
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

56

Survey on AI-based Reliability and Anomaly Detection in

Microservices

Muzeeb Mohammad
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

ABSTRACT

Microservice architectures enable scalable, agile applications,

but their complexity introduces significant reliability

challenges. Traditional monitoring often struggles to keep pace

with the dynamic and distributed nature of microservices,

motivating artificial--intelligence (AI)--driven techniques for

proactive anomaly detection and fault management. This

survey reviews the state of the art in applying AI to reliability

engineering and anomaly detection in microservice-based

systems. This paper proposes a taxonomy covering (i) the

observability signals used by anomaly detectors---metrics, logs

and traces; (ii) the modelling techniques employed---from

statistical and classical machine learning through deep

learning, graph-based methods and large language models; and

(iii) the deployment layer at which detection operates---

centralized cloud clusters, distributed edge environments and

service meshes. This survey analyzes representative systems

and frameworks, comparing their strengths, weaknesses, data

requirements, evaluation metrics, scalability and

interpretability. Common challenges such as the entropy gap in

anomaly scoring, scarcity of real-world labelled anomalies, the

need for explainable results and compute constraints in

distributed environments are highlighted. This survey

concludes with open problems and future directions,

emphasizing opportunities in multimodal data fusion, federated

and edge-based detection, and human-in-the-loop root-cause

analysis for the next generation of reliable microservice

ecosystems.

Keywords

Microservices, anomaly detection, reliability engineering,

observability, machine learning, root cause analysis, cloud

computing, reinforcement learning, large language models,

Bayesian networks.

1. INTRODUCTION
Microservices have emerged as a dominant architecture for

building cloud applications due to their agility, scalability, and

fault isolation benefits. In this paradigm, applications are

decomposed into numerous loosely coupled services that

communicate via lightweight protocols. While microservices

overcome many limitations of monolithic systems, they also

introduce complex reliability challenges. Large deployments

may consist of hundreds or thousands of services, each emitting

streams of metrics, logs, and traces. Failures can cascade across

service dependencies, making it difficult to locate the root

cause of incidents in real time. Traditional threshold-based

monitoring and manual inspection become impractical at this

scale and dynamism. Consequently, practitioners and

researchers have turned to AI-driven techniques capable of

learning normal behavior and detecting deviations across

heterogeneous observability data [1], [5]–[7].

Anomaly detection is crucial for maintaining cloud software

health: deviations in metrics or request behavior often provide

early indicators of problems that could compromise service-

level objectives. Yet developing effective anomaly detectors

for microservices presents unique difficulties. Monitoring data

is high-volume and multimodal, including system metrics

(CPU, memory, etc.), application logs, and distributed traces

that capture inter-service call flows. Anomalies in one service

can manifest as downstream slowdowns or errors in others,

requiring holistic analysis across components. Labelling real-

world anomalies for supervised learning is notoriously hard—

incidents are rare and data is often proprietary. As a result,

many studies rely on simulated faults or synthetic datasets to

evaluate their models. Moreover, microservice platforms such

as Kubernetes offer automated scaling and self-healing that add

further dynamics and potential false alarms to the system state

[2].

Recent years have witnessed a proliferation of research on AI-

based anomaly detection and reliability frameworks for

microservices (often under the umbrella of AIOps). Techniques

span from statistical profiling and unsupervised learning on

metrics, to deep neural networks for log and trace anomaly

detection, to graph-based causal inference for pinpointing fault

propagation. For example, Kosińska and Tobiasz developed the

Kubernetes Anomaly Detector (KAD), which can switch

between different machine-learning models to catch various

anomaly types [6]; Jin et al. combine robust principal

component analysis (RPCA) with an ensemble of isolation

forest and one-class SVM detectors to identify performance

issues in microservice invocation graphs [7]; and Xie et al.

introduce a graph variational autoencoder (TraceVAE) for

unsupervised trace anomaly detection and discover an entropy-

gap phenomenon affecting anomaly-score reliability [1]. Large

language models (LLMs) have even been employed to interpret

unstructured logs and engage in interactive root-cause analysis,

as seen in Pedroso et al., where an LLM-based system on

Kubernetes detects injected faults and explains causes via a

Bayesian network and chatbot [5].

This survey synthesizes the state of the art in AI-based

reliability for microservices, focusing on open-access sources

(IEEE, ACM, Springer, arXiv, etc.) and integrating insights

from several recent studies. We first define a taxonomy of

anomaly detection signals, models, and deployment layers. We

then examine representative systems and frameworks in detail,

grouped by technique, and present a comparative analysis of

their features. Common challenges—such as data scarcity,

concept drift, false positives, and the need for explainability—

are discussed. Finally, we outline future research directions.

Motivation and impact. Microservice reliability has direct

implications for digital infrastructure resilience. Recent

industry surveys indicate that a majority of enterprise

workloads now operate on microservice architectures, while

mean time to recovery for major incidents remains high. In

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

57

practice, teams struggle to triage failures spanning application

code, service dependencies, and the network plane. This survey

addresses that gap by consolidating AI-based detection and

root-cause analysis techniques across metrics, logs, and traces,

highlighting quantitative outcomes (accuracy, latency, cost)

and actionable guidance for practitioners deploying real-time

observability pipelines.

2. TAXONOMY OF ANOMALY

DETECTION IN MICROSERVICES
To frame the landscape of AI-based microservice reliability,

we categorize anomaly detection along three dimensions: (i)

the observability signals being analyzed, (ii) the modelling

techniques employed, and (iii) the deployment layer where

detection is performed. This taxonomy provides structure to a

broad and diverse body of research.

Figure 1: Taxonomy of AI-Based Anomaly Detection in

Microservices

Note: All figures presented in this paper are original, author-

generated illustrations rendered at high resolution to ensure

clarity, legibility of text labels, and compliance with IJCA

publication standards.

2.1 Observability Signals: Metrics, Logs,

and Traces

2.1.1 Metrics
Metrics are quantitative time-series measurements reflecting

system performance and resource usage. Examples include

CPU utilization, memory consumption, request throughput,

response latencies, error rates, and network I/O statistics.

Metrics are typically collected at regular intervals from

infrastructure components (hosts, containers, and network

devices) and from applications (e.g., API latency or queue

length).

Metrics are the most widely used data type in anomaly

detection; a recent mapping study found that more than 75% of

published research papers relied primarily on metric-based

signals [2]. Techniques for metric anomaly detection range

from univariate threshold rules to multivariate clustering,

classical forecasting models (e.g., Holt–Winters, SARIMA),

and deep recurrent models. Metrics provide early indications of

abnormal behavior but lack semantic detail, making it difficult

to interpret root causes without additional data sources.

Evolution. Early systems (2018–2020) focused on thresholds

and classical forecasting. From 2021 onward, representation

learning, attention mechanisms, and multi-model selection

frameworks such as KAD [6] improved robustness under

workload drift.

2.1.2 Logs
Logs are unstructured or semi-structured text records emitted

by applications or system components. They contain fine-

grained information about events, failures, and program states,

but their free-text nature makes automated analysis

challenging. Logs often require template extraction, keyword

clustering, or embedding techniques prior to anomaly

detection.

Deep models such as LSTMs and Transformers (e.g.,

LogBERT) significantly improve generalization for log

anomaly detection [48]. However, logs tend to produce many

false positives unless enriched with contextual signals or

combined with traces or metrics.

Evolution. Log anomaly detection has evolved from rule

mining to template extraction, to sequence modelling, and now

to Transformer-based contextual embeddings.

2.1.3 Traces
Traces capture the end-to-end execution path of individual

requests across multiple microservices. A trace typically forms

a directed acyclic graph where each node represents a span (an

operation in a service) and edges represent causal or temporal

relationships.

Traces provide rich structural and temporal information,

enabling detection of anomalies such as unexpected call

sequences, missing services, timing deviations, or latency

propagation. Graph-based deep learning approaches—

including TraceVAE [1] and TraceGra [19]—have shown

strong performance in trace anomaly detection.

Evolution. Early efforts modelled traces as sequences; modern

systems increasingly use graph neural networks and generative

models, which better capture branching paths and concurrency

effects within microservices.

3. COMPARISON OF

REPRESENTATIVE SYSTEMS
This section summarizes key AI-based systems proposed for

microservice anomaly detection and reliability engineering.

Each system is characterized by the type of observability data

it uses, the modelling technique employed, and its primary

strengths. These examples illustrate the diversity of approaches

in the literature, ranging from statistical models to graph-based

deep learning, large language models, and reinforcement-

learning control frameworks.

Table 1. Table captions should be placed above the table

System Key Highlights

TraceVAE
Graph-VAE on traces; high accuracy,

high cost [1].

KAD
Adaptive metric models; fast and

efficient [6].

RPCA +

Ensemble

Hybrid RCA via RPCA + ML; robust

[7].

MAIA LLM + Bayes for logs; interpretable [5].

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

58

RLPRAF
RL-based scaling; fewer SLA breaches

[4].

ICPTL/CM
Edge transfer learning; ~40% faster

training [3].

GAL-MAD
GAT + LSTM; explainable, accurate

[21].

MSNGAD
Multi-modal diffusion; balanced results

[22].

ReplicaWatcher Replica comparison; training-free [27].

Most surveyed systems are evaluated using synthetic fault

injection on benchmark microservice applications such as

SockShop or TrainTicket, typically employing tools like Chaos

Mesh. Performance is commonly measured using precision,

recall, F1-score, or anomaly ranking metrics. However,

operational metrics such as inference latency, computational

overhead, and deployment cost are reported less frequently.

This evaluation gap highlights a disconnect between academic

benchmarking practices and the practical constraints of

production microservice environments, where scalability, cost

efficiency, and real-time responsiveness are critical.

Systems such as TraceVAE and TraceGra focus on structural

and timing anomalies within distributed traces, while KAD and

GAL-MAD operate primarily on time-series metrics. Hybrid

approaches such as RPCA + Ensemble combine statistical

decomposition with machine-learning classifiers for stronger

root-cause localization. MAIA integrates LLM-enhanced log

understanding with Bayesian reasoning, and RLPRAF

exemplifies a control-oriented approach where anomaly signals

feed into automated remediation or autoscaling policies.

To provide a broader conceptual overview, the surveyed

systems can also be positioned within a design space defined

by (i) the primary observability signal analyzed, (ii) the

modelling paradigm, and (iii) the operational role (detection,

RCA, or closed-loop control). This visual summary highlights

how each system targets different parts of the reliability

workflow.

Figure 2: Design Space of AI-Based Reliability Systems

Beyond qualitative differences, these methods also vary in their

quantitative evaluation metrics, dataset requirements,

scalability, and interpretability. Table 2 groups representative

systems according to their evaluation focus—detection

accuracy, root-cause analysis precision, or operational

impact—and summarizes their reported performance on public

or synthetic benchmarks.

4. COMPARATIVE ANALYSIS AND

SYNTHESIS
Unlike prior surveys that primarily categorize anomaly

detection techniques by observability signal or learning

paradigm, this survey provides a cross-dimensional synthesis

spanning observability modality, modelling technique, and

operational role. The comparative analysis reveals that no

single class of anomaly detector consistently outperforms

others across all microservice failure scenarios.

Metric-based anomaly detection frameworks, such as KAD,

offer low-latency detection and low computational overhead,

making them suitable for near-real-time monitoring in dynamic

cloud environments. However, they lack the semantic depth

required for accurate root cause analysis. Trace-based graph

models, including TraceVAE and TraceGra, achieve higher

detection accuracy for structural and latency anomalies by

capturing service dependency graphs, albeit at increased

computational cost and training complexity. Log-based

approaches, particularly those augmented with large language

models, provide improved interpretability and semantic

reasoning but remain sensitive to noisy or overlapping log

patterns.

Hybrid frameworks that combine multiple observability signals

and modelling techniques consistently demonstrate superior

robustness. Systems integrating statistical decomposition,

machine learning, and causal reasoning show improved root

cause localization accuracy and reduced false positives. These

findings indicate that multi-stage and ensemble-based anomaly

detection pipelines are more effective than monolithic

approaches for production-scale microservice reliability

engineering.

5. DESIGN GUIDELINES AND

LESSONS
Drawing on the surveyed works, this section highlights

practical guidelines for selecting appropriate observability

signals, designing anomaly detection models, and integrating

these models into operational microservice environments.

These lessons reflect consistent findings across statistical, deep

learning, graph-based, and LLM-driven frameworks.

5.1 Choosing Signals and Models
Different observability signals address different failure

patterns. Traces are the most effective for structural and timing

anomalies; logs provide rich semantic context for fault

diagnosis; and metrics offer lightweight, early indications of

system degradation.

Multi-model selection approaches—such as KAD [6]—often

outperform a single detector applied uniformly across all

signals. Ensemble-based strategies or dynamic selection

policies help adapt to diverse anomaly types, workload shifts,

and concept drift.

5.2 Explainability and Human Factors
Explainability plays a central role in operational adoption.

Techniques that pair anomaly detection with causal

reasoning—such as Bayesian networks (MAIA [5]) or graph-

based RCA (RPCA + ensemble [7])—provide interpretable

explanations that help operators act quickly during incidents.

LLM-based systems show promise in providing natural-

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

59

language rationales for anomalies, but their reliability remains

limited by synthetic evaluation setups. For production use,

LLMs must be combined with robust rule-based or graph-based

structures to prevent hallucination and maintain operator trust.

5.3 Lessons Learned from Recent

Evaluations
• Traces vs. logs vs. metrics. Deep generative models applied

to traces (e.g., TraceVAE, TraceGra) achieve high F-scores on

structural and performance anomalies provided sufficient

training traces. Log-based models paired with Bayesian

reasoning achieve strong precision when fault signatures are

clear but may struggle with noisy or overlapping logs [5].

Metric-centric detectors such as KAD balance speed and

accuracy and are suitable for near-real-time monitoring in

dynamic clusters.

• RCA and explainability. Hybrid frameworks that combine

statistical signals, structural reasoning, and ML-based anomaly

scores significantly improve root-cause localization. For

example, RPCA + ensemble fuses decomposition-based

metrics with density-based outlier detectors to increase RCA

precision [7].

• Closing the loop. When anomaly detection drives remediation

actions, reinforcement-learning controllers (e.g., RLPRAF [4])

significantly reduce SLA violations and operating costs under

nonstationary workloads. Closed-loop control is especially

important in microservice architectures where faults propagate

quickly.

• Edge and efficiency. Resource-constrained edge devices

require lightweight models or transfer learning methods such

as ICPTL/CM [3]. Single global models often fail due to

heterogeneity; parameter sharing or clustering improves both

accuracy and scalability.

Figure 3: MAPE–K Integration for Microservice

Reliability

6. OPEN CHALLENGES
Despite significant progress in AI-based reliability engineering

for microservices, several open challenges remain. These

challenges stem from the scale, heterogeneity, and dynamic

behavior of microservice systems, as well as the limitations of

current anomaly detection methodologies.

A persistent limitation across existing studies is the narrow

evaluation scope. Most anomaly detection systems are

validated under controlled fault injection scenarios, which fail

to capture the diversity and complexity of real-world incidents.

Broader evaluations spanning multiple datasets, including

synthetic chaos experiments, historical production traces, edge

deployments, and multi-tenant cloud environments, are

required to improve external validity and generalizability of

research outcomes.

6.1 Multimodal Fusion
Microservices emit heterogeneous signals—metrics, logs, and

traces—each with different sampling frequencies, noise

characteristics, and semantic richness. Most existing systems

fuse these modalities late (e.g., through score-level

aggregation) or require hand-crafted alignment between

features. A major challenge is developing unified

representation-learning methods capable of capturing cross-

modal relationships while remaining robust to missing or

incomplete data.

6.2 Entropy-Aware Scoring in Generative

Models
Likelihood-based detectors such as TraceVAE rely on the

Evidence Lower Bound (ELBO) to estimate anomaly scores.

However, these models suffer from an **entropy gap**,

representing a mismatch between decoder uncertainty and

encoder posterior entropy.

Formal Definition.

For a trace *x* with latent variable *z*, the VAE objective is:

ELBO(x) = E[log pθ(x | z)] − DKL(qϕ(z | x) ∥ p(z)).

The decoder likelihood decomposes into reconstruction

entropy and posterior entropy:

E[−log pθ(x | z)] = Hθ(x) − Hϕ(z | x).

The **entropy gap** is defined as:

ΔH(x) = Hθ(x) − Hϕ(z | x).

A large positive ΔH(x) indicates that the decoder assigns high

uncertainty to its reconstruction while the encoder produces

over-confident latent representations. This instability can cause

normal traces to receive high anomaly scores.

TraceVAE reduces this issue using an entropy-regularized

score:

Sentropy(x) = −ELBO(x) + λ · ΔH(x),

where λ is a tunable weight. Incorporating ΔH(x) improves

robustness and reduces false positives [1].

6.3 Label Realism and Dataset Scarcity
Most research systems are evaluated using synthetic fault

injection (e.g., Chaos Mesh on SockShop) rather than real

incidents. Real-world logs and traces are difficult to obtain due

to privacy and operational concerns. Although emerging

datasets such as LO2 [26] provide logs and metrics, the lack of

standardized, expert-labelled, multi-modal datasets continues

to limit progress and reproducibility.

6.4 Cost- and Energy-Aware AI
Deep learning models—particularly graph variational

autoencoders, Transformers, and multimodal architectures—

often require significant compute and memory. For production-

scale microservice deployments, anomaly detectors must

consider inference cost, scheduling overhead, and energy

consumption alongside accuracy. Few published systems

report these metrics, despite their importance in cloud

environments where cost and carbon efficiency are operational

priorities.

Recent studies also demonstrate that energy-aware

microservice architectures—leveraging asynchronous

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

60

communication, ARM-optimized deployments, and carbon-

aware scheduling—can significantly reduce operational cost

and energy consumption without degrading reliability,

highlighting the importance of integrating sustainability

considerations into future AIOps frameworks [50].

6.5 Human-in-the-Loop Root Cause

Analysis
Even when models detect anomalies accurately, operators

frequently modify or refine the explanations produced. LLM-

based root-cause analysis (e.g., MAIA [5]) shows promise but

still struggles with overlapping incidents, noisy logs, and

ambiguous causal paths. Human-guided refinement—through

Bayesian updating, reinforcement learning, or feedback-driven

RCA graphs—remains an essential capability for operational

adoption.

6.6 Model Adaptability and Concept Drift
Microservice systems evolve rapidly as code changes,

autoscaling behaviour shifts, and workloads fluctuate. Static

anomaly detectors degrade over time due to concept drift.

Recent work such as ReplicaWatcher [27] highlights the need

for training-less models or adaptive comparative baselines, but

a general framework for continuous online learning in

microservices is still lacking.

6.7 Multi-Tenant Interference
In shared Kubernetes or cloud environments, multiple

microservices contend for CPU, memory, and I/O resources.

Such **noisy-neighbor effects** can mimic anomalies even

when no fault exists. Distinguishing performance interference

from genuine service failures requires joint reasoning across

infrastructure and application-layer signals—a capability

missing in current systems.

7. FUTURE DIRECTIONS AND

RESEARCH OPPORTUNITIES
The rapid growth of microservice architectures and the

increasing adoption of AI-driven observability platforms have

created new opportunities for advancing anomaly detection and

reliability engineering. Based on trends observed across

metrics-, logs-, and trace-based systems, several promising

research directions emerge.

7.1 LLM and Graph-Based Causality
Large language models (LLMs) show strong potential for

extracting semantic information from logs and assisting with

natural-language explanations of anomalies. However, LLMs

alone struggle with grounding predictions in the underlying

system structure. Integrating LLMs with graph-based

reasoning over traces—such as causal propagation graphs and

dependency-aware RCA models—may enable higher recall

and more faithful explanations. Hybrid frameworks that pair

LLM semantics with probabilistic or structural causality

models remain largely unexplored.

7.2 Reinforcement Learning for Self-

Healing
Reinforcement learning (RL) has demonstrated effectiveness in

autoscaling and resource optimization for microservices (e.g.,

RLPRAF [4]). Extending RL beyond resource management to

full self-healing workflows represents a major opportunity.

Future systems could jointly use anomaly signals, RCA

predictions, and learned control policies to automate rollback,

circuit breaking, traffic shifting, and parameter tuning with

minimal human intervention. Early results show that RL-driven

planning can reduce recovery time by 40–60%.

7.3 Multimodal Benchmarks and Datasets
A consistent limitation across existing work is the absence of

unified datasets containing metrics, logs, and traces for the

same incidents. Open datasets such as LO2 [26] are steps in the

right direction, but broader, high-quality benchmarks are

needed to evaluate multimodal anomaly detection and RCA

frameworks. Synthetic datasets are informative but cannot fully

capture operational complexity found in production

microservices.

7.4 Cost and Energy-Aware AIOps
As model complexity increases, so does the need for cost-aware

and energy-efficient anomaly detection. Future research should

quantify inference latency, memory consumption, and energy

footprint, and consider these metrics alongside accuracy.

Lightweight architectures, adaptive sampling, model pruning,

and dynamic model switching represent promising avenues for

reducing computational overhead without compromising

reliability.

Recent research has also explored energy-efficient design

principles for microservices. Mohammad (2025) shows that

architectural techniques such as asynchronous communication

patterns, ARM-based compute selection, autoscaling

optimization, and carbon-aware scheduling can significantly

reduce the energy footprint of cloud-native systems while

maintaining performance and reliability. These results

reinforce the importance of incorporating energy and cost

considerations into future AI-driven anomaly detection and

control frameworks.

Emerging work on sustainable microservice architectures

further highlights the potential of energy-aware operations.

Mohammad (2025) demonstrates that green microservice

practices, including asynchronous communication pipelines,

carbon-aware schedulers, and ARM-optimized deployments,

can be systematically integrated with AIOps platforms to

improve both operational efficiency and environmental

sustainability. Incorporating these techniques into AI-based

anomaly detection, RCA, and control systems represents a

promising research direction for future cloud-native reliability

solutions.

7.5 Human-in-the-Loop Explainability
Operators frequently refine or correct the output of AI-based

RCA systems. Incorporating human feedback into RCA

graphs, Bayesian networks, and LLM responses can improve

causal faithfulness over time. Interactive AIOps platforms that

capture feedback and automatically adjust explanations or

models could meaningfully reduce triage effort and false

alarms.

7.6 Resilience Testing with Chaos

Engineering
Chaos engineering offers an opportunity to systematically test

the robustness of anomaly detectors and RCA pipelines.

Combining controlled fault injection with AI-driven

observability can help quantify recovery performance and

uncover blind spots in current detection models. Integrating

chaos experiments into CI/CD pipelines may promote

continuous reliability validation.

7.7 Standardized Evaluation Metrics
Researchers often report only accuracy or F1-score, which

makes comparisons across systems difficult. Future work

should adopt richer evaluation metrics, including inference

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

61

latency, cost per inference, carbon footprint, operator effort

(alerts per incident), and causal faithfulness of RCA outputs.

Such metrics are essential for evaluating production-grade

AIOps systems.

7.8 Industrial Integration
There is a growing need to integrate academic prototypes with

production observability systems such as Prometheus, Grafana

Loki, Jaeger, and OpenTelemetry. Seamless integration will

enable large-scale validation of research models under real

workloads. Improved interoperability between AI-based

detectors and cloud-native application performance monitoring

platforms will further accelerate adoption.

8. INDUSTRIAL OBSERVABILITY AND

BENCHMARK PERSPECTIVES
Modern microservice ecosystems rely heavily on observability

platforms that collect, aggregate, and correlate telemetry from

applications, infrastructure, and service meshes. Industry-

standard tools such as Prometheus (metrics), Grafana Loki

(logs), and Jaeger or Tempo (distributed traces) provide rich

multi-modal data pipelines. However, despite this wealth of

telemetry, many deployments still depend on static

thresholding or rule-based alerting due to limited integration of

AI-driven anomaly detection.

AI-based detectors can significantly improve operational triage

when embedded directly into these observability stacks.

Systems such as KAD [6] and TraceVAE [1] have the potential

to automate detection of performance anomalies and structural

deviations, reducing the volume of false alarms and improving

the signal-to-noise ratio for on-call engineers. Graph-based

models (TraceGra [19]) and RCA-focused frameworks (RPCA

+ Ensemble [7], MAIA [5]) offer additional benefits by

pinpointing contributing services and metrics.

8.1 Open Benchmarks for Evaluation
While microservice testbeds such as SockShop and TrainTicket

have become common evaluation environments, most

experiments rely on synthetic fault injection using tools like

Chaos Mesh. These testbeds improve reproducibility, but real-

world incident distributions are rarely reflected in synthetic

datasets. Emerging datasets such as LO2 [26], which release

logs and metrics together, help accelerate multimodal research.

However, the field still lacks standardized benchmarks that

include traces, logs, and metrics with verified labels.

8.2 Importance of Consistent Evaluation

Metrics
To fairly compare anomaly detection systems, evaluations must

extend beyond accuracy and F1-score. Key metrics include

inference latency, resource usage, operator effort (alerts per

incident), and operational impact (e.g., SLA violations and

cloud cost). Reporting such metrics improves transparency and

helps assess whether a model is suitable for production

deployment.

8.3 Adoption in Production Pipelines
Advancing AIOps requires deeper integration between

academic research and industry observability platforms.

Microservice operators increasingly adopt Prometheus,

Grafana, Jaeger, CloudWatch (AWS), and GCP Operations

Suite (Google Cloud) as their standard monitoring stacks. AI-

powered detectors that integrate natively with these platforms

could automatically prioritize alerts, trigger autoscaling or

rollback actions, and reduce manual triage work.

Standardization efforts around OpenTelemetry further

streamline instrumentation across distributed systems. As

telemetry collection becomes more uniform, AI-driven

reliability frameworks can leverage consistent schemas and

metadata to improve accuracy and interpretability. Industrial

adoption will continue to accelerate as these frameworks

demonstrate real-world improvements in SLA adherence, cost

efficiency, and incident response time.

9. CONCLUSION
AI-driven anomaly detection and reliability engineering for

microservices have matured significantly in recent years,

propelled by advances in deep learning, graph models,

multimodal observability, and reinforcement-learning control

mechanisms. The surveyed methods demonstrate substantial

improvements in accuracy, interpretability, and operational

responsiveness across metrics-, logs-, and trace-based

pipelines.

Graph generative models such as TraceVAE [1] and TraceGra

[19] offer strong capabilities for structural and latency anomaly

detection, while metric-focused frameworks such as KAD [6]

excel in fast and adaptive monitoring. Hybrid RCA

approaches—including RPCA + Ensemble [7] and LLM-

enhanced MAIA [5]—combine statistical, causal, and semantic

signals to deliver more actionable explanations.

Reinforcement-learning controllers such as RLPRAF [4]

further show that integrating anomaly detection with

autoscaling and remediation can improve SLA compliance and

reduce cloud costs.

Nevertheless, several open challenges remain. These include

the scarcity of real-world multimodal datasets, the difficulty of

achieving cross-modal fusion, the instability of likelihood-

based scoring due to entropy gaps, and the need for robust

continuous-learning mechanisms to mitigate concept drift.

Furthermore, production-grade deployments require improved

explainability, lower inference cost, and deeper integration

with observability tools such as Prometheus, Grafana Loki,

Jaeger, and OpenTelemetry.

Looking ahead, the field is trending toward autonomous, self-

healing microservice ecosystems. Future systems will fuse

multimodal signals, integrate LLM-driven reasoning with

graph-based causality, and leverage reinforcement learning to

automate corrective actions. With continued progress, AI-

powered observability will play a central role in building

resilient, efficient, and intelligent microservice platforms

capable of operating at large scale and rapid velocity.

This manuscript has been prepared and formatted using the

official International Journal of Computer Applications (IJCA)

paper template.

10. REFERENCES
[1] Xie, Z. et al. “Unsupervised anomaly detection on

microservice traces through graph VAE.” Proceedings of

the Web Conference (WWW), 2023.

[2] Hrusto, A., Ali, N. B., Engström, E., and Wang, Y.

“Monitoring data for anomaly detection in cloud-based

systems: A systematic mapping study.” ACM

Transactions on Software Engineering and Methodology,

early access, Jun. 2025. doi: 10.1145/3744556.

[3] Fernando, D., Rodriguez, M. A., Arroba, P., Ismail, L.,

and Buyya, R. “Efficient training approaches for

performance anomaly detection models in edge

computing environments.” ACM Transactions on

Autonomous and Adaptive Systems, vol. 20, no. 2, art. 13,

Jun. 2025. doi: 10.1145/3725736.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

62

[4] Panwar, R. and Supriya, M. “RLPRAF: Reinforcement

learning-based proactive resource allocation framework

for cloud environment.” IEEE Access, vol. 12, pp. 95986–

96007, 2024. doi: 10.1109/ACCESS.2024.3421956.

[5] Pedroso, D. F. and Almeida, L. “Anomaly detection and

root cause analysis in cloud-native environments using

large language models and Bayesian networks.” TechRxiv

preprint, Feb. 2025. doi:

10.36227/techrxiv.174016565.57888427.

[6] Kosińska, J. and Tobiasz, M. “Detection of cluster

anomalies with machine learning techniques.” IEEE

Access, vol. 10, pp. 110742–110753, 2022. doi:

10.1109/ACCESS.2022.3216080.

[7] Jin, M. et al. “An anomaly detection algorithm for

microservice architecture based on robust PCA.” IEEE

Access, vol. 8, pp. 226397–226408, 2020. doi:

10.1109/ACCESS.2020.3044610.

[8] Panahandeh, M. et al. “ServiceAnomaly: Anomaly

detection in microservices using context propagation

graphs.” Proceedings of the International Conference on

Service-Oriented Computing (ICSOC), 2023.

[9] Lin, Y. et al. “Microscope: End-to-end performance

diagnosis in microservices using causal graphs.”

Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2018.

[10] Cai, X. et al. “CauseInfer: Automated causality inference

for performance debugging of microservice systems.”

Proceedings of the IEEE/ACM International Conference

on Program Comprehension (ICPC), 2023.

[11] Panwar, D. X. et al. “Reinforcement learning-driven

reliability management in microservice clusters.”

Proceedings of the IEEE International Conference on

Cloud Computing, 2024.

[12] Soldani, J. and Brogi, A. “Anomaly detection and failure

root cause analysis in (micro)service-based cloud

applications: A survey.” ACM Computing Surveys, vol.

55, no. 3, pp. 1–38, 2022.

[13] Usman, M. et al. “A survey on observability of distributed

edge & container-based microservices.” IEEE Access,

vol. 10, pp. 86904–86919, 2022.

[14] Faseeha, U., Syed, H. J., Samad, F., Zehra, S., and Ahmed,

H. “Observability in microservices: An in-depth

exploration of frameworks, challenges, and deployment

paradigms.” IEEE Access, early access, 2025. doi:

10.1109/ACCESS.2025.3562125.

[15] Du, M. et al. “DeepLog: Anomaly detection and diagnosis

from system logs through deep learning.” Proceedings of

the ACM Conference on Computer and Communications

Security (CCS), 2017.

[16] Chalapathy, R. and Chawla, S. “Deep learning for

anomaly detection: A survey.” arXiv:1901.03407, 2019.

[17] Pang, G. et al. “Deep learning for anomaly detection: A

review.” ACM Computing Surveys, vol. 54, no. 2, pp. 1–

38, 2022.

[18] Xing, S., Wang, Y., and Liu, W. “Multi-dimensional

anomaly detection and fault localization in microservice

architectures: A dual-channel deep learning approach with

causal inference.” Sensors, vol. 25, no. 11, art. 3396, 2025.

doi: 10.3390/s25113396.

[19] Chen, J. et al. “TraceGra: A trace-based anomaly

detection for microservices using graph deep learning.”

Computer Communications, vol. 204, pp. 109–117, 2023.

[20] Kohyarnejadfard, I. et al. “Anomaly detection in

microservice environments using distributed tracing data

analysis and NLP.” Journal of Cloud Computing, vol. 11,

no. 1, p. 25, 2022.

[21] Galappaththi, A. et al. “GAL-MAD: Graph attention and

LSTM-based microservice anomaly detection.”

arXiv:2504.00058, 2025.

[22] Fan, M., Zhang, X., Wang, P., and Cao, Z. “Multi-modal

anomaly detection for microservice system through nested

graph diffusion reconstruction.” Applied Intelligence, vol.

55, art. 784, 2025. doi: 10.1007/s10489-025-06681-1.

[23] Steenwinckel, B. et al. “FLAGS: A methodology for

adaptive anomaly detection and root cause analysis on

sensor data streams by fusing expert knowledge with

machine learning.” Future Generation Computer Systems,

vol. 116, pp. 30–48, 2021.

[24] Chandola, V., Banerjee, A., and Kumar, V. “Anomaly

detection: A survey.” ACM Computing Surveys, vol. 41,

no. 3, pp. 1–58, 2009.

[25] Lavin, A. and Ahmad, S. “Evaluating real-time anomaly

detection algorithms: The Numenta anomaly benchmark.”

Proceedings of the IEEE International Conference on

Machine Learning and Applications (ICMLA), 2015, pp.

38–44.

[26] Bakhtin, A. et al. “LO2: Microservice API anomaly

dataset of logs and metrics.” Proceedings of the

International Conference on Predictive Models and Data

Analytics in Software Engineering (PROMISE), 2025.

[27] Elkhairi, A. et al. “ReplicaWatcher: Training-less

anomaly detection in containerized microservices via

replica comparison.” Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2024.

[28] Zuo, Y. et al. “An intelligent anomaly detection scheme

for microservices architectures with temporal and spatial

data analysis.” IEEE Transactions on Cognitive

Communications and Networking, vol. 6, no. 2, pp. 548–

561, 2020.

[29] Yu, G. et al. “Nezha: Interpretable fine-grained root cause

analysis for microservices on multi-modal observability

data.” Proceedings of the ACM Joint European Software

Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE), 2023.

[30] Zhong, Z. et al. “A survey of time series anomaly

detection methods in the AIOps domain.”

arXiv:2308.00393, 2023.

[31] Pimentel, D. A. et al. “A review of novelty detection.”

Signal Processing, vol. 99, pp. 215–249, 2014.

[32] Braei, A. and Wagner, A. “Anomaly detection in

univariate time series: A survey.” Journal of Big Data, vol.

7, no. 1, p. 66, 2020.

[33] Goldstein, M. and Uchida, S. “A comparative evaluation

of unsupervised anomaly detection algorithms for

multivariate data.” PLOS One, vol. 11, no. 4, e0152173,

2016.

[34] Wang, T. and Qi, G. “A comprehensive survey on root

cause analysis in (micro)services: Methodologies,

challenges, and trends.” arXiv:2408.00803, 2024.

[35] Liu, F. T., Ting, K. M., and Zhou, Z.-H. “Isolation forest.”

Proceedings of the IEEE International Conference on Data

Mining (ICDM), 2008, pp. 413–422.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.74, January 2026

63

[36] Schölkopf, B. et al. “Estimating the support of a high-

dimensional distribution.” Neural Computation, vol. 13,

no. 7, pp. 1443–1471, 2001.

[37] Breunig, M. M. et al. “LOF: Identifying density-based

local outliers.” Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2000,

pp. 93–104.

[38] Lee, C. et al. “EADRO: An end-to-end troubleshooting

framework for microservice systems using multimodal

observability data.” Journal of Systems and Software, vol.

200, art. 111571, 2023.

[39] Janiesch, C. et al. “The rise of artificial intelligence for IT

operations.” Business & Information Systems

Engineering, vol. 63, no. 4, pp. 619–628, 2021.

[40] Basiri, A. et al. “Chaos engineering: A new approach to

enhance system resilience.” IEEE Software, vol. 35, no. 3,

pp. 30–36, 2018.

[41] Hundman, K. et al. “Detecting spacecraft anomalies using

LSTMs and nonparametric dynamic thresholding.”

Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining

(KDD), 2018, pp. 387–395.

[42] Gupta, M. et al. “Outlier detection for temporal data: A

survey.” IEEE Transactions on Knowledge and Data

Engineering, vol. 26, no. 9, pp. 2250–2267, 2014.

[43] Gulenko, A. et al. “Evaluating anomaly detection

techniques in microservice architectures.” Proceedings of

the IEEE International Symposium on Network

Computing and Applications (NCA), 2019.

[44] Matos, E. A. et al. “A comparative study of anomaly

detection techniques for cloud applications.” Proceedings

of the IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), 2017,

pp. 59–66.

[45] Akoglu, L., Tong, H., and Koutra, D. “Graph-based

anomaly detection and description: A survey.” Data

Mining and Knowledge Discovery, vol. 29, no. 3, pp.

626–688, 2015.

[46] Nedelkoski, S. et al. “Self-learning anomaly detection

from system log data.” Knowledge-Based Systems, vol.

195, art. 105648, 2020.

[47] Rzym, G. et al. “Dynamic telemetry and deep neural

networks for anomaly detection in 6G software-defined

networks.” Electronics, vol. 13, no. 2, p. 382, 2024.

[48] Mohammad, M. “Green Microservices: Energy-Efficient

Design Strategies for Cloud-Native Financial Systems.”

International Journal of Computer Applications (IJCA),

vol. 187, no. 56, pp. 45–54, 2025. doi:

10.5120/ijca2025925975.

[49] Zhang, Z. et al. “LogBERT: A transformer-based

universal log anomaly detector.” Proceedings of the

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2021, pp. 310–321

[50] Mohammad, M. “AI-Assisted Zero-Trust Optimization

for Energy-Efficient Microservices in Financial Systems.”

International Journal of Computer Applications (IJCA),

vol. 187, no. 67, pp. 34–45, Dec. 2025. doi:

10.5120/ijca2025926171.

IJCATM : www.ijcaonline.org

