2 Machine Learning in Cyber Security:
Machine Learning (ML) is a subfield of artificial intelligence

that enables systems to learn patterns from data and make

predictions or decisions without being explicitly programmed

for specific tasks.

In cybersecurity, ML is primarily used for:

• Intrusion Detection Systems (IDS)

• Anomaly Detection

• Malware Classification

• Phishing Detection

• User Behavior Analytics

ML models used in cybersecurity include:

• Supervised Learning (e.g., Random Forest, SVM,

Logistic Regression): Trained on labeled data to

classify threats.

• Unsupervised Learning (e.g., K-means, DBSCAN):

Used to identify anomalies in unlabeled data.

• Deep Learning (e.g., CNN, RNN, LSTM): Useful for

detecting complex patterns and sequences in large

datasets.

Table 2. Classification of Machine Learning

Category Type

Common

Algorithm

s

Use Cases

Supervised

Learning

Classificati

on

SVM,

Decision

Trees,

Random

Forest,

Naive

Bayes

Email

filtering,

fraud

detection,

disease

diagnosis

Regression

Linear

Regression,

Ridge,

Lasso,

SVR

Stock

prediction,

price

forecasting,

risk

assessment

Unsupervise

d Learning

Clustering

K-means,

DBSCAN,

Hierarchica

l Clustering

Customer

segmentation,

anomaly

detection

Associatio

n

Apriori,

Eclat, FP-

Growth

Market basket

analysis,

recommendati

on systems

Semi-

Supervised

Learning

–

Variants of

supervised/

unsupervis

ed

algorithms

Web content

classification,

medical

diagnosis

Reinforcem

ent

Learning

–

Q-

Learning,

Deep Q-

Network

(DQN),

SARSA

Robotics,

game playing,

autonomous

vehicles

Self-

Supervised

Learning

–

Contrastive

Learning,

Autoencod

ers

Natural

language

processing,

image

recognition

This paper explores the intersection of machine learning and

honeypots to demonstrate how combining these two domains

can lead to more intelligent and dynamic defenses. A study by

Narayana Gaddam et al [4] shows a great development of attack

activities and performance enhancement up to a visual

difference after the introduction of AI-enhanced Honeypots

and Machine Learning. After providing a summary of the basic

concepts behind both machine learning and honeypots, the

current cybersecurity problems where traditional honeypot

methods fall short are examined. The discussion then turns to a

number of machine learning models, such as supervised,

unsupervised, and reinforcement learning models, that can be

used to detect, classify, and predict malicious activity. Using a

variety of case studies and experimental analyses, this work

evaluates how well these models perform in honeypots,

providing deeper behavioral insights and proactive threat

mitigation strategies.

The goal of this research is to provide important insights into

the creation of resilient, adaptive cybersecurity frameworks by

combining state-of-the-art machine learning techniques with

well-established decoy technologies. In the end, combining

machine learning with honeypots not only improves cyber

threat detection and analysis but also opens the door for more

responsive and predictive security solutions, laying the

foundation for the next wave of cyber defense. Narayana

Gaddam et al. [4] have an in-depth report on the combination

of ML with Honeypot for high-level threat detection with

scalable and lightweight features.

2. REVIEW OF LITERATURE
Honeypots and honeynets are essential components in the field

of cybersecurity, offering innovative methods for detecting,

analyzing, and mitigating cyber threats. A honeypot is a

purposefully weak system or network resource that is intended

to look like a real target to hackers. It acts as a trap to draw in

malevolent actors so that their actions can be observed without

endangering actual systems. J. Franco et al [5] set up the

Honeynet architecture in three Generation Phases. In contrast,

a honeynet is a system of linked honeypots that replicates a full

and authentic network environment.

Honeypots and honeynets contribute to the development of

threat intelligence. J. Franco et al. [5] demonstrate with a

survey on the role of Honeypots with Honeynet architecture.

By analyzing the behavior of attackers in a controlled

environment, security professionals can gather valuable data on

malware variants, command-and-control (C2) infrastructures,

and attacker tactics, techniques, and procedures (TTPs).

Martínez S. et al. [6] demonstrate with the use of High

Interaction Honeypots like Honeyd, Dioneda, and Capture-

HPC. This intelligence can be used to enhance the performance

of intrusion detection and prevention systems (IDS/IPS),

improve patch management, and inform security policies.

However, the deployment of honeypots and honeynets is not

without challenges. Sokol et al. [7] discuss the EU Laws for its

deployment Privacy Policy. High-interaction systems, if not

properly isolated, can be exploited as a platform to launch

attacks on other networks. Additionally, Mokube et al. [8]

discuss that sophisticated attackers may detect the presence of

honeypots and avoid or manipulate them, reducing their

effectiveness. Ethical and legal considerations also arise,

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

34

particularly when dealing with real-world malware and threat

actors, as mentioned by Sokol et al. [7] where IP addresses are

personal and exploiting it for personal use and analysis may

lead to various Privacy Policy laws and regulations.

2.1 Machine Learning in Cyber Security:
Parallel to the development of honeypots is the growing body

of work on machine learning (ML) applications in

cybersecurity. ML’s ability to process large-scale data. A study

by Bharadia et al. [9] demonstrates an approach that begins

with the gathering of a comprehensive dataset containing both

phishing and genuine samples. Key features such as email

headers, message text, and embedded URLs are then extracted,

followed by training a supervised machine learning model to

distinguish between them. Identifying subtle patterns and

adapting to changing conditions has made it invaluable.

Research has explored:

Supervised Learning: Algorithms like decision trees, support

vector machines (SVM), and neural networks have been

utilized for classifying known threats and detecting malware.

Unsupervised Learning: Methods such as clustering (e.g., k-

means, DBSCAN) have proven effective for anomaly

detection, particularly in scenarios where labeled data is scarce.

2.2 Convergence: Machine Learning

Integrated with Honeypots:
Recent literature focuses on the symbiotic integration of ML

models within honeypot environments, aiming to enhance the

system's responsiveness and accuracy. This integrated

approach has led to several innovative applications:

Real-Time Threat Analysis: Embedding ML models within

honeypots enables real-time processing of attack data, allowing

for immediate classification and response. Studies have

documented systems that flag unusual patterns in real-time,

significantly reducing the window of exposure.

Behavioral Fingerprinting of Attackers: Supervised learning

techniques have been used to match current attack patterns with

historical data, providing insight into attacker profiles and

tactics. This approach aids in predictive modeling, enabling

anticipatory defense measures.

3. METHODOLOGY

3.1 Installation of Cowrie
With the Ubuntu Server Environment, to install cowrie, the

following command is used in terminal.

1. sudo apt update && sudo apt upgrade -y

2. sudo apt install -y git python3 python3-venv

python3-pip libssl-dev libffi-dev build-essential

libpython3-dev authbind

These commands will install and update Python 3 along with

all necessary dependencies. The `authbind` package is included

to allow non-root users to bind to low-numbered ports, such as

22 or 23, simulating a real-world environment. However, using

`authbind` is optional; by default, Cowrie will be accessible

through port 2222. The command “ufw allow 2222/tcp” is then

added for Ubuntu firewall opening.

Following are the steps for Cowrie Configuration:

Step – I: Create a Cowrie User:

sudo adduser --disabled-password cowrie

A dedicated cowrie user is created, and Cowrie is a honeypot;

it pretends to be a vulnerable system. The goal is to ensure that

the cowrie user cannot access SSH, does not have a password,

and is unable to log in directly. The --disabled-password flag

does not completely lock the account; it merely prevents login

using a password. However, it's still possible to use “su –

cowrie” or “sudo -u cowrie” from a privileged user.

 Next step is to switch to cowrie user

Switched to Cowrie: su – cowrie

Step – II: Clone Cowrie Repository:

git clone https://github.com/cowrie/cowrie.git

 cd cowrie

Step - III: Setup Python Virtual Environment

1. python3 -m venv cowrie-env

2. source cowrie-env/bin/activate

3. pip install --upgrade pip

4. pip install -r requirements.txt

Python virtual environment is set up using the above command

and then activated.

Step – IV: Copy default configuration files

1. cp etc/cowrie.cfg.dist etc/cowrie.cfg

2. cp etc/userdb.txt.dist etc/userdb.txt

cowrie.cfg is the configuration file, and the userdb.txt is the file

that contains the fake user details along with the corresponding

passwords. Easily predictable user and password combinations

are stored as shown below:

 username:password:userid

root:123456:1000

admin:admin:1001

test:test:1002

Step – V: Run Cowrie

Finally, after setting up the cowrie, the honeypot cowrie is run

using the command “bin/cowrie start”, and to view the logs, the

“tail -f log/cowrie.log” command can be used. Further, the log

file is saved in the cowrie/log folder and saved with extensions

.log as well as .json. This .json file can be converted to csv file

for further study for Machine Learning.

By default, cowrie runs on port number 2222, and the same is

made open in the firewall. It can be opened by using the

command “sudo ufw allow 2222/tcp” and “sudo ufw reload”.

Further, if there is a requirement for a change of port number,

authbind can also be used.

Step – VI: Cowrie Log

Now that the cowrie is installed and set up successfully, the

cowrie status can be checked by using the command

“bin/cowrie status” from the virtual environment. Vlad-Iulius

Năstase et al. [10] talk about the exploitation of cowrie ssh for

better yield in threat protection. To see the real-time log “tail -

f log/cowrie.log” command can be used from the virtual

environment. Cowrie log is saved in .log and .json, both of

which can be downloaded using the scp command from a

remote location and converted back to csv file for training the

data.

3.2 System Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

35

Fig 1: Processes in K-Means Clustering

The implementation consists of an integrated system

combining high-interaction honeypots and machine learning

models. The honeypot environment is deployed using Cowrie,

which simulates an SSH service to attract attackers. All

interaction data - including login attempts, command

execution, and file transfers - is logged and transferred to a

centralized server for analysis in the form of a CSV file. Patrik

Krajčík et al [11] describe an overview of Cowrie’s operation

modes with emphasis on its simulation mode system

architecture, the types of data it captures, and the key

limitations identified during its deployment.

The raw data gathered from Cowrie logs underwent a thorough

data preprocessing stage. This involved cleaning the data to

remove inconsistencies, null entries, and duplicate records.

Noise filtering was applied to eliminate irrelevant data points

that could interfere with model training. A detailed study on

Accuracy, Sensitivity, Precision, and False Positive Rate is

well calculated in [13] Chaoyu Zhang et al. The remaining data

was then structured into meaningful features such as source IP

addresses, number of failed login attempts, session durations,

command patterns, and request frequencies. These features

were normalized to ensure consistent scaling across all input

variables. The CSV file is then fed to RapidMiner for data

cleaning. This process helped in identifying the most

significant attributes for training effective machine learning

models.

3.3 Data Collection and Preprocessing
The Cowrie logs are parsed to extract key features such as:

• Source IP address

• Timestamp of connection

• Command patterns

• Session duration

• Failed login attempts

timestamp, eventid, src_ip, username, password, input, url,

shasum, session – these are the information extracted and fed

to RapidMiner for Clustering.

In Altair RapidMiner Studio, the following steps are executed:

1. Import the Dataset

2. Repository > Right-click > Import Data.

3. Add Read CSV

4. Add Select Attributes to choose only relevant fields

(e.g., eventid, src_ip, username, command, etc.).

5. Preprocess Data

Convert categorical to numerical using:

Nominal to Numerical: For eventid, username, input,

etc.

Assign correct types:

timestamp: Date

src_ip, username, password, eventid, session, url,

shasum: Polynominal

input: Polynominal

6. Select Attributes operator.

Connect your dataset to it.

In parameters, select only:

eventid, src_ip, username, password, input, url,

timestamp.

7. Normalize numerical data using:

Normalize operator: (especially important for

distance-based clustering like K-Means).

8. Nominal to Numerical for:

eventid, username, password, src_ip, url.

9. Normalize (for K-Means only):

Drag Normalize operator.

Use default settings (Z-Transformation or Min-Max)

10. Add K-Means Operator

Drag K-Means onto the canvas.

Set k = 3 (you can tune this later).

Connect the Normalize output to K-Means.

3.4 Model Selection and Training
K-Means (Unsupervised): For anomaly detection based on

command pattern deviations.

The K-Means clustering Model was used for training purposes.

Youguo Li et al [12] talk about traditional and improved K-

Means Clustering Algorithm and their effectiveness in

unsupervised learning.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

36

Fig 2 Actual K-Means Clustering Process without Noise

Fig.3 RapidMiner Plot of K-Means Clustering

Data Preparation Steps:

Retrieve Extended Data: Load your dataset.

Select Attributes: Choose only the relevant features for

modeling.

Generate Attributes: Create new features if needed (e.g.,

derived columns).

Replace Missing Values (twice): Handle missing data by

filling them with appropriate values (mean, median, mode,

etc.).

Nominal to Numerical: Convert categorical data into

numbers, as clustering algorithms require numeric input.

Normalize: Scale all features to the same range (usually 0–1)

to ensure fair distance calculations during clustering.

Select Attributes (2): Final selection of attributes before

clustering.

Model Selection (Choosing the Clustering Algorithm):

Clustering Operator:

This block is where the model is selected.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

37

In clustering (unsupervised learning), the model could be K-

Means. The selection depends on the nature of the data:

K-Means for globular clusters.

DBSCAN for arbitrary-shaped clusters and noise handling.

Training (Executing the Clustering Algorithm):

Once the data is cleaned, transformed, and normalized, it is fed

into the clustering model. The model will then learn the patterns

and group similar instances together based on feature

similarity. It is a parallel coordinate plot (or line plot for

clusters), a typical visualization after K-Means clustering.

Legend (Top Left):

0, 1, 2 → These are the cluster IDs (three clusters found).

Blue line = Cluster 0

Green line = Cluster 1

Red line = Cluster 2

X-Axis:

Different features/variables extracted from your Cowrie SSH

honeypot logs.

e.g., eventid = cowrie.session.connect, eventid =

cowrie.login.success, usernames, passwords, URLs tried, etc.

Y-Axis:

Normalized values for each feature (scaled between roughly -

0.6 to 3.2). It shows the relative importance/intensity of each

feature in a cluster. Each colored line shows the average pattern

for that cluster across the features. Peaks and dips indicate

which features are more dominant for that cluster.

For example:

Cluster 1 (Green) shows a very high spike for username =

admin and password = admin → suggests attackers trying

default admin credentials.

Cluster 2 (Red) spikes at username = root and password =

123456 → indicates a different attack behavior focused on root

brute-forcing.

Cluster 0 (Blue) stays relatively flat → likely less suspicious or

benign interactions.

URLs like http://bad.com/malware.sh being accessed are

visible in the features; if these spike, it hints at attempts to

download malware.

3.5 Integration and Automation
Following training and testing of the machine learning models

with RapidMiner, the final clustering pipeline was installed as

a background service on an Ubuntu server running the Cowrie

SSH honeypot. Cowrie was set up to simulate a vulnerable SSH

environment, drawing malicious login attempts and command

executions from would-be attackers. Incoming SSH session

logs, such as authentication attempts, command sequences, and

connection metadata, were fed into the system continuously.

Preprocessing operations like data normalization and feature

extraction were used to prepare the raw logs prior to passing

them into the RapidMiner K-Means clustering model. The

model partitioned the activities into separate clusters to

facilitate differentiation between benign interactions,

automated bot scans, and more complex intrusion attempts.

This clustering analysis was done in close to real time, allowing

for suspicious activity to be rapidly detected without the need

for manual intervention.

Upon detecting abnormal clusters associated with potential

threats, the system automatically generated alerts, notifying

administrators of the suspicious activity.

The honeypot's function within the cybersecurity infrastructure

underwent a dramatic change as a result of this integration. The

improved Cowrie honeypot actively categorized, addressed,

and manipulated attacker interactions in real-time, rather than

just acting as a passive log collector for forensic analysis. The

system was able to advance toward a more proactive,

intelligent, and robust cyber defense strategy by combining the

use of RapidMiner for clustering with reinforcement learning

for adaptive deception.

4. RESULT AND DISCUSSION

4.1 Results
The K-Means clustering algorithm, applied through

RapidMiner on the SSH honeypot logs collected from the

Cowrie instance running on Ubuntu, successfully identified

distinct patterns of malicious behavior. The model was

configured to detect three clusters, each representing a different

category of activity observed on the honeypot.

Taking K=3, the resulting parallel coordinates plot revealed

clear behavioral differences among the clusters:

Cluster 0 (blue line) exhibited relatively flat and stable values

across all features. This indicates a group of sessions with

minimal engagement or random scanning behavior. Such

traffic likely corresponds to benign or automated network scans

without focused intrusion attempts.

Cluster 1 (green line) showed significant spikes for the

features associated with the username admin and password

admin, along with access attempts to known malicious URLs.

This suggests a coordinated brute-force attack strategy

leveraging common administrative credentials. Additionally,

heightened values in command input length and file download

events further indicate active exploitation attempts beyond

simple login probing.

Cluster 2 (red line) displayed strong peaks for the root user

and password combinations such as 123456 and raspberry. This

pattern aligns with botnets or automated attack scripts targeting

default credentials typically found on misconfigured or poorly

secured systems.

The clustering results demonstrate that different attacker

groups or bots exhibit distinguishable behavioral signatures

when interacting with the honeypot. By grouping these

interactions into clusters, the system is able to automatically

classify and prioritize threat types without manual inspection.

Notably, the system was able to differentiate between

superficial scanning activity and deeper, more targeted

intrusion efforts.

Furthermore, integrating these clustering results with the

reinforcement learning (RL) agent allowed Cowrie to

dynamically adapt its responses based on the detected threat

profile. For example, more sophisticated deception tactics, such

as fake vulnerabilities or staged file systems, could be

selectively deployed against attackers showing signs of deeper

engagement (Clusters 1 and 2), enhancing the system’s

effectiveness in intelligence gathering and threat deterrence.

Overall, the clustering approach provided valuable insights into

attack behavior on the SSH honeypot, transforming raw log

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

38

data into actionable threat intelligence for proactive cyber

defense.

4.2 Observations
The results demonstrate the effectiveness of K-Means

clustering in profiling attacker behaviors based on SSH

honeypot interaction logs. By categorizing sessions into three

distinct clusters, it became possible to identify different threat

patterns:

• general reconnaissance with minimal interaction,

• credential attacks using default administrative

credentials, and

• root access brute-force attacks leveraging weak

passwords.

The separation between clusters was particularly evident in key

features such as username and password combinations, input

length, and access to known malicious URLs. These findings

confirm that even unsupervised learning methods can

effectively reveal underlying attacker strategies without prior

labeling of data.

Integrating this clustering model into the live honeypot system

provides a strong foundation for real-time threat classification.

Suspicious sessions can be rapidly flagged based on cluster

membership, enabling timely alerts and adaptive response

mechanisms. Furthermore, coupling the clustering engine with

a reinforcement learning agent enhances the honeypot's ability

to dynamically deceive attackers, tailoring fake system

behaviors to specific attacker profiles.

Thus, the combined machine learning pipeline transitions the

honeypot from passive logging to proactive engagement,

significantly strengthening cyber defense capabilities.

5. CONCLUSION AND FUTURE SCOPE
This research successfully demonstrated the significant

benefits of integrating machine learning techniques with

honeypot systems to enhance cybersecurity defenses. Through

a well-structured methodology encompassing data collection,

feature engineering, model training, and real-time deployment,

the project established a comprehensive framework capable of

intelligent threat detection, classification, and response. The

results highlighted that machine learning not only improves the

accuracy and speed of detecting cyber threats but also

introduces adaptability and predictive capabilities, which are

absent in traditional honeypot implementations. This

combination of deception and intelligence forms a proactive

line of defense, capable of countering both known and

emerging threats with increased efficacy.

The study confirms several hypotheses. First, ML-enhanced

honeypots demonstrate significantly higher accuracy in

detecting and classifying malicious activity compared to static,

rule-based systems. Second, unsupervised and reinforcement

learning models show particular promise in identifying novel

and evasive threats, contributing to a more robust security

posture. Third, by analyzing behavioral trends and attacker

interaction patterns, the system can predict future attacks and

take preemptive measures. Moreover, despite the

computational complexity of certain ML models, careful

optimization ensured that real-time detection was achieved

without substantial performance overhead. Overall, the system

represents a transformative step toward automated and adaptive

cyber defense.

Looking forward, there are several promising directions for

future research. Deep learning models, especially those based

on recurrent neural networks (RNNs) and transformers, can be

explored to analyze time-series data and sequential command

patterns for even more accurate detection. Deployment of the

system on edge devices and integration with distributed

computing platforms can further enhance its scalability and

resilience. Additionally, incorporating federated learning will

enable the training of models across multiple honeypot

instances while preserving data privacy. Integration with

Security Information and Event Management (SIEM) tools can

enable enterprise-wide alert correlation and automated incident

response. Finally, future work should focus on strengthening

the system’s robustness against adversarial ML attacks and

implementing concept drift detection to ensure long-term

adaptability.

In conclusion, the fusion of honeypot deception techniques

with machine learning intelligence marks a paradigm shift in

cybersecurity. This hybrid approach not only enriches threat

detection and analysis but also lays the groundwork for

developing resilient, adaptive, and self-learning security

systems capable of withstanding the evolving landscape of

cyber threats.

This research demonstrates that integrating machine learning

with honeypot systems significantly enhances the detection,

classification, and mitigation of cyber threats.

The system:

• Collects rich interaction data.

• Uses ML for intelligent classification.

• Employs adaptive strategies for dynamic threat

engagement.

• Supervised models are effective for known threats,

while unsupervised models uncover novel attacks.

Reinforcement learning brings adaptability to a

traditionally static security tool.

Future Scope

• Advanced Deep Learning Models: Incorporate LSTM

or Transformer-based models for detecting temporal

attack patterns.

• Edge Deployment: Optimize models for edge devices

in distributed network environments.

• Federated Learning: Train across multiple honeypot

nodes without centralized data sharing, ensuring

privacy.

• Integration with SIEM Systems: Seamless correlation

with enterprise-wide event management platforms.

• Adversarial Defense: Enhance ML models against

adversarial inputs and evasion techniques.

6. ACKNOWLEDGMENTS
I would like to express my gratitude to Prof. L. Hemochandra

Singh, Professor of Statistics in the Department of Basic

Science at the College of Agriculture in Imphal, and to Dr.

Maibam Romio Singh for their unwavering support in all areas.

7. REFERENCES
[1] Shyamalendu Paul, Amitava Podder, Kaustav Roy,

(2024), Exploring the Impact of AI-based Honeypots on

Network Security, Educational Administration: Theory

and Practice, 30(6), 251-258, Doi:

10.53555/kuey.v30i6.5155

[2] Iyer, Kumrashan Indranil. (2021). Adaptive honeypots:

Dynamic deception tactics in modern cyber defense.

International Journal of Science and Research Archive.

04. 340-351. 10.30574/ijsra.2021.4.1.0210.

[3] Dakic, Vedran & Regvart, Damir. (2025). Advancing

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

39

Cybersecurity with Honeypots and Deception Strategies.

Informatics. 12. 14. 10.3390/informatics12010014.

[4] Narayana Gaddam. (2025). AI-enhanced honeypots for

advanced cyber deception strategies. QIT Press -

International Journal of Cyber Security Research and

Development (QITP-IJCSRD), 5(1), 9–19.

[5] J. Franco, A. Aris, B. Canberk and A. S. Uluagac, "A

Survey of Honeypots and Honeynets for Internet of

Things, Industrial Internet of Things, and Cyber-Physical

Systems," in IEEE Communications Surveys & Tutorials,

vol. 23, no. 4, pp. 2351-2383

[6] Martínez S., C. J. ., Moreno A., H. O. ., & Hernández A.,

M. B. . (2023). Analysis of Intrusions into Computer

Systems using Honeypots. International Journal of

Intelligent Systems and Applications in Engineering,

11(6s), 461–472. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2871

[7] Sokol, P., Míšek, J. & Husák, M. Honeypots and

honeynets: issues of privacy. EURASIP J. on Info.

Security 2017, 4 (2017). https://doi.org/10.1186/s13635-

017-0057-4

[8] Mokube, Iyatiti & Adams, Michele. (2007). Honeypots:

concepts, approaches, and challenges. 321-326.

10.1145/1233341.1233399.

[9] Bharadiya, Jasmin. (2023). Machine Learning in

Cybersecurity: Techniques and Challenges. European

Journal of Technology. 7. 10.47672/ejt.1486.

[10] V. -I. Năstase, M. -E. Mihăilescu, S. Weisz, L. V. Dagilis,

D. Mihai and M. Carabas, "Cowrie SSH Honeypot:

Architecture, Improvements and Data Visualization,"

2024 23rd RoEduNet Conference: Networking in

Education and Research (RoEduNet), Bucharest,

Romania, 2024, pp. 1-7, doi:

10.1109/RoEduNet64292.2024.10722609

[11] Krajčík, Patrik & Mikuláš, Matúš & Helebrandt, Pavol &

Kotuliak, Ivan. (2025). Improvement of Cowrie honeypot

interaction and deception capabilities. 1-9.

10.1109/KIT67756.2025.11205433.

[12] Li, Youguo & Wu, Haiyan. (2012). A Clustering Method

Based on K-Means Algorithm. Physics Procedia. 25.

1104-1109. 10.1016/j.phpro.2012.03.206.

[13] Zhang, Chaoyu & Wang, Ning & Hou, Y & Lou, Wenjing.

(2025). Machine Learning-Based Intrusion Detection

Systems: Capabilities, Methodologies, and Open

Research Challenges.

10.36227/techrxiv.173627464.48290242/v1.

IJCATM : www.ijcaonline.org

