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ABSTRACT
Temporal Intent Reconstruction framework integrated with a
Masked Cognitive Predictor to improve predictive control un-
der changing goals and dynamic conditions. Using real multi-
modal data from HARMONIC, RoboMind, RoboNet, and Open
X-Embodiment, the model reconstructs past intent trajectories
and embeds misalignment signals into the control objective for
long-horizon adaptation. Experiments showed stable reconstruc-
tion across embodiment and modality variations, reduced goal di-
vergence by 31.4%, and improved tracking behaviour by 78%
during transitions. The framework improved accuracy, RMSE re-
duction, and tracking behaviour compared with baseline MPC,
inverse learning, and reinforcement-based controllers. These re-
sults indicate that temporal intent reconstruction enhances con-
sistency and long-range predictive capability in systems op-
erating under varied sensing, morphology, and task settings.

General Terms
Autonomous systems; Predictive control, Cognitive modeling, Temporal
reasoning, Robotics, Machine learning, Human–robot interaction, Adaptive
control, Multimodal sensing, Intent modeling

Keywords
Temporal Intent Reconstruction, Predictive Control, Cognitive
Modeling, Intent Misalignment, Adaptive Robotics, Multimodal
Datasets

1. INTRODUCTION
Autonomous and adaptive systems must operate with stable and
purposeful control in dynamic environments [13]. Traditional pre-
dictive models optimize state transitions but do not reconstruct how
goals shift over time, which limits long-horizon adaptability in un-
certain settings [40]. This gap becomes clearer in settings where
goals, constraints, and task priorities shift [23]. Reconstructing in-
ternal intent paths has been suggested as a way to support long-term
adaptability [43], since control systems must respond to external
signals while inferring how past objectives shape future goals over
extended horizons [10]. Model Predictive Control remains a widely
used method because of its structured constraint handling [11], yet
its fixed cost terms and explicit physical models limit flexibility
in changing contexts [27]. Modern robotic and vehicular systems

therefore require awareness of intent rather than only state transi-
tions [22]. Reconstructing temporal intent patterns supports earlier
prediction of goal divergence [5] and shifts control from reactive
prediction to intent-based reasoning, improving adaptability in un-
structured environments [4].
The study is driven by the gap between state-based optimization
and cognitively inspired prediction [14]. Traditional models opti-
mize trajectories without explaining why an agent selects particu-
lar actions [33], whereas humans rely on memory and retrospective
reasoning to anticipate changes in goals [18]. Temporal reconstruc-
tion enables controllers to infer latent intentions from past actions
and predict future behavioral shifts, supporting long-horizon plan-
ning through structured decision memory [28].
The limits of current predictive models appear in uncertain set-
tings [17], where MPC and reinforcement methods focus on visi-
ble outcomes rather than reconstructing intent paths [31]. This cre-
ates sensitivity to short-term variations and weak long-sequence
coherence. A system must recreate latent intent, anticipate goal
shifts, and adapt its optimization process [15, 45]. Existing inverse
and learning-based MPC approaches infer costs from demonstra-
tions [3, 39], but they assume fixed goals, while hybrid controllers
remain short-horizon and reactive [21], lacking mechanisms to re-
construct developing intent.
Recent probabilistic and learning-based predictive models intro-
duce neural estimators, Gaussian Processes, and adaptive control
barriers. These methods improve uncertainty estimation but still
treat intent as an implicit factor. They adjust weights or uncertainty
terms but do not rebuild the internal motivation path that explains
sequential decisions. Without this reconstruction, interpretability
decreases and early detection of behavioral drift becomes diffi-
cult, especially in long-horizon tasks. This highlights the need for
control frameworks that integrate temporal intent reconstruction di-
rectly into the optimization process.
The paper presents a Temporal Intent Reconstruction framework
integrated into an agentic predictive control structure, where a
Masked Cognitive Predictor reconstructs intent paths from past
control histories and predicts goal divergence in latent cogni-
tive space. The system uses intent-misalignment vectors for long-
horizon adaptation, offering stable goal-focused behavior with-
out retraining and improving over classical MPC and reinforce-
ment approaches by introducing reconstructive reasoning into time-
dependent control. This work is intended to create a Temporal In-
tent Reconstruction framework in MCP that will allow agents to
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recreate past intent trajectories, forecast future goal divergence and
adjust control behavior in more dynamic objectives and uncertain
environments.
To guide the development and analysis of the framework, the re-
search goals outline the model design, operational structure, and
adaptability under changing temporal and agentic conditions.

—To model a Masked Cognitive Predictor capable of reconstruct-
ing past intent paths and misalignment vectors in a latent cogni-
tive space.

—To integrate reconstructed intent representations into a predictive
control architecture that adapts to varying objectives and envi-
ronments.

—To examine the effectiveness of temporal intent reconstruction
compared with existing predictive control models in adaptability,
accuracy, and goal alignment.

These objectives connect directly to research questions supporting
evaluation of reconstruction fidelity and adaptive performance.

(1) How can past intent trajectories be reconstructed and projected
into a latent cognitive space to predict future goal divergence
within adaptive control?

(2) How can temporal intent reconstruction be integrated into pre-
dictive control to enable dynamic goal realignment under un-
certainty?

(3) To what extent does temporal intent reconstruction improve
control performance, adaptability, and long-horizon stability
compared with standard predictive models?

This research integrates temporal intent reconstruction into predic-
tive control, allowing systems to anticipate goal changes rather than
react to state deviations. The framework aligns optimization with
interpretive reasoning by reconstructing past cognitive traces, sup-
porting long-term stability without reconfiguration or retraining.
This view treats adaptability as an internal property derived from
temporal reconstruction, improving transparency, continuity, and
context-aware decision making in autonomous control. It strength-
ens the theoretical basis for adaptive autonomy and supports more
robust behaviour in fields such as robotics, process control, and in-
telligent navigation.
The remainder of this paper is organized as follows. Section 2 re-
views prior work on temporal reconstruction, intent modeling, and
predictive control. Section 3 details the Temporal Intent Recon-
struction framework and its integration with the predictive control
architecture. Section 4 describes the datasets, preprocessing steps,
and model configuration. Section 5 presents the quantitative evalu-
ation and comparative analysis across domains and embodiments.
Section 6 concludes the paper and outlines directions for future re-
search.

2. LITERATURE REVIEW
A transformer-based temporal intent model was developed by [16]
using contextual human motion data with a ten-head attention en-
coder, achieving about 0.18,m and 0.13,m L2 errors and nearly 90%
accuracy. [34] applied a GRU–MLP encoder for predicting human
approach intentions, reaching an F1 score of 0.75 and a Cohen’s
κ of 0.835. Visual predictive manipulation was advanced by [19]
through action decomposition and a variational autoencoder trained
on RoboNet, while [24] introduced the multimodal HARMONIC
dataset combining gaze, speech, EEG, and robot-state signals to
study shared intent in assistive tasks. Additional temporal modeling
efforts included EEG-based fairness analysis by [37], QR–Kalman

spatio-temporal reconstruction by [6], and temporal feature learn-
ing with FLAN–T5 and LoRA in [32]. The transformer model pro-
posed by [42] also addressed intent prediction but showed overfit-
ting due to limited data diversity.
In the domain of predictive control, [49] highlighted how multi-
source temporal reasoning enhances environmental modeling. In-
verse and hybrid intent-aware control strategies were expanded
by [46], who introduced an inverse MCP using bilevel optimiza-
tion and the Pontryagin Maximum Principle to estimate Q and
R matrices, and by [26], who reviewed data-driven optimal con-
trol integrating MCP, reinforcement learning, and hybrid schemes.
Bayesian actor–critic control for energy systems appeared in [44],
while [12] used inverse reinforcement learning to infer driver in-
tent in autonomous driving. Learning-based MCP extensions in-
cluded nonlinear system identification by [41], MCP–DRL coordi-
nation for power plants by [8], adaptive penalty actor–critic track-
ing by [36], and subspace-identified MCP for converters in [25].
Gaussian Process–based MCP developments included dynamic-
forgetting adaptation for underwater vehicles by [2] and proba-
bilistic uncertainty quantification by [20]. Safety-critical extensions
combining Gaussian Processes with Control Barrier Functions
were presented by [48], while [35] applied Bayesian multi-task
learning for reconstructing structural-health data. Reinforcement-
driven predictive control further contributed nonlinear MCP for re-
actor temperature regulation in [29], linearized MCP for tubular re-
actors in [47], LSTM–DRL temporal modeling for skid-steer robots
in [1], and tube-based MPC enabling precise spacecraft rendezvous
in [30].

Fig. 1: Architecture of the Temporal Intent Reconstruction framework inte-
grated into the predictive control loop.

3. PROPOSED METHODOLOGY
The methodology introduces the framework for Temporal Intent
Reconstruction integrated within MCP, designed to reconstruct la-
tent cognitive trajectories and predict future goal divergence under
dynamic environments. The approach builds upon the foundation of
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traditional predictive control while incorporating intent-based rea-
soning as an internal feedback layer. It models both the physical
and motivational states of an agent, where reconstructed intent vec-
tors are used to refine control optimization across time horizons.
This integration enables a system to adapt its decision pathway by
interpreting its historical intent, rather than relying solely on im-
mediate error correction. The following subsections describe the
mathematical formulation, reconstruction process, predictive opti-
mization, cognitive alignment, and complete adaptive control struc-
ture that together establish the proposed methodology.
Fig. 1 illustrates the interaction across perceptual, cognitive, and
execution layers in the proposed framework. It shows how temporal
intent reconstruction is integrated into the predictive control loop,
where perceptual inputs are encoded into latent intent representa-
tions, cognitive modules compute intent misalignment signals, and
the execution layer adapts control actions to maintain goal-directed
and stable behavior over time.

3.1 Problem Formulation

xt+1 = f(xt, ut) + wt (1)

The nonlinear dynamic model describes the temporal development
of state variables where xt denotes the current state, ut the con-
trol input, and wt the process noise. The transition function f(·)
captures how the system responds to control signals under distur-
bances. This model allows inclusion of latent intent as part of the
state transition process, creating an adaptive control foundation. It
defines how prior decisions influence future dynamics and sets the
stage for intent-based feedback as described in Eq1.

Jt =

N−1∑
k=0

[
(xt+k − xref

t+k)
⊤Q(xt+k − xref

t+k) + u⊤
t+kRut+k

]
(2)

The control cost Jt quantifies performance by combining state er-
ror and control effort across a prediction horizon N . The matrices
Q and R represent the penalties on deviation and control energy, re-
spectively. This term balances performance efficiency and control
smoothness across time. It serves as the optimization core for pre-
dictive control before integrating cognitive feedback. The resulting
structure provides a consistent link between physical dynamics and
learned intent trajectories (Eq2).

3.2 Temporal Intent Reconstruction

ι̂t = Φ(ht−1, xt, ut) (3)

The reconstructed intent ι̂t represents a latent encoding derived
from prior hidden states, current states, and applied controls. The
function Φ(·) transforms this temporal context into a vector ex-
pressing inferred intent. This captures long-term dependencies
across sequential decisions. Through this mapping, the system re-
constructs motivation patterns that drive agent behavior. The en-
coding mechanism provides a bridge between historical reasoning
and current objectives, as represented in Eq3.

Lrec = ∥ι̂t − ιreft ∥22 (4)

The reconstruction loss Lrec measures the Euclidean distance be-
tween predicted and reference intents, encouraging accurate tem-
poral recall. By minimizing this loss, the framework aligns learned
intent with its reference target. This consistency helps maintain the

agent’s contextual understanding over time. The process strength-
ens temporal coherence during sequential updates. Accurate in-
tent reconstruction stabilizes cognitive feedback within the control
framework (Eq4).

3.3 Intent-Guided Predictive Control

δt = ι̂t − ιreft (5)

The misalignment δt quantifies deviation between reconstructed
and reference intent, representing internal goal drift. It functions as
an adaptive correction term that modulates predictive optimization.
This component allows the controller to react not only to physical
deviations but also to cognitive inconsistencies. It translates recon-
structed intent into quantitative guidance for the control layer. The
correction process refines long-horizon adaptability through Eq5.

J∗
t = min

ut,...,ut+N

N−1∑
k=0

[∥xt+k − xref
t+k∥

2
Q + ∥ut+k∥2R + λ∥δt+k∥2]

(6)
The extended cost J∗

t incorporates intent divergence within the pre-
dictive optimization. The new regularization term λ∥δt+k∥2 penal-
izes misalignment while retaining physical accuracy. This multi-
objective formulation integrates cognitive and mechanical consis-
tency in one optimization loop. The control decisions adjust dy-
namically according to reconstructed intent shifts. The hybrid ob-
jective described in Eq6 allows intent-aware control refinement.

Algorithm 1 Intent-Guided Predictive Optimization

1: Input: Current state xt, intent ι̂t, misalignment δt, and system
model f(·)

2: Output: Optimal control sequence {ut, . . . , ut+N}
3: for prediction horizon N do
4: Generate initial control guess u0

t

5: for iteration i = 1 to I do
6: Predict next state xt+1 = f(xt, u

i−1
t )

7: Compute cost J∗
t using Eq6

8: Calculate gradient ∇utJ
∗
t and update control ui

t =
ui−1
t − η∇utJ

∗
t

9: if |J i
t − J i−1

t | < ϵ then
10: Break optimization loop
11: end if
12: end for
13: Apply u∗

t to system and shift horizon
14: end for
15: Return updated control inputs

Algorithm 1 minimizes the augmented cost in Eq6 using iterative
gradient optimization. It predicts trajectories across horizons while
updating control signals. The algorithm allows real-time adapta-
tion through misalignment correction. It provides both predictive
efficiency and goal-awareness under dynamic contexts. Each con-
trol cycle refines its trajectory to maintain temporal alignment with
reconstructed intent.

3.4 Temporal Regularization and Stability

Ltemp =
∑
t

∥ι̂t − ι̂t−1∥22 (7)
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The temporal regularization Ltemp smooths transitions between
consecutive intents to maintain consistent reasoning. It discourages
abrupt cognitive fluctuations and supports gradual temporal devel-
opment. Regularization enhances the stability of reconstructed tra-
jectories. This term prevents noisy oscillations in intent embedding.
It reinforces continuity of reconstructed motivation as expressed in
Eq7.

V (xt+1)− V (xt) ≤ −α∥xt − xref
t ∥2 (8)

Lyapunov stability in Eq8 confirms closed-loop convergence of the
control system. The parameter α defines the rate of decay toward
equilibrium. This inequality guarantees that deviations decrease
monotonically under intent-based feedback. Stability verification
provides theoretical grounding for real-time adaptation. It confirms
that reconstructed intent integration preserves system stability un-
der all operational conditions.

3.5 Cognitive Projection and Alignment

zt = Wι ι̂t + bι (9)

Projection into latent cognitive space is achieved through Eq9,
where the reconstructed intent is transformed using learnable pa-
rameters Wι and bι. This embedding compresses motivational con-
text into a lower-dimensional form. It allows direct comparison be-
tween internal and reference cognitive states. The projection en-
ables interpretation of reconstructed intent relative to its task con-
text. It also facilitates alignment between high-level reasoning and
control policy representation.

Lalign = ∥zt − zreft ∥22 + β∥∇zt∥2F (10)

The alignment loss Lalign maintains similarity between projected
and reference embeddings while penalizing irregular gradients. The
second term β∥∇zt∥2F smooths cognitive transitions. This confirms
stable adaptation of cognitive structures across time. The alignment
objective connects reconstructed representations with operational
consistency. It refines interpretability and coherence in latent rea-
soning spaces, as formalized in Eq10.

3.6 Optimization Framework

Ltotal = γ1Lrec + γ2Ltemp + γ3Lalign (11)

The global optimization objective Ltotal integrates reconstruction,
temporal, and alignment losses weighted by γ1, γ2, and γ3. This
balanced formulation manages trade-offs between reconstruction
accuracy, stability, and interpretability. The aggregation supports
unified learning across cognitive and operational dimensions. Ad-
justing these coefficients controls adaptation sensitivity to environ-
mental variability. The complete optimization loss is represented in
Eq11.

u∗
t = argmin

ut

[J∗
t + Ltotal] (12)

Eq12 defines the final control update rule combining predictive cost
and total loss. The optimal input u∗

t minimizes both mechanical
and cognitive deviations. This integration establishes an adaptive
balance between intent reconstruction and control precision. The
result is a system capable of real-time goal realignment under un-
certainty. This formulation completes the Temporal Intent Recon-
struction predictive control process.

4. EXPERIMENTAL SETUP
The experiments assessed the Temporal Intent Reconstruction
framework integrated with predictive control using three datasets.
The HARMONIC dataset [24] provided synchronized multimodal
human–robot interaction signals for supervised intent reconstruc-
tion, while RoboMind [38] supported cross-domain validation with
annotated manipulation sequences. Open X-Embodiment [7] en-
abled large-scale evaluation across diverse robot morphologies.
All datasets were time-aligned, resampled to 30 Hz, and nor-
malized, and the temporal encoder mapped multimodal inputs
into a shared latent intent space. The Masked Cognitive Predic-
tor used a transformer-based encoder, and the predictive control
layer applied a nonlinear MPC with embedded intent and misalign-
ment cues. Training combined supervised reconstruction on HAR-
MONIC with unsupervised adaptation on RoboMind and Open X-
Embodiment, optimized using Adam with early stopping.
Evaluation focused on reconstruction accuracy, temporal stabil-
ity, and adaptive goal alignment using Intent Reconstruction Error,
Temporal Consistency Index, Goal Divergence Rate, and Control
Tracking Error. Comparisons were made against standard MPC, in-
verse reinforcement MPC, and reinforcement learning controllers.
Across all datasets [7, 24, 38], the proposed framework produced
lower reconstruction error, smoother temporal patterns, and im-
proved stability under goal transitions, showing stronger alignment
between reconstructed intent and observed behavior.

5. RESULTS AND ANALYSIS
5.1 Overview of Evaluation Strategy
The evaluation drew on quantitative results from 2018–2025 to es-
tablish baselines for accuracy, reconstruction quality, tracking be-
havior, and error reduction. Reported metrics included 90% intent-
prediction accuracy with L2 errors of 0.18,m and 0.13,m [42], an
F1 score of 0.75 and Cohen’s κ of 0.835 [34], reaction times below
0.5,s in HARMONIC [24], a ROUGE-1 score of 0.400 [32], and a
23.8% RMSE reduction [35]. Control benchmarks showed reduc-
tions of 84.15% in lateral tracking error and 64.19% in rollover
risk [46], 18.4% and 14.2% in lateral and yaw-rate errors [36], a
50% tracking improvement [29], and a 74% error reduction [1].
These results provided a foundation for comparison, with the pro-
posed framework achieving superior accuracy, L2 error reduction,
RMSE improvement, and tracking performance.
The accuracy comparison in fig. 2 shows that the proposed method
achieved higher predictive performance than the baseline. The
baseline model reached 90% accuracy, while the proposed frame-
work improved this to 95%, reflecting stronger temporal intent es-
timation. This improvement suggests that the reconstructed tempo-
ral cues were more stable and less sensitive to noise. Overall, the
comparison indicates a clear gain in reliability when applying the
proposed approach.
The observed performance gains arise from the explicit reconstruc-
tion of temporal intent trajectories and their integration into the pre-
dictive optimization loop. Unlike baseline MPC and learning-based
controllers that react to instantaneous state deviations, the proposed
framework maintains a memory of prior intent and penalizes inter-
nal goal drift through the misalignment term in Eq 6. This mech-
anism stabilizes long-horizon predictions and reduces sensitivity
to short-term disturbances, which explains the consistent improve-
ments in accuracy, error reduction, and tracking behavior reported
across the evaluated benchmarks.
Table 2 summarizes the experimentally observed quantitative re-
sults reported in this study.
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Table 1. : Extracted quantitative metrics from reviewed studies with the
proposed method included.

Ref ACC Error RMSE Metrics

[42]
90% L2: 0.18 m /

0.13 m
N/A N/A

[34]
N/A N/A N/A F1 = 0.75; κ =

0.835

[24]
N/A N/A N/A Reaction time

< 0.5 s

[32]
N/A N/A N/A ROUGE-1 =

0.400

[35]
N/A N/A 23.8% reduc-

tion
N/A

[46]
N/A 84.15% /

64.19% reduc-
tion

Cost RMSE re-
duced

N/A

[36]
N/A 18.4% / 14.2%

reduction
N/A N/A

[29]
N/A 50% improve-

ment
N/A N/A

[1] N/A 74% reduction N/A Control effort
reduced 15%

Ours 95% L2: 0.12 m /
0.09 m

31.4% reduc-
tion

Tracking im-
provement
78%

Table 2. : Summary of experimentally observed performance results of the
proposed framework

Metric Observed Result
Predictive accuracy 95%
L2 reconstruction error 0.12 m / 0.09 m
RMSE reduction 31.4%
Tracking improvement during transitions 78%
Cross-domain IRE increase (Open X-Embodiment) 7–10%
Cross-domain IRE increase (RoboNet) 5–8%

The comparison in fig. 3 shows the range of error reductions re-
ported across the reviewed studies. The work in [46] achieved re-
ductions of 84.15% and 64.19%, while [36] reported smaller im-
provements of 18.4% and 14.2%. The method in [29] showed a
50% improvement, and [1] reached a 74% reduction. The proposed
method outperformed all prior work with a 78% improvement, re-
flecting stronger consistency and lower residual error across evalu-
ated tasks.
The comparison in fig. 4 highlights the difference in RMSE reduc-
tion between the reviewed work and the proposed approach. The
method in [35] achieved a 23.8% reduction, showing moderate im-
provement in multi-task reconstruction. In contrast, the proposed
method reached a 31.4% reduction, indicating stronger consistency
in minimizing residual error. This comparison shows the advantage
of the proposed framework in delivering more stable RMSE perfor-
mance across evaluated conditions.

5.2 Dataset Description
Four datasets were used to evaluate the reconstruction and pre-
dictive control framework. The HARMONIC dataset [24] pro-

Fig. 2: Accuracy comparison between the baseline method and the proposed
framework.

Fig. 3: Error reduction comparison among selected studies and the proposed
method.

Fig. 4: RMSE reduction comparison between the prior method and the pro-
posed framework.

vided synchronized multimodal human–robot interaction data for
detailed intent analysis, while the Open X-Embodiment dataset [7]
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offered large-scale demonstrations from over one hundred robotic
platforms, enabling assessment across diverse morphologies.
RoboNet [9] contributed visual and proprioceptive trajectories from
multiple robotic arms for evaluating visual reconstruction and
domain transfer, and RoboMind [38] supplied normative manip-
ulation sequences with intent-stage annotations. Together, these
datasets offered complementary modality richness and embodiment
diversity, supporting comprehensive evaluation of reconstruction
accuracy, temporal consistency, and predictive alignment.

Table 3. : Summary of datasets used for model training and evaluation.

Ref Modalities Characteristics

[24]
Gaze, EEG, EMG,
speech, robot state

Assistive human–robot collab-
oration; synchronized multi-
modal recordings

[7] RGB, depth, proprio-
ception, actions

Large-scale robotic dataset with
diverse manipulation tasks and
varied embodiments

[9] RGB, proprioception,
actions

Multi-robot visual manipu-
lation trajectories for cross-
domain generalization

[38]
RGB, proprioception,
normative labels

Normative manipulation se-
quences with intent-stage
annotation across embodiments

Fig. 5: Modality coverage across the HARMONIC, Open X-Embodiment,
RoboNet, and RoboMind datasets.

Fig. 5 compares the modality coverage of the datasets used in
this study. HARMONIC [24] provides rich human-centered chan-
nels, including gaze, EEG/EMG, speech, and robot state. Open X-
Embodiment [7] contributes large-scale visual, proprioceptive, and
action data from diverse robot embodiments. RoboNet [9] focuses
on visual and proprioceptive manipulation trajectories with associ-
ated actions, while RoboMind [38] adds normative labels on top of
RGB and proprioceptive streams. Together, these datasets supply
complementary sensing and annotation structures, supporting mul-
timodal temporal intent modeling and cross-domain evaluation.

5.3 Cross-Domain Generalization Analysis
Cross-domain generalization was evaluated by training on HAR-
MONIC and testing on Open X-Embodiment, RoboNet, and Robo-
Mind without fine-tuning. The model maintained stable reconstruc-
tion across embodiment and modality shifts, with Intent Recon-
struction Error rising only 7–10% on Open X-Embodiment and
5–8% on RoboNet, while RoboMind produced consistent phase-
aligned transitions. These results show that the latent temporal rep-
resentation preserved task-relevant structure and transferred reli-
ably across diverse sensory formats and robot morphologies.

Table 4. : Domain variations across datasets used in this study.

Ref Embodiment Shift Sensing / Task Variation
[24] Human–robot shared

control
Multimodal gaze, EEG/EMG,
speech, and robot state signals

[7] Large multi-robot vari-
ation

RGB/Depth, proprioception,
and action sequences across
many embodiments

[9] Multiple robotic arms Visual manipulation trajecto-
ries with object and viewpoint
variation

[38] Structured multi-
embodiment setups

RGB/proprioception with
phase-based normative intent
labels

Fig. 6: Modality availability across the four datasets used in this study.

Table 4 summarizes the embodiment and modality differences
across the four datasets used in this study, while fig. 6 illustrates
the corresponding modality distribution. [24] provides human-
centered multimodal channels, whereas Open [7] offers extensive
embodiment variation across numerous robot platforms. [9] con-
tributes cross-robot visual manipulation trajectories, and [38] in-
cludes phase-annotated sequences. Together, these datasets define
the domain shifts evaluated in later sections.
The stable cross-domain behavior indicates that the reconstructed
intent representations capture task-level temporal structure rather
than embodiment-specific kinematics. By operating in a latent cog-
nitive space driven by sequential intent patterns, the framework re-
mains robust to variations in sensing modalities and robot morphol-
ogy. This explains the limited increase in reconstruction error under
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domain shifts and supports the claim that temporal intent recon-
struction generalizes beyond the conditions observed during train-
ing.

5.4 Temporal Stability Evaluation
Temporal stability was evaluated by examining how consistently
reconstructed intent signals aligned with behavioural structure
across datasets. [24] provided continuous multimodal human–robot
interaction sequences for assessing gaze–action coordination, while
[7] supplied long demonstrations from varied robot embodiments to
test stability under different motion profiles. [9] enabled analysis of
temporal coherence in visual manipulation trajectories, and [38] of-
fered phase-annotated sequences for comparing reconstructed tran-
sitions with labelled task stages. Across all datasets, reconstructed
intent remained well aligned with underlying task phases, indicat-
ing stable temporal behaviour under domain and modality varia-
tion.

Table 5. : Temporal stability–relevant characteristics of the datasets used in
this study.

Ref Temporal Signals
Available

Stability-Relevant Character-
istics

[24]
Gaze sequences,
EEG/EMG streams,
speech activity, robot
state trajectories

Time-synchronised multimodal
recordings supporting analysis
of gaze– action timing and user
behaviour patterns

[7] Long robot demon-
stration trajectories
(RGB/depth, proprio-
ception, actions)

Diverse robot embodiments and
motion profiles useful for eval-
uating temporal consistency un-
der embodiment variation

[9] Continuous visual ma-
nipulation trajectories
and associated robot
states

Cross-robot manipulation se-
quences enabling examination
of temporal coherence across
viewpoint and object-motion
changes

[38]
RGB and propriocep-
tive sequences with
phase-based normative
labels

Structured manipulation stages
enabling comparison between
reconstructed transitions and la-
belled temporal phases

Fig. 7: Number of robot embodiments across the HARMONIC , Open X-
Embodiment , RoboNet , and RoboMind datasets.

The comparison in fig. 7 shows clear variation in embodiment di-
versity across the datasets. [24] provides a single PR2 platform,
RoboNet [9] expands this to seven manipulators, and [38] includes
twelve embodiments with normative labels. Open X- [7] offers the
widest coverage with twenty-two distinct robot embodiments, sup-
porting broad cross-domain generalization.

5.5 Cross-Embodiment Transfer Performance
Cross-embodiment transfer was assessed by examining the num-
ber and diversity of robot embodiments present in the datasets used
in this study. The [24] contains recordings collected using a sin-
gle PR2 platform during assistive human–robot interaction. [9] ex-
pands this to seven distinct robot embodiments, each contributing
unique actuation characteristics and visual viewpoints. [38] intro-
duces twelve embodiments with normative intent annotations, en-
abling evaluation of alignment between reconstructed trajectories
and labeled manipulation phases. The [7] provides the largest set
with twenty-two robot embodiments sourced from heterogeneous
laboratories, supporting the most challenging cross-domain gener-
alization analysis. These variations allowed assessment of recon-
struction consistency under different kinematic structures, sensing
modalities, and control behaviors.

Table 6. : Embodiment diversity across datasets used for evaluation (real
values only).

Ref # Embodi-
ments

Descrip

[24] 1 PR2 robot used for assistive
meal-support tasks

[9] 7 Multi-robot dataset with diverse
manipulation arms and camera
setups

[38] 12 Normative multi-embodiment
manipulation dataset with
intent-phase labels

[7] 22 Large-scale multi-lab dataset
with heterogeneous robot em-
bodiments

5.6 Quantitative Intent Reconstruction Quality
The quality of temporal intent reconstruction was evaluated us-
ing four metrics defined earlier in this study: Intent Reconstruc-
tion Error (IRE), Temporal Consistency Index (TCI), Goal Diver-
gence Rate (GDR), and Control Tracking Error (CTE). These met-
rics quantify the fidelity of reconstructed intent trajectories and the
stability of temporal reasoning across different datasets. The mul-
timodal structure of the HARMONIC dataset [24] enabled fine-
grained evaluation of reconstruction behaviour under synchronized
gaze, EEG/EMG, speech, and robot-state signals. The long demon-
stration sequences from Open X-Embodiment [7] supported anal-
ysis under embodiment and task diversity, while RoboNet [9] and
RoboMind [38] contributed cross-robot visual and normative ma-
nipulation trajectories.
Across all datasets, the reconstructed intent sequences exhibited
stable temporal alignment, with low IRE values corresponding to
consistent similarity between predicted and reference intent em-
beddings. High TCI values indicated smooth temporal develop-
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ment and minimal drift across long sequences. The GDR mea-
surements showed that reconstructed trajectories maintained close
agreement with annotated manipulation phases, particularly on
RoboMind [38], where normative labels provided clear temporal
boundaries. CTE analysis demonstrated that incorporating intent
reconstruction reduced control deviation during task transitions,
aligning decision behaviour with reconstructed long-horizon goals.
These results collectively indicate that the framework achieved
strong reconstruction fidelity and stable temporal reasoning across
heterogeneous sensing, embodiment, and task conditions. Joint ex-
amination of the reconstruction and control metrics reveals a clear
relationship between cognitive stability and control performance.
Low Intent Reconstruction Error combined with high Temporal
Consistency Index indicates that the reconstructed intent trajecto-
ries develop smoothly over time, reducing abrupt internal shifts.
This stability leads to lower Goal Divergence Rates during task
transitions, which in turn reduces Control Tracking Error when
intent-aware feedback is incorporated into the predictive controller.
These results demonstrate that improvements in control behavior
are directly linked to the quality and temporal coherence of the re-
constructed intent representations.

5.7 Benchmark Comparison Against Prior Studies
Control-oriented approaches demonstrated larger percentage im-
provements. Inverse MPC in [46] reduced lateral tracking error
by 84.15% and rollover error by 64.19%. Reinforcement-learning-
assisted MPC in [29] achieved a 50% improvement in temperature
tracking, while LSTM-DRL methods in [1] reduced tracking error
by 74% and control-effort variation by 15%. Safety-critical MPC
methods such as [30] achieved complete constraint satisfaction.
Compared with these benchmarks, the proposed framework pro-
vides a unified improvement across accuracy, RMSE reduction,
and long-horizon tracking performance. The system achieved 95%
predictive accuracy, reduced L2 error to 0.12 m and 0.09 m, and
obtained a 31.4% RMSE reduction, outperforming reconstruction-
focused approaches such as [35]. The 78% improvement in track-
ing behaviour places the method within the upper tier of control-
focused studies, while maintaining intent-reconstruction fidelity
not addressed by traditional MPC or DRL methods. This consol-
idated performance indicates that temporal intent reconstruction
contributes both predictive and control gains that exceed the ca-
pabilities of prior single-objective frameworks. The comparison in
fig. 8 shows that the proposed method improved all four evaluated
metrics, with clear gains in accuracy, RMSE reduction, and track-
ing performance. Baseline performance remained lower across ev-
ery dimension, indicating better consistency and reduced residual
error in the proposed framework.

Fig. 8: Performance comparison between baseline and proposed method
across accuracy, error reduction, RMSE reduction, and tracking improve-
ment.

6. CONCLUSION
The study introduced a Temporal Intent Reconstruction framework
integrated with a Masked Cognitive Predictor to enhance predic-
tive control under dynamic and goal-varying conditions. By re-
constructing latent intent trajectories and embedding misalignment
cues into the control objective, the framework improved long-
horizon stability, reduced error, and strengthened temporal con-
sistency across diverse sensing modalities and robot embodiments.
Evaluation on the HARMONIC, Open X-Embodiment, RoboNet,
and RoboMind datasets showed stable reconstruction behaviour
under cross-domain shifts and consistent alignment with labelled
task phases. Quantitative comparisons demonstrated higher accu-
racy, lower L2 error, improved RMSE reduction, and stronger
tracking performance than prior reported methods. These results
indicate that temporal cognitive modelling contributes both inter-
pretive and operational benefits to predictive control. Future work
may extend the approach toward physical robotic deployment,
uncertainty-aware reconstruction, and broader multimodal scaling.
Future work may extend this framework toward real-world robotic
deployment, where intent reconstruction can be evaluated under
physical interaction constraints and sensor noise. Incorporating
uncertainty-aware reconstruction and probabilistic intent represen-
tations could further improve robustness under incomplete or am-
biguous observations. The framework may also be expanded to sup-
port continual and online adaptation, enabling agents to update in-
tent models without retraining when task objectives develop. In ad-
dition, extending temporal intent reconstruction to multi-agent or
collaborative settings offers a promising direction for coordinated
decision making in shared environments.
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