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ABSTRACT 

This paper focuses on interaction of Honeypots with Machine 

Learning for threat detection by finding out the patterns, 

anomalies, and learn from them. In this particular study, 

Cowrie Honeypot has been deployed on an Ubuntu Server, and 

its own environment is set up using python. The environment 

is totally isolated from the original actual server environment, 

and cowrie mimics the original environment, thereby luring the 

Hackers/Attackers to fall into the trap. Cowrie generally 

interacts with the SSH environment, and all the commands, IP 

addresses, and timestamps are captured in the log file, which is 

saved in the path defined by the Administrator. 

Further, the log file is converted to csv file for feeding the 

collected data to Altair RapidMiner for its Clustering 

Algorithm. In RapidMiner, the csv file is retrieved, fed to Select 

Attribute so that the desired attributes are selected and filtered. 

Cowrie log generally contains a handful of noise, so 

normalization is needed. However, since normalization is done 

using z-transformation, it accepts only numerical values. This 

nominal-to-numerical converter is added in the process for 

further feeding to the Normalize operator. The normalized data 

is then fed to the Clustering operator, where the K-Means 

Clustering Algorithm is deployed in this research. In this study, 

3 Clusters are studied. Using clustering analysis revealed 

distinct patterns in SSH honeypot attack behavior, effectively 

transforming unprocessed log data into actionable intelligence 

for strengthening proactive security responses.  

In summary, integrating honeypot deception strategies with 

machine learning represents a significant advancement in the 

field of cybersecurity. This combined approach enhances threat 

detection and analysis while paving the way for robust, 

adaptive, and self-evolving security systems capable of 

countering ever-changing cyber threats.   

General Terms 

Cybersecurity, Network Security, Machine Learning, Pattern 

Recognition, Data Mining. 
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1. INTRODUCTION 
In an era of rapid digital transformation and networked 

systems, cybersecurity concerns have grown more complex. 

Security experts are being compelled to continuously create 

new defenses due to the increasing frequency and 

sophistication of cyberattacks. Shyamalendu Paul et al. [1] 

studied the development of an AI-based Honeypot system. One 

promising tactic is to combine machine learning (ML) 

techniques with honeypot systems, which are designed to 

attract and deceive malicious actors. 

Honeypots are decoy systems that mimic vulnerable network 

targets. By luring attackers into a controlled environment, they 

enable the collection of invaluable information about 

adversarial behaviors, tactics, and emerging threat trends. Iyer 

et al. [2] show that analysis of these interactions used to require 

a great deal of manual labor and experience. However, the 

advancement of machine learning has opened up new avenues 

for enhancing honeypot functionality. It is possible to analyze 

vast amounts of interaction data. 

1.1 Honeypots 
A honeypot is a cybersecurity technique intended to serve as a 

network or decoy system to entice, identify, block, or 

investigate attempts at unauthorized use of information 

systems. A honeypot is a decoy system or application intended 

to lure and examine malicious activities, functioning as a trap 

for attackers while providing valuable intelligence on emerging 

threats. Dakic et al. [3] describe the real-world interaction of 

Honeypots, analyze attack behaviour, cyber intrusion, and 

phishing. In order to draw attackers and give defenders a 

controlled environment in which to watch their behavior, 

honeypots are purposefully set up to look vulnerable, 

mimicking actual targets. 

Honeypots are useful for identifying intrusions and gathering 

information about attack methods, resources, and goals; they 

don't offer real services to authorized users. After the data is 

sent for analysis, the pattern is created with the appropriate 

defenses to prevent attacks in the real world. They fall into the 

following categories: 

Table 1. Types of Honeypots 

Category Type Description 

Based on 

Interaction  

Low-

Interaction 

Simulates limited services; 

easy to deploy; low risk. 

Medium-

Interaction 

Emulates more complex 

services; balances risk and 

visibility. 

High-

Interaction 

Full OS or service 

deployment; collects 

detailed attacker behavior. 

Based on 

Purpose 

Production 

Honeypot 

Deployed within enterprise 

networks to detect and 

deflect attacks. 

Research 

Honeypot 

Used for studying attacker 

methods and gathering threat 

intelligence. 

Based on 

Role 

Server 

Honeypot 

Imitates vulnerable server 

services like HTTP, SSH, 

FTP, etc. 

Client 

Honeypot 

Simulates clients to interact 

with malicious servers and 

detect threats. 

Based on Virtual Deployed as virtual 
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Architecture Honeypot machines for flexibility and 

isolation. 

Physical 

Honeypot 

Runs on dedicated hardware; 

used for high-interaction 

setups. 

1.2  Machine Learning in Cyber Security: 
Machine Learning (ML) is a subfield of artificial intelligence 

that enables systems to learn patterns from data and make 

predictions or decisions without being explicitly programmed 

for specific tasks. 

In cybersecurity, ML is primarily used for: 

• Intrusion Detection Systems (IDS) 

• Anomaly Detection 

• Malware Classification 

• Phishing Detection 

• User Behavior Analytics 

ML models used in cybersecurity include: 

• Supervised Learning (e.g., Random Forest, SVM, 

Logistic Regression): Trained on labeled data to 

classify threats. 

• Unsupervised Learning (e.g., K-means, DBSCAN): 

Used to identify anomalies in unlabeled data. 

• Deep Learning (e.g., CNN, RNN, LSTM): Useful for 

detecting complex patterns and sequences in large 

datasets. 

Table 2. Classification of Machine Learning 

Category Type 

Common 

Algorithm

s 

Use Cases 

Supervised 

Learning 

Classificati

on 

SVM, 

Decision 

Trees, 

Random 

Forest, 

Naive 

Bayes 

Email 

filtering, 

fraud 

detection, 

disease 

diagnosis 

Regression 

Linear 

Regression, 

Ridge, 

Lasso, 

SVR 

Stock 

prediction, 

price 

forecasting, 

risk 

assessment 

Unsupervise

d Learning 

Clustering 

K-means, 

DBSCAN, 

Hierarchica

l Clustering 

Customer 

segmentation, 

anomaly 

detection 

Associatio

n 

Apriori, 

Eclat, FP-

Growth 

Market basket 

analysis, 

recommendati

on systems 

Semi-

Supervised 

Learning 

– 

Variants of 

supervised/ 

unsupervis

ed 

algorithms 

Web content 

classification, 

medical 

diagnosis 

Reinforcem

ent 

Learning 

– 

Q-

Learning, 

Deep Q-

Network 

(DQN), 

SARSA 

Robotics, 

game playing, 

autonomous 

vehicles 

Self-

Supervised 

Learning 

– 

Contrastive 

Learning, 

Autoencod

ers 

Natural 

language 

processing, 

image 

recognition 

This paper explores the intersection of machine learning and 

honeypots to demonstrate how combining these two domains 

can lead to more intelligent and dynamic defenses. A study by 

Narayana Gaddam et al [4] shows a great development of attack 

activities and performance enhancement up to a visual 

difference after the introduction of AI-enhanced Honeypots 

and Machine Learning. After providing a summary of the basic 

concepts behind both machine learning and honeypots, the 

current cybersecurity problems where traditional honeypot 

methods fall short are examined. The discussion then turns to a 

number of machine learning models, such as supervised, 

unsupervised, and reinforcement learning models, that can be 

used to detect, classify, and predict malicious activity. Using a 

variety of case studies and experimental analyses, this work 

evaluates how well these models perform in honeypots, 

providing deeper behavioral insights and proactive threat 

mitigation strategies. 

The goal of this research is to provide important insights into 

the creation of resilient, adaptive cybersecurity frameworks by 

combining state-of-the-art machine learning techniques with 

well-established decoy technologies. In the end, combining 

machine learning with honeypots not only improves cyber 

threat detection and analysis but also opens the door for more 

responsive and predictive security solutions, laying the 

foundation for the next wave of cyber defense. Narayana 

Gaddam et al. [4] have an in-depth report on the combination 

of ML with Honeypot for high-level threat detection with 

scalable and lightweight features. 

2. REVIEW OF LITERATURE 
Honeypots and honeynets are essential components in the field 

of cybersecurity, offering innovative methods for detecting, 

analyzing, and mitigating cyber threats. A honeypot is a 

purposefully weak system or network resource that is intended 

to look like a real target to hackers. It acts as a trap to draw in 

malevolent actors so that their actions can be observed without 

endangering actual systems. J. Franco et al [5] set up the 

Honeynet architecture in three Generation Phases. In contrast, 

a honeynet is a system of linked honeypots that replicates a full 

and authentic network environment. 

Honeypots and honeynets contribute to the development of 

threat intelligence. J. Franco et al. [5] demonstrate with a 

survey on the role of Honeypots with Honeynet architecture. 

By analyzing the behavior of attackers in a controlled 

environment, security professionals can gather valuable data on 

malware variants, command-and-control (C2) infrastructures, 

and attacker tactics, techniques, and procedures (TTPs). 

Martínez S. et al. [6] demonstrate with the use of High 

Interaction Honeypots like Honeyd, Dioneda, and Capture-

HPC. This intelligence can be used to enhance the performance 

of intrusion detection and prevention systems (IDS/IPS), 

improve patch management, and inform security policies. 

However, the deployment of honeypots and honeynets is not 

without challenges. Sokol et al. [7] discuss the EU Laws for its 

deployment Privacy Policy. High-interaction systems, if not 

properly isolated, can be exploited as a platform to launch 

attacks on other networks. Additionally, Mokube et al. [8] 

discuss that sophisticated attackers may detect the presence of 

honeypots and avoid or manipulate them, reducing their 

effectiveness. Ethical and legal considerations also arise, 
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particularly when dealing with real-world malware and threat 

actors, as mentioned by Sokol et al. [7] where IP addresses are 

personal and exploiting it for personal use and analysis may 

lead to various Privacy Policy laws and regulations. 

2.1 Machine Learning in Cyber Security: 
Parallel to the development of honeypots is the growing body 

of work on machine learning (ML) applications in 

cybersecurity. ML’s ability to process large-scale data. A study 

by Bharadia et al. [9] demonstrates an approach that begins 

with the gathering of a comprehensive dataset containing both 

phishing and genuine samples. Key features such as email 

headers, message text, and embedded URLs are then extracted, 

followed by training a supervised machine learning model to 

distinguish between them. Identifying subtle patterns and 

adapting to changing conditions has made it invaluable. 

Research has explored: 

Supervised Learning: Algorithms like decision trees, support 

vector machines (SVM), and neural networks have been 

utilized for classifying known threats and detecting malware. 

Unsupervised Learning: Methods such as clustering (e.g., k-

means, DBSCAN) have proven effective for anomaly 

detection, particularly in scenarios where labeled data is scarce. 

2.2 Convergence: Machine Learning 

Integrated with Honeypots: 
Recent literature focuses on the symbiotic integration of ML 

models within honeypot environments, aiming to enhance the 

system's responsiveness and accuracy. This integrated 

approach has led to several innovative applications: 

Real-Time Threat Analysis: Embedding ML models within 

honeypots enables real-time processing of attack data, allowing 

for immediate classification and response. Studies have 

documented systems that flag unusual patterns in real-time, 

significantly reducing the window of exposure. 

Behavioral Fingerprinting of Attackers: Supervised learning 

techniques have been used to match current attack patterns with 

historical data, providing insight into attacker profiles and 

tactics. This approach aids in predictive modeling, enabling 

anticipatory defense measures. 

3. METHODOLOGY 

3.1 Installation of Cowrie 
With the Ubuntu Server Environment, to install cowrie, the 

following command is used in terminal. 

1. sudo apt update && sudo apt upgrade -y 

2. sudo apt install -y git python3 python3-venv 

python3-pip libssl-dev libffi-dev build-essential 

libpython3-dev authbind 

These commands will install and update Python 3 along with 

all necessary dependencies. The `authbind` package is included 

to allow non-root users to bind to low-numbered ports, such as 

22 or 23, simulating a real-world environment. However, using 

`authbind` is optional; by default, Cowrie will be accessible 

through port 2222. The command “ufw allow 2222/tcp” is then 

added for Ubuntu firewall opening. 

Following are the steps for Cowrie Configuration: 

Step – I: Create a Cowrie User: 

sudo adduser --disabled-password cowrie 

A dedicated cowrie user is created, and Cowrie is a honeypot; 

it pretends to be a vulnerable system. The goal is to ensure that 

the cowrie user cannot access SSH, does not have a password, 

and is unable to log in directly. The --disabled-password flag 

does not completely lock the account; it merely prevents login 

using a password. However, it's still possible to use “su – 

cowrie” or “sudo -u cowrie” from a privileged user. 

 Next step is to switch to cowrie user 

Switched to Cowrie: su – cowrie 

Step – II: Clone Cowrie Repository: 

git clone https://github.com/cowrie/cowrie.git 

 cd cowrie 

Step - III: Setup Python Virtual Environment 

1. python3 -m venv cowrie-env 

2. source cowrie-env/bin/activate 

3. pip install --upgrade pip 

4. pip install -r requirements.txt 

Python virtual environment is set up using the above command 

and then activated. 

Step – IV: Copy default configuration files 

1. cp etc/cowrie.cfg.dist etc/cowrie.cfg 

2. cp etc/userdb.txt.dist etc/userdb.txt 

cowrie.cfg is the configuration file, and the userdb.txt is the file 

that contains the fake user details along with the corresponding 

passwords. Easily predictable user and password combinations 

are stored as shown below: 

 username:password:userid 

root:123456:1000 

admin:admin:1001 

test:test:1002 

Step – V: Run Cowrie 

Finally, after setting up the cowrie, the honeypot cowrie is run 

using the command “bin/cowrie start”, and to view the logs, the 

“tail -f log/cowrie.log” command can be used. Further, the log 

file is saved in the cowrie/log folder and saved with extensions 

.log as well as .json. This .json file can be converted to csv file 

for further study for Machine Learning. 

By default, cowrie runs on port number 2222, and the same is 

made open in the firewall. It can be opened by using the 

command “sudo ufw allow 2222/tcp” and “sudo ufw reload”. 

Further, if there is a requirement for a change of port number, 

authbind can also be used. 

Step – VI: Cowrie Log 

Now that the cowrie is installed and set up successfully, the 

cowrie status can be checked by using the command 

“bin/cowrie status” from the virtual environment. Vlad-Iulius 

Năstase et al. [10] talk about the exploitation of cowrie ssh for 

better yield in threat protection. To see the real-time log “tail -

f log/cowrie.log” command can be used from the virtual 

environment. Cowrie log is saved in .log and .json, both of 

which can be downloaded using the scp command from a 

remote location and converted back to csv file for training the 

data. 

3.2 System Architecture 
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Fig 1: Processes in K-Means Clustering 

The implementation consists of an integrated system 

combining high-interaction honeypots and machine learning 

models. The honeypot environment is deployed using Cowrie, 

which simulates an SSH service to attract attackers. All 

interaction data - including login attempts, command 

execution, and file transfers - is logged and transferred to a 

centralized server for analysis in the form of a CSV file. Patrik 

Krajčík et al [11] describe an overview of Cowrie’s operation 

modes with emphasis on its simulation mode system 

architecture, the types of data it captures, and the key 

limitations identified during its deployment. 

The raw data gathered from Cowrie logs underwent a thorough 

data preprocessing stage. This involved cleaning the data to 

remove inconsistencies, null entries, and duplicate records. 

Noise filtering was applied to eliminate irrelevant data points 

that could interfere with model training. A detailed study on 

Accuracy, Sensitivity, Precision, and False Positive Rate is 

well calculated in [13] Chaoyu Zhang et al. The remaining data 

was then structured into meaningful features such as source IP 

addresses, number of failed login attempts, session durations, 

command patterns, and request frequencies. These features 

were normalized to ensure consistent scaling across all input 

variables. The CSV file is then fed to RapidMiner for data 

cleaning. This process helped in identifying the most 

significant attributes for training effective machine learning 

models.  

3.3 Data Collection and Preprocessing 
The Cowrie logs are parsed to extract key features such as: 

• Source IP address 

• Timestamp of connection 

• Command patterns 

• Session duration 

• Failed login attempts 

timestamp, eventid, src_ip, username, password, input, url, 

shasum, session – these are the information extracted and fed 

to RapidMiner for Clustering.  

In Altair RapidMiner Studio, the following steps are executed: 

1. Import the Dataset 

2. Repository > Right-click > Import Data. 

3. Add Read CSV 

4. Add Select Attributes to choose only relevant fields 

(e.g., eventid, src_ip, username, command, etc.). 

5. Preprocess Data 

Convert categorical to numerical using: 

Nominal to Numerical: For eventid, username, input, 

etc. 

Assign correct types: 

timestamp: Date 

src_ip, username, password, eventid, session, url, 

shasum: Polynominal 

input: Polynominal 

6. Select Attributes operator. 

Connect your dataset to it. 

In parameters, select only: 

eventid, src_ip, username, password, input, url, 

timestamp. 

7. Normalize numerical data using: 

Normalize operator: (especially important for 

distance-based clustering like K-Means). 

8. Nominal to Numerical for: 

eventid, username, password, src_ip, url. 

9. Normalize (for K-Means only): 

Drag Normalize operator. 

Use default settings (Z-Transformation or Min-Max) 

10. Add K-Means Operator 

Drag K-Means onto the canvas. 

Set k = 3 (you can tune this later). 

Connect the Normalize output to K-Means. 

3.4 Model Selection and Training 
K-Means (Unsupervised): For anomaly detection based on 

command pattern deviations. 

The K-Means clustering Model was used for training purposes. 

Youguo Li et al [12] talk about traditional and improved K-

Means Clustering Algorithm and their effectiveness in 

unsupervised learning. 
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Fig 2 Actual K-Means Clustering Process without Noise 

 

Fig.3 RapidMiner Plot of K-Means Clustering 

Data Preparation Steps: 

Retrieve Extended Data: Load your dataset. 

Select Attributes: Choose only the relevant features for 

modeling. 

Generate Attributes: Create new features if needed (e.g., 

derived columns). 

Replace Missing Values (twice): Handle missing data by 

filling them with appropriate values (mean, median, mode, 

etc.). 

Nominal to Numerical: Convert categorical data into 

numbers, as clustering algorithms require numeric input. 

Normalize: Scale all features to the same range (usually 0–1) 

to ensure fair distance calculations during clustering. 

Select Attributes (2): Final selection of attributes before 

clustering. 

Model Selection (Choosing the Clustering Algorithm): 

Clustering Operator: 

This block is where the model is selected. 
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In clustering (unsupervised learning), the model could be K-

Means. The selection depends on the nature of the data: 

K-Means for globular clusters. 

DBSCAN for arbitrary-shaped clusters and noise handling. 

Training (Executing the Clustering Algorithm): 

Once the data is cleaned, transformed, and normalized, it is fed 

into the clustering model. The model will then learn the patterns 

and group similar instances together based on feature 

similarity. It is a parallel coordinate plot (or line plot for 

clusters), a typical visualization after K-Means clustering. 

Legend (Top Left): 

0, 1, 2 → These are the cluster IDs (three clusters found). 

Blue line = Cluster 0 

Green line = Cluster 1 

Red line = Cluster 2 

X-Axis: 

Different features/variables extracted from your Cowrie SSH 

honeypot logs. 

e.g., eventid = cowrie.session.connect, eventid = 

cowrie.login.success, usernames, passwords, URLs tried, etc. 

Y-Axis: 

Normalized values for each feature (scaled between roughly -

0.6 to 3.2). It shows the relative importance/intensity of each 

feature in a cluster. Each colored line shows the average pattern 

for that cluster across the features. Peaks and dips indicate 

which features are more dominant for that cluster. 

For example: 

Cluster 1 (Green) shows a very high spike for username = 

admin and password = admin → suggests attackers trying 

default admin credentials. 

Cluster 2 (Red) spikes at username = root and password = 

123456 → indicates a different attack behavior focused on root 

brute-forcing. 

Cluster 0 (Blue) stays relatively flat → likely less suspicious or 

benign interactions. 

URLs like http://bad.com/malware.sh being accessed are 

visible in the features; if these spike, it hints at attempts to 

download malware. 

3.5 Integration and Automation   
Following training and testing of the machine learning models 

with RapidMiner, the final clustering pipeline was installed as 

a background service on an Ubuntu server running the Cowrie 

SSH honeypot. Cowrie was set up to simulate a vulnerable SSH 

environment, drawing malicious login attempts and command 

executions from would-be attackers. Incoming SSH session 

logs, such as authentication attempts, command sequences, and 

connection metadata, were fed into the system continuously. 

Preprocessing operations like data normalization and feature 

extraction were used to prepare the raw logs prior to passing 

them into the RapidMiner K-Means clustering model. The 

model partitioned the activities into separate clusters to 

facilitate differentiation between benign interactions, 

automated bot scans, and more complex intrusion attempts. 

This clustering analysis was done in close to real time, allowing 

for suspicious activity to be rapidly detected without the need 

for manual intervention. 

Upon detecting abnormal clusters associated with potential 

threats, the system automatically generated alerts, notifying 

administrators of the suspicious activity.  

The honeypot's function within the cybersecurity infrastructure 

underwent a dramatic change as a result of this integration. The 

improved Cowrie honeypot actively categorized, addressed, 

and manipulated attacker interactions in real-time, rather than 

just acting as a passive log collector for forensic analysis. The 

system was able to advance toward a more proactive, 

intelligent, and robust cyber defense strategy by combining the 

use of RapidMiner for clustering with reinforcement learning 

for adaptive deception. 

4. RESULT AND DISCUSSION 

4.1 Results   
The K-Means clustering algorithm, applied through 

RapidMiner on the SSH honeypot logs collected from the 

Cowrie instance running on Ubuntu, successfully identified 

distinct patterns of malicious behavior. The model was 

configured to detect three clusters, each representing a different 

category of activity observed on the honeypot. 

Taking K=3, the resulting parallel coordinates plot revealed 

clear behavioral differences among the clusters: 

Cluster 0 (blue line) exhibited relatively flat and stable values 

across all features. This indicates a group of sessions with 

minimal engagement or random scanning behavior. Such 

traffic likely corresponds to benign or automated network scans 

without focused intrusion attempts. 

Cluster 1 (green line) showed significant spikes for the 

features associated with the username admin and password 

admin, along with access attempts to known malicious URLs. 

This suggests a coordinated brute-force attack strategy 

leveraging common administrative credentials. Additionally, 

heightened values in command input length and file download 

events further indicate active exploitation attempts beyond 

simple login probing. 

Cluster 2 (red line) displayed strong peaks for the root user 

and password combinations such as 123456 and raspberry. This 

pattern aligns with botnets or automated attack scripts targeting 

default credentials typically found on misconfigured or poorly 

secured systems. 

The clustering results demonstrate that different attacker 

groups or bots exhibit distinguishable behavioral signatures 

when interacting with the honeypot. By grouping these 

interactions into clusters, the system is able to automatically 

classify and prioritize threat types without manual inspection. 

Notably, the system was able to differentiate between 

superficial scanning activity and deeper, more targeted 

intrusion efforts. 

Furthermore, integrating these clustering results with the 

reinforcement learning (RL) agent allowed Cowrie to 

dynamically adapt its responses based on the detected threat 

profile. For example, more sophisticated deception tactics, such 

as fake vulnerabilities or staged file systems, could be 

selectively deployed against attackers showing signs of deeper 

engagement (Clusters 1 and 2), enhancing the system’s 

effectiveness in intelligence gathering and threat deterrence. 

Overall, the clustering approach provided valuable insights into 

attack behavior on the SSH honeypot, transforming raw log 
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data into actionable threat intelligence for proactive cyber 

defense. 

4.2 Observations 
The results demonstrate the effectiveness of K-Means 

clustering in profiling attacker behaviors based on SSH 

honeypot interaction logs. By categorizing sessions into three 

distinct clusters, it became possible to identify different threat 

patterns: 

• general reconnaissance with minimal interaction, 

• credential attacks using default administrative 

credentials, and 

• root access brute-force attacks leveraging weak 

passwords. 

The separation between clusters was particularly evident in key 

features such as username and password combinations, input 

length, and access to known malicious URLs. These findings 

confirm that even unsupervised learning methods can 

effectively reveal underlying attacker strategies without prior 

labeling of data. 

Integrating this clustering model into the live honeypot system 

provides a strong foundation for real-time threat classification. 

Suspicious sessions can be rapidly flagged based on cluster 

membership, enabling timely alerts and adaptive response 

mechanisms. Furthermore, coupling the clustering engine with 

a reinforcement learning agent enhances the honeypot's ability 

to dynamically deceive attackers, tailoring fake system 

behaviors to specific attacker profiles. 

Thus, the combined machine learning pipeline transitions the 

honeypot from passive logging to proactive engagement, 

significantly strengthening cyber defense capabilities. 

5. CONCLUSION AND FUTURE SCOPE 
This research successfully demonstrated the significant 

benefits of integrating machine learning techniques with 

honeypot systems to enhance cybersecurity defenses. Through 

a well-structured methodology encompassing data collection, 

feature engineering, model training, and real-time deployment, 

the project established a comprehensive framework capable of 

intelligent threat detection, classification, and response. The 

results highlighted that machine learning not only improves the 

accuracy and speed of detecting cyber threats but also 

introduces adaptability and predictive capabilities, which are 

absent in traditional honeypot implementations. This 

combination of deception and intelligence forms a proactive 

line of defense, capable of countering both known and 

emerging threats with increased efficacy. 

The study confirms several hypotheses. First, ML-enhanced 

honeypots demonstrate significantly higher accuracy in 

detecting and classifying malicious activity compared to static, 

rule-based systems. Second, unsupervised and reinforcement 

learning models show particular promise in identifying novel 

and evasive threats, contributing to a more robust security 

posture. Third, by analyzing behavioral trends and attacker 

interaction patterns, the system can predict future attacks and 

take preemptive measures. Moreover, despite the 

computational complexity of certain ML models, careful 

optimization ensured that real-time detection was achieved 

without substantial performance overhead. Overall, the system 

represents a transformative step toward automated and adaptive 

cyber defense. 

Looking forward, there are several promising directions for 

future research. Deep learning models, especially those based 

on recurrent neural networks (RNNs) and transformers, can be 

explored to analyze time-series data and sequential command 

patterns for even more accurate detection. Deployment of the 

system on edge devices and integration with distributed 

computing platforms can further enhance its scalability and 

resilience. Additionally, incorporating federated learning will 

enable the training of models across multiple honeypot 

instances while preserving data privacy. Integration with 

Security Information and Event Management (SIEM) tools can 

enable enterprise-wide alert correlation and automated incident 

response. Finally, future work should focus on strengthening 

the system’s robustness against adversarial ML attacks and 

implementing concept drift detection to ensure long-term 

adaptability. 

In conclusion, the fusion of honeypot deception techniques 

with machine learning intelligence marks a paradigm shift in 

cybersecurity. This hybrid approach not only enriches threat 

detection and analysis but also lays the groundwork for 

developing resilient, adaptive, and self-learning security 

systems capable of withstanding the evolving landscape of 

cyber threats. 

This research demonstrates that integrating machine learning 

with honeypot systems significantly enhances the detection, 

classification, and mitigation of cyber threats.  

The system: 

• Collects rich interaction data. 

• Uses ML for intelligent classification. 

• Employs adaptive strategies for dynamic threat 

engagement. 

• Supervised models are effective for known threats, 

while unsupervised models uncover novel attacks. 

Reinforcement learning brings adaptability to a 

traditionally static security tool. 

Future Scope 

• Advanced Deep Learning Models: Incorporate LSTM 

or Transformer-based models for detecting temporal 

attack patterns. 

• Edge Deployment: Optimize models for edge devices 

in distributed network environments. 

• Federated Learning: Train across multiple honeypot 

nodes without centralized data sharing, ensuring 

privacy. 

• Integration with SIEM Systems: Seamless correlation 

with enterprise-wide event management platforms. 

• Adversarial Defense: Enhance ML models against 

adversarial inputs and evasion techniques. 

6. ACKNOWLEDGMENTS 
I would like to express my gratitude to Prof. L. Hemochandra 

Singh, Professor of Statistics in the Department of Basic 

Science at the College of Agriculture in Imphal, and to Dr. 

Maibam Romio Singh for their unwavering support in all areas. 

7. REFERENCES 
[1] Shyamalendu Paul, Amitava Podder, Kaustav Roy, 

(2024), Exploring the Impact of AI-based Honeypots on 

Network Security, Educational Administration: Theory 

and Practice, 30(6), 251-258, Doi: 

10.53555/kuey.v30i6.5155 

[2] Iyer, Kumrashan Indranil. (2021). Adaptive honeypots: 

Dynamic deception tactics in modern cyber defense. 

International Journal of Science and Research Archive. 

04. 340-351. 10.30574/ijsra.2021.4.1.0210. 

[3] Dakic, Vedran & Regvart, Damir. (2025). Advancing 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.74, January 2026 

39 

Cybersecurity with Honeypots and Deception Strategies. 

Informatics. 12. 14. 10.3390/informatics12010014. 

[4] Narayana Gaddam. (2025). AI-enhanced honeypots for 

advanced cyber deception strategies. QIT Press - 

International Journal of Cyber Security Research and 

Development (QITP-IJCSRD), 5(1), 9–19. 

[5] J. Franco, A. Aris, B. Canberk and A. S. Uluagac, "A 

Survey of Honeypots and Honeynets for Internet of 

Things, Industrial Internet of Things, and Cyber-Physical 

Systems," in IEEE Communications Surveys & Tutorials, 

vol. 23, no. 4, pp. 2351-2383 

[6] Martínez S., C. J. ., Moreno A., H. O. ., & Hernández A., 

M. B. . (2023). Analysis of Intrusions into Computer 

Systems using Honeypots. International Journal of 

Intelligent Systems and Applications in Engineering, 

11(6s), 461–472. Retrieved from 

https://ijisae.org/index.php/IJISAE/article/view/2871 

[7] Sokol, P., Míšek, J. & Husák, M. Honeypots and 

honeynets: issues of privacy. EURASIP J. on Info. 

Security 2017, 4 (2017). https://doi.org/10.1186/s13635-

017-0057-4 

[8] Mokube, Iyatiti & Adams, Michele. (2007). Honeypots: 

concepts, approaches, and challenges. 321-326. 

10.1145/1233341.1233399. 

[9] Bharadiya, Jasmin. (2023). Machine Learning in 

Cybersecurity: Techniques and Challenges. European 

Journal of Technology. 7. 10.47672/ejt.1486. 

[10] V. -I. Năstase, M. -E. Mihăilescu, S. Weisz, L. V. Dagilis, 

D. Mihai and M. Carabas, "Cowrie SSH Honeypot: 

Architecture, Improvements and Data Visualization," 

2024 23rd RoEduNet Conference: Networking in 

Education and Research (RoEduNet), Bucharest, 

Romania, 2024, pp. 1-7, doi: 

10.1109/RoEduNet64292.2024.10722609 

[11] Krajčík, Patrik & Mikuláš, Matúš & Helebrandt, Pavol & 

Kotuliak, Ivan. (2025). Improvement of Cowrie honeypot 

interaction and deception capabilities. 1-9. 

10.1109/KIT67756.2025.11205433. 

[12] Li, Youguo & Wu, Haiyan. (2012). A Clustering Method 

Based on K-Means Algorithm. Physics Procedia. 25. 

1104-1109. 10.1016/j.phpro.2012.03.206. 

[13] Zhang, Chaoyu & Wang, Ning & Hou, Y & Lou, Wenjing. 

(2025). Machine Learning-Based Intrusion Detection 

Systems: Capabilities, Methodologies, and Open 

Research Challenges. 

10.36227/techrxiv.173627464.48290242/v1. 

 

IJCATM : www.ijcaonline.org  


