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ABSTRACT

Microservice architectures enable scalable, agile applications,
but their complexity introduces significant reliability
challenges. Traditional monitoring often struggles to keep pace
with the dynamic and distributed nature of microservices,
motivating artificial--intelligence (Al)--driven techniques for
proactive anomaly detection and fault management. This
survey reviews the state of the art in applying Al to reliability
engineering and anomaly detection in microservice-based
systems. This paper proposes a taxonomy covering (i) the
observability signals used by anomaly detectors---metrics, logs
and traces; (ii) the modelling techniques employed---from
statistical and classical machine learning through deep
learning, graph-based methods and large language models; and
(iii) the deployment layer at which detection operates---
centralized cloud clusters, distributed edge environments and
service meshes. This survey analyzes representative systems
and frameworks, comparing their strengths, weaknesses, data
requirements,  evaluation  metrics,  scalability  and
interpretability. Common challenges such as the entropy gap in
anomaly scoring, scarcity of real-world labelled anomalies, the
need for explainable results and compute constraints in
distributed environments are highlighted. This survey
concludes with open problems and future directions,
emphasizing opportunities in multimodal data fusion, federated
and edge-based detection, and human-in-the-loop root-cause
analysis for the next generation of reliable microservice
ecosystems.
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1. INTRODUCTION

Microservices have emerged as a dominant architecture for
building cloud applications due to their agility, scalability, and
fault isolation benefits. In this paradigm, applications are
decomposed into numerous loosely coupled services that
communicate via lightweight protocols. While microservices
overcome many limitations of monolithic systems, they also
introduce complex reliability challenges. Large deployments
may consist of hundreds or thousands of services, each emitting
streams of metrics, logs, and traces. Failures can cascade across
service dependencies, making it difficult to locate the root
cause of incidents in real time. Traditional threshold-based
monitoring and manual inspection become impractical at this
scale and dynamism. Consequently, practitioners and
researchers have turned to Al-driven techniques capable of
learning normal behavior and detecting deviations across
heterogeneous observability data [1], [S]-[7].

Anomaly detection is crucial for maintaining cloud software

health: deviations in metrics or request behavior often provide
early indicators of problems that could compromise service-
level objectives. Yet developing effective anomaly detectors
for microservices presents unique difficulties. Monitoring data
is high-volume and multimodal, including system metrics
(CPU, memory, etc.), application logs, and distributed traces
that capture inter-service call flows. Anomalies in one service
can manifest as downstream slowdowns or errors in others,
requiring holistic analysis across components. Labelling real-
world anomalies for supervised learning is notoriously hard—
incidents are rare and data is often proprietary. As a result,
many studies rely on simulated faults or synthetic datasets to
evaluate their models. Moreover, microservice platforms such
as Kubernetes offer automated scaling and self-healing that add
further dynamics and potential false alarms to the system state

(2].

Recent years have witnessed a proliferation of research on Al-
based anomaly detection and reliability frameworks for
microservices (often under the umbrella of AIOps). Techniques
span from statistical profiling and unsupervised learning on
metrics, to deep neural networks for log and trace anomaly
detection, to graph-based causal inference for pinpointing fault
propagation. For example, Kosinska and Tobiasz developed the
Kubernetes Anomaly Detector (KAD), which can switch
between different machine-learning models to catch various
anomaly types [6]; Jin et al. combine robust principal
component analysis (RPCA) with an ensemble of isolation
forest and one-class SVM detectors to identify performance
issues in microservice invocation graphs [7]; and Xie et al.
introduce a graph variational autoencoder (TraceVAE) for
unsupervised trace anomaly detection and discover an entropy-
gap phenomenon affecting anomaly-score reliability [1]. Large
language models (LLMs) have even been employed to interpret
unstructured logs and engage in interactive root-cause analysis,
as seen in Pedroso et al., where an LLM-based system on
Kubernetes detects injected faults and explains causes via a
Bayesian network and chatbot [5].

This survey synthesizes the state of the art in Al-based
reliability for microservices, focusing on open-access sources
(IEEE, ACM, Springer, arXiv, etc.) and integrating insights
from several recent studies. We first define a taxonomy of
anomaly detection signals, models, and deployment layers. We
then examine representative systems and frameworks in detail,
grouped by technique, and present a comparative analysis of
their features. Common challenges—such as data scarcity,
concept drift, false positives, and the need for explainability—
are discussed. Finally, we outline future research directions.

Motivation and impact. Microservice reliability has direct
implications for digital infrastructure resilience. Recent
industry surveys indicate that a majority of enterprise
workloads now operate on microservice architectures, while
mean time to recovery for major incidents remains high. In
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practice, teams struggle to triage failures spanning application
code, service dependencies, and the network plane. This survey
addresses that gap by consolidating Al-based detection and
root-cause analysis techniques across metrics, logs, and traces,
highlighting quantitative outcomes (accuracy, latency, cost)
and actionable guidance for practitioners deploying real-time
observability pipelines.

2. TAXONOMY OF ANOMALY
DETECTION IN MICROSERVICES

To frame the landscape of Al-based microservice reliability,
we categorize anomaly detection along three dimensions: (i)
the observability signals being analyzed, (ii) the modelling
techniques employed, and (iii) the deployment layer where
detection is performed. This taxonomy provides structure to a
broad and diverse body of research.

Taxonomy of Al-Based
Anomaly Detection in Microservices

Observability Modeling Deployment
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Figure 1: Taxonomy of AI-Based Anomaly Detection in
Microservices

Note: All figures presented in this paper are original, author-
generated illustrations rendered at high resolution to ensure
clarity, legibility of text labels, and compliance with [JCA
publication standards.

2.1 Observability Signals: Metrics, Logs,
and Traces

2.1.1 Metrics

Metrics are quantitative time-series measurements reflecting
system performance and resource usage. Examples include
CPU utilization, memory consumption, request throughput,
response latencies, error rates, and network I/O statistics.
Metrics are typically collected at regular intervals from
infrastructure components (hosts, containers, and network
devices) and from applications (e.g., API latency or queue
length).

Metrics are the most widely used data type in anomaly
detection; a recent mapping study found that more than 75% of
published research papers relied primarily on metric-based
signals [2]. Techniques for metric anomaly detection range
from univariate threshold rules to multivariate clustering,
classical forecasting models (e.g., Holt—Winters, SARIMA),
and deep recurrent models. Metrics provide early indications of
abnormal behavior but lack semantic detail, making it difficult
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to interpret root causes without additional data sources.

Evolution. Early systems (2018-2020) focused on thresholds
and classical forecasting. From 2021 onward, representation
learning, attention mechanisms, and multi-model selection
frameworks such as KAD [6] improved robustness under
workload drift.

2.1.2 Logs

Logs are unstructured or semi-structured text records emitted
by applications or system components. They contain fine-
grained information about events, failures, and program states,
but their free-text nature makes automated analysis
challenging. Logs often require template extraction, keyword
clustering, or embedding techniques prior to anomaly
detection.

Deep models such as LSTMs and Transformers (e.g.,
LogBERT) significantly improve generalization for log
anomaly detection [48]. However, logs tend to produce many
false positives unless enriched with contextual signals or
combined with traces or metrics.

Evolution. Log anomaly detection has evolved from rule
mining to template extraction, to sequence modelling, and now
to Transformer-based contextual embeddings.

2.1.3 Traces

Traces capture the end-to-end execution path of individual
requests across multiple microservices. A trace typically forms
a directed acyclic graph where each node represents a span (an
operation in a service) and edges represent causal or temporal
relationships.

Traces provide rich structural and temporal information,
enabling detection of anomalies such as unexpected call
sequences, missing services, timing deviations, or latency
propagation. Graph-based deep learning approaches—
including TraceVAE [1] and TraceGra [19]—have shown
strong performance in trace anomaly detection.

Evolution. Early efforts modelled traces as sequences; modern
systems increasingly use graph neural networks and generative
models, which better capture branching paths and concurrency
effects within microservices.

3. COMPARISON OF
REPRESENTATIVE SYSTEMS

This section summarizes key Al-based systems proposed for
microservice anomaly detection and reliability engineering.
Each system is characterized by the type of observability data
it uses, the modelling technique employed, and its primary
strengths. These examples illustrate the diversity of approaches
in the literature, ranging from statistical models to graph-based
deep learning, large language models, and reinforcement-
learning control frameworks.

Table 1. Table captions should be placed above the table

System Key Highlights
TraceVAE Graph-VAE on traces; high accuracy,
high cost [1].
Adaptive metric models; fast and
KAD efficient [6].
RPCA + Hybrid RCA via RPCA + ML; robust
Ensemble [7].
MAIA LLM + Bayes for logs; interpretable [5].
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RLPRAF RL-based Scallng;[ﬁWer SLA breaches
1 . — 0,
ICPTL/CM Edge transfer lga_rmng, 40% faster
training [3].

GAL-MAD GAT + LSTM; e[>2ql)5amable, accurate

MSNGAD Multi-modal diffusion; balanced results
[22].

ReplicaWatcher Replica comparison; training-free [27].

Most surveyed systems are evaluated using synthetic fault
injection on benchmark microservice applications such as
SockShop or TrainTicket, typically employing tools like Chaos
Mesh. Performance is commonly measured using precision,
recall, Fl-score, or anomaly ranking metrics. However,
operational metrics such as inference latency, computational
overhead, and deployment cost are reported less frequently.
This evaluation gap highlights a disconnect between academic
benchmarking practices and the practical constraints of
production microservice environments, where scalability, cost
efficiency, and real-time responsiveness are critical.

Systems such as TraceVAE and TraceGra focus on structural
and timing anomalies within distributed traces, while KAD and
GAL-MAD operate primarily on time-series metrics. Hybrid
approaches such as RPCA + Ensemble combine statistical
decomposition with machine-learning classifiers for stronger
root-cause localization. MAIA integrates LLM-enhanced log
understanding with Bayesian reasoning, and RLPRAF
exemplifies a control-oriented approach where anomaly signals
feed into automated remediation or autoscaling policies.

To provide a broader conceptual overview, the surveyed
systems can also be positioned within a design space defined
by (i) the primary observability signal analyzed, (ii) the
modelling paradigm, and (iii) the operational role (detection,
RCA, or closed-loop control). This visual summary highlights
how each system targets different parts of the reliability
workflow.

Dual Graph V/ 4
Unsupervis
(High'F.

//

Comparison of
Al Systems for
Microservice
Reliability

Causal Graph
Root Cause.
Analysis

Figure 2: Design Space of AI-Based Reliability Systems

Beyond qualitative differences, these methods also vary in their
quantitative evaluation metrics, dataset requirements,
scalability, and interpretability. Table 2 groups representative
systems according to their evaluation focus—detection
accuracy, root-cause analysis precision, or operational
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impact—and summarizes their reported performance on public
or synthetic benchmarks.

4. COMPARATIVE ANALYSIS AND
SYNTHESIS

Unlike prior surveys that primarily categorize anomaly
detection techniques by observability signal or learning
paradigm, this survey provides a cross-dimensional synthesis
spanning observability modality, modelling technique, and
operational role. The comparative analysis reveals that no
single class of anomaly detector consistently outperforms
others across all microservice failure scenarios.

Metric-based anomaly detection frameworks, such as KAD,
offer low-latency detection and low computational overhead,
making them suitable for near-real-time monitoring in dynamic
cloud environments. However, they lack the semantic depth
required for accurate root cause analysis. Trace-based graph
models, including TraceVAE and TraceGra, achieve higher
detection accuracy for structural and latency anomalies by
capturing service dependency graphs, albeit at increased
computational cost and training complexity. Log-based
approaches, particularly those augmented with large language
models, provide improved interpretability and semantic
reasoning but remain sensitive to noisy or overlapping log
patterns.

Hybrid frameworks that combine multiple observability signals
and modelling techniques consistently demonstrate superior
robustness. Systems integrating statistical decomposition,
machine learning, and causal reasoning show improved root
cause localization accuracy and reduced false positives. These
findings indicate that multi-stage and ensemble-based anomaly
detection pipelines are more effective than monolithic
approaches for production-scale microservice reliability
engineering.

5. DESIGN GUIDELINES AND
LESSONS

Drawing on the surveyed works, this section highlights
practical guidelines for selecting appropriate observability
signals, designing anomaly detection models, and integrating
these models into operational microservice environments.
These lessons reflect consistent findings across statistical, deep
learning, graph-based, and LLM-driven frameworks.

5.1 Choosing Signals and Models

Different observability signals address different failure
patterns. Traces are the most effective for structural and timing
anomalies; logs provide rich semantic context for fault
diagnosis; and metrics offer lightweight, early indications of
system degradation.

Multi-model selection approaches—such as KAD [6]—often
outperform a single detector applied uniformly across all
signals. Ensemble-based strategies or dynamic selection
policies help adapt to diverse anomaly types, workload shifts,
and concept drift.

5.2 Explainability and Human Factors
Explainability plays a central role in operational adoption.
Techniques that pair anomaly detection with causal
reasoning—such as Bayesian networks (MAIA [5]) or graph-
based RCA (RPCA + ensemble [7])—provide interpretable
explanations that help operators act quickly during incidents.

LLM-based systems show promise in providing natural-
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language rationales for anomalies, but their reliability remains
limited by synthetic evaluation setups. For production use,
LLMs must be combined with robust rule-based or graph-based
structures to prevent hallucination and maintain operator trust.

5.3 Lessons Learned from Recent

Evaluations

* Traces vs. logs vs. metrics. Deep generative models applied
to traces (e.g., TraceVAE, TraceGra) achieve high F-scores on
structural and performance anomalies provided sufficient
training traces. Log-based models paired with Bayesian
reasoning achieve strong precision when fault signatures are
clear but may struggle with noisy or overlapping logs [5].
Metric-centric detectors such as KAD balance speed and
accuracy and are suitable for near-real-time monitoring in
dynamic clusters.

* RCA and explainability. Hybrid frameworks that combine
statistical signals, structural reasoning, and ML-based anomaly
scores significantly improve root-cause localization. For
example, RPCA + ensemble fuses decomposition-based
metrics with density-based outlier detectors to increase RCA
precision [7].

* Closing the loop. When anomaly detection drives remediation
actions, reinforcement-learning controllers (e.g., RLPRAF [4])
significantly reduce SLA violations and operating costs under
nonstationary workloads. Closed-loop control is especially
important in microservice architectures where faults propagate
quickly.

* Edge and efficiency. Resource-constrained edge devices
require lightweight models or transfer learning methods such
as ICPTL/CM [3]. Single global models often fail due to
heterogeneity; parameter sharing or clustering improves both
accuracy and scalability.

5
Knowledge

MAPE-K loop

Figure 3: MAPE-K Integration for Microservice
Reliability

6. OPEN CHALLENGES

Despite significant progress in Al-based reliability engineering
for microservices, several open challenges remain. These
challenges stem from the scale, heterogeneity, and dynamic
behavior of microservice systems, as well as the limitations of
current anomaly detection methodologies.

A persistent limitation across existing studies is the narrow
evaluation scope. Most anomaly detection systems are
validated under controlled fault injection scenarios, which fail
to capture the diversity and complexity of real-world incidents.
Broader evaluations spanning multiple datasets, including
synthetic chaos experiments, historical production traces, edge
deployments, and multi-tenant cloud environments, are
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required to improve external validity and generalizability of
research outcomes.

6.1 Multimodal Fusion

Microservices emit heterogeneous signals—metrics, logs, and
traces—each with different sampling frequencies, noise
characteristics, and semantic richness. Most existing systems
fuse these modalities late (e.g., through score-level
aggregation) or require hand-crafted alignment between
features. A major challenge 1is developing unified
representation-learning methods capable of capturing cross-
modal relationships while remaining robust to missing or
incomplete data.

6.2 Entropy-Aware Scoring in Generative

Models

Likelihood-based detectors such as TraceVAE rely on the
Evidence Lower Bound (ELBO) to estimate anomaly scores.
However, these models suffer from an **entropy gap**,
representing a mismatch between decoder uncertainty and
encoder posterior entropy.

Formal Definition.
For a trace *x* with latent variable *z*, the VAE objective is:
ELBO(x) = E[ log pO(x | z) ] = DKL( q¢(z [ x) Il p(2) ).

The decoder likelihood decomposes into reconstruction
entropy and posterior entropy:

E[ —log pO(x | z) ] = HB(x) — H(z | x).
The **entropy gap** is defined as:
AH(x) = HO(x) — Hd(z | x).

A large positive AH(x) indicates that the decoder assigns high
uncertainty to its reconstruction while the encoder produces
over-confident latent representations. This instability can cause
normal traces to receive high anomaly scores.

TraceVAE reduces this issue using an entropy-regularized
score:

Sentropy(x) = "ELBO(x) + A - AH(x),

where A is a tunable weight. Incorporating AH(x) improves
robustness and reduces false positives [1].

6.3 Label Realism and Dataset Scarcity

Most research systems are evaluated using synthetic fault
injection (e.g., Chaos Mesh on SockShop) rather than real
incidents. Real-world logs and traces are difficult to obtain due
to privacy and operational concerns. Although emerging
datasets such as LO2 [26] provide logs and metrics, the lack of
standardized, expert-labelled, multi-modal datasets continues
to limit progress and reproducibility.

6.4 Cost- and Energy-Aware Al

Deep learning models—particularly graph variational
autoencoders, Transformers, and multimodal architectures—
often require significant compute and memory. For production-
scale microservice deployments, anomaly detectors must
consider inference cost, scheduling overhead, and energy
consumption alongside accuracy. Few published systems
report these metrics, despite their importance in cloud
environments where cost and carbon efficiency are operational
priorities.

Recent studies also demonstrate that energy-aware
microservice architectures—leveraging asynchronous
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communication, ARM-optimized deployments, and carbon-
aware scheduling—can significantly reduce operational cost
and energy consumption without degrading reliability,
highlighting the importance of integrating sustainability
considerations into future AIOps frameworks [50].

6.5 Human-in-the-Loop Root Cause
Analysis

Even when models detect anomalies accurately, operators
frequently modify or refine the explanations produced. LLM-
based root-cause analysis (e.g., MAIA [5]) shows promise but
still struggles with overlapping incidents, noisy logs, and
ambiguous causal paths. Human-guided refinement—through
Bayesian updating, reinforcement learning, or feedback-driven
RCA graphs—remains an essential capability for operational
adoption.

6.6 Model Adaptability and Concept Drift

Microservice systems evolve rapidly as code changes,
autoscaling behaviour shifts, and workloads fluctuate. Static
anomaly detectors degrade over time due to concept drift.
Recent work such as ReplicaWatcher [27] highlights the need
for training-less models or adaptive comparative baselines, but
a general framework for continuous online learning in
microservices is still lacking.

6.7 Multi-Tenant Interference

In shared Kubernetes or cloud environments, multiple
microservices contend for CPU, memory, and 1/O resources.
Such **noisy-neighbor effects** can mimic anomalies even
when no fault exists. Distinguishing performance interference
from genuine service failures requires joint reasoning across
infrastructure and application-layer signals—a capability
missing in current systems.

7. FUTURE DIRECTIONS AND
RESEARCH OPPORTUNITIES

The rapid growth of microservice architectures and the
increasing adoption of Al-driven observability platforms have
created new opportunities for advancing anomaly detection and
reliability engineering. Based on trends observed across
metrics-, logs-, and trace-based systems, several promising
research directions emerge.

7.1 LLM and Graph-Based Causality

Large language models (LLMs) show strong potential for
extracting semantic information from logs and assisting with
natural-language explanations of anomalies. However, LLMs
alone struggle with grounding predictions in the underlying
system structure. Integrating LLMs with graph-based
reasoning over traces—such as causal propagation graphs and
dependency-aware RCA models—may enable higher recall
and more faithful explanations. Hybrid frameworks that pair
LLM semantics with probabilistic or structural causality
models remain largely unexplored.

7.2 Reinforcement Learning for Self-
Healing

Reinforcement learning (RL) has demonstrated effectiveness in
autoscaling and resource optimization for microservices (e.g.,
RLPRAF [4]). Extending RL beyond resource management to
full self-healing workflows represents a major opportunity.
Future systems could jointly use anomaly signals, RCA
predictions, and learned control policies to automate rollback,
circuit breaking, traffic shifting, and parameter tuning with
minimal human intervention. Early results show that RL-driven
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planning can reduce recovery time by 40-60%.

7.3 Multimodal Benchmarks and Datasets

A consistent limitation across existing work is the absence of
unified datasets containing metrics, logs, and traces for the
same incidents. Open datasets such as LO2 [26] are steps in the
right direction, but broader, high-quality benchmarks are
needed to evaluate multimodal anomaly detection and RCA
frameworks. Synthetic datasets are informative but cannot fully
capture operational complexity found in production
microservices.

7.4 Cost and Energy-Aware AIOps

As model complexity increases, so does the need for cost-aware
and energy-efficient anomaly detection. Future research should
quantify inference latency, memory consumption, and energy
footprint, and consider these metrics alongside accuracy.
Lightweight architectures, adaptive sampling, model pruning,
and dynamic model switching represent promising avenues for
reducing computational overhead without compromising
reliability.

Recent research has also explored energy-efficient design
principles for microservices. Mohammad (2025) shows that
architectural techniques such as asynchronous communication
patterns, ARM-based compute selection, autoscaling
optimization, and carbon-aware scheduling can significantly
reduce the energy footprint of cloud-native systems while
maintaining performance and reliability. These results
reinforce the importance of incorporating energy and cost
considerations into future Al-driven anomaly detection and
control frameworks.

Emerging work on sustainable microservice architectures
further highlights the potential of energy-aware operations.
Mohammad (2025) demonstrates that green microservice
practices, including asynchronous communication pipelines,
carbon-aware schedulers, and ARM-optimized deployments,
can be systematically integrated with AIOps platforms to
improve both operational efficiency and environmental
sustainability. Incorporating these techniques into Al-based
anomaly detection, RCA, and control systems represents a
promising research direction for future cloud-native reliability
solutions.

7.5 Human-in-the-Loop Explainability
Operators frequently refine or correct the output of Al-based
RCA systems. Incorporating human feedback into RCA
graphs, Bayesian networks, and LLM responses can improve
causal faithfulness over time. Interactive AIOps platforms that
capture feedback and automatically adjust explanations or
models could meaningfully reduce triage effort and false
alarms.

7.6 Resilience Testing with Chaos
Engineering

Chaos engineering offers an opportunity to systematically test
the robustness of anomaly detectors and RCA pipelines.
Combining controlled fault injection with Al-driven
observability can help quantify recovery performance and
uncover blind spots in current detection models. Integrating
chaos experiments into CI/CD pipelines may promote
continuous reliability validation.

7.7 Standardized Evaluation Metrics

Researchers often report only accuracy or Fl-score, which
makes comparisons across systems difficult. Future work
should adopt richer evaluation metrics, including inference
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latency, cost per inference, carbon footprint, operator effort
(alerts per incident), and causal faithfulness of RCA outputs.
Such metrics are essential for evaluating production-grade
AlOps systems.

7.8 Industrial Integration

There is a growing need to integrate academic prototypes with
production observability systems such as Prometheus, Grafana
Loki, Jaeger, and OpenTelemetry. Seamless integration will
enable large-scale validation of research models under real
workloads. Improved interoperability between Al-based
detectors and cloud-native application performance monitoring
platforms will further accelerate adoption.

8. INDUSTRIAL OBSERVABILITY AND
BENCHMARK PERSPECTIVES

Modern microservice ecosystems rely heavily on observability
platforms that collect, aggregate, and correlate telemetry from
applications, infrastructure, and service meshes. Industry-
standard tools such as Prometheus (metrics), Grafana Loki
(logs), and Jaeger or Tempo (distributed traces) provide rich
multi-modal data pipelines. However, despite this wealth of
telemetry, many deployments still depend on static
thresholding or rule-based alerting due to limited integration of
Al-driven anomaly detection.

Al-based detectors can significantly improve operational triage
when embedded directly into these observability stacks.
Systems such as KAD [6] and TraceVAE [1] have the potential
to automate detection of performance anomalies and structural
deviations, reducing the volume of false alarms and improving
the signal-to-noise ratio for on-call engineers. Graph-based
models (TraceGra [19]) and RCA-focused frameworks (RPCA
+ Ensemble [7], MAIA [5]) offer additional benefits by
pinpointing contributing services and metrics.

8.1 Open Benchmarks for Evaluation

While microservice testbeds such as SockShop and TrainTicket
have become common evaluation environments, most
experiments rely on synthetic fault injection using tools like
Chaos Mesh. These testbeds improve reproducibility, but real-
world incident distributions are rarely reflected in synthetic
datasets. Emerging datasets such as LO2 [26], which release
logs and metrics together, help accelerate multimodal research.
However, the field still lacks standardized benchmarks that
include traces, logs, and metrics with verified labels.

8.2 Importance of Consistent Evaluation

Metrics

To fairly compare anomaly detection systems, evaluations must
extend beyond accuracy and Fl-score. Key metrics include
inference latency, resource usage, operator effort (alerts per
incident), and operational impact (e.g., SLA violations and
cloud cost). Reporting such metrics improves transparency and
helps assess whether a model is suitable for production
deployment.

8.3 Adoption in Production Pipelines
Advancing AlOps requires deeper integration between
academic research and industry observability platforms.
Microservice operators increasingly adopt Prometheus,
Grafana, Jaeger, CloudWatch (AWS), and GCP Operations
Suite (Google Cloud) as their standard monitoring stacks. Al-
powered detectors that integrate natively with these platforms
could automatically prioritize alerts, trigger autoscaling or
rollback actions, and reduce manual triage work.

Standardization efforts around OpenTelemetry further
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streamline instrumentation across distributed systems. As
telemetry collection becomes more uniform, Al-driven
reliability frameworks can leverage consistent schemas and
metadata to improve accuracy and interpretability. Industrial
adoption will continue to accelerate as these frameworks
demonstrate real-world improvements in SLA adherence, cost
efficiency, and incident response time.

9. CONCLUSION

Al-driven anomaly detection and reliability engineering for
microservices have matured significantly in recent years,
propelled by advances in deep learning, graph models,
multimodal observability, and reinforcement-learning control
mechanisms. The surveyed methods demonstrate substantial
improvements in accuracy, interpretability, and operational
responsiveness across metrics-, logs-, and trace-based
pipelines.

Graph generative models such as TraceVAE [1] and TraceGra
[19] offer strong capabilities for structural and latency anomaly
detection, while metric-focused frameworks such as KAD [6]
excel in fast and adaptive monitoring. Hybrid RCA
approaches—including RPCA + Ensemble [7] and LLM-
enhanced MAIA [5]—combine statistical, causal, and semantic
signals to deliver more actionable explanations.
Reinforcement-learning controllers such as RLPRAF [4]
further show that integrating anomaly detection with
autoscaling and remediation can improve SLA compliance and
reduce cloud costs.

Nevertheless, several open challenges remain. These include
the scarcity of real-world multimodal datasets, the difficulty of
achieving cross-modal fusion, the instability of likelihood-
based scoring due to entropy gaps, and the need for robust
continuous-learning mechanisms to mitigate concept drift.
Furthermore, production-grade deployments require improved
explainability, lower inference cost, and deeper integration
with observability tools such as Prometheus, Grafana Loki,
Jaeger, and OpenTelemetry.

Looking ahead, the field is trending toward autonomous, self-
healing microservice ecosystems. Future systems will fuse
multimodal signals, integrate LLM-driven reasoning with
graph-based causality, and leverage reinforcement learning to
automate corrective actions. With continued progress, Al-
powered observability will play a central role in building
resilient, efficient, and intelligent microservice platforms
capable of operating at large scale and rapid velocity.

This manuscript has been prepared and formatted using the
official International Journal of Computer Applications (IJCA)
paper template.
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