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ABSTRACT

This paper presents an innovative framework for real-time
human action recognition in video surveillance systems, aimed
at delivering immediate detection of suspicious behavior, normal
movements, and actionable insights for security operators. The
proposed method integrates computer vision and machine
learning techniques to improve recognition accuracy and system
reliability. Motion analysis is performed using optical flow,
where Optical Flow Energy Images (OFEI) are generated to
extract motion-related features. A Convolutional Neural
Network (CNN) is utilized to obtain high-dimensional feature
representations while reducing dimensionality, and a Support
Vector Machine (SVM) classifier is trained on these features for
robust action classification.

The system effectively detects and distinguishes human actions
such as walking, looking around, looking up, smashing, and
suspicious activities, even under challenging conditions
including camera motion, zoom-in, and zoom-out. Experimental
evaluations conducted on publicly available human action
datasets demonstrate significant improvements in recognition
accuracy. Additionally, the system overlays detected actions onto
video streams, providing clear and actionable visual feedback to
surveillance personnel. Successfully deployed in intelligent
video surveillance environments, the proposed framework
proves to be scalable, accurate, and effective for identifying
abnormal behaviors and generating timely alerts in modern
security applications.
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1. INTRODUCTION

With rapid advancements in technology and increasing
urbanization, ensuring public safety has become more critical
than ever. Surveillance systems play a vital role in monitoring
public spaces, but traditional systems largely depend on manual
observation. Human operators are often required to monitor
multiple video feeds over long periods, making the process prone
to fatigue, distraction, and errors. These limitations significantly
hinder the effectiveness of manual surveillance in dynamic and
high-stress environments.

To address these issues, recent research has focused on
integrating machine learning (ML) and artificial intelligence (AI)
techniques into video surveillance. Such systems can
automatically analyze video streams, recognize human actions,
and raise alerts in real time. Optical flow methods are employed
to capture motion dynamics [1], while convolutional neural
networks (CNNs) extract deep features from video data [2].
Classification algorithms, such as support vector machines
(SVMs), then categorize these features into defined action
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classes [3]. The combination of computer vision and machine
learning enables the development of intelligent surveillance
systems that are more accurate, scalable, and responsive.

The limitations of current systems are not confined to labor
inefficiency. With the exponential growth of surveillance
cameras and data, it becomes increasingly difficult to monitor
every feed manually or even with traditional automated systems.
Furthermore, existing systems often struggle to identify complex
human behaviors, especially in environments with varying
lighting conditions, occlusions, or camera motion. They tend to
rely on a narrow set of predefined actions, lacking adaptability to
emerging or unusual behaviors. This inflexibility poses
significant risks in real-world scenarios such as public safety,
emergency response, and threat detection.

In response, this research proposes a robust and scalable
framework for real-time human action recognition using deep
learning. The core of the system is a CNN-SVM hybrid model
that processes motion features derived from optical flow and
classifies actions with high accuracy. The system is designed to
function efficiently under diverse environmental conditions and
supports deployment on resource-constrained devices, enabling
real-time performance on the edge. It also incorporates data
augmentation and domain adaptation to ensure adaptability
across different video sources and scenarios.

The primary goal of this research is to bridge the gap between the
theoretical developments in machine learning and their real-
world implementation in video surveillance. By emphasizing
real-time processing, accuracy, and computational efficiency, the
proposed framework aims to enhance situational awareness in
surveillance operations. Although the primary focus is on
security applications, the proposed system has potential use cases
in healthcare monitoring, sports analytics, and smart
environments, making it a versatile solution for broader human
activity analysis.

2. RELATED WORK

The field of human action recognition (HAR) in video
surveillance has gained significant research interest due to its
potential in enhancing public safety, security monitoring, and
behavioral analysis. Initial approaches primarily relied on
handcrafted features. A notable early contribution is by Wang et
al. (2013), who proposed the use of dense trajectories to capture
motion patterns by tracking interest points across video frames.
While effective to some extent, these handcrafted approaches
lacked robustness and generalization across diverse
environments and complex action variations.

The emergence of deep learning marked a substantial turning
point in HAR. Simonyan and Zisserman (2014) introduced two-
stream convolutional neural networks (CNNs), which process
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spatial information from video frames and temporal motion data
from optical flow in parallel, significantly improving recognition
accuracy [4,5]. Ji et al. (2013) expanded this by developing 3D
CNNs that model spatiotemporal features jointly, allowing better
understanding of motion dynamics in videos [6]. Building upon
these foundations, Tran et al. (2015) proposed hierarchical 3D
CNN architectures that effectively captured both low-level and
high-level action features, enhancing recognition performance in
complex scenes [7].

Further progress in the field has been achieved by integrating
deep learning models with classical machine learning classifiers.
Hybrid frameworks, such as CNN-based feature extraction
followed by Support Vector Machine (SVM) classification, have
shown notable success [8,9]. SVMs, known for their robustness
in high-dimensional spaces, offer interpretable and reliable
decision-making, particularly when dealing with small or
imbalanced datasets. These combinations have improved system
reliability without significantly increasing computational
complexity.

Despite these advancements, human action recognition in real-
world surveillance scenarios still faces major challenges. Issues
such as partial occlusions, camera motion, background clutter,
illumination changes, and viewpoint variability continue to affect
recognition  accuracy. Moreover, achieving real-time
performance remains difficult, particularly for computationally
intensive deep learning models.

Recent research has explored more advanced architectures and
learning techniques to address these limitations. Pose-based
models utilize skeletal data to identify actions based on joint
movements, providing resilience against visual noise and
occlusion [10]. Transformer-based networks, which model long-
range temporal dependencies, have shown promise in capturing
the global structure of actions across extended video sequences
[11]. Additionally, there has been a growing interest in multi-
stream and multimodal learning, where data from RGB, depth,
infrared, and even audio sources are fused to enrich action
representation [12]. To support deployment in practical
environments, researchers have also begun exploring lightweight
and optimized models suitable for real-time inference on edge
devices [13]. These collective efforts highlight the rapid progress
in the field of action recognition, as well as the continued need
for systems that are both accurate and efficient under real-world
constraints.

3. RESEARCH METHODOLOGY

This section outlines the methodology used to develop the
proposed real-time human action recognition system. The
approach integrates motion analysis, deep feature extraction, and
robust classification techniques to accurately identify human
actions in surveillance videos. By combining computer vision
and machine learning, the system is designed to operate
efficiently in real-time and adapt to diverse environmental
conditions.

3.1 System Architecture

The proposed system for real-time human action recognition
comprises four core components: optical flow detection, feature
extraction, classification, and real-time output visualization.
Optical flow detection plays a foundational role in capturing
motion dynamics between consecutive video frames. By
analyzing pixel-level changes using Farneback's dense optical
flow algorithm, the system generates flow maps that represent
the direction and magnitude of motion. These maps emphasize
moving regions such as limbs or body shifts, effectively isolating
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action-related patterns from background noise.

To prepare the data for machine learning, the optical flow frames
are resized and normalized. This step standardizes input
dimensions and scales intensity values, ensuring compatibility
with the CNN architecture and enhancing training efficiency.
The processed optical flow data forms the basis for extracting
meaningful features that distinguish between various human
actions, such as walking or suspicious activity. This motion
preprocessing pipeline enables the system to robustly interpret
complex actions in dynamic and cluttered environments, forming
the backbone for accurate and real-time action recognition.

Fig. 1 illustrates the process of motion analysis using optical
flow. Two consecutive video frames are analyzed to compute
motion vectors, which indicate the direction and speed of
movement at each pixel. These vectors are visualized using a
color-coded map, where hue represents direction and intensity
denotes motion magnitude. The resulting flow map highlights
dynamic regions such as limb movement, allowing the system to
focus on relevant action cues while filtering out static
background elements. This preprocessing step enhances
recognition accuracy by providing robust motion features
essential for distinguishing human actions in complex
surveillance environments.
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Fig. 1. Optical flow visualization showing motion vectors
between consecutive frames (redrawn based on the classical
formulation in [22]).
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3.2 Extraction of Optical Flow

After computing motion vectors between video frames using
optical flow, these vectors are transformed into visual motion
maps where hue represents direction and intensity indicates
motion magnitude. To enhance feature quality, insignificant
motion is filtered out, preserving only meaningful human
movement. The optical flow maps are then resized to 64x64
pixels to ensure compatibility with the CNN architecture,
maintaining aspect ratio to avoid distortion. Pixel values are
normalized to a standard scale to improve model learning
consistency. This resizing step is crucial for memory efficiency,
model compatibility, and uniform pattern recognition across the
dataset. The processed frames serve as input to the CNN,
enabling effective extraction of motion-related features essential
for distinguishing various human actions in real-time scenarios.

3.3 Training the CNN

Training the Convolutional Neural Network (CNN) is a critical
step in enabling the system to accurately recognize human
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actions. The CNN is trained on preprocessed optical flow frames,
which capture motion between video frames. These frames are
resized to 64x64 pixels, normalized, and augmented through
techniques.

The custom-designed CNN architecture includes multiple
convolutional layers that extract both low-level (e.g., edges,
motion boundaries) and high-level (e.g., limb movements)
features. Each convolution is followed by ReLU activation and
max-pooling to reduce dimensionality and retain essential
information. After flattening the feature maps, fully connected
layers learn action-specific feature combinations, with the final
softmax layer outputting class probabilities.

The network is trained using labeled optical flow data through
forward propagation, loss calculation via categorical cross-
entropy, and backpropagation with optimizers such as Adam.
Performance is monitored across training and validation sets
using metrics like accuracy and loss. This training process
enables the CNN to learn discriminative motion patterns,
ensuring robust and real-time recognition of various human
actions across diverse surveillance scenarios.

Table 1 represents the CNN training pipeline, highlighting how
raw optical flow data is transformed into actionable features for
human action recognition. The model architecture includes two
convolutional layers (Conv2D) with 32 and 64 filters
respectively, each followed by max-pooling layers that reduce
spatial dimensions while preserving key features. These layers
extract hierarchical motion patterns crucial for recognizing
human actions.

Following feature extraction, the model uses two fully connected
(dense) layers. The first dense layer reduces the high-
dimensional data to 64 features with 589,888 trainable
parameters, enhancing computational efficiency and
generalization. The final output layer, with two nodes, performs
binary classification using softmax activation. The summary
table shown in the figure presents each layer's output shape and
parameter count, revealing a total of 646,338 trainable
parameters and no non-trainable parameters. With a memory
footprint of approximately 2.47 MB, the model balances
accuracy and efficiency, making it suitable for real-time
surveillance applications.

Table 1. CNN Model Architecture Summary

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 62, 62, 32) 896
max_pooling2d (MaxPooling2D) (None, 31,31, 32) 0
conv2d_I (Conv2D) (None, 29,29, 64) 18,496
max_pooling2d | (MaxPooling2D) (None, 14, 14, 64) 0
conv2d_2 (Conv2D) (None, 12,12, 64) 36,928
flatten (Flatten) (None, 9261) 0
dense (Flatten) (None, 64) 589,888
dense_l (Dense) (None, 2) 130

Total Params: 646,338 (2.47 MB)
Trainable params: 646,338 (2.47 MB)
Non-trainable params: 0 (0.00 B)

3.4 Action Classification Using SVM

After feature extraction via CNN, the final stage involves
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classifying human actions using a Support Vector Machine
(SVM). SVM is a robust supervised learning algorithm that
separates feature vectors into predefined action categories—such
as walking, running, or jumping—by finding an optimal
hyperplane in high-dimensional space. It is particularly effective
with high-dimensional data and generalizes well, even with
limited samples.

The process begins with an input video, from which optical flow
is computed to capture motion dynamics between frames. This
motion data is aggregated into an Optical Flow Energy Image
(OFEI), which emphasizes the magnitude and direction of
movement over time. The OFEI is then passed through a CNN to
extract spatial and motion-related features.

These extracted features serve as input to the SVM classifier.
Using kernels like RBF, the SVM handles non-linear
relationships and accurately assigns each sample to an action
class. This hybrid pipeline—optical flow, CNN-based feature
extraction, and SVM classification—provides a lightweight yet
powerful framework for human action recognition, suitable for
real-time surveillance, healthcare, and human-computer
interaction.
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Fig. 2. The diagram is conceptually based on standard deep
learning-based action recognition frameworks described in
[23]

3.5 SVM Classification

The high-dimensional features extracted by the CNN are
flattened and used to train a Support Vector Machine (SVM)
classifier with a linear kernel for human action recognition.
SVMs are powerful supervised learning models that classify data
by identifying an optimal hyperplane that maximizes the margin
between classes. The closest data points to this boundary, known
as support vectors, are critical in defining the classification
decision.

In this study, a soft margin SVM is employed to accommodate
real-world complexities such as noise and overlapping classes,
providing flexibility by allowing slight misclassifications. The
classification pipeline includes data preprocessing, feature
extraction, optional dimensionality reduction (e.g., PCA), model
training, and evaluation using metrics like accuracy, precision,
recall, and F1-score. In the system architecture, the SVM fits into
the final stage, receiving optimized features from the CNN and
classifying them into predefined action categories. Its integration
ensures fast and reliable performance, making it well-suited for
real-time surveillance applications.

4. EXPERIMENTAL RESULTS

The proposed system was tested on the designated test set to
evaluate its performance in recognizing human actions. The
SVM classifier, trained on the extracted features, achieved high
classification accuracy across various action classes. The results
demonstrate the effectiveness of the preprocessing, motion
detection, and feature extraction stages in capturing relevant
patterns. The system showed strong generalization to unseen
data, indicating its robustness and applicability in real-world
scenarios.
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4.1 Dataset Description

The proposed system was evaluated on a dataset comprising 500
video sequences of human actions, divided into 80% training and
20% testing sets with no overlap. Each video is labeled with a
single action class, including activities such as walking, running,
jumping, sitting, standing, and suspicious behavior. The dataset
features variations in lighting, background, camera angles, and
motion complexity to reflect real-world conditions. Videos are
recorded in 1920%1080 resolution at 30 FPS, ensuring clear
motion capture. Detailed annotations, including class labels and
temporal segments, support supervised learning. This dataset
provides a solid foundation for training the SVM classifier and
validating the system's recognition accuracy.

Fig. 4 illustrates the Feature-Based Classification Workflow for
human action recognition. It begins with test data input, followed
by feature extraction and description to capture essential patterns
[21]. Feature reduction techniques (e.g., PCA) are applied to
minimize redundancy. Reduced features are stored in a database
and quantized for efficient processing. The same extraction and
reduction steps are applied to training data to build the SVM
classifier. Finally, the trained classifier predicts action classes
from the test data, completing the classification pipeline.

4.2 SVM Classification Results

After extracting high-dimensional features using CNN, the SVM
classifier was applied for action recognition. On the test set, it
achieved an accuracy of 95.4%, correctly classifying the majority
of actions. Precision reached 94.8%, indicating a low false-
positive rate, while recall was 96.2%, showing the system's
ability to detect nearly all true actions. The F1-score, computed
as the harmonic mean of precision and recall, was 95.5%,
demonstrating a well-balanced performance between precision
and recall. These results validate the effectiveness of combining
optical flow, CNN feature extraction, and SVM classification.
Additionally, the proposed method was compared with baseline
approaches: traditional HOG-SVM achieved 82.3% accuracy,
while a standalone CNN classifier achieved 91.2% accuracy. The
hybrid CNN-SVM approach outperformed both methods,
confirming the complementary benefits of deep feature
extraction and robust SVM classification.
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Fig. 4. Flow chart of Evaluation

4.3 Real-Time Action Recognition

The system was evaluated for real-time performance and
processed video streams at an average speed of 30 frames per
second, ensuring smooth motion analysis. It provided instant
feedback by detecting and classifying actions such as walking,
jumping, or falling with minimal delay. This real-time capability
makes the system suitable for practical applications in
surveillance, sports analytics, and interactive systems.

4.4 Visual Output

The system's output includes the original input video, optical
flow visualizations displaying motion vectors, and Optical Flow
Energy Images (OFEI) that highlight regions with high motion
intensity. CNN feature maps illustrate learned spatial features
such as edges and motion patterns. The final classification is
overlaid on the video frames, displaying action labels like
"Walking" or "Running" in real time.

In a surveillance video, the system detects motion using optical
flow to highlight moving subjects while ignoring the static
background. For example, it identifies a person walking and
captures motion direction and magnitude. A CNN then extracts
detailed features like gait and motion patterns, which are passed
to an SVM classifier. The classifier labels actions such as
"Walking," "Looking around," or "Not in the frame." If the
sequence of actions suggests unusual behavior—like prolonged
scanning—the system labels it as "Suspicious." These labels
appear in real time on the video, and alerts are sent to security
personnel for prompt response.

Furthermore, the system offers a confidence score for each
predicted action, which is displayed alongside the classification
label on the video frame. This score helps operators understand
the reliability of the model's decision in real time. This improves
situational awareness and supports efficient monitoring in
complex surveillance environments.
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4.5 Assessment of the Visual Stability

All the identification rates are calculated and recorded. The
average of the identification rate is taken for the assessment
result. The identification rate from a single view is 79.56%. The
same steps are followed for the multi-view frames and the rate of
identification is obtained as 90.897%. The recognition rate vs
Error rate is shown below. From this assessment result, it is
concluded that the identification through multi-view points is
more stable and accurate when compared to the single view. And
also the rate of Suspicious Detection is 90%.

Fig. 6 illustrates a pie chart that represents the system's
classification outcomes, categorizing detections into two main
classes: "Suspicious" and "Non-Suspicious." In this chart, 90%
of the detections are labeled as "Suspicious," visually depicted in
black, indicating that the majority of analyzed events were
flagged as potentially irregular or threatening. This high
detection rate emphasizes the system's effectiveness in
identifying anomalous behavior, which is critical for surveillance
and security applications. It also reflects the robustness of the
training process, where the model has learned to prioritize and
correctly classify suspicious actions based on distinct motion
patterns, temporal changes, and spatial cues.

The remaining 10% of the detections, marked as "Non-
Suspicious," are displayed in an exploded white slice of the chart,
intentionally separated to draw attention to the contrast. This
portion signifies the system's capability to recognize normal or
routine behaviors, thus avoiding unnecessary alarms or false
positives. Such balance is vital, as it ensures the system does not
overreact to harmless activities while still maintaining high
vigilance for genuine threats.

The chart demonstrates a well-trained model that can generalize
to unseen data, thanks to effective feature extraction and
classification techniques such as CNN-based motion analysis and
SVM-based decision boundaries. It also underscores the practical
applicability of the system in real-world environments where a
high rate of accurate detection, paired with the ability to
distinguish non-threatening actions, is crucial for operational
efficiency.
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Fig. 7 shows performance improvements over five training
iterations. The recognition rate (solid black line) starts at 80%
and steadily rises to about 95%, indicating the system's growing
accuracy through iterative learning. In contrast, the error rate
(dashed gray line) drops from 20% to below 5%, reflecting
reduced misclassifications over time. The bar chart compares two
analysis methods. The single-frame approach (black bar)
achieves 80% accuracy but is limited by a lack of contextual data.
In contrast, the multi-view frame method (white bar) reaches
nearly 95% accuracy, benefiting from diverse viewpoints and
better handling of complex actions, occlusions, and varying
camera angles.

Recognition Rate vs. Error Rate Over Iterations
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Fig. 7. Recognition Visual Stability Chart
5. CONCLUSION

This research presents a real-time human action recognition
system designed for intelligent video surveillance, emphasizing
both accuracy and computational efficiency. The proposed CNN-
SVM hybrid model, combined with optical flow-based motion
analysis, achieved 95.4% accuracy, 94.8% precision, 96.2%
recall, and 95.5% F1-score on the test dataset, demonstrating its
effectiveness in distinguishing human actions under various
conditions.

Despite its effectiveness, several challenges remain, including
limited annotated datasets, the high cost and time associated with
manual labeling, and significant computational requirements
during model training. Additionally, real-world complexities
such as variations in human movement, occlusions, motion blur,
and lighting fluctuations continue to affect recognition
reliability. Achieving real-time performance further requires
careful optimization to balance speed and accuracy.
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Future work will focus on several key directions: (1) expanding
and diversifying training datasets by incorporating publicly
available benchmarks such as UCF101 and Kinetics to enhance
model generalization; (2) integrating multi-modal sensory inputs
including depth sensors and audio data to improve action
discrimination; (3) leveraging transfer learning from large-scale
pre-trained models to reduce training time and improve accuracy
on domain-specific tasks; (4) adopting lightweight architectures
such as MobileNet or EfficientNet for edge deployment on
resource-constrained devices; (5) implementing attention
mechanisms and transformer-based models to capture long-range
temporal dependencies; and (6) exploring semi-supervised and
self-supervised learning approaches to reduce dependency on
manual annotations. These advancements will contribute to more
scalable, robust, and practical deployment across diverse
surveillance environments, healthcare monitoring, sports
analytics, and smart city applications.
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