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ABSTRACT 

Microservice architectures enable scalable, agile applications, 

but their complexity introduces significant reliability 

challenges. Traditional monitoring often struggles to keep pace 

with the dynamic and distributed nature of microservices, 

motivating artificial--intelligence (AI)--driven techniques for 

proactive anomaly detection and fault management. This 

survey reviews the state of the art in applying AI to reliability 

engineering and anomaly detection in microservice-based 

systems. This paper proposes a taxonomy covering (i) the 

observability signals used by anomaly detectors---metrics, logs 

and traces; (ii) the modelling techniques employed---from 

statistical and classical machine learning through deep 

learning, graph-based methods and large language models; and 

(iii) the deployment layer at which detection operates---

centralized cloud clusters, distributed edge environments and 

service meshes. This survey analyzes representative systems 

and frameworks, comparing their strengths, weaknesses, data 

requirements, evaluation metrics, scalability and 

interpretability. Common challenges such as the entropy gap in 

anomaly scoring, scarcity of real-world labelled anomalies, the 

need for explainable results and compute constraints in 

distributed environments are highlighted. This survey 

concludes with open problems and future directions, 

emphasizing opportunities in multimodal data fusion, federated 

and edge-based detection, and human-in-the-loop root-cause 

analysis for the next generation of reliable microservice 

ecosystems.   
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1. INTRODUCTION 
Microservices have emerged as a dominant architecture for 

building cloud applications due to their agility, scalability, and 

fault isolation benefits. In this paradigm, applications are 

decomposed into numerous loosely coupled services that 

communicate via lightweight protocols. While microservices 

overcome many limitations of monolithic systems, they also 

introduce complex reliability challenges. Large deployments 

may consist of hundreds or thousands of services, each emitting 

streams of metrics, logs, and traces. Failures can cascade across 

service dependencies, making it difficult to locate the root 

cause of incidents in real time. Traditional threshold-based 

monitoring and manual inspection become impractical at this 

scale and dynamism. Consequently, practitioners and 

researchers have turned to AI-driven techniques capable of 

learning normal behavior and detecting deviations across 

heterogeneous observability data [1], [5]–[7]. 

Anomaly detection is crucial for maintaining cloud software 

health: deviations in metrics or request behavior often provide 

early indicators of problems that could compromise service-

level objectives. Yet developing effective anomaly detectors 

for microservices presents unique difficulties. Monitoring data 

is high-volume and multimodal, including system metrics 

(CPU, memory, etc.), application logs, and distributed traces 

that capture inter-service call flows. Anomalies in one service 

can manifest as downstream slowdowns or errors in others, 

requiring holistic analysis across components. Labelling real-

world anomalies for supervised learning is notoriously hard—

incidents are rare and data is often proprietary. As a result, 

many studies rely on simulated faults or synthetic datasets to 

evaluate their models. Moreover, microservice platforms such 

as Kubernetes offer automated scaling and self-healing that add 

further dynamics and potential false alarms to the system state 

[2]. 

Recent years have witnessed a proliferation of research on AI-

based anomaly detection and reliability frameworks for 

microservices (often under the umbrella of AIOps). Techniques 

span from statistical profiling and unsupervised learning on 

metrics, to deep neural networks for log and trace anomaly 

detection, to graph-based causal inference for pinpointing fault 

propagation. For example, Kosińska and Tobiasz developed the 

Kubernetes Anomaly Detector (KAD), which can switch 

between different machine-learning models to catch various 

anomaly types [6]; Jin et al. combine robust principal 

component analysis (RPCA) with an ensemble of isolation 

forest and one-class SVM detectors to identify performance 

issues in microservice invocation graphs [7]; and Xie et al. 

introduce a graph variational autoencoder (TraceVAE) for 

unsupervised trace anomaly detection and discover an entropy-

gap phenomenon affecting anomaly-score reliability [1]. Large 

language models (LLMs) have even been employed to interpret 

unstructured logs and engage in interactive root-cause analysis, 

as seen in Pedroso et al., where an LLM-based system on 

Kubernetes detects injected faults and explains causes via a 

Bayesian network and chatbot [5]. 

This survey synthesizes the state of the art in AI-based 

reliability for microservices, focusing on open-access sources 

(IEEE, ACM, Springer, arXiv, etc.) and integrating insights 

from several recent studies. We first define a taxonomy of 

anomaly detection signals, models, and deployment layers. We 

then examine representative systems and frameworks in detail, 

grouped by technique, and present a comparative analysis of 

their features. Common challenges—such as data scarcity, 

concept drift, false positives, and the need for explainability—

are discussed. Finally, we outline future research directions. 

Motivation and impact. Microservice reliability has direct 

implications for digital infrastructure resilience. Recent 

industry surveys indicate that a majority of enterprise 

workloads now operate on microservice architectures, while 

mean time to recovery for major incidents remains high. In 
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practice, teams struggle to triage failures spanning application 

code, service dependencies, and the network plane. This survey 

addresses that gap by consolidating AI-based detection and 

root-cause analysis techniques across metrics, logs, and traces, 

highlighting quantitative outcomes (accuracy, latency, cost) 

and actionable guidance for practitioners deploying real-time 

observability pipelines.  

2. TAXONOMY OF ANOMALY 

DETECTION IN MICROSERVICES 
To frame the landscape of AI-based microservice reliability, 

we categorize anomaly detection along three dimensions: (i) 

the observability signals being analyzed, (ii) the modelling 

techniques employed, and (iii) the deployment layer where 

detection is performed. This taxonomy provides structure to a 

broad and diverse body of research. 

 

Figure 1: Taxonomy of AI-Based Anomaly Detection in 

Microservices 

Note: All figures presented in this paper are original, author-

generated illustrations rendered at high resolution to ensure 

clarity, legibility of text labels, and compliance with IJCA 

publication standards. 

2.1 Observability Signals: Metrics, Logs, 

and Traces 

2.1.1 Metrics   
Metrics are quantitative time-series measurements reflecting 

system performance and resource usage. Examples include 

CPU utilization, memory consumption, request throughput, 

response latencies, error rates, and network I/O statistics. 

Metrics are typically collected at regular intervals from 

infrastructure components (hosts, containers, and network 

devices) and from applications (e.g., API latency or queue 

length). 

Metrics are the most widely used data type in anomaly 

detection; a recent mapping study found that more than 75% of 

published research papers relied primarily on metric-based 

signals [2]. Techniques for metric anomaly detection range 

from univariate threshold rules to multivariate clustering, 

classical forecasting models (e.g., Holt–Winters, SARIMA), 

and deep recurrent models. Metrics provide early indications of 

abnormal behavior but lack semantic detail, making it difficult 

to interpret root causes without additional data sources. 

Evolution. Early systems (2018–2020) focused on thresholds 

and classical forecasting. From 2021 onward, representation 

learning, attention mechanisms, and multi-model selection 

frameworks such as KAD [6] improved robustness under 

workload drift. 

2.1.2 Logs   
Logs are unstructured or semi-structured text records emitted 

by applications or system components. They contain fine-

grained information about events, failures, and program states, 

but their free-text nature makes automated analysis 

challenging. Logs often require template extraction, keyword 

clustering, or embedding techniques prior to anomaly 

detection. 

Deep models such as LSTMs and Transformers (e.g., 

LogBERT) significantly improve generalization for log 

anomaly detection [48]. However, logs tend to produce many 

false positives unless enriched with contextual signals or 

combined with traces or metrics. 

Evolution. Log anomaly detection has evolved from rule 

mining to template extraction, to sequence modelling, and now 

to Transformer-based contextual embeddings. 

2.1.3 Traces   
Traces capture the end-to-end execution path of individual 

requests across multiple microservices. A trace typically forms 

a directed acyclic graph where each node represents a span (an 

operation in a service) and edges represent causal or temporal 

relationships. 

Traces provide rich structural and temporal information, 

enabling detection of anomalies such as unexpected call 

sequences, missing services, timing deviations, or latency 

propagation. Graph-based deep learning approaches—

including TraceVAE [1] and TraceGra [19]—have shown 

strong performance in trace anomaly detection. 

Evolution. Early efforts modelled traces as sequences; modern 

systems increasingly use graph neural networks and generative 

models, which better capture branching paths and concurrency 

effects within microservices.  

3. COMPARISON OF 

REPRESENTATIVE SYSTEMS 
This section summarizes key AI-based systems proposed for 

microservice anomaly detection and reliability engineering. 

Each system is characterized by the type of observability data 

it uses, the modelling technique employed, and its primary 

strengths. These examples illustrate the diversity of approaches 

in the literature, ranging from statistical models to graph-based 

deep learning, large language models, and reinforcement-

learning control frameworks.  

Table 1. Table captions should be placed above the table 

System Key Highlights 

TraceVAE 
Graph-VAE on traces; high accuracy, 

high cost [1]. 

KAD 
Adaptive metric models; fast and 

efficient [6]. 

RPCA + 

Ensemble 

Hybrid RCA via RPCA + ML; robust 

[7]. 

MAIA LLM + Bayes for logs; interpretable [5]. 
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RLPRAF 
RL-based scaling; fewer SLA breaches 

[4]. 

ICPTL/CM 
Edge transfer learning; ~40% faster 

training [3]. 

GAL-MAD 
GAT + LSTM; explainable, accurate 

[21]. 

MSNGAD 
Multi-modal diffusion; balanced results 

[22]. 

ReplicaWatcher Replica comparison; training-free [27]. 

 
Most surveyed systems are evaluated using synthetic fault 

injection on benchmark microservice applications such as 

SockShop or TrainTicket, typically employing tools like Chaos 

Mesh. Performance is commonly measured using precision, 

recall, F1-score, or anomaly ranking metrics. However, 

operational metrics such as inference latency, computational 

overhead, and deployment cost are reported less frequently. 

This evaluation gap highlights a disconnect between academic 

benchmarking practices and the practical constraints of 

production microservice environments, where scalability, cost 

efficiency, and real-time responsiveness are critical.  

Systems such as TraceVAE and TraceGra focus on structural 

and timing anomalies within distributed traces, while KAD and 

GAL-MAD operate primarily on time-series metrics. Hybrid 

approaches such as RPCA + Ensemble combine statistical 

decomposition with machine-learning classifiers for stronger 

root-cause localization. MAIA integrates LLM-enhanced log 

understanding with Bayesian reasoning, and RLPRAF 

exemplifies a control-oriented approach where anomaly signals 

feed into automated remediation or autoscaling policies. 

To provide a broader conceptual overview, the surveyed 

systems can also be positioned within a design space defined 

by (i) the primary observability signal analyzed, (ii) the 

modelling paradigm, and (iii) the operational role (detection, 

RCA, or closed-loop control). This visual summary highlights 

how each system targets different parts of the reliability 

workflow. 

 

Figure 2: Design Space of AI-Based Reliability Systems 

Beyond qualitative differences, these methods also vary in their 

quantitative evaluation metrics, dataset requirements, 

scalability, and interpretability. Table 2 groups representative 

systems according to their evaluation focus—detection 

accuracy, root-cause analysis precision, or operational 

impact—and summarizes their reported performance on public 

or synthetic benchmarks. 

4. COMPARATIVE ANALYSIS AND 

SYNTHESIS 
Unlike prior surveys that primarily categorize anomaly 

detection techniques by observability signal or learning 

paradigm, this survey provides a cross-dimensional synthesis 

spanning observability modality, modelling technique, and 

operational role. The comparative analysis reveals that no 

single class of anomaly detector consistently outperforms 

others across all microservice failure scenarios. 

Metric-based anomaly detection frameworks, such as KAD, 

offer low-latency detection and low computational overhead, 

making them suitable for near-real-time monitoring in dynamic 

cloud environments. However, they lack the semantic depth 

required for accurate root cause analysis. Trace-based graph 

models, including TraceVAE and TraceGra, achieve higher 

detection accuracy for structural and latency anomalies by 

capturing service dependency graphs, albeit at increased 

computational cost and training complexity. Log-based 

approaches, particularly those augmented with large language 

models, provide improved interpretability and semantic 

reasoning but remain sensitive to noisy or overlapping log 

patterns. 

Hybrid frameworks that combine multiple observability signals 

and modelling techniques consistently demonstrate superior 

robustness. Systems integrating statistical decomposition, 

machine learning, and causal reasoning show improved root 

cause localization accuracy and reduced false positives. These 

findings indicate that multi-stage and ensemble-based anomaly 

detection pipelines are more effective than monolithic 

approaches for production-scale microservice reliability 

engineering.  

5. DESIGN GUIDELINES AND 

LESSONS 
Drawing on the surveyed works, this section highlights 

practical guidelines for selecting appropriate observability 

signals, designing anomaly detection models, and integrating 

these models into operational microservice environments. 

These lessons reflect consistent findings across statistical, deep 

learning, graph-based, and LLM-driven frameworks.  

5.1 Choosing Signals and Models 
Different observability signals address different failure 

patterns. Traces are the most effective for structural and timing 

anomalies; logs provide rich semantic context for fault 

diagnosis; and metrics offer lightweight, early indications of 

system degradation. 

Multi-model selection approaches—such as KAD [6]—often 

outperform a single detector applied uniformly across all 

signals. Ensemble-based strategies or dynamic selection 

policies help adapt to diverse anomaly types, workload shifts, 

and concept drift. 

5.2 Explainability and Human Factors 
Explainability plays a central role in operational adoption. 

Techniques that pair anomaly detection with causal 

reasoning—such as Bayesian networks (MAIA [5]) or graph-

based RCA (RPCA + ensemble [7])—provide interpretable 

explanations that help operators act quickly during incidents. 

LLM-based systems show promise in providing natural-
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language rationales for anomalies, but their reliability remains 

limited by synthetic evaluation setups. For production use, 

LLMs must be combined with robust rule-based or graph-based 

structures to prevent hallucination and maintain operator trust. 

5.3 Lessons Learned from Recent 

Evaluations 
• Traces vs. logs vs. metrics. Deep generative models applied 

to traces (e.g., TraceVAE, TraceGra) achieve high F-scores on 

structural and performance anomalies provided sufficient 

training traces. Log-based models paired with Bayesian 

reasoning achieve strong precision when fault signatures are 

clear but may struggle with noisy or overlapping logs [5]. 

Metric-centric detectors such as KAD balance speed and 

accuracy and are suitable for near-real-time monitoring in 

dynamic clusters. 

• RCA and explainability. Hybrid frameworks that combine 

statistical signals, structural reasoning, and ML-based anomaly 

scores significantly improve root-cause localization. For 

example, RPCA + ensemble fuses decomposition-based 

metrics with density-based outlier detectors to increase RCA 

precision [7]. 

• Closing the loop. When anomaly detection drives remediation 

actions, reinforcement-learning controllers (e.g., RLPRAF [4]) 

significantly reduce SLA violations and operating costs under 

nonstationary workloads. Closed-loop control is especially 

important in microservice architectures where faults propagate 

quickly. 

• Edge and efficiency. Resource-constrained edge devices 

require lightweight models or transfer learning methods such 

as ICPTL/CM [3]. Single global models often fail due to 

heterogeneity; parameter sharing or clustering improves both 

accuracy and scalability. 

 

Figure 3: MAPE–K Integration for Microservice 

Reliability 

6. OPEN CHALLENGES 
Despite significant progress in AI-based reliability engineering 

for microservices, several open challenges remain. These 

challenges stem from the scale, heterogeneity, and dynamic 

behavior of microservice systems, as well as the limitations of 

current anomaly detection methodologies. 

A persistent limitation across existing studies is the narrow 

evaluation scope. Most anomaly detection systems are 

validated under controlled fault injection scenarios, which fail 

to capture the diversity and complexity of real-world incidents. 

Broader evaluations spanning multiple datasets, including 

synthetic chaos experiments, historical production traces, edge 

deployments, and multi-tenant cloud environments, are 

required to improve external validity and generalizability of 

research outcomes. 

6.1 Multimodal Fusion   
Microservices emit heterogeneous signals—metrics, logs, and 

traces—each with different sampling frequencies, noise 

characteristics, and semantic richness. Most existing systems 

fuse these modalities late (e.g., through score-level 

aggregation) or require hand-crafted alignment between 

features. A major challenge is developing unified 

representation-learning methods capable of capturing cross-

modal relationships while remaining robust to missing or 

incomplete data.  

6.2 Entropy-Aware Scoring in Generative 

Models   
Likelihood-based detectors such as TraceVAE rely on the 

Evidence Lower Bound (ELBO) to estimate anomaly scores. 

However, these models suffer from an **entropy gap**, 

representing a mismatch between decoder uncertainty and 

encoder posterior entropy. 

Formal Definition.   

For a trace *x* with latent variable *z*, the VAE objective is: 

ELBO(x) = E[ log pθ(x | z ) ] − DKL( qϕ(z | x) ∥ p(z) ). 

The decoder likelihood decomposes into reconstruction 

entropy and posterior entropy: 

E[ −log pθ(x | z) ] = Hθ(x) − Hϕ(z | x). 

The **entropy gap** is defined as: 

ΔH(x) = Hθ(x) − Hϕ(z | x). 

A large positive ΔH(x) indicates that the decoder assigns high 

uncertainty to its reconstruction while the encoder produces 

over-confident latent representations. This instability can cause 

normal traces to receive high anomaly scores. 

TraceVAE reduces this issue using an entropy-regularized 

score: 

Sentropy(x) = −ELBO(x) + λ · ΔH(x), 

where λ is a tunable weight. Incorporating ΔH(x) improves 

robustness and reduces false positives [1]. 

6.3 Label Realism and Dataset Scarcity   
Most research systems are evaluated using synthetic fault 

injection (e.g., Chaos Mesh on SockShop) rather than real 

incidents. Real-world logs and traces are difficult to obtain due 

to privacy and operational concerns. Although emerging 

datasets such as LO2 [26] provide logs and metrics, the lack of 

standardized, expert-labelled, multi-modal datasets continues 

to limit progress and reproducibility. 

6.4 Cost- and Energy-Aware AI   
Deep learning models—particularly graph variational 

autoencoders, Transformers, and multimodal architectures—

often require significant compute and memory. For production-

scale microservice deployments, anomaly detectors must 

consider inference cost, scheduling overhead, and energy 

consumption alongside accuracy. Few published systems 

report these metrics, despite their importance in cloud 

environments where cost and carbon efficiency are operational 

priorities. 

Recent studies also demonstrate that energy-aware 

microservice architectures—leveraging asynchronous 
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communication, ARM-optimized deployments, and carbon-

aware scheduling—can significantly reduce operational cost 

and energy consumption without degrading reliability, 

highlighting the importance of integrating sustainability 

considerations into future AIOps frameworks [50]. 

6.5 Human-in-the-Loop Root Cause 

Analysis   
Even when models detect anomalies accurately, operators 

frequently modify or refine the explanations produced. LLM-

based root-cause analysis (e.g., MAIA [5]) shows promise but 

still struggles with overlapping incidents, noisy logs, and 

ambiguous causal paths. Human-guided refinement—through 

Bayesian updating, reinforcement learning, or feedback-driven 

RCA graphs—remains an essential capability for operational 

adoption. 

6.6 Model Adaptability and Concept Drift   
Microservice systems evolve rapidly as code changes, 

autoscaling behaviour shifts, and workloads fluctuate. Static 

anomaly detectors degrade over time due to concept drift. 

Recent work such as ReplicaWatcher [27] highlights the need 

for training-less models or adaptive comparative baselines, but 

a general framework for continuous online learning in 

microservices is still lacking. 

6.7 Multi-Tenant Interference   
In shared Kubernetes or cloud environments, multiple 

microservices contend for CPU, memory, and I/O resources. 

Such **noisy-neighbor effects** can mimic anomalies even 

when no fault exists. Distinguishing performance interference 

from genuine service failures requires joint reasoning across 

infrastructure and application-layer signals—a capability 

missing in current systems. 

7. FUTURE DIRECTIONS AND 

RESEARCH OPPORTUNITIES 
The rapid growth of microservice architectures and the 

increasing adoption of AI-driven observability platforms have 

created new opportunities for advancing anomaly detection and 

reliability engineering. Based on trends observed across 

metrics-, logs-, and trace-based systems, several promising 

research directions emerge. 

7.1 LLM and Graph-Based Causality   
Large language models (LLMs) show strong potential for 

extracting semantic information from logs and assisting with 

natural-language explanations of anomalies. However, LLMs 

alone struggle with grounding predictions in the underlying 

system structure. Integrating LLMs with graph-based 

reasoning over traces—such as causal propagation graphs and 

dependency-aware RCA models—may enable higher recall 

and more faithful explanations. Hybrid frameworks that pair 

LLM semantics with probabilistic or structural causality 

models remain largely unexplored. 

7.2 Reinforcement Learning for Self-

Healing   
Reinforcement learning (RL) has demonstrated effectiveness in 

autoscaling and resource optimization for microservices (e.g., 

RLPRAF [4]). Extending RL beyond resource management to 

full self-healing workflows represents a major opportunity. 

Future systems could jointly use anomaly signals, RCA 

predictions, and learned control policies to automate rollback, 

circuit breaking, traffic shifting, and parameter tuning with 

minimal human intervention. Early results show that RL-driven 

planning can reduce recovery time by 40–60%. 

7.3 Multimodal Benchmarks and Datasets   
A consistent limitation across existing work is the absence of 

unified datasets containing metrics, logs, and traces for the 

same incidents. Open datasets such as LO2 [26] are steps in the 

right direction, but broader, high-quality benchmarks are 

needed to evaluate multimodal anomaly detection and RCA 

frameworks. Synthetic datasets are informative but cannot fully 

capture operational complexity found in production 

microservices. 

7.4 Cost and Energy-Aware AIOps   
As model complexity increases, so does the need for cost-aware 

and energy-efficient anomaly detection. Future research should 

quantify inference latency, memory consumption, and energy 

footprint, and consider these metrics alongside accuracy. 

Lightweight architectures, adaptive sampling, model pruning, 

and dynamic model switching represent promising avenues for 

reducing computational overhead without compromising 

reliability. 

Recent research has also explored energy-efficient design 

principles for microservices. Mohammad (2025) shows that 

architectural techniques such as asynchronous communication 

patterns, ARM-based compute selection, autoscaling 

optimization, and carbon-aware scheduling can significantly 

reduce the energy footprint of cloud-native systems while 

maintaining performance and reliability. These results 

reinforce the importance of incorporating energy and cost 

considerations into future AI-driven anomaly detection and 

control frameworks. 

Emerging work on sustainable microservice architectures 

further highlights the potential of energy-aware operations. 

Mohammad (2025) demonstrates that green microservice 

practices, including asynchronous communication pipelines, 

carbon-aware schedulers, and ARM-optimized deployments, 

can be systematically integrated with AIOps platforms to 

improve both operational efficiency and environmental 

sustainability. Incorporating these techniques into AI-based 

anomaly detection, RCA, and control systems represents a 

promising research direction for future cloud-native reliability 

solutions. 

7.5 Human-in-the-Loop Explainability   
Operators frequently refine or correct the output of AI-based 

RCA systems. Incorporating human feedback into RCA 

graphs, Bayesian networks, and LLM responses can improve 

causal faithfulness over time. Interactive AIOps platforms that 

capture feedback and automatically adjust explanations or 

models could meaningfully reduce triage effort and false 

alarms. 

7.6 Resilience Testing with Chaos 

Engineering   
Chaos engineering offers an opportunity to systematically test 

the robustness of anomaly detectors and RCA pipelines. 

Combining controlled fault injection with AI-driven 

observability can help quantify recovery performance and 

uncover blind spots in current detection models. Integrating 

chaos experiments into CI/CD pipelines may promote 

continuous reliability validation. 

7.7 Standardized Evaluation Metrics   
Researchers often report only accuracy or F1-score, which 

makes comparisons across systems difficult. Future work 

should adopt richer evaluation metrics, including inference 
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latency, cost per inference, carbon footprint, operator effort 

(alerts per incident), and causal faithfulness of RCA outputs. 

Such metrics are essential for evaluating production-grade 

AIOps systems. 

7.8 Industrial Integration   
There is a growing need to integrate academic prototypes with 

production observability systems such as Prometheus, Grafana 

Loki, Jaeger, and OpenTelemetry. Seamless integration will 

enable large-scale validation of research models under real 

workloads. Improved interoperability between AI-based 

detectors and cloud-native application performance monitoring 

platforms will further accelerate adoption. 

8. INDUSTRIAL OBSERVABILITY AND 

BENCHMARK PERSPECTIVES 
Modern microservice ecosystems rely heavily on observability 

platforms that collect, aggregate, and correlate telemetry from 

applications, infrastructure, and service meshes. Industry-

standard tools such as Prometheus (metrics), Grafana Loki 

(logs), and Jaeger or Tempo (distributed traces) provide rich 

multi-modal data pipelines. However, despite this wealth of 

telemetry, many deployments still depend on static 

thresholding or rule-based alerting due to limited integration of 

AI-driven anomaly detection. 

AI-based detectors can significantly improve operational triage 

when embedded directly into these observability stacks. 

Systems such as KAD [6] and TraceVAE [1] have the potential 

to automate detection of performance anomalies and structural 

deviations, reducing the volume of false alarms and improving 

the signal-to-noise ratio for on-call engineers. Graph-based 

models (TraceGra [19]) and RCA-focused frameworks (RPCA 

+ Ensemble [7], MAIA [5]) offer additional benefits by 

pinpointing contributing services and metrics. 

8.1 Open Benchmarks for Evaluation   
While microservice testbeds such as SockShop and TrainTicket 

have become common evaluation environments, most 

experiments rely on synthetic fault injection using tools like 

Chaos Mesh. These testbeds improve reproducibility, but real-

world incident distributions are rarely reflected in synthetic 

datasets. Emerging datasets such as LO2 [26], which release 

logs and metrics together, help accelerate multimodal research. 

However, the field still lacks standardized benchmarks that 

include traces, logs, and metrics with verified labels. 

8.2 Importance of Consistent Evaluation 

Metrics   
To fairly compare anomaly detection systems, evaluations must 

extend beyond accuracy and F1-score. Key metrics include 

inference latency, resource usage, operator effort (alerts per 

incident), and operational impact (e.g., SLA violations and 

cloud cost). Reporting such metrics improves transparency and 

helps assess whether a model is suitable for production 

deployment. 

8.3 Adoption in Production Pipelines   
Advancing AIOps requires deeper integration between 

academic research and industry observability platforms. 

Microservice operators increasingly adopt Prometheus, 

Grafana, Jaeger, CloudWatch (AWS), and GCP Operations 

Suite (Google Cloud) as their standard monitoring stacks. AI-

powered detectors that integrate natively with these platforms 

could automatically prioritize alerts, trigger autoscaling or 

rollback actions, and reduce manual triage work. 

Standardization efforts around OpenTelemetry further 

streamline instrumentation across distributed systems. As 

telemetry collection becomes more uniform, AI-driven 

reliability frameworks can leverage consistent schemas and 

metadata to improve accuracy and interpretability. Industrial 

adoption will continue to accelerate as these frameworks 

demonstrate real-world improvements in SLA adherence, cost 

efficiency, and incident response time. 

9. CONCLUSION 
AI-driven anomaly detection and reliability engineering for 

microservices have matured significantly in recent years, 

propelled by advances in deep learning, graph models, 

multimodal observability, and reinforcement-learning control 

mechanisms. The surveyed methods demonstrate substantial 

improvements in accuracy, interpretability, and operational 

responsiveness across metrics-, logs-, and trace-based 

pipelines. 

Graph generative models such as TraceVAE [1] and TraceGra 

[19] offer strong capabilities for structural and latency anomaly 

detection, while metric-focused frameworks such as KAD [6] 

excel in fast and adaptive monitoring. Hybrid RCA 

approaches—including RPCA + Ensemble [7] and LLM-

enhanced MAIA [5]—combine statistical, causal, and semantic 

signals to deliver more actionable explanations. 

Reinforcement-learning controllers such as RLPRAF [4] 

further show that integrating anomaly detection with 

autoscaling and remediation can improve SLA compliance and 

reduce cloud costs. 

Nevertheless, several open challenges remain. These include 

the scarcity of real-world multimodal datasets, the difficulty of 

achieving cross-modal fusion, the instability of likelihood-

based scoring due to entropy gaps, and the need for robust 

continuous-learning mechanisms to mitigate concept drift. 

Furthermore, production-grade deployments require improved 

explainability, lower inference cost, and deeper integration 

with observability tools such as Prometheus, Grafana Loki, 

Jaeger, and OpenTelemetry. 

Looking ahead, the field is trending toward autonomous, self-

healing microservice ecosystems. Future systems will fuse 

multimodal signals, integrate LLM-driven reasoning with 

graph-based causality, and leverage reinforcement learning to 

automate corrective actions. With continued progress, AI-

powered observability will play a central role in building 

resilient, efficient, and intelligent microservice platforms 

capable of operating at large scale and rapid velocity. 

This manuscript has been prepared and formatted using the 

official International Journal of Computer Applications (IJCA) 

paper template. 
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