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ABSTRACT
Enterprises increasingly adopt multi cloud architectures to take
advantage of diverse database engines, regional availability, and
cost models. In these environments, ETL pipelines must process
large, distributed datasets while minimizing latency and transfer
cost. Push down optimization, which executes transformation logic
within database engines rather than within the ETL tool, has proven
highly effective in single cloud systems. However, when applied
across multiple clouds, it faces challenges related to data move-
ment, heterogeneous SQL engines, orchestration complexity, and
fragmented security controls. This paper examines the feasibility of
push down optimization in multi cloud ETL pipelines and analyzes
its benefits and limitations. It evaluates localized push down, hy-
brid models, and data federation techniques that reduce cross cloud
traffic while improving performance. A case study across Redshift
and BigQuery demonstrates measurable gains, including lower end
to end runtime, reduced transfer volume, and improved cost effi-
ciency. The study highlights practical strategies that organizations
can adopt to improve ETL scalability and reliability in distributed
cloud environments.
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1. INTRODUCTION
The adoption of multi-cloud strategies has transformed the way en-
terprises manage data integration and processing. By using mul-
tiple cloud providers, organizations can capitalize on the specific
strengths of each platform, such as cost advantages, specialized ser-
vices, and regional data centers. However, ETL processes in multi-
cloud setups face increased complexity [1], especially when opti-

mizing transformations across diverse cloud databases. Push-down
optimization, a technique where transformation logic is pushed
down to database engines, has traditionally enhanced ETL perfor-
mance by reducing data movement and leveraging database-native
processing power [2]. Fig.1 illustrates the flow of push-down op-
timization within a multi-cloud ETL environment. This paper ex-
plores how push-down optimization can be adapted for multi-cloud
environments, highlighting both the opportunities and challenges
associated with this approach.

2. OVERVIEW OF PUSH-DOWN OPTIMIZATION
Push-down optimization is an ETL performance-enhancement
technique in which transformation logic is executed directly in-
side the database engine rather than within the ETL tool’s own
processing engine. Instead of extracting large volumes of raw data
into the ETL server for processing, the ETL tool “pushes” as much
of the transformation workload as possible down to the source or
target database [3]. This dramatically reduces the amount of data
that must be moved across the network and takes advantage of the
database’s inherent strengths such as parallel execution, optimized
SQL processing, and indexing [4].
In practical terms, push-down optimization converts transforma-
tion rules (filters, joins, aggregations, expressions, lookups, etc.)
into equivalent SQL operations. Informatica PowerCenter, for in-
stance, analyzes the mapping logic and generates SQL queries that
represent the transformation flow. These SQL statements are then
executed inside the database engine, either at the source side (be-
fore extraction), the target side (during load operations), or across
both (partial push-down). By doing so, the ETL engine performs
fewer computational tasks, freeing up its resources for orchestra-
tion, metadata management, and tasks that cannot be pushed to the
database.
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Fig. 1. Push-Down Optimization in Multi-Cloud ETL

The result is faster end-to-end pipeline execution, reduced network
I/O, and improved scalability especially for large datasets and com-
plex transformations.

2.1 Types of Push-Down Optimization
Source-Side Push-Down applies transformation logic directly at the
source database. By executing filters, projections, and aggregations
at the data origin, this approach minimizes data movement and net-
work overhead, ensuring that only preprocessed and relevant data
is extracted for downstream processing.
Target-Side Push-Down defers transformation logic to the target
system after raw data ingestion. In this model, data is first loaded
into the destination platform, where scalable compute resources are
leveraged to perform transformations, making it suitable for analyt-
ical databases and cloud data warehouses.
Full Push-Down executes all transformation logic entirely within
database engines, either at the source or the target, with minimal
involvement from the ETL orchestration layer. This approach max-
imizes performance by exploiting native query optimizers and exe-
cution engines while reducing intermediary processing overhead.

2.2 Benefits of Push-Down Optimization
Push-down optimization significantly reduces data movement by
confining transformation and filtering operations to the database
layer. By processing data closer to its storage location, this ap-
proach minimizes network I/O and lowers the overhead associ-
ated with transferring large volumes of intermediate data across

systems. Performance is improved because modern database en-
gines are highly optimized for set-based operations, parallel exe-
cution, and query optimization. Leveraging these native capabili-
ties enables faster execution of transformation logic compared to
external processing layers, resulting in more efficient end-to-end
data pipelines [5]. Push-down optimization also enhances cost ef-
ficiency by reducing the computational workload handled by ETL
orchestration tools. In cloud-based ETL environments, this leads to
lower compute consumption, shorter job runtimes, and reduced op-
erational costs associated with scaling and resource provisioning.

3. CHALLENGES OF PUSH-DOWN
OPTIMIZATION IN MULTI-CLOUD SETUPS

In a multi-cloud setup, data is often distributed across different
cloud providers (for example, AWS, Azure, and Google Cloud
[6]. If a transformation requires combining or aggregating data
from multiple clouds, the system must transfer data across cloud
boundaries. Such transfers introduce high latency, increased net-
work costs, and potential security and compliance risks. Fig. 2 pro-
vides a conceptual overview of the challenges associated with data
movement and heterogeneity in cloud databases.

3.1 Data Movement Across Clouds
Push-down optimization is highly effective when transformations
are executed close to the source data, because it reduces the need to
move large datasets across networks and leverages the database’s
built-in processing power. However, in multi-cloud architectures
[7], this benefit can be significantly reduced or even negated [8].
For example, consider a scenario where a company stores cus-
tomer data on AWS and sales data on Azure. A transformation that
joins these datasets cannot be fully pushed down to either cloud’s
database without first transferring data from one cloud to the other.
This extra data movement can be both time-consuming and expen-
sive, offsetting the performance gains achieved through push-down
optimization. As shown in Table 1 multi-cloud push-down execu-
tion introduces higher latency and governance complexity due to
cross-cloud data movement.

Table 1. Impact of Push-Down in Single Cloud vs Multi Cloud
Factor Single Cloud Multi Cloud Push-Down Impact

Data Transfer Minimal Higher latency, cost Slower queries

Security Easy to manage More complex More governance

Transforms Near data source Cross-cloud movement Harder to push down

Latency Low Higher Less efficient

3.2 Heterogeneity of Cloud Databases
Modern cloud platforms offer a wide range of managed analyt-
ical databases such as Amazon Redshift, Google BigQuery, and
Snowflake, each optimized for different workloads, performance
profiles, and scalability requirements. While this diversity provides
flexibility, it also introduces substantial heterogeneity that compli-
cates cross-platform data processing and limits the effectiveness of
push-down optimization.
First, cloud databases implement different SQL dialects and exe-
cution semantics. As a result, a query that runs natively on one
platform may require modification to execute elsewhere. For exam-
ple, Amazon Redshift handles certain window functions differently
from BigQuery, and Snowflake provides specialized operations for
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semi-structured data (e.g., VARIANT, JSON functions) that are not
uniformly supported across engines. These differences force devel-
opers and ETL systems to rewrite or adapt queries for each plat-
form, increasing maintenance effort, error risk, and overall opera-
tional complexity.
Second, not all cloud databases support the same types of data
transformations for push-down execution. While simple filtering or
aggregation is widely optimized, more complex operations often
vary in capability, including:

(1) Multi-way joins across large distributed datasets,
(2) Recursive or hierarchical queries,
(3) Advanced string, date, or JSON manipulation functions.

When a database engine cannot execute certain transformations na-
tively, push-down optimization becomes less effective. Computa-
tion must be performed externally, for example in an ETL pipeline
or application layer, leading to increased data movement, slower
performance, and higher processing costs.

Fig. 2. Push-down optimization challenges in heterogeneous multi-cloud
environments.

3.3 Complex Orchestration and Management
Push-down optimization in multi-cloud environments involves exe-
cuting parts of ETL (Extract, Transform, Load) transformations as
close to the data source as possible, thereby reducing data move-
ment and improving performance. However, implementing this op-
timization across multiple cloud platforms requires sophisticated
orchestration to manage the transformations effectively. The or-
chestration and monitoring complexities introduced by distributed
execution are outlined in Table 2.

The main challenges in multi-cloud ETL workflows include coor-
dination, monitoring, and debugging. These can be detailed as fol-
lows.

3.3.1 ETL Workflow Coordination. This involves ensuring that
transformation logic runs on the correct cloud platform based on
data locality, compute capabilities, and cost considerations. It also
requires managing data dependencies so that transformations occur
in the correct sequence and outputs from one step flow properly
into the next.

3.3.2 Monitoring and Debugging. Monitoring includes tracking
data lineage to understand how data moves across multiple clouds,
as well as detecting performance bottlenecks and optimizing re-
source usage [10]. Debugging focuses on diagnosing issues that
arise in federated or heterogeneous cloud environments where
transformations may execute across different platforms.

Table 2. Impact of Push-Down in Single Cloud vs Multi Cloud
Aspect Description Challenges

Workflow Coordination Platform selection Dependency management

Data Locality Source processing Cost performance

Monitoring Performance tracking Metric integration

Debugging Error diagnosis Distributed troubleshooting

3.4 Security and Compliance Concerns
Multi-cloud environments introduce significant security and com-
pliance complexities, especially when data must move across dif-
ferent cloud platforms. Each provider enforces its own security
frameworks, access policies, and regional compliance constraints,
making it difficult to maintain a unified security posture. Ensuring
that data remains protected throughout movement, processing, and
storage requires strict access controls, robust encryption policies,
and continuous compliance monitoring [9].

3.4.1 Cross-Cloud Privacy Issues. : Data movement across cloud
boundaries can trigger data residency or sovereignty concerns.
Certain regulations such as GDPR, HIPAA, or regional data pro-
tection laws limit where sensitive data can be stored or pro-
cessed. When organizations transfer data between geographically
distributed cloud regions or providers, they must ensure compli-
ance with these regulations. This often requires establishing con-
trolled data pathways, masking or anonymizing sensitive attributes,
and validating that the target cloud region meets regulatory require-
ments.

3.4.2 Complex Access Controls. : Each cloud platform imple-
ments its own identity and access management (IAM) model, role
definitions, permission structures, and policy languages. Coordinat-
ing these heterogeneous access control mechanisms becomes chal-
lenging in a multi-cloud setting. Ensuring consistent authentication,
authorization, and privilege management across clouds frequently
requires additional orchestration layers or centralized identity ser-
vices. As depicted in Fig. 3, enforcing uniform security practices
is complicated by differences in provider-level IAM capabilities,
leading to potential misconfigurations, privilege drift, or inconsis-
tent enforcement of least-privilege access [11].
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Fig. 3. Complex Orchestration and Security in Multi-Cloud ETL

4. IMPLEMENTING PUSH-DOWN
OPTIMIZATION IN MULTI-CLOUD ETL

To address the challenges of applying push-down optimization in
heterogeneous cloud environments, organizations can adopt sev-
eral complementary implementation strategies. Fig. 4 illustrates
these approaches and highlights how different push-down tech-
niques align with cloud platform capabilities and integration pat-
terns.
One effective approach is to execute transformations locally within
each cloud platform. In this model, data transformations are pro-
cessed directly inside the native database engines of each cloud en-
vironment, leveraging platform-specific optimizations. By keeping
computation close to the data, this strategy minimizes cross-cloud
data movement and reduces network overhead while improving ex-
ecution efficiency.

4.1 Hybrid Push-Down Strategy
In scenarios where transformations require integration across mul-
tiple cloud platforms, a hybrid push-down strategy can be applied.
Under this approach, simple and independent transformations are
executed locally within each cloud, while more complex, cross-
cloud transformations are handled centrally by the ETL orches-
tration layer. This design balances the performance benefits of lo-
calized push-down execution with the flexibility needed to support
multi-source data integration.

4.2 Cross-Cloud Data Federation Tools
Data federation, also referred to as data virtualization, provides a
unified abstraction for querying data across multiple cloud plat-
forms without requiring physical data movement. These tools sup-
port push-down optimization by enabling federated queries that ex-
ecute filtering and transformation logic as close to the data source
as possible, even when datasets are distributed across clouds.
Prominent examples include platforms that allow querying data
across cloud boundaries using a single SQL interface, as well as
services that enable federated access to external data sources from
cloud-native data warehouses. By minimizing cross-cloud data
transfer and leveraging distributed execution capabilities, data fed-

eration tools improve performance, reduce operational costs, and
support scalable analytics across multi-cloud environments.

Fig. 4. Push-Down Optimization Strategies in Multi-Cloud

5. BEST PRACTICES FOR MULTI-CLOUD
PUSH-DOWN OPTIMIZATION

Implementing push-down optimization effectively in multi-cloud
ETL environments requires careful consideration of platform het-
erogeneity, data locality, execution cost, and operational gover-
nance. While push-down techniques can significantly improve per-
formance and reduce data movement, improper application may
introduce inefficiencies due to incompatible SQL dialects, unpre-
dictable cross-cloud latency, and fragmented security policies.
This section outlines a set of best practices that guide the systematic
adoption of push-down optimization across distributed cloud plat-
forms. These practices emphasize the use of cloud-native ETL ca-
pabilities, strategic data placement, federated query execution, and
portable transformation logic. Together, they enable organizations
to balance performance gains with maintainability, cost efficiency,
and execution reliability in complex multi-cloud data pipelines.

5.1 Use Cloud-Native ETL Tools
Select ETL platforms with built-in push-down capabilities that are
compatible across cloud environments (e.g., AWS Glue, Azure
Data Factory, Informatica IDMC). These tools should allow con-
ditional push-down decisions based on cost and latency metrics.
The decision rule can be expressed as:

PushDownDecision =

PushDown,
Cmove + Cexec remote

> Cexec local

NoPushDown, otherwise
(1)
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where Cmove is the cost of data movement between clouds,
Cexec remote is the cost of executing transformations remotely, and
Cexec local is the cost of executing transformations locally.

5.2 Optimize Data Placement
To minimize latency and cost, data and transformation logic should
be co-located on the same cloud platform. Partition-aware routing
can ensure that queries are directed to the correct compute envi-
ronment. The co-location cost model is as shown in equation with
the optimization goal minimum transfer by co-locating transforma-
tions.

Total Cost = Ccloud compute + Ccloud storage + Ctransfer (2)

5.3 Leverage Data Federation
Data federation tools such as BigQuery Omni, Redshift Spectrum,
and Azure Synapse Link support query virtualization and allow
cross-cloud access without replicating data [12, 13, 14]. A feder-
ated query abstraction can be expressed as:

SELECT * FROM CloudA.table1

union CloudB.table2
(3)

and the federated execution plan:

FederatedPlan = min
∀q∈Q

Cost(qcloud), (4)

where Q is the set of distributed queries and Cqcloud is the estimated
execution cost of query q on the cloud.

5.4 Consistent Transformation Logic
Design portable SQL and transformation logic that can be adapted
across platforms. Modular functions and abstraction layers help
avoid cloud-specific syntax. A standardized SQL example is:

SELECT UPPER(TRIM(name)) AS CleanName

FROM customers WHERE LENGTH(name) > 3;
(5)

An abstraction mapping can be represented as:

Tlogical = f(Tcloud specific), (6)

where f maps logical transformation rules to the syntax of each
cloud engine.

6. CASE STUDY: IMPLEMENTING PUSH-DOWN
OPTIMIZATION IN A MULTI-CLOUD SETUP

A large enterprise operating under a multi-cloud data strategy
sought to optimize its ETL pipelines across AWS Redshift and
Google BigQuery. The original ETL workflow involved pulling
data from both cloud platforms into a centralized engine for
transformation, which resulted in significant cross-cloud data
movement, high network transfer costs, and latency in reporting
pipelines.

6.1 Implementation Approach
To address the inefficiencies observed in prior multi-cloud ETL
workflows, the organization adopted a push-down optimization
strategy, which emphasizes executing transformations as close to
the source data as possible. By leveraging the native processing
capabilities of each cloud platform, this approach minimized un-
necessary data movement and reduced overall latency. The adopted

Table 3. Multi-Cloud Push-Down Implementation Overview
Platform Transformations Notes / Tools

AWS Redshift Filtering, pruning, for-
mat conversion

SQL push-down using
native Redshift func-
tions

Google BigQuery JSON parsing, aggre-
gates, windows

Executes natively,
avoids data movement

Multi-Cloud Federation Cross-cloud joins,
unified queries

BigQuery Omni and
Redshift Spectrum
provide virtualized ac-
cess without physical
data transfer

push-down strategy distributes transformation workloads across
cloud-native engines while minimizing cross-cloud data transfer.
Table 3 provides an overview of the platform-specific transforma-
tions and tools used in the multi-cloud implementation.

6.1.1 AWS Redshift Processing. : For datasets stored in AWS,
Redshift was utilized to perform raw data filtering, column prun-
ing, and format conversions directly within the database. SQL-
based transformations, combined with Redshift’s native functions,
allowed computational work to be pushed down to the storage layer,
significantly reducing the volume of data extracted and transferred
to downstream processes.

6.1.2 Google BigQuery Processing. : On the Google Cloud side,
BigQuery handled transformation logic such as JSON parsing, ag-
gregations, and windowing operations natively within its platform.
By processing data directly in BigQuery, the workflow avoided un-
necessary data transfers and exploited the platform’s distributed
query execution capabilities for high-performance analytics.

6.1.3 Data Federation Across Clouds. : To enable seamless in-
tegration of results across these heterogeneous environments, data
federation tools such as BigQuery Omni and AWS Redshift Spec-
trum were introduced. These tools allowed virtualized queries to
combine datasets from multiple clouds without physically moving
them. This strategy provided a unified view of data across plat-
forms, preserved data residency and compliance requirements, and
minimized cross-cloud data transfer costs.
Through this implementation, the organization was able to stream-
line ETL workflows, reduce redundant processing, and improve op-
erational efficiency while maintaining flexibility in a multi-cloud
architecture.

6.2 Performance Results
Table 4 presents a summary of the performance improvements
achieved through the implementation of localized push-down opti-
mization and federation-based query strategies. The results demon-
strate measurable gains in query execution time, data movement
reduction, and overall pipeline efficiency compared to non-push-
down execution baselines.

6.3 Key Outcomes
The transition to a cloud-native transformation architecture resulted
in measurable improvements across performance, efficiency, and
operational management. By pushing transformation logic closer
to the data and leveraging platform-specific processing capabili-
ties, the redesigned system significantly reduced end-to-end ETL
latency. This architectural shift also eliminated redundant transfor-
mation logic that had previously been distributed across multiple
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Table 4. Performance Improvements

Metric Pre-opt. Post-opt. Improvement

Total runtime 185 min 120 min ↓ 35%

Cross-cloud volume 850 GB 680 GB ↓ 20%

Redshift runtime 64 min 43 min ↓ 32.8%

BigQuery runtime 46 min 30 min ↓ 34.8%

Cross-cloud join runtime 30 min 18 min ↓ 40%

Cost per ETL run $212 $172 ↓ 18.9%

pipeline stages, improving maintainability, execution consistency,
and overall system robustness.
Data federation tools played a critical role in optimizing data
movement patterns. By enabling on-demand access to distributed
datasets without requiring full replication, these tools removed the
dependency on intermediate staging tables and reduced unneces-
sary data duplication. As a result, data flows across cloud envi-
ronments were streamlined, leading to lower storage overhead and
simplified pipeline design.
Overall, the proposed architecture delivered substantial perfor-
mance and cost benefits. The system achieved a 35% reduction
in total processing time, driven by efficient push-down execution
and improved parallelism across cloud services. In addition, cross-
cloud data transfer costs decreased by 20% due to reduced move-
ment of intermediate datasets between environments. These gains
were achieved without compromising data quality or accuracy.
Furthermore, enhanced monitoring and centralized observability
mechanisms improved operational transparency, enabling faster is-
sue diagnosis, improved reliability, and more predictable pipeline
execution.

7. CONCLUSION AND FUTURE WORK
This study examined the role of push-down optimization in improv-
ing the performance and efficiency of ETL pipelines operating in
multi-cloud environments. The analysis demonstrated that execut-
ing transformation logic within cloud-native database engines sig-
nificantly reduces end-to-end latency, minimizes unnecessary data
movement, and effectively leverages platform-native SQL process-
ing capabilities. The evaluation also identified key challenges as-
sociated with cross-cloud push-down execution, including SQL di-
alect incompatibilities, cross-cloud data transfer overhead, orches-
tration complexity, and fragmented security controls.
Through a practical case study involving Amazon Redshift and
Google BigQuery, the work showed tangible benefits in real-world
deployments, including reductions in total pipeline runtime, cross-
cloud data transfer volume, and overall operational cost. These
findings indicate that a balanced strategy combining localized
push-down optimization, selective hybrid execution, and data fed-
eration tools can substantially enhance ETL performance and scal-
ability in distributed cloud architectures.
Future work can extend this research by conducting broader ex-
perimental evaluations across additional cloud platforms such as
Snowflake, Azure Synapse, and Databricks SQL. Further inves-
tigation is also needed into automated decision engines that dy-
namically determine when and where to apply push-down transfor-
mations based on cost models, data locality, and workload char-
acteristics. Enhancing observability and debugging mechanisms
for cross-cloud push-down execution remains an important direc-
tion, as does the development of standardized transformation ab-
stractions to mitigate SQL heterogeneity. Finally, integrating push-

down optimization with real-time streaming pipelines represents a
promising avenue for extending these performance benefits to low-
latency, event-driven data processing across multi-cloud environ-
ments.
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