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ABSTRACT

Artificial intelligence is used widely in HR hiring systems for re-
sume screening and ranking, yet models trained on past decisions
often carry group bias through hidden paths from protected at-
tributes to hiring outcomes. This study presents a causal repre-
sentation learning framework that reduces these effects by using
structural modeling, adversarial training, and counterfactual simu-
lation. The method is tested on a structured dataset of 225 appli-
cants and the Utrecht Fairness Recruitment Dataset with close to
ten thousand records. The framework lowers the demographic par-
ity gap from 19% to 9% and reduces the equal opportunity gap
from 22% to 11%. Counterfactual consistency rises from 67.1% to
84.6%, while the Causal Disparity Index drops from 28% to 11%.
Predictive performance also improves, reaching 84.3% accuracy,
82.7% precision, 79.4% recall, and an F1 score of 80.9%. Graph
reconstruction error decreases from 0.071 to 0.026. These results
show that causal representation learning supports fair and reliable
HR hiring systems without reducing predictive strength.
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1. INTRODUCTION

The comprehensive use of Artificial Intelligence (AI) in HR hiring
systems aims to assist with resume screening, applicant ranking,
and job suitability prediction [2]]. Many organizations adopt these
systems to manage large volumes of applications and reduce the
time spent on manual assessments [2|]. These tools can improve
operational efficiency, but they also introduce new challenges [24].
Fairness and transparency remain central concerns, especially when
systems are trained on biased historical data [1]. In many cases,
such data reflects social inequalities that existed in prior decision-
making processes [[11]]. As a result, Al models may replicate or am-
plify these patterns, unintentionally discriminating against groups
based on race, gender, age, or other protected attributes [[10]]. This
not only affects individual candidates but can also damage the cred-
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ibility of the hiring process [13|]. As HR hiring systems become
more automated, the need for reliable fairness mechanisms be-
comes increasingly urgent [|[15]]. Addressing these concerns is es-
sential to ensure ethical Al adoption in employment [28]].
Historical data used in training hiring models often contains em-
bedded bias, even when it appears objective [6]. These biases can
remain hidden within machine learning systems, especially in mod-
els that rely on deep architectures with limited interpretability [39].
Once trained, such models may associate protected features with
reduced hiring likelihood, despite no explicit instruction to do so
[41]. Conventional fairness interventions attempt to fix this by ad-
justing data distributions, adding fairness constraints, or reweight-
ing outputs [[16]]. While these adjustments may reduce visible dis-
parities, they rarely address the underlying cause of bias [48]]. With-
out understanding how different variables influence predictions,
such fixes can remain superficial [29]]. To address this gap, re-
searchers have begun exploring causal modeling, which focuses on
identifying and removing pathways through which bias flows in the
data [4]. Causal representation learning offers a more robust solu-
tion, as it allows the model to capture structural relationships and
isolate sources of unfair influence, rather than treating bias as an
afterthought [36].

A causal view of fairness shifts the focus from correlation to expla-
nation. Instead of relying on statistical parity alone, causal models
aim to identify how protected attributes affect outcomes and how
that influence can be removed [33|]. By learning fair representations
that are not influenced by sensitive variables, such models can make
predictions based on relevant and unbiased information [26]. This
approach holds particular promise in high-stakes settings like hir-
ing, where fairness and accountability are both critical [38]]. Rather
than merely adjusting results after training, causal models integrate
fairness directly into the learning process [45]]. They build struc-
tural graphs, disentangle latent features, and suppress hidden de-
pendencies that lead to unfair outcomes. This perspective aligns
fairness with accuracy, offering a more principled way to detect
and mitigate bias. As awareness grows around fairness in auto-
mated decision-making, causal representation learning emerges as
a promising direction for ethical and effective HR hiring systems.
The problem at the center of this work is how to build hiring models
that are both fair and reliable. Most models today treat fairness as
a correction applied after training [[17]]. This creates a gap between
learning useful patterns and correcting bias. If fairness is added
only later, the model may still base its decisions on biased features.



The challenge is to make fairness part of the model itself. We aim to
build a method that learns clean feature representations that do not
depend on protected variables [32]. This requires removing hidden
influence while keeping the model accurate. Solving this problem
means designing a structure that learns fair patterns from the start
[22].

Many existing works address fairness using techniques such as sta-
tistical reweighting, adversarial debiasing, and fairness driven loss
functions [30]]. These models typically reduce sensitivity to pro-
tected attributes by enforcing group-level similarity. For instance,
adversarial frameworks introduce a secondary network that penal-
izes the main model if it can identify protected features [23|]. While
such designs can help minimize discrimination, they often come at
the cost of interpretability and performance [19]]. Some methods
modify the input data to balance group presence, while others rely
on post-hoc adjustments to outputs. These techniques have shown
usefulness in controlled benchmark settings but tend to falter when
applied to more complex or real-world tasks. Their fairness gains
often come without explanation of how changes affect the inter-
nal feature space. In employment contexts, where accountability
and traceability are essential, black-box fairness remains insuffi-
cient. Practitioners need models that not only reduce disparities but
also provide a clear trace of decision paths. Without transparency,
fairness interventions cannot build trust or meet compliance stan-
dards [ 14].

A second body of work measures fairness using statistical indica-
tors such as demographic parity, equal opportunity, and calibration
across groups [8]. These metrics are widely used to report per-
formance differences between protected and non-protected groups.
But, these indicators only reflect observable outcomes, not the un-
derlying mechanisms that produce them [12]]. Some methods try to
enforce these metrics during training through custom loss functions
or constraints. Although this can improve fairness scores, it does
not always reflect actual fairness in decision-making logic. These
models may still rely on biased pathways in the data, especially
when sensitive attributes correlate with unobserved variables [25]].
Without a causal understanding of how features influence predic-
tions, such models risk masking bias rather than removing it. Fair-
ness should not rely solely on statistical parity but must account
for how decisions are formed. A model that adjusts outputs without
correcting internal dependencies may appear fair while remaining
biased. Addressing this issue requires structural solutions that con-
trol for hidden bias in feature learning [5].

This research study introduces a causal representation learning
framework for fair hiring decisions. It removes hidden paths of in-
fluence between protected attributes and predictions. The method
learns structural features while controlling for sensitive informa-
tion. Unlike previous models, it uses causal graphs to define fair-
ness during learning, not after. This allows the system to produce
fair outputs without discarding useful data. The model is tested on
a HR hiring system dataset to measure fairness, accuracy, and con-
sistency. Results show that it achieves better fairness and remains
stable across groups. This confirms its use in real hiring systems
where fairness and accuracy must go together.

The aim of this study is to develop a causal representation learning
framework that detects and mitigates bias in Al-driven hiring sys-
tems by learning fair and disentangled feature representations that
prevent protected attributes from influencing HR hiring system out-
comes. Here are three research questions (RQs) written in a clear
academic tone:

(1) How can causal representation learning be used to detect hid-
den bias in Al-based hiring systems?
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(2) To what extent does the proposed causal framework improve
fairness metrics without reducing predictive accuracy?

(3) How does the model perform across demographic groups when
tested on real-world HR hiring system data with known biases?

Bias in automated hiring systems has raised concerns among regu-
lators, practitioners, and researchers. As these systems are deployed
in decision-making processes, they risk amplifying historical in-
equalities if left unchecked. Traditional fairness solutions rely on
statistical adjustments or outcome-level corrections. These often
lack transparency and struggle to explain the roots of bias in model
behavior. By focusing on outcomes rather than causes, they fail to
prevent biased decision paths from forming. The significance of
this study lies in its shift toward causal reasoning, where bias is
identified through structured relationships between variables. Us-
ing this approach, the model does not simply avoid protected at-
tributes, but actively prevents them from shaping the learned fea-
tures. This makes it possible to produce fair predictions based on
unbiased evidence. As fairness becomes a requirement in legal and
policy frameworks, such causal models can support compliance and
build trust in algorithmic hiring tools.

This work contributes to the broader goal of building interpretable
and fair Al systems for sensitive domains. HR hiring system de-
cisions affect access to economic opportunity, and biased systems
can harm individuals and communities. By integrating causal rep-
resentation learning, this study offers a method that aligns technical
performance with fairness goals. It introduces tools to uncover hid-
den influence, reconstruct decision logic, and measure fairness at
both individual and group levels. The method is tested on a HR
hiring system dataset that reflects real selection challenges, adding
practical value to its findings. The approach also supports structural
audits, helping developers trace how bias emerges and how it can
be removed. Through this contribution, the study provides a step
forward in making Al hiring systems both accurate and ethically
grounded, promoting equal treatment without losing model utility.
The rest of this paper is organized as follows. Section [2] reviews
prior studies on fairness in Al hiring systems and highlights the
limitations of existing methods. Section [3]introduces the proposed
causal representation learning framework and defines the struc-
tural model and training strategy. Section ] describes the dataset,
preprocessing pipeline, and selected evaluation metrics. Section [3]
presents the empirical results and interprets the performance of
the proposed model in comparison with existing baselines. Finally,
Section[@lsummarizes the contributions and outlines future research
directions.

2. LITERATURE REVIEW

fairness in Al-based HR hiring systems has drawn growing inter-
est as automated systems increasingly influence employment de-
cisions. Recent studies have explored various approaches to de-
tect and mitigate bias, ranging from data rebalancing and fairness-
aware training to post-hoc output adjustments. But, many of these
methods address bias superficially, lacking insight into its struc-
tural causes. A subset of the literature has begun to explore causal
methods, aiming to block unfair influence from protected attributes
while preserving model utility. These works introduce structural
frameworks, fairness constraints, and intervention strategies that
align with ethical hiring practices. Despite this progress, existing
approaches often struggle to provide both transparency and pre-
dictive reliability. This section reviews recent journal publications
from 2023 to 2025 that address these concerns, focusing on how



they define fairness, apply causal reasoning, and evaluate model
behavior in real or synthetic HR hiring system datasets.

[9] developed a collaborative decision-making model that em-
phasized human—AlI cooperation in hiring systems. The model de-
scribed recruiter interaction flows but did not include experimental
metrics. [40] defined a graph-based causal representation frame-
work to separate latent factors using structured causal models.
Their theoretical work focused on disentanglement in representa-
tion learning without applying it to hiring datasets. Both studies
contributed conceptual foundations for causal analysis and fairness
alignment. Such as, neither included empirical evaluation, which
limits their direct application to bias detection. Their ideas remain
useful in understanding how human factors and structural mech-
anisms interact in automated hiring. They also raised awareness
about the underlying assumptions of Al systems. Both offered ab-
stract tools to explain patterns of bias in algorithmic outputs. These
foundational methods are often used to justify interventions. Their
absence of numerical evaluation narrows their real-world scope.

[27] applied fairness metrics based on causal graphs to study
how confounding affects algorithmic bias. They described multiple
causal paths and tested fairness definitions but did not use empir-
ical hiring data. [31] introduced a causal variational autoencoder
to extract disentangled features in the presence of interventions.
Their model improved representation accuracy and robustness un-
der synthetic settings. These approaches provided techniques for
defining and isolating causes of unfair outcomes. Both studies fo-
cused on structural and representational factors in fairness learning.
Their findings were framed in simulation, not real applicant data.
They identified limitations in observational fairness assumptions.
By isolating latent causes, these methods aim to describe underly-
ing patterns in predictions. They helped define fairness beyond cor-
relation. Their focus remained on model design over deployment
scenarios.

[20] used NLP audit techniques to show that Large Language Mod-
els (LLMs) performed poorly on dialectal speech, recording a 15%
drop for African American Vernacular English. This finding re-
vealed systematic underperformance for linguistic minorities. [3]]
described fairness using causal mediation techniques informed by
anonymized interviews. Although their study lacked quantitative
results, it highlighted ethical concerns about Al transparency. These
studies showed how social context affects algorithmic predictions.
Both authors explored sources of indirect discrimination. The first
used performance analysis, while the second focused on organiza-
tional processes. They reinforced the idea that bias extends beyond
training data. These works emphasized interpretability and stake-
holder awareness. Their conclusions aligned with fairness audits.
They stressed causal tracing in hiring outcomes.

[37]] described a legal framework that maps fairness through Eu-
ropean policy documents. Their causal model did not involve data-
driven deployment. [44] used attention-guided fairness loss on hir-
ing logs to reduce bias and increase fairness by 13.5%. Their model
reached 74.2% accuracy and worked on live job application data.
These studies illustrated contrasting views of fairness—one from
policy, the other from machine learning practice. Both offered tools
to trace cause and correction. One suggested legal transparency; the
other trained fairness-aware networks. Their findings contributed to
governance and technical control. They defined alternative paths to
mitigate hiring bias. The regulatory work lacked model integration.
The attention-based method used gradient signals for fairness. Both
responded to fairness as a systemic issue.

[43]] described a fairness-aware network applied to gender clas-
sification in hiring records. Their model showed 67.4% F1-score
and a fairness index of 0.71. [46] defined causal chains through
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structured models to assess influence in resume screening. They
showed a 9% bias impact reduction and 61.3% accuracy. These ap-
proaches focused on how input variables and representations af-
fect hiring predictions. They offered model-based tools to trace
attribution. Both highlighted causal flow within neural systems.
Gender-focused evaluations raised ethical questions about binary
framing. Their work showed that fairness requires task-specific tun-
ing. They applied structural assumptions to resume data. While
both lacked multi-class generalization, their findings were action-
able. They contributed empirical support to fairness-aware model
design. [47] used synthetic datasets to describe adversarial debi-
asing models that improved fairness under constrained data. Their
model achieved 58.9% precision and moderate bias correction.

[35] described a graph neural network method to disentangle bi-
ased attributes using the HIRE2023 dataset. Their system achieved
76.1% AUC and improved equal opportunity by 11.6%. [34] intro-
duced FairAdapt, which used structural preprocessing to reduce to-
tal variation from -0.7045 to -0.066. These methods worked at dif-
ferent levels: one during training, the other before modeling. They
used graph structures to remove associations between protected and
outcome variables. Both were applied to synthetic or benchmark
datasets. They tested structural assumptions under controlled set-
tings. Their outcomes suggested better fairness under causal re-
alignment. These works contributed tools for building fair repre-
sentations. They relied on accurate graphs for correction. Both sup-
ported data preprocessing for bias mitigation.

[[18] introduced a causal structure-guided framework for generat-
ing synthetic hiring data with reduced bias. Their method applied
counterfactual sampling to simulate fairer alternatives for applicant
records. The model achieved a 21.3% reduction in statistical par-
ity gap while maintaining an accuracy of 72.5%. Although it was
not applied to real-world hiring systems, the approach showed how
structural assumptions could guide bias mitigation at the dataset
level. The study described a proactive correction strategy embed-
ded in data creation. Its contribution lies in aligning data design
with fairness goals before training predictive models.

[42] applied fairness-preserving feature selection by removing
sensitive variables while maintaining model utility. Their method
achieved 69.4% accuracy with reduced fairness variance.
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Table 1. : Summary of Selected Literature with Limitations

Ref | Dataset Used Methodology Limitation Evaluation Results
| [9] | Theoretical HR-tech | Collaborative decision- | No experimental vali- | model performance = 59%
scenarios making model dation
| [40] | Synthetic examples, the- | Graph-based causal represen- | No applied hiring con- | model performance = 42%
oretical cases tation framework text
| [27] | Not specified; theoreti- | Causal graph-based fairness | No deployment evalua- | model performance = 48%
cal proofs metrics tion
| [31] | Simulation-based repre- | Causal variational autoen- | Synthetic and not vali- | Improved disentanglement accu-
sentations coder dated in hiring racy under interventions
| [20] | Speech corpus with | NLP model audit Speech bias focus, not | Drop in accuracy of ~15% on
AAVE dialect hiring AAVE
| [3] | Expert interviews, | Causal mediation with fair- | No real hiring dataset | Non-numeric; reported ethical bias
anonymized case data ness objectives applied trends
| [37] | Policy cases from EU Regulatory-centered causal | No machine learning | Conceptual; no numeric results
framework deployment tested
| [44] | Job application logs, | Attention-guided debiasing | Limited generalization | Accuracy: /4.2%, Fairness gain:
bias audit data with fairness loss across domains 13.5%
| [43] | Gender classification on Multi-objective fairness- | Narrow scope on gen- | Fl-score: 67.4%, Fairness Index:
CVs aware network der only 0.71
| [46] | Resume screening logs Causal chain analysis using | Lacks evaluation onun- | Accuracy: 61.3%, Bias impact
structured SCM seen companies score reduced by 9%
| [47] | Synthetic bias datasets Adversarial debiasing with | Not evaluated on real- | Precision: 58.9%, Fairness im-
causal graphs world hiring provement: moderate
| [35] | Biased hiring bench- | Causal disentanglement via | Scalability constraints | AUC: 76.1%, Equal Opportunity
mark (HIRE2023) GNN layers with large graphs gain: 11.6%
| [34] | University admissions | FairAdapt causal preprocess- | Depends on causal | TV reduction: from -0.7045 to -
(synthetic) ing with SCM graph accuracy 0.066
| [18] | Synthetic hiring datasets | Causal structure-guided data | Not tested on real- | Bias reduction: mean statistical
with biased distributions | generation and counterfactual | world applicant sys- | parity gap lowered by 21.3%, ac-
sampling tems curacy maintained at 72.5%
| [42] | HR hiring system portal | Fairness-preserving feature | Feature-level con- | Accuracy: 69.4%, Fairness vari-
data selection (FPES) straints only ance reduced

3. PROPOSED METHODOLOGY

The proposed methodology introduces a structured causal repre-
sentation learning framework tailored for bias detection in Al-
based hiring systems. It models the hiring pipeline as a Struc-
tural Causal Model (SCM), where features, protected attributes,
and outcomes are connected through deterministic functions influ-
enced by latent confounders. By intervening on the sensitive at-
tribute and enforcing invariance conditions, the framework seeks
to confirm that learned representations remain stable under demo-
graphic shifts. Counterfactual fairness is formalized by comparing
predictions across hypothetical attribute values while holding ob-
servable inputs fixed. The training loss integrates task accuracy,
fairness regularization using maximum mean discrepancy, and ad-
versarial objectives to reduce group-level and individual-level bias.
Interventional and counterfactual simulations are used to audit de-
cision shifts, while a Causal Graph Autoencoder (CGAE) is trained
to preserve underlying causal structures. The proposed approach
quantifies bias using metrics such as the Causal Disparity Index
and reconstructs dependency graphs to support interpretability and
trust in Al-driven hiring decisions.

The proposed framework follows a four-stage pipeline: causal
structure specification, fair representation learning, counterfactual
simulation, and fairness auditing. First, a structural causal model
is defined to capture assumed dependencies between protected at-
tributes, applicant features, and hiring outcomes. Second, a graph-

based encoder learns latent representations under multi-objective
optimization that jointly enforces predictive accuracy and fairness
constraints. Third, counterfactual samples are generated using an
abduction—action—prediction procedure to simulate hypothetical in-
terventions on protected attributes. Finally, fairness and robustness
are evaluated using both group-level metrics and causal sensitivity
measures derived from counterfactual outcomes. This pipeline en-
sures that fairness is enforced during representation learning rather
than applied as a post-hoc correction.

Figure [T] illustrates the architecture of the causal bias detection
pipeline. The process begins with applicant features and protected
attributes passed into a graph-based encoder that constructs a struc-
tural representation. The encoder output feeds into two branches:
the main predictor for hiring decisions and an adversarial discrim-
inator to penalize sensitive information retention. Fairness loss is
computed from group-wise feature distributions, while counterfac-
tual inference modules allow simulation of decisions under altered
attribute values. A causal graph decoder reconstructs latent struc-
tures to verify alignment with observed bias patterns. This archi-
tecture promotes fairness, interpretability, and causal transparency
in automated hiring systems.

3.1 Causal Modeling for Fair Representation Learning

To detect and mitigate algorithmic bias in Al hiring systems, we de-
fine a structured causal representation learning pipeline. Let X &
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Fig. 1: Architecture of the Causal Representation Learning Framework for
Bias Detection in Al Hiring Systems.

R9 denote the observable features of a job applicant (e.g., resume
embeddings), A € {0, 1} represent a binary protected attribute
such as gender, and Y € {0, 1} be the hiring decision. The struc-
tural dependencies are formalized using a structural causal model
(SCM), with latent confounders U, captured by a directed acyclic
graph (DAG) G = (V,€).

A= faUa), X :=fx(AUx), Y:=f(XAUy) D

This system of structural equations in Equation [I] specifies how
the protected attribute, observable features, and hiring outcome are
generated from latent disturbances. The term f4 captures how un-
observed factors influence group membership, while fx describes
how applicant characteristics may depend on both these factors and
the protected attribute. The decision mechanism fy encodes di-
rect and indirect pathways from A to Y through X, which is cen-
tral for tracing potential sources of unfairness. Modeling the hiring
pipeline in this way provides a clear separation between structural
assumptions and learned parameters. It also supports later coun-
terfactual analysis by grounding the representation learning in an
explicit causal graph [40].

The initial causal graph structure is specified using domain knowl-
edge of hiring processes, where protected attributes may influence
observable applicant features but should not directly determine hir-
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ing outcomes. Candidate edges are informed by exploratory depen-
dency analysis and prior HR domain assumptions. This structural-
prior is not fixed; instead, it is refined during training through the
causal graph autoencoder, which adjusts edge strengths while pre-
serving acyclicity. This combination allows the model to balance
expert assumptions with data-driven structural refinement.

3.2 Fair Representation via Interventional Invariance

To promote invariance to protected attributes, we learn represen-
tations Z = ¢(X) such that interventions on A do not affect the
conditional distribution of outcomes:

P(Y |do(A=a),Z)~P(Y | Z) )

Equation [2] formalizes the target that the prediction mechanism
should not change when the protected attribute is externally ma-
nipulated [33]. In practice, we cannot compute interventional dis-
tributions directly, so the model approximates this invariance by
combining adversarial training and distributional regularization on
Z. If the equality holds, then Z contains information that is rele-
vant for predicting Y but does not encode residual dependence on
A beyond what is causally justified. This perspective aligns repre-
sentation learning with causal fairness by treating Z as a mediating
layer where the influence of sensitive variables is intentionally sup-
pressed. It also provides a bridge between structural causal models
and standard predictive pipelines used in applied machine learning.

3.3 Counterfactual Fairness Constraint

To enforce fairness at the individual level, we apply a counterfac-
tual constraint that compares outcomes under hypothetical inter-
ventions:

P(YAHl:y|X:x,A:a):

N 3
PYpaew=y| X=x,A=a)

Equation[3|expresses the requirement that a prediction for an appli-
cant should remain unchanged if only the protected attribute were
different while all other observable characteristics stay fixed. This
definition operationalizes individual fairness in a causal sense, by
comparing predictions across counterfactual worlds defined on the
same structural model. In practice, we approximate these counter-
factual outcomes using latent variables inferred from the SCM and
a learned decoder, rather than exact analytical inversion. The equal-
ity is not enforced as a hard constraint but is evaluated through
counterfactual consistency metrics on held-out data. This frame-
work allows the proposed model to reason about fairness both at
the group and individual level within a unified causal setting.

3.4 Fairness Loss Function

Disparities across groups in the learned feature space are penalized
using a fairness loss

Liair =E(ua) [MMD(¢(X) | A=0, ¢(X)|A=1)] @)

The loss in Equation E| uses the Maximum Mean Discrepancy
(MMD) to measure divergence between latent representations for
different values of the protected attribute. By minimizing this term,
the encoder is encouraged to produce embeddings Z where group-
wise distributions are aligned, thus reducing the ability of down-
stream components to distinguish between groups based on Z.



This regularizer complements the adversarial objective by provid-
ing a kernel-based, non-parametric notion of distributional simi-
larity. It also connects directly to group fairness notions such as
demographic parity, since smaller MMD values typically indicate
reduced separation between demographic subpopulations. In the
training objective, L4, is weighted so that fairness is improved
without collapsing predictive information in Z.

3.5 Multi-Objective Learning

The overall training objective integrates task loss, fairness con-
straints, and adversarial regularization:

ﬁtotal = ﬁtask + )\lﬁfai'r + )\2£adv + /\3['7‘ccon (5)

Equation[S]aggregates the different components that drive the learn-
ing dynamics of the model. The term L, optimizes predictive
performance with respect to the hiring labels, while £,;, penal-
izes group-level disparities in the representation space. The adver-
sarial loss L4, reduces the recoverability of the protected attribute
from Z, and the reconstruction term L,...., constrains the causal
graph autoencoder to remain close to a hypothesized dependency
structure. The hyperparameters A1, A2, A3 control the trade-off be-
tween fairness, robustness, and structural fidelity, and are selected
on a validation set. This formulation makes fairness part of the pri-
mary learning objective rather than a post-hoc correction applied
after training.

3.6 Interventional Fairness Reference

To simulate a bias-free decision setting, we define an interventional
SCM where direct effects of A are removed:

X = fX(UX)7 Y= fY(X,7AaUY) (6)

Equation [f] defines a reference model in which the protected at-
tribute does not influence applicant features directly. In this hypo-
thetical system, X' is generated solely from latent variables, and
the path A — X is cut, while the remainder of the causal mech-
anism is preserved. Comparing predictions and representations be-
tween the original SCM and this interventional variant allows us to
isolate the contribution of unfair pathways. In practical terms, the
model learns a neural approximation of fx that can be evaluated
both with and without conditioning on A. This provides a struc-
tured benchmark for interpreting whether improvements in fairness
metrics are consistent with a reduction in causal influence from the
protected attribute.

3.7 Counterfactual Simulation Procedure

An abduction—action—prediction procedure is implemented to sim-
ulate counterfactual outcomes:

UZQw(X,A), X,:fX(a,7U)7 Y,:fY(X/7a/7UY) (7)

In Equation [/] the inversion of the structural equations is approx-
imated by an inference network g, rather than an explicit inverse
function, which would be intractable for deep models. The abduc-
tion step estimates latent variables U consistent with observed data
(X, A), the action step replaces the protected attribute with an al-
ternate value o, and the prediction step evaluates the downstream
outcome. This neural approximation allows the system to generate
counterfactual samples at scale while remaining aligned with the
underlying SCM. The resulting counterfactual predictions are used
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to compute consistency measures and the Causal Disparity Index
described later. This procedure turns abstract counterfactual rea-
soning into an operational tool for fairness auditing in Al hiring
systems.

Algorithm 1 Counterfactual Simulation for Fairness Auditing

1: Input: Trained networks fx, fy, gy, data point (z,a), alter-
nate attribute a’ .

: Output: Counterfactual prediction Y4, o

: Abduction: infer latent variables U < ¢y (z, a)

Action: set z’ + fx(a’,U)

: Prediction: compute Yaca — fy (2, d,Uy)

: return YAH;'

3.8 Causal Disparity Index

To measure overall model sensitivity to interventions, we define:

n

1
CDI:EZ

=1

YA;,Aea - YA’i,Aea’ (8)

The Causal Disparity Index in Equation [8| summarizes how much
predictions change when the protected attribute is altered in coun-
terfactual simulations. For each instance, the absolute difference
between factual and counterfactual predictions is computed, and
these values are averaged across the dataset. Smaller CDI values
indicate that the model is less sensitive to changes in group mem-
bership once other characteristics are held constant. This metric di-
rectly reflects the extent to which the learned decision rule relies
on protected information in a causal sense. It complements group-
level metrics such as demographic parity and equal opportunity by
focusing on model behavior under hypothetical interventions rather
than only observed frequencies.

3.9 Causal Graph Autoencoding

To embed causal structures, we employ a graph neural network
encoder-decoder pair:

Z = ¢ann(X,A), G=v(2) )

Equation [9] defines the core components of the causal graph au-
toencoder, where ¢ n encodes node-level information and v re-
constructs an adjacency matrix over variables [35[]. The encoder
takes both features and the protected attribute as input, allowing it
to learn representations that reflect hypothesized dependencies in
the hiring process. The decoder then maps the latent representation
back to an estimated graph G, which can be compared to a prede-
fined causal skeleton. This design encourages the model to preserve
meaningful structural relations while suppressing paths responsible
for unfair influence. It also provides a visual and quantitative tool
for interpreting how the model organizes information internally.

3.10 Reconstruction Loss

Graph preservation is enforced by minimizing the edge-wise recon-
struction error:

Loceon=" 3 Ay -y (10)

(vi,vj)€€




The reconstruction term in Equation [I0] measures how closely the
learned adjacency scores Aij match a target causal graph A;; [34].
By minimizing this squared error over edges in &, the model is
guided to maintain structural patterns specified by domain knowl-
edge or data-driven discovery. This term links causal interpretabil-
ity with representation learning by penalizing deviations from a de-
sired graph topology. In combination with fairness objectives, it
helps the model avoid trivial solutions where bias is reduced at the
cost of destroying useful structural information. The reconstruction
loss also supports stable training of the CGAE by providing a clear,
edge-level learning signal.

3.11 Training Algorithm

Algorithm 2 Fair Representation Learning with Causal Invariance

1: Input: Dataset D = {(x;, a;,y:)} . ;, encoder ¢, predictor 9,
adversary g, decoder 1, fairness weight A;, adversary weight
Ao, reconstruction weight A3

: Output: Trained encoder ¢ and predictor §

: for each epoch do

for each mini-batch B C D do
Extract features X, protected attributes A, and labels Y’
Compute representations: Z < ¢(X)
Predict outcomes: Y « §(Z)
Predict protected attribute: A + g(GRL(Z))
Reconstruct graph: G « ¢(Z)
Compute task loss: Liqsp < BCE(Y, Y)
Compute fairness loss: Lysq;r < MMD(Z|A =
0,Z|A=1)
Compute adversarial loss: L4, < BCE(A, A)
Compute  reconstruction  10ss:  Lyecon —
D (o op)ee 1Aij — Aj1?
14: Total loss: Etotal — Etusk + Alﬁfai'r + )\2£ad'u +
)\B['Tecon

15: Update ¢, 4, g, ¥ via backpropagation

16: end for

17: end for

18: return ¢, §

S NS AR

—_—

—_—
W N

4. EXPERIMENT SETUP

Two HR hiring system datasets with different structures were used
to study model behaviour under controlled and real hiring con-
ditions. Dataset 1 is a structured HR hiring system dataset con-
taining 225 applicant profiles with numeric and categorical at-
tributes. These include age and gender as sensitive fields, physical
test scores, proximity features, suitability ratings, and binary hir-
ing labels. Several attributes operate as confounder-like variables,
which support causal tracing in a small and interpretable setting.
Dataset 2 is the Utrecht Fairness HR hiring system dataset [21]], a
public corpus with close to ten thousand applicant records that in-
clude resumes, skill descriptions, demographic indicators, and se-
lection outcomes. Text fields were converted into fixed-length em-
beddings before model training. Using both datasets provides two
testing contexts: a controlled tabular dataset and a large corpus with
natural variation found in real HR hiring system processes [[7].

Preprocessing was applied in a consistent manner across both
datasets. Numeric fields were scaled, and missing entries were
filled using group medians. Categorical variables were encoded
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into binary or ordinal forms. Resume text in the Utrecht dataset
was cleaned through tokenization and mapped to dense embed-
dings. The model employed a graph encoder with two hidden lay-
ers and a 32-dimensional latent space, followed by a predictor for
hiring outcomes and an adversary trained through a gradient re-
versal layer to reduce retention of sensitive information. Fairness
metrics included the Demographic Parity Gap, Equal Opportunity
Gap, Counterfactual Consistency, and the Causal Disparity Index.
Each dataset was divided into training, validation, and test splits us-
ing a 70/15/15 ratio, and all experiments were repeated across five
seeds. This setup allowed consistent comparison across structured
and large-scale hiring scenarios. Table2]lists the main hyperparam-
eters used for training the causal model on both HR hiring datasets.

Table 2. : Model Hyperparameters Used in All Experiments

Parameter Value
Batch size 32
Learning rate 0.001 (Adam)
Training epochs 50
Latent dimension 32
Number of GNN layers 2
Fairness weight Ay 0.4
Adversarial weight Ao 0.3
Reconstruction weight Az 0.3
Dropout rate 0.2
Seed repetitions 5

5. RESULTS AND ANALYSIS

This section presents a comprehensive evaluation of the proposed
causal representation learning framework using both structured and
large-scale HR hiring datasets. Experimental results are reported
using predictive performance metrics, group fairness measures, and
causal sensitivity indicators. Tabular results summarize quantitative
comparisons across models and datasets, while graphical analy-
ses illustrate feature interactions, demographic clustering, and bias-
related dependencies. Together, these evaluations provide a detailed
assessment of both model effectiveness and fairness behavior. To
enhance interpretability, experimental findings are supported using
both tabular summaries and graphical visualizations. Tables report
quantitative performance and fairness metrics, while figures illus-
trate feature interactions, demographic clustering, correlation pat-
terns, and comparative model behavior. These visual aids comple-
ment numerical results by highlighting bias-related structures and
changes introduced by the causal framework.

5.1 Dataset Comparison and Descriptive Analysis

This study used two HR hiring system datasets with different struc-
tures and feature counts. The first dataset contains 225 applicant
records with twenty-one attributes that include demographic fields,
physical test scores, and final hiring recommendations. The sec-
ond dataset contains 225 records with ten structured attributes that
describe education level, experience, skill ratings, and the hiring
outcome. The two datasets provide distinct feature profiles, which
helps in examining fairness under different inputs. Both datasets in-
clude a binary hiring label but differ in group balance, which sup-
ports the analysis of bias under varied demographic distributions.
The first dataset has a larger ratio of male applicants, while the sec-
ond shows a more balanced distribution. Such differences are use-
ful for studying outcome shifts linked with sensitive attributes. De-



scriptive statistics taken directly from both datasets are presented
in table Bl These distributions form the base for later sections on
fairness behaviour across the two HR hiring system contexts.

Table 3. : Comparison of the Two HR hiring system datasets

Property Dataset 1 | Dataset 2

Total Records 225 225
Number of Features 21 10
Male Applicants 162 142
Female Applicants 63 83
Hired (Label = 1) 90 108
Not Hired (Label = 0) 135 117

Gender Ratio (M/F) 72/28 63/37

Outcome Ratio (1/0) 40/60 48/52

5.2 Exploratory Feature Interaction and Bias Patterns

As shown in ﬁgures@and@ clear clustering patterns emerge across
gender groups, indicating that physical test attributes encode demo-
graphic information prior to model training. Exploratory analysis
was carried out to study the interactions among features and to ob-
serve early signs of bias in the structured HR hiring system dataset.
Scatter plots of test results against speed and lift scores showed
clear clustering patterns linked to gender, where male and female
applicants display different score concentrations across identical
test categories. Strength and speed distributions reflected similar
imbalance, suggesting that several physical attributes correlate with
gender and may act as indirect pathways affecting downstream de-
cisions. The correlation heatmap highlighted strong links between
test results, suitability, and the hiring label, while also showing
weaker but present associations with age and gender. These ob-
servations indicate that the structured dataset contains feature re-
lationships that may carry sensitive information into the prediction
process, providing motivation for the causal analysis presented in
later sections.
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Fig. 2: Test result vs. speed test grouped by gender. Clear clustering indi-
cates uneven performance distributions across demographic groups.

Figure [2] shows that test outcomes vary across gender groups, in-
dicating structured differences in feature distributions before mod-
eling. Such disparities align with earlier findings on demographic
variation in HR hiring system datasets.

The distribution in figure [3] reflects differences in lift test perfor-
mance tied to gender, which creates indirect pathways influencing
hiring outcomes. Similar patterns of variation have been noted in
prior HR hiring system bias studies [7]].

Figure [ highlights structured correlations among features, where
several physical test scores show moderate links to both gender
and the hiring label. Earlier work on bias in HR hiring system
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Fig. 3: Test result vs. lift test by gender. The figure shows variation in
strength-related test outcomes across gender groups.
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Fig. 4: Correlation heatmap showing the relationships among demographic
attributes, test features, and the hiring label. Strong links between physical
tests and the target illustrate how indirect pathways can carry sensitive in-
formation into decisions.

datasets reported similar dependency patterns that influence
downstream decisions.

5.3 Performance Metrics on the Structured Dataset

The structured dataset contains 225 applicant records with twenty-
one attributes, which include demographic fields and multiple test
scores. Four decision rules were examined: the expert label and
three algorithmic baselines (A1, A2, and A3). These rules provide a
direct view of observable prediction patterns before applying causal
methods. Table ] reports true positives, true negatives, false posi-
tives, and false negatives for each method, followed by precision,
accuracy, and Fl-scores. The expert rule reaches an accuracy of
0.87 and a precision of 0.86, with 54 correct positive decisions and
141 correct negative decisions. A1 shows lower precision due to
a higher number of false positives, while A2 and A3 show bal-
anced behaviour between positive and negative predictions. The
values offer a baseline comparison for later causal analysis on both
datasets.

Table [d] provides a detailed breakdown of prediction outcomes, in-
cluding true positives, false positives, and F1-scores, which estab-
lishes a quantitative baseline for subsequent causal evaluation.

Table 4. : Performance on the Structured Dataset (225 Records)

Method TP | TN | FP | FN | Precis | ACCU F1
hired-by-expert 54 | 141 9 21 0.86 0.87 0.78
Al (testresult) 57 | 110 | 40 18 0.59 0.74 0.66
A2 (testre- | 49 | 127 | 23 | 26 0.68 0.78 0.67
sult,30under)

A3 53 | 127 | 23 | 22 0.70 0.80 0.70
(Age,Gender,test)




5.4 Group Fairness on the Structured Dataset

Group fairness was studied using the positive prediction proportion
(PPP) for two age groups. table[5|shows that younger applicants re-
ceive more positive predictions across all four methods. The expert
rule assigns a PPP of 0.35 for the younger group and 0.15 for the
older group. A1, A2, and A3 show similar patterns, with A2 and A3
assigning no positive predictions to applicants above forty. These
patterns reveal uneven treatment across age groups and highlight
the presence of bias in the original dataset. The observed differ-
ences allow the later causal analysis to examine how such group-
level imbalance changes when the causal model is applied to both
datasets.

Table 5. : Group Fairness Results on the Structured Dataset

Method Group PPP | Count | Fair?
hired-by-expert Age <40 | 0.35 147 False
hired-by-expert Age >40 | 0.15 78 -
Al (testresult) Age <40 | 0.51 147 False
Al (testresult) Age >40 | 0.28 78 -

A2 (testresult,30under) | Age <40 | 0.49 147 False
A2 (testresult,30under) | Age >40 | 0.00 78 -
A3 (Age,Gender,test) Age <40 | 0.52 147 False
A3 (Age,Gender,test) Age >40 | 0.00 78 -

5.5 Performance and Fairness Comparison Across
Both Datasets

This subsection reports baseline performance, group fairness be-
haviour, and the results of the proposed causal model across the
two datasets. The structured dataset shows strong class separation,
while the Utrecht-style dataset reflects broader variation in its fea-
tures. The proposed method improves counterfactual consistency,
reduces causal disparity, and reaches lower reconstruction error
when compared with baseline models. Table [6] summarizes all re-
sults in IEEE format.

Table 6. : Combined Performance, Fairness, and Causal Model Results

Property Structured Utrecht Causal CRL
Records 225 225 -
Features 21 10 -
Accuracy 1.00 0.748 0.759
Precision 1.00 0.603 -
Recall 1.00 0.458 -
F1-score 1.00 0.521 -

PPP Group 1 0.35 (Age < 40) 0.56 (Male) -

PPP Group 2 0.15 (Age (, 40) 0.41 (Female) -

PPP Gap 0.20 0.15 0.09 (DP Gap)
EO Gap - - 0.11
Counterfactual - - 0.846
Consistency

Baseline Consis- - - 0.671
tency

Mean CDI - - 0.11
Baseline CDI - - 0.28
Graph Recon. - - 0.026
MSE

Baseline MSE - - 0.071
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The results in table[f]show that while baseline models achieve vary-
ing levels of predictive accuracy, they exhibit notable group dispar-
ities across both datasets. In contrast, the proposed causal frame-
work achieves improved fairness metrics, including reduced demo-
graphic parity gaps and higher counterfactual consistency, indicat-
ing more stable and equitable decision behavior.

5.6 Causal Model Performance and Fairness
Outcomes

The improvements in counterfactual consistency and causal dispar-
ity reported in table [/| demonstrate that the proposed model re-
duces sensitivity to protected attributes while preserving predic-
tive structure. The causal model was applied after the baseline
analysis to observe changes in prediction stability and fairness be-
haviour. Counterfactual consistency improved from 0.671 under the
baseline to 0.846 with the causal representation learning model.
This increase shows that predictions remained stable when the pro-
tected attribute was altered. The mean causal disparity index also
decreased from 0.28 to 0.11, showing lower sensitivity to demo-
graphic shifts. Structural alignment improved as well, with a re-
construction error of 0.026 compared with the baseline value of
0.071. These results show that the causal model captures stable re-
lationships across features while reducing dependence on sensitive
attributes. Group fairness also improved, with demographic parity
and equal opportunity gaps reduced to 0.09 and 0.11. Table [/| re-
ports all values in IEEE format.

Table 7. : Causal Model Results Compared with Baseline

Metric Baseline | Causal Model
Counterfactual Consistency 0.671 0.846
Mean CDI 0.28 0.11
Graph Reconstruction MSE 0.071 0.026
Demographic Parity Gap 0.19 0.09
Equal Opportunity Gap 0.22 0.11

5.7 Cross-Dataset Interpretation of Causal Effects

The structured dataset and the Utrecht-style dataset show different
behaviours under baseline models, but both respond in a similar
way when the causal framework is applied. The structured dataset
contains clear separability, which leads to high baseline scores but
also large group gaps. The Utrecht-style dataset shows moderate
baseline accuracy and more variation in group outcomes. When the
causal model is introduced, both datasets show reduced group gaps
and lower sensitivity to protected attributes. The fall in causal dis-
parity and the rise in counterfactual consistency indicate that the
model captures stable links between features rather than patterns
tied to sensitive variables. The improvement in reconstruction error
confirms that the causal graph captures meaningful structure across
both datasets. These changes reflect a shift from surface-level cor-
relations to deeper patterns within the data. Table[8]provides a com-
parison of the main effects observed across the datasets.

5.8 Comparison with Prior Studies

Table [0 compares the proposed method with earlier studies that
applied causal or fairness-aware models to hiring and related de-
cision tasks. Prior work shows accuracy values in the range of
69-77%, with precision, recall, and F1-scores following similar
patterns. These approaches use causal regularization, adversarial



Table 8. : Cross-Dataset Summary of Causal Effects

Outcome Structured Dataset | Utrecht Dataset
Baseline Group Gap 0.20 0.15
Causal DP Gap 0.09 0.09
Causal EO Gap - 0.11

CDI Reduction Yes Yes
Consistency Gain Yes Yes
Graph Stru cture Alignment High Moderate

training, or feature filtering, but often face drops in predictive per-
formance when fairness constraints are applied. In contrast, the
proposed model reaches higher accuracy at 84.3% and improves
precision, recall, and F1-scores. The reduction in MSE and RMSE
also shows that the model produces stable predictions across sam-
ples. The improvement across all metrics shows that incorporating
causal structure and counterfactual reasoning helps retain task per-
formance while reducing the effect of sensitive attributes. These
gains show a consistent margin over earlier models and provide a
stronger balance between prediction and fairness. The comparison
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Fig. 5: Performance Comparison with Prior Studies showing Accuracy.

in ﬁgure|§| shows that the proposed method outperforms earlier ap-
proaches [18][35[42H44]. Accuracy and F1 values rise across all
settings, with the largest margin observed against models based on
statistical adjustments. The improvement reflects stable prediction
behaviour under varied input conditions. These gains support the
strength of causal representation learning in resume screening in
HR hiring systems.

As summarized in table [9] and visualized in figure | the pro-
posed method consistently outperforms prior causal and fairness-
aware approaches across accuracy and F1-score, while also achiev-
ing lower reconstruction error.

Table 9. : Comparison of Performance Metrics with Prior Work

Ref | ACCU Precision | Recall | F1 MSE | RMSE
35) | 77.5 76.8 753 76.1 | 0.058 0.241
18] | 72.6 70.1 73.2 71.6 | 0.067 0.259
44] | 74.9 72.4 76.1 74.2 | 0.053 0.230
42] | 70.2 68.9 70.4 69.4 | 0.061 0.247
43 | 69.1 66.3 68.0 67.4 | 0.065 0.254

Our | 84.3 82.7 79.4 80.9 | 0.042 0.205

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.74, January 2026

5.9 Limitations

This study has several limitations that should be noted when in-
terpreting the results. The structured dataset contains only 225
records, which restricts the depth of pattern variation and may nar-
row model responses under counterfactual simulation. The Utrecht
dataset provides richer structure, but its derived demographic at-
tributes may introduce noise during fairness assessment. Text em-
beddings capture broad linguistic cues but may miss subtle resume
information that affects hiring decisions. The causal graph follows
a fixed structural form, and real-world HR hiring system processes
may contain additional unobserved factors. These limitations high-
light areas where future work can expand the scope and stability of
the proposed causal framework.

5.10 Threats to Validity

Internal validity may be affected by the assumptions used in con-
structing the structural causal model, as some indirect pathways
may not be fully represented in the data. External validity is lim-
ited because both datasets reflect specific hiring settings and may
not generalize to broader labour markets. Construct validity may be
influenced by the accuracy of labels such as suitability and hiring
recommendations, which may not capture the full decision logic of
human evaluators. Statistical validity is constrained by the modest
sample size of the structured dataset, although repeated runs and
cross-dataset comparison reduce this risk.

6. CONCLUSION

This study presented a causal representation learning framework
for bias detection in Al-based hiring systems. The method inte-
grates structural modeling, adversarial training, and counterfactual
simulation to limit the influence of protected attributes while keep-
ing the features needed for reliable prediction. Tests on a struc-
tured HR hiring system dataset and the Utrecht Fairness HR hir-
ing system Dataset showed that the model reduces group gaps and
improves counterfactual stability without reducing predictive ac-
curacy. The framework lowered the Causal Disparity Index, raised
counterfactual consistency, and reached lower graph reconstruction
error compared with the baseline. These outcomes show that causal
structure helps separate fair and unfair pathways in the decision
process.

The approach also improves interpretability through causal graphs
that clarify how attributes interact inside the model. This is im-
portant for HR settings, where transparency and auditability are
required. While the datasets used in this study vary in scale and
structure, the method performed steadily across both, indicating its
value for real hiring contexts. Future work may expand this line of
research by testing larger multilingual datasets, exploring domain-
specific causal graphs, and combining the model with explainable
Al tools to support HR decisions in broader employment environ-
ments
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