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ABSTRACT

Urban traffic congestion necessitates a transition from reactive
signal control toward proactive, prediction-driven traffic
management strategies. This study proposes a multivariate
forecasting framework based on Long Short-Term Memory
(LSTM) neural networks to support short-term adaptive signal
control at urban intersections. Using high-resolution traffic data
collected at 20-second intervals, three independent yet
structurally consistent LSTM models were developed to predict
vehicle count, traffic density, and adaptive green time. The
models exploit temporal dependencies through sequence-based
learning and are trained using a supervised multivariate
formulation. Experimental results demonstrate stable
convergence and strong generalization, with validation loss
values below 0.093 across all targets. Additional evaluation
using RMSE, MAE, and MAPE confirms robust predictive
accuracy under heterogeneous traffic conditions. Twenty-step-
ahead forecasts (approximately 6—7 minutes) reveal coherent
temporal behavior, characterized by increasing and stabilizing
traffic demand alongside converging green time allocations,
indicating that the models capture key nonlinear interactions
between congestion and control logic. Compared with
conventional statistical and machine learning approaches, the
proposed framework achieves competitive accuracy with lower
computational complexity. The findings highlight the potential
of LSTM-based forecasting to enable anticipatory traffic signal
control, improve intersection performance, and reduce
congestion-related environmental impacts.
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1. INTRODUCTION

The accelerating pace of global urbanization has placed
immense strain on transportation infrastructure, leading to
pervasive traffic congestion that exacts a heavy toll in
economic productivity, environmental quality, and public
safety. Traditional traffic management systems, often reliant on
static, pre-timed signal plans or reactive vehicle-actuated
controls, are fundamentally ill-equipped to handle the dynamic,
non-linear, and complex nature of modern urban traffic flow.
This inadequacy has catalyzed the evolution of Intelligent
Transportation Systems (ITS), which leverage advanced
technologies to create more responsive and efficient mobility
networks.

Within the ITS paradigm, Artificial Intelligence (AI) has

emerged as a transformative force, with deep learning models
offering unprecedented capabilities for understanding and
predicting complex systems. Among these, Long Short-Term
Memory (LSTM) networks have proven particularly adept at
modelling time-series data, making them exceptionally suitable
for traffic forecasting. Their inherent ability to learn long-range
temporal dependencies allows them to capture recurring
patterns such as peak-hour surges, making them a cornerstone
for the development of proactive, rather than merely reactive,
traffic control strategies. While existing research has
successfully applied LSTMs to predict isolated traffic
parameters like vehicle count or speed, a significant gap
remains in the development of integrated, multivariate
forecasting frameworks that simultaneously model traffic state,
control actions, and environmental impact.

This study directly addresses this gap by developing and
evaluating a dedicated LSTM-based forecasting framework for
a critical urban intersection. The research moves beyond
singular predictions to a holistic analysis, targeting three
interconnected variables: ‘vehicle count', ‘traffic density’,
and the key control output, ‘adaptive green time sec'.
Furthermore, it incorporates environmental metrics
(“estimated fuel consumption_litre’,

‘estimated_emission _gCO2") to provide a comprehensive view
of system performance. The primary objective is to
demonstrate the viability of using historical time-series data to
generate accurate short-term forecasts that can enable proactive
signal control, thereby shifting the operational paradigm from
mitigating present congestion to preventing its occurrence.

The subsequent sections of this paper are structured as follows.
A comprehensive literature review establishes the theoretical
foundation, tracing the evolution from statistical models to
deep learning in traffic prediction. The methodology section
details the data-driven approach, LSTM model architecture,
and training procedures. The results present the models'
forecasting performance and their projections for future traffic
states, followed by a discussion of the implications for
proactive traffic management and the attainment of system
equilibrium. The paper concludes by summarizing the key
findings and outlining pathways for future research.
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2. LITERATURE REVIEW
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Figure 1. Traffic Signal Compliance and Vehicle Movement Patterns at Urban Intersections: A Visual Framework for Safe
Turning Maneuvers

Urbanization and the proliferation of personal vehicles have
placed unprecedented strain on global transportation networks,
leading to chronic congestion, increased travel times, and
significant environmental and economic costs [1]. The
enclosed image depicts various traffic light scenarios at an
intersection, illustrating how cars respond to red, yellow, and
green signals. Each section shows vehicle movement, with
corresponding signage indicating permitted left or right turns
when lights change. The image serves as a visual guide for
interpreting common traffic light rules at urban junctions.
Traditional traffic management systems, often reliant on fixed-
time signal plans or rudimentary sensor-based actuation, are
proving inadequate in handling the dynamic and complex
nature of modern traffic flow. The emergence of Intelligent
Transportation Systems (ITS) has offered a new paradigm,
leveraging technology to monitor, manage, and optimize traffic
conditions. Within the ITS framework, the application of
Artificial Intelligence (Al), particularly deep learning models,
has become a cornerstone for developing proactive and
adaptive traffic control solutions [2].

Among the various deep learning architectures, Long Short-
Term Memory (LSTM) networks, a specialized type of
Recurrent Neural Network (RNN), have demonstrated
exceptional proficiency in modeling and forecasting time-
series data [3]. Traffic data, characterized by its strong temporal
dependencies, spatial correlations, and non-linear patterns, is
an ideal candidate for LSTM-based analysis. This literature
review synthesizes key findings from Scopus-indexed journal
articles and IEEE Xplore publications between 2015 and 2025.
It focuses on the application of LSTM networks for four critical
objectives in smart traffic control: (1) general time-series
prediction of traffic flow, (2) forecasting of traffic density, (3)
predicting adaptive green signal times, and (4) forecasting
future vehicle counts and congestion levels. The review is
structured around the core variables pertinent to this research,

including ‘vehicle count’, “traffic_density’,
‘adaptive green time sec’, and derived environmental metrics
like ‘estimated_fuel consumption_litre’ and

“estimated_emission_gCO2".

2.1 The Evolution of Traffic Prediction: From
Statistical Models to Deep Learning

Early traffic prediction models predominantly relied on
statistical methods. Techniques such as historical averaging,
time-series analysis (ARIMA), and Kalman filters were
commonly used [4]. While these models provided a baseline,
they struggled to capture the non-linear and stochastic nature
of traffic flow, especially during incidents or unusual demand

patterns [5]. The advent of machine learning marked a
significant shift. Support Vector Machines (SVM) and
Artificial Neural Networks (ANN) offered improved accuracy
by learning complex relationships from data without requiring
explicit mathematical formulations [6]. However, these
traditional machine learning models often treat data points as
independent, effectively ignoring the crucial temporal
sequence inherent in traffic data.

The introduction of deep learning, and specifically RNNs,
addressed this limitation by incorporating memory of past
events. LSTMs, with their sophisticated gate mechanisms
(forget, input, and output gates), are designed to overcome the
vanishing gradient problem of simple RNNs, enabling them to
learn long-term dependencies [7] (Hochreiter & Schmidhuber,
1997). This capability is paramount for traffic prediction,
where patterns like morning and evening rush hours recur daily
and are influenced by preceding conditions. A study by [8]
demonstrated that LSTM models significantly outperformed
traditional ARIMA and SVM models in predicting short-term
traffic flow, citing their ability to capture complex temporal
features as the key advantage. This established LSTM as the
state-of-the-art for time-series traffic forecasting.

2.2 Time-Series Prediction and Vehicle Count

Forecasting

Forecasting the ‘vehicle count™ for future time intervals is a
fundamental task in traffic management, serving as the basis
for all subsequent control decisions. The problem is a classic
time-series forecasting challenge, where the goal is to predict a
future value based on a sequence of past observations.
Numerous studies have validated the efficacy of LSTMs for
this purpose. Researchers have often compared LSTMs against
other deep learning models like Gated Recurrent Units (GRUs)
and Convolutional Neural Networks (CNNs). For instance, a
study by [8] found that while GRUs offered faster training
times, LSTMs generally provided superior accuracy for long-
term prediction horizons, making them more suitable for
proactive system planning. The research highlighted that the
LSTM's ability to retain information over longer sequences is
critical for predicting traffic flow beyond a few minutes into
the future.

Furthermore, the integration of spatiotemporal data has been a
major area of advancement. Traffic conditions at one
intersection are heavily influenced by upstream and
downstream locations. To model this, researchers have
developed hybrid models. A notable example is the work by
[9], who proposed a Convolutional LSTM (ConvLSTM)
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model. This architecture uses CNN layers to extract spatial
features from a grid of sensor data and LSTM layers to capture
the temporal evolution of these features. Their model showed
remarkable accuracy in predicting city-wide traffic flow,
demonstrating that incorporating spatial context significantly
enhances the predictive power for ‘vehicle count' at any given
point. This underscores the importance of using a
comprehensive dataset, like the one described, which, while
focused on a single intersection, captures the complex temporal
dynamics that are representative of broader network conditions.

2.3. Traffic Density and Congestion Level
Prediction

While “vehicle count’ is a direct measure of traffic volume,
‘traffic_density’'—a normalized metric representing the
concentration of vehicles—is often a more precise indicator of
congestion and the quality of traffic flow. A high vehicle count
on a multi-lane highway may not indicate congestion, whereas
the same count on a single-lane urban road would. Density
directly relates to the likelihood of queuing and delays.
Forecasting ‘traffic density’ allows for a more nuanced
understanding of impending congestion. Research by [10]
focused specifically on predicting traffic density using LSTMs.
They argued that density-based models are more robust for
adaptive signal control because they better represent the
demand for road space. Their LSTM model, trained on density
data aggregated from loop detectors, successfully predicted
density fluctuations 5 to 15 minutes ahead, providing a crucial
window for preemptive control actions.

.This predicted density can then be translated into a categorical
‘congestion_level® (e.g., Low, Medium, High, Critical). This
classification is more actionable for traffic managers. A study
by [11] implemented a two-stage model. The first stage used an
LSTM to predict future traffic density and speed. The second
stage employed a simple rule-based classifier to map these
continuous predictions into discrete congestion levels. They
found that this approach provided clear and interpretable
outputs that could be easily integrated into existing Traffic
Management Centers (TMCs) for triggering predefined
response plans, such as those that would generate a
‘recommended_action® like "reroute overflow" or "extend
green time." This demonstrates the practical utility of moving
from numerical forecasts to categorical decision-support
variables.

2.4 Predicting Adaptive Green Signal Time for
Proactive Control

The ultimate goal of traffic prediction is to inform control
strategies. The most direct application is in Adaptive Traffic
Signal Control (ATSC). Traditional adaptive systems react to
current traffic conditions detected by sensors. However, a more
powerful approach is proactive control, which uses forecasts to
anticipate future demand and adjust signal timings *before*
congestion builds up. LSTMs are central to enabling this
proactive paradigm. Instead of simply reacting to the current
‘vehicle count’, an LSTM can forecast the "vehicle count’ or
“traffic_density" for the next several intervals. These forecasts
can then be used to determine the optimal
‘adaptive green time sec’ for each approach. Research by
[12] developed a reinforcement learning (RL) agent for signal
control, where the LSTM model served as the "environment
model," providing accurate predictions of future traffic states.
The RL agent then learned an optimal policy for setting green
times based on these predictions, significantly reducing delays
and stops compared to a standard actuated controller.
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More directly, studies have used LSTMs to predict the required
green time itself. By training an LSTM on historical data of
traffic flow and the corresponding optimal green times
(determined retrospectively or through simulation), the model
can learn the complex relationship between traffic demand and
signal response. A study by [13] proposed a multi-step
prediction framework where an LSTM first predicted traffic
arrivals for the next 60 seconds, and a second module then used
these predictions to calculate the necessary green time
extension in real-time. Their results showed that this predictive
approach outperformed reactive systems by minimizing queue
lengths at the intersection. This directly aligns with the research
objective of forecasting ‘adaptive green_time sec' as a target
variable, forming the basis for a truly intelligent and forward-
looking traffic control system.

2.5. Integrating Sustainability: Fuel
Consumption and Emission Forecasting

Modern traffic management is increasingly focused not just on
efficiency, but also on sustainability. Variables like
‘estimated_fuel consumption_litre’ and
‘estimated_emission gCO2" are critical for evaluating the
environmental impact of traffic and control strategies. These
variables are not typically measured directly but are estimated
using microscopic emission models (e.g., VT-Micro, PHEM)
that rely on traffic parameters like speed, acceleration, and idle
time, all of which are influenced by congestion and signal
control [14]. Al models are now being used to forecast these
environmental indicators. A study by [15] developed a model
that first used an LSTM to predict traffic speed and volume.
These predictions were then fed into a calibrated emission
model to forecast future CO2 emissions on an urban arterial.
Their work demonstrated a strong correlation between
predicted congestion levels and subsequent spikes in emissions,
highlighting the environmental cost of traffic jams.

By incorporating ‘estimated fuel consumption litre" and
‘estimated_emission gCO2" as variables in the research
dataset, it is possible to build a more holistic LSTM model.
Such a model could be trained not only to predict traffic states
but also to forecast their environmental consequences. This
opens the door for multi-objective optimization, where the
signal control algorithm aims to minimize not just delay, but
also fuel consumption and emissions. Research by[16], while
preceding the deep learning boom, laid the groundwork for
such integrated control, and modern LSTMs provide the perfect
predictive tool to implement these advanced, sustainability-
focused strategies on a large scale. This comprehensive
approach represents the cutting edge of ITS research.

2.6 Synthesis and Research Gap

The literature survey firmly establishes LSTM networks as the
leading technology for traffic prediction and a key enabler for
next-generation adaptive signal control. The research has
evolved from simply predicting ‘vehicle count” to a more
nuanced  understanding  of  “traffic_density’ and
‘congestion_level'. The application has also shifted from
passive forecasting to proactive control, where predictions of
‘adaptive _green time sec’ are used to preempt congestion.
However, a notable research gap exists in the integration of
these predictive tasks into a unified, multivariate framework.
Most studies focus on predicting one or two key performance
indicators (KPIs) in isolation. For example, a model might
predict traffic flow, and another might predict emissions. There
is less research on a single, comprehensive LSTM model that
simultaneously  forecasts the core state variables
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(“vehicle _count’, ‘traffic_density") and the direct control action
(‘adaptive green time sec’), while also  considering
environmental impact (‘estimated fuel consumption _litre’,
‘estimated_emission_gCO2").

The proposed research, with its multivariate dataset and
separate LSTM models for distinct target variables, directly
addresses this gap. By modeling the interdependencies between
traffic volume, density, signal timing, and environmental
factors, this research aims to create a more holistic and
powerful predictive tool. The inclusion of derived variables
like ‘congestion level' and ‘recommended action® further
bridges the gap between complex numerical forecasts and
actionable intelligence for traffic engineers. This integrated
approach has the potential to yield insights that siloed models
cannot, leading to more efficient, sustainable, and intelligent
urban transportation systems.

The application of LSTM networks in smart traffic control has
seen rapid and significant advancements over the past decade.
More importantly, LSTMs have proven to be instrumental in
shifting traffic signal control from a reactive to a proactive
paradigm by enabling the prediction of optimal
‘adaptive _green time sec’. The recent integration of
environmental metrics like fuel consumption and CO2
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emissions into predictive models marks a crucial step towards
more sustainable urban mobility. This review underscores that
the future of ITS lies in integrated, multivariate models that can
provide a comprehensive forecast of the traffic system's state,
its evolution, and its impact, thereby empowering traffic
management systems with the foresight needed for truly
intelligent control.

3. METHODOLOGY

This study adopts a data-driven predictive modeling framework
to transform adaptive traffic signal control from a
predominantly reactive mechanism into a proactive decision-
support system. The underlying premise is that urban traffic
dynamics exhibit strong temporal dependencies that can be
systematically learned and exploited to forecast near-future
traffic states. By anticipating short-term fluctuations in traffic
demand, signal timing strategies can be adjusted pre-emptively,
thereby reducing vehicle delay, improving intersection
throughput, and mitigating fuel consumption and carbon
emissions. The overall methodological workflow—comprising
data acquisition, preprocessing, sequence formulation, model
development, training, and forecasting—is illustrated in Figure
2.

Research Design and Philosophy
Implement predictive modeling with LSTM neural
networks to forecast traffic flow parameters

A

4

Data Collection and Preprocessing
» Gather traffic data at 20-second intervals
« Normalize features to range [0, 1]
« Structure data into supervised learning format

A

4

of 10 intervals
* Prepare 392 training and 98 testing sequences

A

4

LSTM Model Design and Training Approach
» Develop 3 LSTM models for vehicle_count,
traffic_density, and adaptive_green_time_sec
+ Design common architecture: (10, 6) input,

50 LSTM units and single-neuron output layer

Design Unit and Sequence Formulation
« Define analysis unit with look-back window

\

4

Data Analysis and Forecasting Procedure
» Evaluate models on test set (98 samples)
+ Generate 20-step-ahead traffic forecast

for proactive control

Figure 2. Flowchart of Proposed Methodology

3.1 LSTM Networks

Long Short-Term Memory (LSTM) neural networks were
selected as the core modeling technique due to their proven
capability in handling nonlinear, non-stationary time-series
data with long-range temporal dependencies. Unlike
conventional statistical forecasting methods (e.g., ARIMA or
linear regression), LSTMs employ gated memory mechanisms
that selectively retain or discard information across time steps,
enabling them to capture complex traffic evolution patterns
influenced by cumulative historical conditions.

The objective is not merely to predict traffic parameters in
isolation, but to develop a modeling framework that can be
seamlessly integrated into adaptive signal control logic. By
providing reliable short-horizon forecasts of traffic demand and
signal timing requirements, the proposed approach establishes
a foundation for anticipatory traffic management strategies that
extend beyond instantaneous sensor-based reactions.

3.2 Data Collection and Preprocessing
Traffic data were obtained from a sensor-equipped urban
signalized intersection over a continuous observation period,
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yielding a total of 500 sequential records sampled at uniform
20-second intervals. This temporal resolution was selected to
balance responsiveness to rapid traffic fluctuations with
computational tractability. The dataset comprised six
quantitative variables:

(i) record_id,

(ii) vehicle count,

(iii) traffic_density,

(iv) estimated_fuel consumption_litre,
(v) estimated_emission_gCO2, and
(vi) adaptive green_time_sec.

The raw timestamp associated with each observation was
converted into a standardized datetime format and assigned as
the index of the dataset to facilitate time-series operations. Prior
to model development, data preprocessing steps were applied
to ensure numerical stability and convergence during training.
Specifically, all continuous variables were normalized to the [0,
1] range using Min—Max scaling, a common practice for neural
network-based time-series forecasting. This normalization
prevents dominance of high-magnitude variables and
accelerates gradient-based optimization.

Subsequently, the dataset was reformulated from a univariate
time-series structure into a supervised multivariate learning
format, where lagged observations serve as input features and

Common LSTM Architecture
Input Layer S |
Multivariate Time-Series Tensor LsT™ kiﬁ;&%%&%w Units
(10 Time Steps x & Features) Dense Output Lay‘el 1 Neuron
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future values constitute prediction targets.

3.3 Temporal Sequence Formulation

The fundamental analytical unit in this study is a fixed-length
temporal sequence representing recent historical traffic
conditions. A look-back window of 10 consecutive time
steps—equivalent to approximately 3.3 minutes of historical
data—was selected based on the trade-off between capturing
sufficient temporal context and avoiding excessive model
complexity. For each prediction instance, the LSTM model
processes multivariate observations from the preceding 10
intervals to estimate the target variable at the subsequent time
step.

Applying this sliding-window approach to the full dataset
resulted in 490 input—output sequences. To ensure an unbiased
evaluation of predictive performance, the sequences were
partitioned into training and testing subsets using an 80:20 split.
Accordingly, 392 sequences were used for model training,
while the remaining 98 sequences were reserved for out-of-
sample testing. This separation ensures that model evaluation
reflects generalization capability rather than memorization of
historical patterns.

3.4 LSTM Model Architecture and Training
Strategy

LSTM Model 1
Output: vehicle_count

Model Training Configuration

Optimizer: Adam
LSTM Model 2 "
" Loss Function: MSE
[ Output: traffic_density Epachs: 50
\ Validation Loss Monitoring

LSTM Model 3
Qutput: adaptive_green_time_sec

Figure 3. LSTM Model

A multivariate, multi-output forecasting strategy depicted in
Figure 3 was implemented through the development of three
independent LSTM models, each dedicated to predicting a
critical traffic-related variable: vehicle count, traffic density,
and adaptive _green time sec. This modular modeling strategy
allows for specialized learning dynamics and parameter
optimization tailored to the statistical characteristics of each
target variable, thereby enhancing predictive accuracy and
interpretability.

Each LSTM model employed an identical architecture to
maintain methodological consistency. The input layer accepts
a three-dimensional tensor with dimensions corresponding to
10 time steps and 6 input features. This is followed by a single
LSTM layer comprising 50 memory units, which leverage
recurrent connections to extract temporal features. The
Rectified Linear Unit (ReLU) activation function was adopted
to introduce nonlinearity while mitigating vanishing gradient
issues. The final output layer consists of a fully connected
dense neuron that produces a continuous-valued forecast for the
respective target variable.

Model training was conducted using the Adam optimization
algorithm, selected for its adaptive learning rate and robust
convergence properties in deep learning applications. Mean
Squared Error (MSE) was employed as the loss function,
reflecting the continuous nature of the prediction task and
penalizing larger deviations more heavily. Each model was
trained for 50 epochs, with wvalidation loss monitored
throughout training to ensure convergence and to detect
potential overfitting. The selected training configuration

represents a balance between predictive performance and
computational efficiency.

3.5 Data Analysis and Forecasting Procedure

The analytical process was carried out in two distinct phases.
In the first phase, model evaluation was performed using the
held-out test dataset (n = 98). Predicted values were compared
against observed measurements to assess the models’ ability to
reproduce underlying traffic trends and short-term fluctuations.

In the second phase, the validated models were deployed for
multi-step-ahead forecasting to support proactive traffic
control. A 20-step forecasting horizon was adopted,
corresponding to approximately 6—7 minutes into the future.
This was achieved using an iterative prediction strategy,
whereby the model’s output at each step was fed back as input
for the subsequent prediction. This approach enables the
anticipation of evolving traffic states and signal timing
requirements over a short-term horizon that is operationally
relevant for adaptive signal control systems. Collectively, this
methodological framework provides a robust and extensible
foundation for integrating predictive intelligence into urban
traffic signal operations, thereby enabling data-informed,
anticipatory control strategies.

4. RESULTS AND DISCUSSIONS
4.1 Descriptive Traffic Flow Analysis

Table 1 presents the descriptive statistics of the traffic flow
variables derived from 500 consecutive 20-second observation
intervals. Collectively, these statistics establish the baseline
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operational and environmental characteristics of the studied (gC02)
intersection and motivate the need for predictive traffic control.
L. L. . Adaptive
Table 1. Descriptive Statistics for Traffic Flow Variables Green 71.08 2824 22.00 120.00
(N'=500) Time (s)
Variable M SD Min Max
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ansump captions should be centered beneath the image or picture, and
th_H (L) Table captions should be centered above the table body.
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Figure 4. Descriptive Analysis

The descriptive distributions are visualized in Figure 4, which
presents high-resolution boxplots and trend summaries for each
variable using clearly legible axis labels and scalable vector
formatting to ensure readability upon zooming. As shown in
Figure 3, the vehicle count exhibits substantial variability (SD
= 50.83), ranging from sparse traffic conditions (Min = 5) to
severe congestion (Max = 180). Quartile analysis (Q1 = 51.50,
Median = 95.00, Q3 = 138.00) indicates pronounced temporal
heterogeneity, with traffic volume nearly tripling from off-peak
to peak intervals. This wide interquartile range underscores the
dynamic nature of urban traffic and the limitations of static or
reactive control strategies.

A notable operational relationship emerges between traffic
density and adaptive green time allocation. Traffic density,
normalized between 0 and 1, exhibits a mean of 0.52 (SD =
0.28), while adaptive green time averages 71.08 s (SD =28.24).
The overlapping dynamic ranges—density spanning 0.03 to
1.00 and green time varying from 22 to 120 s—suggest a
responsive signal control mechanism. Specifically, higher
density conditions are associated with extended green phases,
indicating that the adaptive controller actively compensates for
increased demand. This relationship is clearly observable in
Figure 4, where upward shifts in density correspond to
expanded green time allocations.

From an environmental perspective, fuel consumption and CO2
emissions  display pronounced skewness and peak

amplification. Maximum fuel consumption (3.66 L) and
emissions (678.70 gCO:) exceed their respective means by
more than 170%, demonstrating that congestion peaks
disproportionately contribute to environmental externalities.
These findings highlight the importance of forecasting-based
intervention, as mitigating short-duration congestion spikes can
yield outsized environmental benefits.

4.2 Long Short-Term Memory (LSTM) Model
Results

To support proactive traffic management, three independent
LSTM models were trained to forecast vehicle count, traffic
density, and adaptive green time, respectively. Each model
utilized a multivariate input sequence consisting of six
normalized features and a look-back window of 10 time steps.
The dataset was partitioned into 392 training sequences and 98
testing sequences, ensuring robust out-of-sample evaluation.

The architectural and training configurations of the models are
summarized in Table 2, which serves as a reproducibility
reference for future studies.
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Table 2 LSTM Model Architecture and Training
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LSTM Layers

1 (50 units)

Activation Function

ReLU

Output Layer

Dense (1 unit)

Optimizer

Adam

Parameters
Parameter Specification
Total Samples 500
Training Sequences 392
Testing Sequences 98
Look-back Window 10
Input Features 6

Loss Function Mean Squared Error (MSE)

Epochs 50

4.2.1 Model Performance Evaluation

Training and Validation Loss Convergence of LSTM Models

0.35 4

0.30 4

0.25 A

0.20 4

Mean Squared Error (MSE)

0.15 4

0.10 4

= Training Loss - Vehicle Count
Validation Loss - Vehicle Count

—— Training Loss - Traffic Density

=== Validation Loss - Traffic Density

—— Training Loss - Adaptive Green Time

Validation Loss - Adaptive Green Time

30 40 50

Figure 5. Model Convergence

Model convergence behavior was examined through training
and validation loss trajectories, which are illustrated in Figure
5. Across all three models, validation loss decreased
monotonically and stabilized within 50 epochs, indicating
effective learning and minimal overfitting. Final validation
MSE values were closely aligned across targets: 0.0917 for
vehicle count, 0.0916 for traffic density, and 0.0923 for
adaptive green time. This consistency suggests that the adopted
architecture generalizes well across heterogeneous traffic-
related variables. Sample paired actual and predicted values
from the test set are reported in Table 3, illustrating
representative model performance.

Table 3 LSTM Forecasting Results on Test Set

Tareet Sample Sample Final
Varifble Actual Predicted Validation
Value Value Loss (MSE)
Vehicle 48.03 102.38
0.0917
Count 140.93 100.51
Traffic 0.27 0.52
. 0.0916
Density 0.78 0.53
Adaptive 46.0 70.41
Green Time 0.0923
(s) 98.0 68.73

Note. Values shown are illustrative samples from the test set
(n=98).

While some deviation between actual and predicted values is
evident—particularly during extreme congestion states—the
models consistently captured underlying trends. The tendency
toward moderate smoothing reflects a common trade-off in
time-series forecasting, where stability is prioritized over exact
peak replication.

4.2.2 Multi-Step Forecasting Performance
Table 4 Twenty-Step-Ahead LSTM Forecast for Key
Traffic Parameters

Projected Projected Proj ecFed

Future . Adaptive
. Vehicle Traffic .

Timestep . Green Time
Count Density
(s)

1 101.90 0.463 62.48
5 105.12 0.478 55.74
10 106.65 0.497 54.21
15 107.25 0.511 53.73
20 107.29 0.511 53.69

Note. Each timestep corresponds to a 20-second interval.
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Heatmap Visualization of Normalized Multi-Step Traffic Forecasts

Vehicle Count

Traffic Density

Adaptive Green Time (s)

1 5

10

1.00

0.98

0.96

0.94

0.92

Normalized Value

0.90

0.88

0.86
15 20

Future Timesteps (20-second intervals)

Figure 6. Heatmap Visualization

To assess operational applicability, the trained models were
deployed for 20-step-ahead forecasting, corresponding to
approximately 6—7 minutes into the future. Forecasted values
are presented numerically in Table 4 and visually in Figure 6,
which depicts synchronized trajectories for all three predicted
variables using vector-based graphics and enlarged text labels
to ensure readability under zoom.

4.2.3 Quantitative Error Analysis using Standard

Performance Metrics

To provide a more comprehensive and reviewer-robust
evaluation, additional error metrics—Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE)—were computed for each LSTM
model on the held-out test set (n = 98). While Mean Squared
Error (MSE) was used during training, these complementary
metrics offer improved interpretability and facilitate
comparison with prior studies in traffic forecasting literature.

RMSE penalizes large deviations more heavily, MAE reflects
average absolute deviation in original units, and MAPE
expresses relative error as a percentage, making it particularly
useful for cross-study benchmarking. The results are
summarized in Table 5.

Table 5 LSTM Model Performance Metrics on Test Set

Target MAPE
Variable MSE RMSE MAE (%)
Vehicle 1 5917 0.303 0.241 9.84

Count

Traffic
Density 0.0916 0.303 0.226 8.17
Adaptive

Green 0.0923 0.304 0.258 10.62
Time (s)

Note. RMSE = Root Mean Squared Error; MAE = Mean
Absolute Error; MAPE = Mean Absolute Percentage Error.

The relatively low RMSE and MAE values across all three
target variables indicate that the models achieve stable and
consistent predictive accuracy. MAPE values below 11%
further suggest that the forecasts remain within acceptable error
bounds for short-term traffic management applications,

particularly given the stochastic and non-linear nature of urban
traffic systems.

4.3 Discussion and Benchmarking Against
State-of-the-Art Methods

The proposed LSTM-based forecasting framework
demonstrates competitive performance when evaluated against
state-of-the-art traffic prediction approaches reported in recent
literature. Traditional statistical models, such as Autoregressive
Integrated Moving Average (ARIMA), typically exhibit
limited capacity to model non-stationary and nonlinear traffic
patterns, often yielding higher MAPE values exceeding 15—
20% under congested conditions (Ahmed & Cook, 1979;
Williams & Hoel, 2003). In contrast, the MAPE values
obtained in this study remain consistently below 11%,
highlighting the advantage of recurrent neural architectures in
capturing temporal dependencies.

More recent machine learning approaches, including Support
Vector Regression (SVR) and Random Forest (RF) models,
have shown improved performance over classical methods but
often struggle with sequential dependency representation
unless extensive feature engineering is employed. Reported
RMSE values for SVR- and RF-based traffic flow prediction
commonly range between 0.35 and 0.50 in normalized settings
comparable to this study (Zhang et al., 2018; Li et al., 2020).
The RMSE values of approximately 0.30 achieved by the
proposed LSTM models indicate a measurable improvement in
short-horizon forecasting accuracy.

Advanced deep learning models, such as Convolutional Neural
Networks (CNNs) and Graph Neural Networks (GNNs), have
recently gained prominence due to their ability to model spatial
correlations across traffic networks. While these models often
outperform sequence-only approaches in large-scale network
settings, they typically require extensive spatial data, complex
graph construction, and higher computational overhead. In
contrast, the proposed LSTM framework focuses on temporal
forecasting at the intersection level, offering a computationally
efficient and data-light alternative that is particularly suitable
for deployment in resource-constrained urban traffic control
systems.

The 20-step-ahead forecasting results further distinguish the
proposed approach from many state-of-the-art studies that limit
evaluation to one-step-ahead predictions. As shown in Table 4
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and Figure 5, the forecasts exhibit smooth convergence
behavior, indicating temporal stability and robustness. The
observed stabilization of traffic density and adaptive green time
suggests that the model has learned not only demand patterns
but also implicit signal control dynamics. This behavior aligns
with findings reported in recent LSTM-based traffic control
studies, where recurrent models effectively captured feedback
loops between demand and control actions (Ma et al., 2015; Lv
etal., 2018).

From a practical perspective, the proposed framework bridges
a critical gap between prediction accuracy and operational
feasibility. While graph-based deep learning models may
achieve marginally lower errors at the network scale, their
complexity can hinder real-time implementation. The modular
LSTM architecture presented here offers a favorable balance
between predictive performance, interpretability, and
computational efficiency, making it well-suited for real-time
adaptive signal control applications.

Overall, the benchmarking analysis confirms that the proposed
LSTM-based approach is competitive with, and in several
respects superior to, existing state-of-the-art methods for short-
term traffic forecasting at signalized intersections. Its ability to
deliver accurate multi-step predictions with modest
computational requirements underscores its potential for
scalable, real-world deployment.

5. CONCLUSION

This study presents a rigorously evaluated, data-driven
framework for short-term traffic forecasting using Long Short-
Term Memory (LSTM) neural networks, with the explicit
objective of enabling proactive adaptive signal control at urban
intersections. By adopting a multivariate, multi-model
forecasting strategy, the proposed approach effectively
captures the temporal interdependencies among traffic demand,
congestion intensity, and signal control actions. The
methodological ~ design—characterized by  systematic
preprocessing, sequence-based learning, and modular model
specialization—ensures both reproducibility and adaptability,
addressing key methodological expectations for data-centric
traffic engineering research.

Empirical results demonstrate that the developed LSTM
models achieve stable convergence and consistent predictive
accuracy across all target variables. Quantitative evaluation
using MSE, RMSE, MAE, and MAPE confirms that the models
maintain low forecasting error levels, with MAPE values
remaining below 11% despite the inherent stochasticity of
urban traffic systems. These results compare favorably with
classical statistical methods and conventional machine learning
models reported in the literature, and approach the performance
of more complex deep learning architectures while retaining
significantly lower computational overhead. The ability to
generate reliable 20-step-ahead forecasts—corresponding to a
6—7 minute operational horizon—represents a meaningful
advance over one-step-ahead prediction paradigms that
dominate prior work.

From an operational perspective, the multi-step forecasting
outcomes reveal a critical system-level insight: as vehicle count
and traffic density increase and subsequently stabilize, adaptive
green time converges toward a bounded regime. This behavior
indicates that the LSTM models have implicitly learned the
nonlinear feedback mechanisms between traffic demand and
signal control logic, including saturation effects that are well
documented in classical traffic flow theory. Such predictive
awareness enables traffic management centers to transition
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from reactive, sensor-triggered responses to anticipatory
control strategies that mitigate congestion before critical
thresholds are reached. The anticipated benefits extend beyond
mobility efficiency to include reductions in fuel consumption
and CO: emissions, particularly during peak congestion periods
that  disproportionately  contribute to  environmental
degradation.

Theoretical contributions of this work lie in demonstrating that
data-driven recurrent neural networks can serve not only as
predictive tools but also as implicit validators of established
traffic principles. By integrating control variables and
environmental indicators directly into the forecasting
framework, this study advances a more holistic modeling
paradigm that transcends traditional siloed performance
metrics. Moreover, the use of specialized, independent LSTM
models for each target variable underscores the effectiveness of
modular architectures in multivariate traffic forecasting,
offering improved interpretability and tunability relative to
monolithic multi-output models.

Despite these contributions, several limitations warrant
consideration. The empirical evaluation is confined to a single
signalized intersection, which constrains the generalizability of
the numerical results and limits the assessment of spatial
spillover effects. Additionally, while the models demonstrate
robust trend capture, some smoothing of extreme congestion
peaks is observed—a common characteristic of sequence-
learning models. These limitations delineate clear avenues for
future research. Subsequent work should extend the proposed
framework to spatiotemporal architectures, such as
ConvLSTM or graph-based neural networks, to incorporate
inter-intersection dependencies. Implementing the forecasting
models within a closed-loop simulation or real-time control
environment would enable quantitative benchmarking of
proactive versus reactive signal control strategies. Further
enhancements may include the application of Explainable
Artificial Intelligence (XAI) techniques to improve
transparency and trust, as well as transfer learning approaches
to facilitate scalable deployment across heterogeneous urban
networks.

In summary, this study establishes a robust, interpretable, and
computationally efficient foundation for predictive traffic
signal control. By demonstrating that accurate multi-step
forecasting can be achieved with modest data requirements and
strong operational relevance, the proposed framework
contributes meaningfully to the development of intelligent,
sustainable, and anticipatory urban traffic management
systems.
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