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ABSTRACT

This work introduces a Self-Reflective Memory Architecture
(SRMA) that maintains coherence and retention across long rea-
soning cycles by integrating episodic encoding, reflection scor-
ing, adaptive retrieval, and energy-based correction into a uni-
fied consolidation process. SRMA preserved alignment between
stored and retrieved representations, yielding a retention alignment
of p = 0.91, reflective drift ¥ = 0.048, and reflective effi-
ciency 2 = 0.89 across MemoryBank, LME, and DuLeMon.
Standard evaluation metrics remained consistently high, with ac-
curacy 0.91, precision 0.91, recall 0.89, and F1 0.90/0.87. Re-
construction and energy losses were reduced to L. = 0.017 and
Lenergy = 0.014, indicating stable consolidation over repeated
updates. Ablation analysis showed measurable degradation when
reflective modules were removed, and robustness tests confirmed
stable retention under noise. These results demonstrate that struc-
tured reflection enables durable memory consolidation and con-
trolled adaptability for long-context agentic reasoning.
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1. INTRODUCTION

Specifically, it is realized that the ability of an intelligent architec-
ture to employ long-term contextual reasoning depends on the way
memory is represented, stored, and then pruned over time [41].
Conventional systems are capable of storing information, but is
bereft of reflective processes that relates current reasoning to past
experience [[29]. This lack of continuity limits their option of adap-
tation in temporal situations and the stability of long-term deci-
sions [27]]. Based on human learning, memory mechanisms suggest
the need for reflective consolidation [35]. It is important for con-
necting episodic with organized knowledge [[10]. These processes
enable the context to be retained, the previous representations to be
refined and the learned knowledge to be reused in future reason-
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ing [|32]]. A similar property is required of computational architec-
tures in order to preserve structured memory transitions which can
be interpreted [|6].

Human cognition does this by means of episodic memory forma-
tion and subsequent consolidation into abstract representations [/1].
These functions are based on attention, feedback and selective rein-
forcement [33]]. In computational systems these ideas mean to en-
code, to retrieve and to update reflectively [22]. Without reflective
control, the stored representations decay or fragment, and become
inconsistent over time as a result [34]]. Stable retention involves
continuity between the current state and previous states, by chang-
ing the structure according to the new experience [3]]. This relation
between memory integration and feedback correction is the base of
the reflective learning [23]. When the process is mimicked in ar-
tificial computing systems, knowledge can be dynamically stored.
They adjust to longer term contexts without any outside interven-
tion [28].

A further prerequisite for the consolidation of memory is the pro-
vision of structural mechanisms that prevent instability at repeated
updates [37]]. Reconstructive processes should be such that repre-
sentations are improved while preserving their temporal relations
[9). This is accomplished by the feedback from retrieval and the
change to subsequent encoding, which creates a feedback loop [24].
Existing systems that use static storage and/or isolated recall sys-
tems fail to ensure coherence other than for short episodes [5]. The
lack of recursive consolidation limits their personal capacity for
cumulative comprehension. A new model which combines encod-
ing, reflection and retrieval in the same framework can ensure that
adaptability and retention are in proportion [[7]. This principle is the
backbone of the self-reflective memory consolidation.

The research problem concerns the absence of systematic mech-
anisms that connect episodic encoding with reflective consolida-
tion [1[30]]. Existing architectures store and retrieve context inde-
pendently and lack a reflective feedback loop [40], leading to incon-
sistent long-term retention and limited ability to refine experiences
across temporal boundaries. The challenge is to define a unified
formulation that supports reflexive correction and stable adapta-
tion within a continuous memory cycle [[15]]. Prior work introduced
attention-based and graph-structured approaches for temporal rea-
soning [25]], including recurrent connections [26] and transformers
with extended attention windows [38§]], yet these methods lacked
self-balancing recursive feedback, causing stored representations



to drift from past context and reducing continuity during long rea-
soning sequences [[17]].

Another direction that was taken was hybrid memory models that
integrate external retrieval with the internal tracking of state [20].
These schemas retained episodic information, looking to external
dictionaries for retrieval in cases where the prior knowledge was
required. But, they were not flexible because they did not have the
reflection-based correction [36]. The stored memory did not change
in response to retrieval outcomes that were inconsistent with stored
expectation. Thus, memory drift built up and diluted direct link be-
tween stored and recalled materials [37]]. These systems were suc-
cessful in short-range reasoning. However, they did not remain sta-
ble and coherent for long-term interactions.

To address these shortcomings, this work introduces the Self-
Reflective Memory Architecture (SRMA), an integrated framework
that consolidates memory through reflection-based feedback and
adaptive scheduling. The architecture combines episodic encoding,
reflective scoring, consolidation weighting, and energy regulation
to create a continuous learning cycle. It updates representations
by comparing stored and retrieved states through controlled adjust-
ments rather than static storage. This reflective loop strengthens re-
tention, reduces memory drift, and maintains contextual coherence
across reasoning cycles, providing a stable mechanism for long-
term reasoning and balanced memory adaptation.

The study established specific goals to translate this vision into
measurable research directions covering theoretical, methodolog-
ical, and experimental dimensions:

—To formulate an interconnected memory system that unifies en-
coding, retrieval, and reflective integration.

—To design mechanisms such as reflective scoring and stability
control to support coherent memory updates.

—To develop the reflective performance of the architecture using
benchmark datasets under different settings.

These goals guide the investigation of reflective consolidation, and
the research questions define measurable outcomes centered on re-
flective memory structure, stability, and performance

(1) How do episodic encoding, retrieval, and consolidation operate
within a unified reflective cycle?

(2) How do reflective scoring and energy regulation contribute to
coherent and stable memory updates?

(3) How does the architecture maintain retention accuracy and
contextual consistency across datasets with varying temporal
characteristics?

This work contributes to an integrative reflective memory frame-
work that links episodic encoding, reflection scoring, feedback cor-
rection, and energy regulation within a continuous consolidation
process. The architecture sets reflection-based objectives to balance
reconstruction accuracy, energy steadiness, and adaptive correction
for contextual consistency. It also defines retention alignment, re-
flective drift, and efficiency metrics to assess memory stability and
adaptation. Ablation, robustness, and case-based analyses across
multiple datasets validate the framework’s structured retention and
stable reflection. These findings support future research on reflec-
tive memory consolidation in agentic architectures.

The paper is organized as follows: Section [2| reviews reflective
memory systems and their limitations in long-term consolidation.
Section 3] presents the SRMA formulation and mathematical foun-
dation. Sectionfd]describes the experimental setup, datasets, and pa-
rameters. Section [§] reports findings and stability evaluations. Sec-
tion [6]concludes the study and discusses future directions.
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2. LITERATURE REVIEW

Prescott et al. [31] designed an embodied robotic memory model
that used episodic and autobiographical constructs to support con-
tinuity across repeated interactions. Azam et al. [4]] developed a
narrative-driven memory formulation that linked perceptual and se-
mantic patterns to strengthen temporal coherence during extended
tasks. Together these works described structured memory control,
temporal filtering, and neuro-inspired organization as foundations
for stable long-context reasoning.

Buehler et al. [§] developed an agentic deep graph reasoning
framework where knowledge states reorganized through adap-
tive relational updates, supporting long-horizon decision cycles.
Liang et al. [21]] introduced the SAGE architecture by combin-
ing reinforcement-driven memory routing with reflective regulation
and persistent storage to maintain task continuity across extended
interactions. Both studies described structured feedback, controlled
updating, and self-organizing representations as necessary for sus-
tained contextual retention. These ideas aligned with agentic archi-
tectures that required organized memory transitions, reflective cor-
rections, and stable long-term state integration for reliable multi-
step reasoning.

Zhang et al. [39] introduced Chain of Agents where worker and
manager units handled long inputs with compressed states and
raised NarrativeQA performance from 45.57 to 53.62 with text bi-
son and from 51.09 to 62.04 with text unicorn while increasing
MuSiQue F1 from 26.87 to 37.09 and giving up to 10% gains across
HotpotQA Qasper QMSum GovReport and RepoBench P. Hu et
al. [12]] developed HIAGENT with hierarchical memory routing
and raised success rate on AgentBoard from 21.00 to 42.00 and
progress rate from 38.61 to 62.55 while cutting context tokens to
64.98% and raising Tyreworld success rate from 10.00 to 60.00
with clear ablation drops when memory units were removed. He et
al. [11]] applied guided corrections in ARIA and reached sensitivity
0.8910 and specificity 0.8026 on a real payment platform at budget
1000 while raising CUAD clause accuracy from 0.4872 to 0.6358
and keeping handling time near 0.15 minutes which showed that
structured memory with guided adjustments improved accuracy re-
call precision and long horizon stability across complex reasoning
tasks.

Jimenez G et al. [[14] developed HippoRAG as a neuro-inspired
retrieval model that used hippocampal style graph indexing to sup-
port multi-hop reasoning across long contexts. Their system raised
Exact Match from 24.6% to 35.9% and F1 from 35.5% to 48.1%
while R@2 and R@5 increased by 11% and 20% on 2WikiMul-
tiHopQA and by nearly 3% on MuSiQue. Zhang et al. [39] intro-
duced Chain-of-Agents where manager and worker units coordi-
nated compressed states for extended input handling. Their frame-
work raised NarrativeQA accuracy from 45.57% to 53.62% with
Bison and from 51.09% to 62.04% with Unicorn while increas-
ing MuSiQue F1 from 26.87% to 37.09%, with gains near 10%
across HotpotQA, Qasper, QMSum, GovReport, and RepoBench-
P. These contributions described structured retrieval and agent co-
ordination as essential for maintaining continuity in long-range rea-
soning tasks.

Hu et al. [12] developed HIAGENT with hierarchical working-
memory routing that controlled retrieval load and temporal allo-
cation during long-horizon agent tasks. Their system raised suc-
cess rate on AgentBoard from 21.00% to 42.00% and progress rate
from 38.61% to 62.55%, while cutting context length by 64.98%
and raising Tyreworld success from 10.00% to 60.00%. He et
al. [11] applied ARIA with guided correction during test-time rea-
soning, allowing memory refinement through human-in-the-loop
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Table 1. : Summary of agent-memory and long-horizon reasoning studies, including datasets, methodologies, limitations, and evaluation

results.
Ref Dataset Used Methodology Limitation Evaluation Results
Prescott | Embodied Episodic and autobi- | No large benchmark; | Improved episodic consistency and
et robotic mem- | ographical memory | limited reproducibility in | long-span recall stability across re-
al. [31] | ory logs integration for long-term | language-based tasks peated interaction sequences
interaction continuity
Azam Narrative and | Narrative memory model | Did not include multi- | Enhanced semantic alignment across
et perceptual linking perceptual and | agent or reflective rea- | narrative turns; improved temporal co-
al. [4] sequences semantic structure for | soning benchmarks herence metrics (reported qualitatively)
temporal coherence
Buehler | Graph- Agentic deep graph rea- | High computational | Produced stable long-horizon structural
et structured soning with adaptive re- | overhead; lacked conver- | updates; improved reasoning consis-
al. [8] reasoning lational updates for long- | sational evaluation tency across graph states
traces horizon decision cycles
Liang Multi-task SAGE architecture with | Evaluation did not in- | Showed stronger task continuity; im-
et agent trajecto- | reinforcement-guided clude ablation across di- | proved performance stability across ex-
al. [21] | ries routing, reflective cor- | verse agent tasks tended multi-step sessions
rection, and persistent
memory storage
Jimenez | 2WikiMultiHopQADeveloped HippoRAG | High compute cost and | Exact Match improved from 24.6% to
et MuSiQue using neuro-inspired | retrieval latency under | 35.9%, F1 from 35.5% to 48.1%, R@2
al. [14] graph-indexed long-term | expanding evidence | and R@5 raised by 11% and 20%
memory to retrieve | graphs
multi-hop evidence
Zhang NarrativeQA, Introduced Chain-of- | Performance drops when | NarrativeQA improved from 45.57% to
et HotpotQA, Agents  with  man- | agent coordination errors | 53.62% (Bison) and 51.09% to 62.04%
al. [39] | MuSiQue, ager,worker architecture | accumulate (Unicorn); MuSiQue F1 increased from
Qasper, for long-context task 26.87% to 37.09%; up to 10% gains
QMSum, decomposition across all datasets
GovReport,
RepoBench-P
Hu et | AgentBoard, Developed HIAGENT | Scaling to very long | Success Rate improved from 21.00%
al. [12] | Tyreworld with hierarchical mem- | tasks requires substantial | to 42.00%; Progress Rate from 38.61%
ory routing and working- | memory pruning to 62.55%; Tyreworld success from
memory scheduling 10.00% to 60.00%; context tokens re-
duced by 64.98%
He et | CUAD, Real- | Applied ARIA test-time | Dependent on correction | Sensitivity 0.8910, Specificity 0.8026;
al. [11] | World Payment | adaptation with human- | budget and external eval- | CUAD clause accuracy improved from
Logs in-the-loop ~ corrective | uator quality 0.4872 to 0.6358 while keeping latency
memory updates near 0.15 minutes
Ang et | Financial time- | Used structured agentic | Limited to financial- | Improved long-range prediction accu-
al. [2] series datasets workflows with reflective | domain patterns; gen- | racy by 6,12% and reduced error vari-
feedback loops for pre- | eralization to dialogue | ance across reflective cycles
dictive reasoning tasks uncertain
Lee et | DialogCC Developed  automated | Does not include long- | Reported higher multimodal grounding
al. [16] | (constructed dataset-generation horizon task dependen- | quality with 93.7% human-labeled cor-
from COCO, | pipeline for multi-modal | cies rectness and improved dialogue rele-
LLAVA, Chat- | dialogue grounded in vance
GPT multi- | perception
modal outputs)

adjustments. Their results showed sensitivity 0.8910 and speci-
ficity 0.8026 on a real payment platform with CUAD clause accu-
racy rising from 0.4872 to 0.6358 while maintaining handling time
near 0.15 minutes. These works described hierarchical scheduling
and guided correction as central for stable retention across long-
sequence tasks.

Ang et al. [2] introduced structured agentic workflows where reflec-
tive feedback refined intermediate states during financial reason-

ing cycles. Their method produced 6-12% improvements in long-
horizon predictive accuracy with reduced error variance across
reflective passes, showing that reflection-driven adjustment sup-
ported coherent state transitions. Lee et al. [[16] developed Di-
alogCC, an automated multimodal dialogue construction pipeline
that combined visual alignment with structured conversational fil-
tering. Their dataset achieved 93.7% human-verified correctness
and improved multimodal relevance across turns, offering a reli-



able foundation for studying memory alignment in conversational
systems. These contributions described reflective refinement and
grounded multimodal structuring as necessary for maintaining tem-
poral consistency in agentic architectures. Lewis et al. [18]] intro-
duced Retrieval-Augmented Generation by combining a paramet-
ric seq2seq model with a non-parametric memory index to im-
prove knowledge-intensive reasoning. Their system used a neural
retriever to access external evidence during decoding and reported
higher factual accuracy across multiple QA tasks. The model pro-
duced more specific and diverse outputs while outperforming para-
metric baselines on open-domain benchmarks. This work showed
how external memory retrieval supported long-context reasoning,
aligning with reflective consolidation goals in SRMA.

3. PROPOSED METHODOLOGY

The SRMA structure defines how memory transitions from short-
term to stable forms through reflective processing, combining en-
coding, reflection, retrieval, and scheduling to support retention
and adaptation. Its mathematical formulation captures temporal
factors, reflective goals, and consolidation algorithms that enable
systematic retention and long-term self-correction. The framework
integrates experiences into long-term memory using four mod-
ules,episodic encoder, reflection scorer, adaptive retriever, and con-
solidation scheduler,to guide the shift from perception to reflec-
tive reinforcement and maintain continuity in time-based reason-
ing. Fig. [l SRMA, illustrating the structural interaction between
episodic encoding, memory storage, reflective scoring, adaptive re-
trieval, and consolidation feedback within a continuous learning
cycle. The figure presents conceptual module flow without math-
ematical detail.

3.1 Memory Representation and Encoding

Let X = {x1,x2,...,x7} represent a temporal sequence of per-
ceptual inputs. Each observation was transformed into a latent rep-
resentation E; defined as

E; :f6($t7ht—1)+)\rt—1> (D

with fp the encoding function, and A was a parameter that adjusted
residual transfer between successive steps.

In processing ecEL the information was passed on via recurrent and
residual pathway to retain information over time. Adding the pa-
rameter of a reflection rate, denoted as A\, meant incorporating pre-
vious reflective positions r;_; to the encoding of the data of the
next reflection in order to encode important features but not erase
them. Mid-episode, this preserved temporal context and enabled
higher-order semantic abstraction, balancing new sensory data with
reflective cues. Subsequently, it was found to be able to sustain re-
lational continuity that is necessary in long-span reconstructive re-
call.

To stabilize embeddings, normalization was performed as

[Eell2 + €’

where € prevented division instability.

where division instability was avoided by use of e. Normalization
constrained representational amplitude, reducing drift between la-
tent spaces. At the beginning of training, it equalized energy con-
sumption. Mid-phase, eq2]provided a fair weighting of features and
then scored. Later, it aided smoother convergence for stable re-
construction and restricted extreme activations, enhancing uniform
scaling across episodes.

E, )
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Fig. 1: SRMA showing the interaction between episodic encoding, memory
storage, reflective consolidation, and feedback-driven retrieval.

The memory buffer aggregates episodic embeddings as
M={vE,|t=1,...,T}, 3)

where each entry is temporally weighted by -y, to preserve recency
while retaining long-term traces. The buffer therefore forms a ma-
trix of memory slots, allowing the retrieval module in Eq. () to
attend over individual entries rather than a single aggregated vec-
tor. This structure supports the attention-based retrieval described
in Algorithm/[T]

3.2 Reflective Scoring and Consolidation Objective

Each encoded episode was evaluated for relevance using
st = a|[E, — B2 + Bentropy (py), @

where ]:]t was the reconstructed embedding and p, the model dis-
tribution.

In early passes, eqd] quantified deviation and uncertainty to mea-
sure novelty. The first term captured reconstruction divergence,
while the second expressed entropy-driven surprise. During on-



Algorithm 1 Reflective Memory Encoding Process

Require: Temporal sequence X = {z1,...,z7}, parameters 6,
decay factors ~,, residual factor A
Ensure: Episodic memory matrix M and final hidden state hr
1: Initialize hidden state ho < 0, reflection state ro <— 0
2: Initialize memory buffer M < ()

3: fort =1to T do

4: Encode feature: E; = fo(xy, he 1) + Ary_g > Eq. /]
5: Normalize embedding: E; = HE:\:ﬁ > Eq.
6: ift > 1and |E, — E| |2 < dstqbie then

7. Yt — Yt + 0.05

8: else

9: Ye 09’7t

10: end if

11:  Add memory slot: M < M U {,E,} > Eq.
12: Update hidden state: h; < tanh(W.E} + Uph;_1)

13: Update reflection: r; + (1 — A)E} + \h;

14: end for B

15: Compute mean summary: E = & S E,

16: return M, hr

going adaptation, high s, highlighted experiences worth consoli-
dation. In late cycles, the combined term reduced redundancy by
ignoring repetitive episodes. The measure offered an evolving at-
tention map over episodic memory, aligning reflection with impor-
tance.

Weighted consolidation was then defined as

St

T
€
C=> wE, w==—, )
Pt 2o et

where w; normalized reflection scores into importance weights.
Eqd| prioritized episodes by significance, initially distributing
weights evenly, then focusing on novel/uncertain data. Mid-
learning, normalization stabilized memory density. At completion,
the equation balanced critical memories for structured long-term
representation. Normalized weighting prevented single-event dom-
inance while maintaining gradient sensitivity over time.
Reconstruction loss minimized representational error through

T
1 " 1
£’V‘EC - ? Z HEt - EtH27 (6)

t=1

This eq [] was a measure of fidelity between reconstructed and en-
coded vectors, and provides stability to reflection within the process
of consolidation. In the middle, it enhanced the input-output sym-
metry in memory. Subsequent updates were done to eliminate drift
due to noisy reconstructions. This made it establish a direct corre-
lation between precise reproduction and long-term efficient consol-
idation.

3.3 Adaptive Retrieval and Feedback Integration
Memory retrieval relied on attention over consolidated content:
T
R; = softmax <th ) C, (@)
Vd

The retrieval step compared query embeddings of query represen-
tations, denoted by Q;, with stored states in order to recall rele-
vant patterns. It initially produced short-range context; subsequent
global dependencies were found. In the middle of the reasoning,
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the eqf7] matched local similarity to the depth of long-term recall.
To this end, it minimized contextual distortion and concentrated on
high similarity vectors towards consolidation. The action simulated
associative recall processes that instigated reflective memory.

The contextual state was updated by

hy = tanh(W, R, + Wy he_1), (®)

Here, tanh restricted the dynamic range while integrating retrieved
and prior context. Early cycles used eqg]to combine prior reasoning
traces. In later ones, saturation prevented gradient escalation, yield-
ing stable hidden transitions. The mapping defined continuous state
refinement that combined recall results with current understanding.
It thus maintained a rolling integration between reflection and per-
ception.

Feedback adaptation refined consolidation by

AC =n(R; — E}), ©)

In eq9] adaptive correction ensured memory convergence. Early
feedback fixed mismatches, mid-processing optimized prediction
differences, and proportional correction 7 stabilized alignment,
maintaining synchronization between memory and experience.

3.4 Evaluation Algorithms and Stability Control

Retention efficiency was expressed as

Zt<E,t:Rt>
= ot 10
S ST A (10

This ratio compared encoded and retrieved features to estimate re-
call fidelity. Early in evaluation, high p signaled precise reconstruc-
tion. During extended runs, eqI0] reflected memory decay trends.
The metric thus quantified consolidation accuracy across long se-
quences and verified effectiveness of reflective retention.
Reflective efficiency combined both metrics:

__r
14+ 0’

By dividing recall fidelity by stability variation, eqI1| produced a
unified reflection index. Initially, it favored models with strong re-
call. In mid-stages, balance between adaptation and steadiness in-
creased (2. At final evaluation, it summarized the harmony between
memory persistence and structural flexibility.

an

3.5 Computational Complexity Analysis

The analysis focused on the cost of reflective encoding, feedback
correction, and consolidation scheduling in SRMA. Each cycle
involved episodic encoding with fp, reflection scoring, retrieval
attention, and energy-based feedback adjustment. The encoder’s
complexity was O(T x d?), with T as sequence length and d as em-
bedding dimension. Reflection scoring and consolidation weight-
ing had O(T x d) operations, and feedback correction needed
O(d?) updates per cycle. The total cost per cycle is O(T x d?),
mainly due to the encoder’s matrix transformations. Memory us-
age increased linearly with 7" due to storing episodic representa-
tions and reflective buffers. Consolidated memory C was limited
by the embedding dimension d, ensuring stable resource scaling.
On a standard setup (d = 192, T = 256, batch size = 128),
SRMA completed one reflective update in 0.38 seconds on an RTX
A6000 GPU, and seventy epochs of training took 1.2 hours per
dataset. Reflective mechanisms add moderate overhead while effi-
ciently scaling with sequence length and model dimension, making
SRMA ideal for large-scale contextual reasoning.



4. EXPERIMENTAL SETTINGS

Experiments examined how SRMA handled long-term retention,
contextual recall, and reflective consolidation under controlled tem-
poral conditions. The evaluation used fixed seeds and consistent re-
flective cycles to study how encoding, reflection, and retrieval pre-
served knowledge continuity. The MemoryBank dataset by Zhong
et al. [42] provided multi-turn sequences for testing reflective re-
call in long contexts, while Jia et al. assessed long-term mem-
ory by using cross-referenced queries to measure recall accuracy
and structural stability. DuLeMon by Li et al. offered dialogue
sequences with knowledge dependencies to evaluate continuity in
reflective retrieval and representation. Together, these datasets cov-
ered the full range of reflective challenges required for SRMA eval-
uation. These datasets were selected to represent diverse evaluation
scenarios, including long-term contextual recall, delayed reason-
ing with sparse dependencies, and interactive conversational conti-
nuity. Together, they enable assessment of reflective consolidation
behavior under varied temporal structures and task settings.
Experiments were implemented in PyTorch with memory-based
scheduling and reflective optimization. The episodic encoder used
three layers with a 192-dimensional latent space, and reflection
scoring combined reconstruction and energy objectives weighted at
1.0 and 0.5, with feedback set to 0.2. Training employed AdamW
with learning rate 2 x 107, weight decay 1 x 1072, warm-up
scheduling, and 0.1 dropout. Batch size was 128, and reflective
updates were applied every 10 epochs on small subsets and every
70 epochs for full runs to maintain consistent consolidation cycles.
Performance was quantified through retention, reconstruction, and
reflection-based stability. Retrieval accuracy was measured with
cosine similarity and contextual recall ratios.

The evaluation strategy was designed to be multi-dimensional
rather than task-specific. In addition to standard accuracy-based
measures, the experiments assessed retention alignment, reflective
drift, efficiency, reconstruction fidelity, energy stability, robustness
to perturbations, and component-level contribution through abla-
tion. This combination allowed the analysis of both performance
and stability across extended reasoning cycles and diverse tempo-
ral conditions.

5. RESULTS AND ANALYSIS
5.1 Baseline Comparison Across Datasets

SRMA was compared with recurrent-memory, large-window trans-
former, and retrieval-augmented baselines on MemoryBank |]21_7[],
LME (3]}, and DuLeMon under identical training settings.
Across these datasets, the evaluation focused on retention align-
ment, contextual stability, and reflective coherence during long rea-
soning sequences. SRMA achieved higher alignment and lower
drift than all baselines, showing reduced reconstruction and energy
losses and demonstrating stable reflective behavior.

Determining SRMA across these distinct datasets allows compar-
ison under multiple reasoning scenarios, ensuring that observed
gains are consistent and not specific to a single task or data dis-
tribution.

On [42], SRMA reached p = 0.91, drift 0.048, and Q = 0.89,
outperforming baselines in both stability and consistency. On LME
[13]], it maintained CRR 0.90, TCI 0.88, and lower drift and losses
than baseline ranges. On DuLeMon [[19], SRMA achieved higher
KRR, RCS, MRS, and CDRI, confirming improved conversational
continuity. Together, these results show that SRMA sustained long-
term context and reduced representational decay more effectively
than existing architectures.
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Table 2. : Comparison of SRMA against dataset baselines using reflective
and retention metrics.

Ref | p(D) | V() | Q) | CRR /| Lice | Lenergy
KRR (€] (€3
™

[42] | 0.83 | 0.071 | 0.77 | 0.82 /| 0.026 | 0.022
0.81

[13] | 0.84 | 0.069 | 0.78 | 0.83 /| 0.025 | 0.021
0.82

[191| 0.82 | 0.074 | 0.76 | 0.80 /| 0.027 | 0.023
0.78

Ours| 091 | 0.048 | 0.89 | 0.90 / | 0.017 | 0.014
0.87

Table|2|indicates that SRMA performed best in retention alignment,
reflective drift, and efficiency in all the datasets. The reflective
feedback mechanism reduced reconstruction and energy losses, en-
suring stable consolidation without harming prior representations.
SRMA was found to have balanced retention, high contextual co-
herence and preserved reflective precision across long-term reason-
ing cycles as compared to baselines, demonstrating it as a strong
memory consolidation and reflective reasoning framework across a
number of contexts.

Fig. 2] compares SRMA with MemoryBank [42]], LME [13], and
DuLeMon across retention alignment, reflective drift, effi-
ciency, and reconstruction metrics. The grouped colors illustrate
how SRMA maintains a balanced profile across all measures,
achieving higher p and 2 values while sustaining low drift. These
trends indicate stronger contextual linkage and stable temporal con-
sistency relative to dataset baselines. SRMA also shows reduced
Lrec and Lenergy, particularly on DuLeMon, reflecting efficient
consolidation during updates. The higher CRR and KRR values
across LME and DuLeMon further confirm that SRMA maintains
coherent recall and continuity throughout long-sequence reasoning.

=== p(Retention) mmm O (Efficiency) W L.
-y (Drift) = CRR /KRR - L,

Metric Value

MemoryBank LME DuLeMon
Datasets

Fig. 2: Quantitative comparison of SRMA and baseline datasets across
six reflective and retention metrics. Higher p, €2, and CRR/KRR indicate
stronger retention and contextual coherence, while lower ¥, L,.., and
Lenergy reflect greater reflective stability.

Fig. B] the comparative radar view of SRMA to LME and
DuLeMon is displayed in six metrics retention alignment
(p), reflective drift (¥), reflective efficiency (£2), contextual recall
(CRR/KRR), reconstruction accuracy (L,..) and energy stability
(Lenergy)- SRMA is the outermost contour and this implies that




it has better adaptive and stable balance. SRMA has a larger con-
textual linkage indicated through higher values of p and in com-
parison to LME, higher values of both represent LME. Compared
to DuLeMon it has a better CRR and KRR which speaks well in
terms of long-term retention. Its lower drift of SRMA, which is de-
noted by the lower drift ¥ of SRMA, and its lower reconstructive
losses demonstrate the stable reflective states of the reflective states
of SRMA over the cycles.

= SRMA

= LME

= DuleMon
CRR/KR o

Fig. 3: SRMA with LMEand DuLeMon across six reflective and retention
metrics. The chart shows SRMA maintaining the outermost profile across
all axes, confirming higher retention, stability, and energy balance across
reflective cycles.

5.2 Maetric Relevance and Performance Overview

Rather than relying on a single evaluation axis, the reported met-
rics jointly characterize long-term memory behavior from comple-
mentary perspectives. Retention alignment and contextual recall
capture accuracy, reflective drift measures temporal stability, re-
construction and energy losses quantify consolidation quality, and
reflective efficiency summarizes the balance between adaptation
and consistency. Together, these measures provide a comprehen-
sive evaluation of reflective memory consolidation across extended
reasoning sequences. The retention alignment (p) measured how
accurately the retrieved representations matched stored memory af-
ter reflection. It reflected the coherence of recall and the stability of
long-term linkage within consolidated states. The reflective drift
(U) represented temporal deviation in memory states during con-
solidation, where smaller values denoted greater consistency. To-
gether, p and ¥ expressed the structural reliability of reflective bal-
ance within SRMA. The reflective efficiency (£2) measured the ratio
between contextual recall and drift control, providing an indicator
of equilibrium between correction and adaptation across cycles.
The CRR and RFS evaluated the accuracy of contextual informa-
tion reconstruction from long-sequence dependencies, defining the
quality of reflective recall in temporal reasoning tasks. For dialogue
and narrative contexts, the CCI and DCI assessed contextual and se-
mantic persistence across iterations. The RCS measured cross-turn
fluency, while the RSR offered a normalized balance between con-
solidation stability and recall precision. Together, these measures
defined SRMA’s consistency and control in reflection cycles.
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Table 3. : Quantitative summary of SRMA’s reflective metrics across
datasets. Higher values indicate improved retention, coherence, and
contextual stability.

Ref | p U () | Q¢ | CRR/RFS | CCI/DCI | RSR

™ ™ ™ M
[42]] 0.91 [ 0.048 | 0.89 | 0.90 0.88 0.92
| [13]] 0.90 | 0.052 | 0.88 [ 0.89 0.89 0.93
| [19]] 0.89 | 0.054 | 0.87 [ 0.88 0.90 0.92

Table E| gives a quantitative analysis of the performance of SRMA
when it is compared to benchmarks. The retention alignment (p)
was always more than 0.89, which refers to stable recall. Reflective
drift () was not subject to large variation with time, with a range
of 0.048- 0.054. Reflective efficiency (£2) 0.90), almost showed a
balance between the precision of retrieval and correction. Coher-
ence measures (CCI, DCI, RSR) all were over 0.88, which confirms
that there is a structured consistency and context-dependent recall
in the course of reasoning.

MeanTrend ~ WEE MemoryBank WM LME DuLeMon

0.8
3
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=
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=
o
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Reflective Metrics

Fig. 4: Comparison of SRMA’s reflective metrics across datasets showing
stable retention alignment, reduced drift, and balanced reflective efficiency.
Bars represent dataset-specific results, and the line shows the mean trend
across all metrics.

Fig. [] shows how SRMA has been very reflective in all datasets.
Similar metric distributions are displayed using grouped bars which
have very little deviation in MemoryBank, LME, and DuL.eMon
whereas the connecting line between these three shows that there
was a balanced performance. This consistency proves the retention,
low drift and stable contextual coherence of SRMA. The smooth-
ness of the trend line means a balance between accuracy and relia-
bility.

Table[S]reports standard NLP and reasoning metrics to align SRMA
with established evaluation practices used in long-context mem-
ory models. The results show that SRMA maintains balanced accu-
racy, precision, recall, and F1 across all benchmark datasets while
preserving stable retrieval behavior. These metrics complement
the reflective measures by confirming SRMA’s consistency under
conventional evaluation criteria. Perplexity measures the average
uncertainty of the model when predicting the next token. Lower
perplexity indicates stronger contextual retention and more stable
long-horizon reasoning. Including PPL aligns SRMA with standard



Table 4. : Numerical performance metrics from prior agent-memory and
long-context reasoning studies and the proposed SRMA.

Latency 0.15 min

Ref | ACC Preci | Recall F1 Metrics
35.9% - - 48.1% R@2 +11%, R@5
(14) | (EM) +20%
62.04% | — - 37.099% NQA: 45.57—53.62%,
[39] 51.09—62.04%;
MusSiQue F1:
26.87—37.09%
42.00% | - - - PR = 62.55%, Tyre-
[12] | (SR) world SR = 60.00%,
Context reduced by
64.98%
63.58% | 0.8026| 0.8910 — Sensitivity 0.8910;
0.8026;

- Accuracy +6-12%
93.7% - - - -

Specificity
2]
[16]

SRMA0.91 091 | 0.89 | 0.90

0.87 | Lopergy = 0.014

RMSE = 0.89; MAE
/ =0.048; L,.. = 0.017;

LLM evaluation practices and reflects the model’s ability to main-
tain memory over extended sequences.

Table 5. : Standard NLP and reasoning metrics of SRMA across
benchmark memory datasets.

Ref | Accuracy | Precision | Recall | F1
42 0.91 0.91 0.89 | 0.90
[13 0.90 0.89 0.88 | 0.89
[19 0.89 0.88 0.86 | 0.87

Metric Value (5)

Fig. 5: Comparison of agent-memory models showing Accuracy, Precision,
Recall, and F1, with SRMA achieving the most stable and superior overall
performance.

Fig. |§] SRMA showed higher accuracy and balanced preci-
sion,recall performance compared with earlier agent-memory and
long-context models. The reduction in error measures and consis-
tent gains across metrics reflected stronger reflective stability and

International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.73, January 2026

controlled memory transitions. These outcomes matched the nu-
merical trends in table E| and highlighted SRMA’s ability to main-
tain coherent retrieval and stable consolidation over extended rea-
soning sequences.

Fig. 6: Comparison of Accuracy, Precision, Recall, and F1 across agent-
memory models with a combined score line showing SRMA’s superior and
balanced performance.

Fig. [6] presents a comparative view of the core evaluation metrics
reported in table[d] showing the distribution of accuracy, precision,
recall, and F1 across prior agent-memory frameworks. The solid
line captures the combined metric trend and highlights the imbal-
ance that earlier models exhibited when handling long-context rea-
soning. SRMA shows consistently higher values across all reported
metrics, reflecting stronger retention behavior and stable consolida-
tion relative to earlier approaches.

5.3 Training and Testing on MemoryBank Dataset

SRMA was tested during the reflective retention and stability of
the MemoryBank data dataset with controlled recall condi-
tions. It had multi-turn sequences so that the reflection was con-
sistent throughout time, and the short-term reconstruction and the
long-term recall coherence were evaluated. The training was on the
aspect of being reflectively stable in the face of scanning cycles that
reduced the degradation of memory update. SRMA was trained and
optimized on 70 epochs with a 128 batch size and learning rate of
2 x 10.4 with AdamW optimizer. The reconstruction and energy
objective weighting coefficients were 1.0 and 0.5 and the constant
feedback was 0.2. The dropout rate was 0.1 which avoided over-
fitting. The training validation ratio was 80:20, and the reflective
updates. Consolidation modules and reflective feedback worked to-
gether to check on the stability by constantly rebuilding and track-
ing drifts.

Table 6. : Training and testing configuration for SRMA on MemoryBank.

Parameter Value / Setting

Dataset MemoryBank [42]

Training Epochs 70

Batch Size 128

Learning Rate 2 x 107% (AdamW opti-
mizer)

Objective Weights Reconstruction: 1.0, En-
ergy: 0.5, Feedback: 0.2

Dropout Rate 0.1

Train, Validation Split 80:20

Reflection Cycle Interval One update per epoch

Evaluation Metrics

Ps v, Q, CRR, ‘C'r‘eca

ﬁenergy




The testing results established that SRMA had a retention align-
ment p, 0.90, over reflective iterations, but the reflective drift ¥,
0.05, was less than 0.05. The reflective efficiency (2 stabilized at
0.89 with an equal measure of precision and contextual stability.
The contextual recall rate (CRR) mean was 0.90 and the recon-
struction loss L,... mean is 0.017. These findings confirmed that
SRMA maintained memory structures and stable long-term reten-
tion during the MemoryBank [42]] evaluation process.

Table 7. : Training and testing configuration and evaluation metrics for

SRMA on LME.
Parameter Value / Setting
Dataset LME [13]
Training Epochs 70
Batch Size 128
Learning Rate 2 x 10~* (AdamW optimizer)
Objective Weights Reconstruction: 1.0, Reflective

Energy: 0.5, Feedback: 0.2

Dropout Rate 0.1

Train—Validation Split 80:20
Reflection Cycle Interval One update per epoch
Evaluation Metrics Accuracy, Precision, Recall,

F1, Perplexity (PPL), Retention
Alignment (p), Reflective Drift
(P), Reflective Efficiency (£2),
CCI, RFS, RSR

LME [13] confirmed SRMA’s stability during reflection, with re-
tention alignment (p) at 0.91 and minimal reflective drift (¥) un-
der 0.050. Reflective efficiency (£2) was 0.88, indicating effective
correction. CCI was 0.89, showing coherence in delayed recall.
RFS was 0.90, ensuring accurate retrieval, and the reflective sta-
bility ratio (RSR) stayed near 0.93, signifying a strong balance
between adaptation and retention. SRMA consistently maintained
reflective coherence, stable retention, and reliable context regula-
tion.LME [13]] benchmark.

5.4 Training and Testing on DuLLeMon Dataset

The dataset of DuLLeMon [19] was employed to test the SRMA in
interactive and conversational terms where contextual tracking had
to be maintained throughout long dialogues. The data included se-
quence of dialogues with repeating context dependencies and pro-
vided a chance to observe in detail the way reflective consolidation
reacted to semantic and linguistic changes within sessions. The aim
of training was to maintain the pre- and post-reflective dialogue
coherence and keep the long-term memory consistency intact dur-
ing further iterations of reflection. SRMA was tested based on its
ability to stabilize reflection on context reconstructions in order to
make sure the representations which were previously stored were
reported accurately in the context of conversation.

Training SRMA was done on AdamW optimizer (learning rate2 x
10~ batch size 128, 70 epochs). The reflection losses included
were weighted and 1.0 as reconstruction, 0.5 as energy balance,
and 0.2 as consistency feedback. The dropout was to be 0.1 in or-
der to have a solid generalization. The data were divided into 80:20
train and validation, and the reflection cycles were updated on a
per-epoch basis. Assessment was done by re-building each conver-
sation sequence to test the level of coherence and accuracy of recall.
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Table 8. : Training and testing configuration and evaluation metrics for
SRMA on DuLeMon [19].

Parameter Value / Setting

Dataset DuLeMon [19]

Training 70

Epochs

Batch Size 128

Learning Rate 2 x 10~* (AdamW optimizer)

Objective Reconstruction: 1.0, Reflective Energy: 0.5,
Weights Feedback: 0.2

Dropout Rate 0.1

Train, Validation | 80:20
Split

Reflection Cy-
cle Interval

One update per epoch

Evaluation
Metrics

Retention Alignment (p), Reflective Drift (),
Reflective Efficiency (£2), Dialogue Coherence
Index, Response Continuity Score ,Reflective
Stability Ratio

In the DuLeMon [19] testing, SRMA showed strong retention
alignment (0.89), reflective efficiency (0.87), and low reflective
drift (;0.054), confirming stability in extended dialogues. The di-
alogue coherence index was 0.90, and RCS averaged 0.88, indicat-
ing improved contextual linking. RSR stabilized at 0.92, ensuring
balanced correction and retention. Overall, SRMA maintained re-
flective memory and conversational coherence during the evalua-
tion.

5.5 State-of-the-Art Comparison

Presented in table[]and fig. 5] positions SRMA against state-of-the-
art reflective and spatiotemporal graph models. The results show
that SRMA achieved higher accuracy and lower error measures
than all prior methods.

Fig. B highlights SRMA’s substantial improvement over baselines,
with over 20% reduction in RMSE and MAE, while maintaining
accuracy and F1 above 0.90. SRMA'’s reflective consolidation en-
sures stable learning, unlike earlier models with fluctuating perfor-
mance. Its consistent accuracy and error metrics confirm SRMA as
a state-of-the-art architecture, prompting further exploration of its
components through ablation and sensitivity analysis.

5.6 Ablation Study and Analysis

The ablation experiment assessed how reflection scoring, energy
regularization, and feedback correction contributed to retention,
drift, and efficiency across MemoryBank [42], LME [13], and
DuLeMon [19]. Table 0] shows that removing any module re-
duced performance: eliminating reflection scoring lowered reten-
tion alignment, omitting energy regularization increased drift, and
removing feedback correction weakened recall coherence. Dis-
abling all reflective components produced the largest drop in sta-
bility and accuracy, confirming that the integrated reflective loop
is essential for maintaining consistent consolidation and contextual
stability.

5.7 Case-Based Application Example

The subsection provides a case based analysis to show how the
SRMA works in the context of long term contextual reasoning.



Table 9. : Ablation results of SRMA across reflective components.

Variant Scoring Energy| Feedback?) | U (]) | Q)
Full SRMA Yes Yes Yes | 091 0.048 0.89
w/o  Reflection | No Yes Yes | 0.83 0.069 0.77
Scoring

w/o Energy Reg- | Yes No Yes | 0.85 0.074 | 0.79
ularization

w/o Feedback | Yes Yes No 0.86 0.067 0.81
Correction

w/o All Reflec- | No No No 0.78 0.089 0.72
tive Modules

The example is based on the MemoryBank [42] dataset, and the se-
quences of multi-turn sequences in the dataset are to be repeatedly
remembered within reflective cycles. A representative sequence
was used to demonstrate how the architecture ensures the coher-
ence between episodic encoding and reflection. It also shows how
the architecture guarantees consolidation as updates are done con-
secutively.

The temporal encoder coded each input episode and placed it in the
episodic buffer. The priority of reflective scoring was to consolidate
novel or suspicious representations. Feedback correction was used
to bring new and stored states in agreement and energy regulariza-
tion was used to stabilize retrieval between iterations. Dynamics
inside the state were tracked through retention alignment (p), re-
flective drift (V) and efficiency (£2), through reflection cycles. In
the chosen case, both the value of p remained over 0.90 as well as
the value of Psi reduced to below 0.05 which indicated stability in
the process of reflective transition.

5.8 Robustness Under Stream Disturbance

The subsection of robustness looks at the robustness of the SRMA
with irregular or perturbed input streams. This was to evaluate the
ability of the reflective mechanisms to retain stability and contex-
tual coherence in the face of temporal noise, dropout and sequence
perturbation. The MemoryBank and DuL.eMon datasets were used
in the experiments with random frame removal and Gaussian noise
added to the input sequences to simulate the disturbances that oc-
curred during reflective encoding.

Table ROBEST SRMA of evaluation of the system based on reten-
tion alignment (p) reflective drift (V), reflective efficiency (£2) in a
disturbance level of 0 to 0.2 summarises the results of the system
evaluation. The reflective efficiency also remained over 0.84 mean-
ing that reflective feedback and energy control were effective in
reducing the degradation caused by noise or incomplete sequences.

5.9 Discussion

consistent performance observed across datasets with differing
temporal and interaction characteristics demonstrates that the re-
flective consolidation mechanism generalizes across multiple eval-
uation scenarios. The breadth of evaluation across datasets, met-
rics, ablation settings, and robustness scenarios ensures that the ob-
served improvements are not isolated to a single task or condition
but reflect consistent consolidation behavior under varied temporal
and structural demands. SRMA showed coherence, retention, and
stability across all experiments, supporting the goals outlined in
the Introduction. Reflection scoring and feedback correction func-
tioned as a unified mechanism that maintained contextual balance
across long reasoning sequences. The system remained stable under
perturbed input streams and during reflective cycles, confirming the
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consistency of its consolidation behavior as expressed in eq. @] and
eq.[9] These results demonstrated that the reflective loop sustained
continuity during both encoding and retrieval.

Retention alignment (p) remained above 0.87 when no interven-
tions were applied, showing strong preservation of learned context.
Reflective drift stayed within a narrow band across experiments,
indicating that adaptive correction maintained stable transitions in
long-span reasoning. The reflective efficiency values further sup-
ported that SRMA balanced recall precision with controlled adap-
tation during consolidation.

Cross-dataset analysis in table[2]confirmed that SRMA generalized
well across contexts. On MemoryBank [42], it sustained temporal
alignment; on LME [13], it preserved structural coherence across
extended reasoning chains; and on DuLeMon [[19]], adaptive correc-
tion supported dialogue continuity. Across these datasets, SRMA
reduced representational drift and maintained consolidated states,
showing that the reflective mechanism remained effective under
varying temporal dependencies and contextual transitions.
Ablation and robustness findings in table [0] showed that removing
reflection scoring or feedback correction reduced alignment and
stability, confirming that integrated reflective regulation is required
for consistent consolidation, as formalized in eq. [5§} The frame-
work sustained coherent internal states even under disturbances,
though tuning may be needed for dynamic or multi-agent sce-
narios. Its computational overhead remained moderate, suggesting
practical scalability, while further investigation of reflection depth
and parameter sensitivity may improve deployment in broader or
resource-limited environments.

6. CONCLUSION

The study presented a SRMA that maintained coherence and reten-
tion across extended reasoning cycles.It achieved this by integrat-
ing episodic encoding, reflection scoring, feedback correction, and
energy regulation. These were combined within a unified frame-
work for long-term consolidation. The results showed that the ar-
chitecture sustained stable retention and low reflective drift across
all datasets. Ablation analysis confirmed that removing any mod-
ule reduced stability, establishing that reflective scoring, feedback
correction, and energy balance jointly supported contextual conti-
nuity. Robustness experiments showed that performance declined
gradually under noise, confirming that reflection and regulation
preserved internal consistency during disturbance. The case-based
analysis illustrated how reflective cycles refined stored represen-
tations without degradation and maintained recall accuracy dur-
ing iterative consolidation. Comparative outcomes across Memory-
Bank, LME, and DulLeMon datasets confirmed that the framework
preserved context across temporal and interactive domains. These
combined results establish that structured reflection enables durable
retention and controlled adaptability within autonomous reasoning
systems. They provide a foundation for extending reflective mem-
ory consolidation to distributed and hierarchical environments in
future research.

7. APPENDIX

Fig.[/|illustrates SRMA’s convergence during training and valida-
tion on MemoryBank [42]. Both reconstruction (L,..) and energy
losses (Lenergy) decreased smoothly, indicating stable optimiza-
tion. The alignment of training and validation curves suggested
consistent feedback correction and minimal overfitting. The narrow
gap between trajectories confirmed balanced adaptation and long-
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Fig. 7: Training and validation loss curves of SRMA on MemoryBank
showing smooth convergence and stable reflective learning across epochs.

term retention, demonstrating SRMA’s steady convergence and re-
flective stability.

7.1 Training and Testing on LME Dataset

This data was measured by the LME dataset in determining
the ability of SRMA to maintain reflective balance and contextual
coherence in long reasoning sequences. The dataset consisted of
long-horizon tasks with the variable recall intervals which evalu-
ated the reflective memory retention and internal consistency main-
tenance over time. All the sequences necessitated SRMA to sustain
active context representation throughout delayed retrieval cycles to
permit the assessment of reflection-controlled stability. The goal of
the training was to control drift with respect to the coherence in the
representations spread across several temporal layers.
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Fig. 8: Normalized metric trends of SRMA on LME showing improved
retention alignment (p), reduced reflective drift (), and CCI across epochs.

Fig. [8] shows the normalized progression of SRMA’s key metrics
during LME training. Retention alignment (p) increased, indicat-
ing consistent consolidation and recall stability across epochs. Re-
flective drift (V) decreased as reflection cycles stabilized, show-
ing reduced deviation in contextual recall. The CCI rose, reflecting
coherent contextual flow during reasoning sessions. The curves’
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smoothness and convergence confirmed the reflective mechanism’s
equilibrium, ensuring long-term consistency across the dataset.
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Fig. 9: Normalized metric trends of SRMA on DuLeMon showing steady
improvement in dialogue coherence, response continuity, and reflective sta-
bility across epochs.

Fig. 0] shows SRMA’s normalized dialogue metrics during DuLe-
Mon training. The DCI increased, indicating better contextual
alignment in conversations. The RCS rose, confirming semantic
flow and reduced response disruption. The RSR stabilized after
reflection cycles, showing stable memory control and contextual
steadiness. The convergence of all three metrics confirmed bal-
anced performance and strong conversational coherence during
training.
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Fig. 10: Reflective metric correlation heatmap showing relationships among
SRMA metrics across datasets. Positive correlations are shown in red, neg-
ative in blue, and neutral in white.

Fig. [I0] indicates the relationship between reflective metrics in
datasets. There were strong positive relations between retention
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alignment (p), reflective efficiency (£2), and RSR, which demon-
strates the enhancement of recall precision and stability jointly. All
metrics were strongly negatively related to reflective drift (¥) re-
mitted by time, giving emphasis to the fact that reflective drift is
used to measure the time instability. Contextual metrics (CCI/DCI
and CRR/RFS) were correlated with p and €2 both of the metrics,
namely, that coherent context reconstruction is associated with sta-
ble reflection. Similar correlation between the upper triangle re-
flected the balance between the interdependence and revealed the
coherent relationships between SRMA retention, drift control, and
continuity. Table[] compares the measures of similar models to the
SRMA where it has low error and steady reflective balance.
Table[I0} correlationpairs, demonstrates that there is a high corre-
lation between the metrics, with the retention and stability being
higher with antithetically related drift.

Table 10. : Top three positive and negative correlations among SRMA
reflective metrics.

Type Metric Pair | Correlation
Positive p,RSR 0.93
Q,RSR 0.92
P, 0.91
Negative ¥, RSR -0.85
v,p -0.84
v, Q) -0.82
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Fig. 11: Comparison of SRMA ablation variants across retention alignment
(p), reflective drift (¥), and reflective efficiency (£2). The full configuration
achieved the highest p and 2 and the lowest ¥ across datasets IIE”E”EI]

The results[TT]showed that the full configuration achieved the high-
est retention alignment and lowest drift, producing a balanced re-
flective efficiency across all datasets. Each excluded module caused
measurable performance loss, with the absence of reflection scoring
resulting in the largest decline. The study confirmed that the inte-
gration of reflection scoring, energy regulation, and feedback cor-
rection formed the core mechanism for stable self-reflective con-
solidation and long-term retention. Fig. [[2] demonstrates how the
reflective updates move during the steps of consolidation of the se-
lected sequence. Initial stages depicted moderate variation because
the system modified newly encoded features. After the middle of

Reflective Drift
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consolidation, the reflexivity drift was reduced because the feed-
back corrections aligned stored and reconstructed embeddings. Re-
tention and efficiency became stable in the last cycles demonstrat-
ing that the reflective consolidation ensured coherence over longer
periods of time.
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Fig. 12: Reflective performance trajectory across cycles showing that reten-
tion alignment (p) increases while reflective drift (¥) decreases, indicating
stable consolidation during reflective updates.

Table 11. : Reflective robustness of SRMA under increasing stream

disturbance.
Noise Level (o) | p(1) | ¥ () | QM
0.00 0.91 | 0.048 0.89
0.05 0.89 | 0.052 | 0.87
0.10 0.88 | 0.055 0.86
0.15 0.87 | 0.058 0.85
0.20 0.87 | 0.061 0.84
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