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ABSTRACT

App start-time is one of the most critical performance
indicators influencing user experience and retention on the i0S
platform. Empirical studies indicate that even minor delays—
such as an additional 500 milliseconds—can significantly
impact user engagement, satisfaction, and App Store ratings.
As i0S application architecture evolves to incorporate
increasingly sophisticated technologies—including Swift
Concurrency, SwiftUI, Metal, UIKit, Core Data, Firebase, and
a growing ecosystem of third-party SDKs—optimizing launch-
time performance becomes a multidimensional challenge.

This paper provides a comprehensive analysis of the iOS
application startup lifecycle, detailing each phase from system-
level initialization to the rendering of the first user interface
frame. It investigates performance bottlenecks using Apple’s
native profiling tools such as Instruments and Xcode Metrics,
and introduces a structured optimization framework that
classifies launch scenarios into cold, warm, and hot starts. The
proposed methodology emphasizes deferred initialization,
structured concurrency via async/await, and the separation of
critical-path tasks from background operations. Quantitative
results derived from production-scale applications demonstrate
significant improvements in startup time—up to 60%
reduction—validating the effectiveness of the framework. This
study offers practical guidance to i0S developers and
performance engineers seeking to improve application
responsiveness, scalability, and perceived quality across
diverse devices and OS versions.
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1.INTRODUCTION

i0S applications serve as the primary interface for enterprise
and consumer workflows. Start-time performance directly
impacts:

1. first-time adoption,

2. user retention,

3. App Store rankings, and
4. perceived responsiveness.

Apple defines app launch time as the duration between a
launch event and the first frame presented to the user (refer
Figure 1). In practice, this involves:

1. System-level initialization

2 Dynamic library loading

3 Obj-C + Swift runtime initialization

4. App delegate execution

5 Scene lifecycle setup

6 Ul rendering & first layout pass

7

Network + data preloads This paper dissects these
phases and demonstrates how i0S developers can
design startup paths that minimize waiting time.

This paper dissects these phases and demonstrates how i0S
developers can design startup paths that minimize work on the
main thread, avoid unnecessary synchronous initialization, and
leverage background queues safely.
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System Loader/ dyld

- shared cache mapping
- Swift/objc runtime setup

1
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App Binary Init
- Static initializers
- Class registrations

Root ViewController
Initialization

- Storyboard/SwiftUi view

creation

First Frame Render

2.UNDERSTANDING 10S START-TIME
TYPES

Apple categorizes launch states [2]:

2.1 Cold Start

Occurs when the app is not in memory.
Most expensive scenario.

Dominated by:

+ dyld shared cache bootstrapping

+ Library loading

« Static initializers

+ Swift runtime setup

« First Ul creation

2.2 Warm Start

App was previously killed but system retains cached libraries.
Warm start still performs:

» AppDelegate/SceneDelegate work

Ul reconstruction

Fig 1

2.3 Hot Start

App returns from background. App background to foreground
state change.

« State restoration
* Ul refresh/ authentication (when timed out)

* Pending network callbacks

3.TECHNICAL BOTTLENECKS IN
STARTUP

3.1.dyld + dynamic library loading

As the app grows there is need of third party SDKs and most of
them need at the start of the app, ex: Analytics SDKs, Crash
reporting SDKs and so on. Apple presentation provides a good
source of information about dyld [7].

It results in too many large static libraries that needs to be
loaded to memory and dyld spends almost 30-50 ms on an
average.

3.2.Static Initializers
Swift static/shared instance for a heavy manager is the biggest
blocker or performance reducer for app start launch.

let sharedInstance = HeavyManager()
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If HeavyManager() performs expensive tasks such as:
* Allocating memory buffers

* Reading from disk

* Parsing configuration files

* Opening a database

+ Initializing network clients

* Loading ML models

then all of that work happens before the app even reaches
didFinishLaunching. This directly delays the first frame
render. Static initializers always run on the main thread during
binary initialization. Which means app do not have opportunity
to offload the work to background queues or swift concurrency
(async/await) and this makes the delay unavoidable.

3.3.Main Thread Blocking task

UIKit or SwiftUI is the one which needs mostly the main-
thread execution to paint the Ul. But sometime developers
accidentally performs some operations which affects the over
start time. For example:

¢ Parsing a heavy JSON on main thread.
¢ [oad Sqlite or Core Data Database.
¢ Perform sync disk reads.

All these heavy work cause the main thread to block causing
the increased app launch time.

4.PROPOSED OPTIMIZATION
FRAMEWORKS

The proposed optimization framework has been tested with
applications and data for pre and post has been collected and is
present in this docs for analysis (refer Table 1 and Table
2).There are many third party framework and also apple
provided Xcode instruments can be used to check the
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performance improvements.

4.1.Phase-Based Initialization Model
Split launch tasks into

o Critical path

¢ Background Tasks

¢ Lazy On-Demand resources
Phase 0 : Critical path:

The aim should be launch the first Ul screen as soon as
possible. This includes and not restricted to

e Render first screen

¢ Show skeleton or loading UI with some activity.
e Initialize the essential services only

Phase 1: Background Tasks:

Perform all heavy works in a detached thread and with a
priority defined as *.background'. It might also worth adding a
small milliseconds delay to get the app perform the UI
rendering first instead of heavy loading work.

Task.detached(priority: .background) {
/I heavy loading work

}

Task categories:

e Database warm up.

¢ Third party SDKs initialization.

¢ Analytics boots

Phase2 : Lazy On-Demand Resources

Load only when user navigates to feature.

Initialize non-view functionality ex: Core Data uses or network
service usage until its first usage in app.

Main Thread Work

- Data cache
- DB warmup

Phase 1 Background Loader

Rnder UI

- Analytics init

Phase 2 Lazy Modules
- Feature modules
- Heavy ML models

Fig 2
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5. TECHNICAL IMPLEMENTATIONS
5.1 Handling Heavy Load in Background
Thread

This code was and is supposed to cause issue, since all this is
doing is performing all heavy work on main thread blocking
the UL. Apple explicitly states that the main thread should
handle only UI and critical user interactions, while long-
running or CPU-intensive tasks must be offloaded to
background threads, especially during app launch. [1]

func application(_:didFinishLaunching...) -> Bool {
let data = loadJSON() /I blocking
database = CoreDataStack() // blocking
analytics.start() /I blocking
return true

func application(_:didFinishLaunching...) -> Bool {

/I Critical Ul setup
setupRootView()

/I Phase 1 background work
DispatchQueue.global(qos: .userlnitiated).async {
prewarmCoreData()
preloadConfig()
AnalyticsEngine.shared.initialize()

}

return true

After (Optimized Code)
5.2 Using Swift6 concurrency:

@main @MainActor
class AppDelegate: UIResponder,
UlApplicationDelegate {

func application(_ application: UlApplication..) -> Bool {

/I perform the Ul rendering first
setupRootView()
Task.detached(priority: .background) { [weak self] in
self?. bootstrapAsyncServices()

}
}

func bootstrapAsyncServices() async {
async let db = preWarmDB()
async let cache = loadUserCache()
async let analytics = initializeAnalytics()

_ = await [db, cache, analytics]

}
}

Why this code helps in performance improvements?

The detached thread perform all its heavy work in a detached
thread with priority as background and it helps in keeping the
main thread unblocked for rendering the Ul work which is more
crucial.
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If there is needed of more performance turning the
bootstrapAsyncServices() work can be performed on another
task by adding a delay to start the heavy load.

func bootstrapAsyncServices() async {
Task(priority: .background) {
try await Task.sleep(for: .milliseconds(10))

async let db = preWarmDB()

async let cache = loadUserCache()
async let analytics = initializeAnalytics()
_ = await [db, cache, analytics]

try await Task.sleep(for: .milliseconds(10))

}
}

This delay can help the main thread to complete the process of
UI painting.

5.3 Reducing Library Load Time

Choosing a right library also important along with the making

the performance improvement.

* Avoid SDKs that add heavy Obj-C categories

» Use Swift Package Manager instead of .framework bundles

* Merge frameworks with Xcode’s “mergeable dynamic
libraries”

Lets talk about each point in a little details.
Avoid SDKs that add heavy Obj-C categories:

Objective-C categories, especially those adding methods to
UlKit/Foundation classes, impose load-time cost:

Why categories are expensive
Every Obj-C category causes:
1. Runtime category registration
2. Method list merging with existing classes
3. Selector resolution for each method
According to Apple developer documentations
| Category + method list registration occurs during dyld
initialization, before the app executes any code.
Each category adds micro to milliseconds, but SDKs hundreds
of categories, resulting in measurable delays.

Use Swift Package Manager instead of .framework
bundles:

While Integrating a library using Swift Package Manager, the
code is compile directly to app’s binary. This helps in reducing

¢ Number of fix ups.

¢ Number of dynamic libraries.
¢ Dynamic symbol resolution.

* Objective-C runtime metadata

While when app use ".framework® bundles, it has

¢ Separate dynamic libraries.
e It need dyld loading
¢ Often include resource bundles that require additional steps.

Merge frameworks with Xcode’s “Mergeable libraries”
Apple introduced from Xcode 15+ which got some extra
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metadata so that Xcode can help in merging multiple
frameworks into a single dynamic library. This helps in
reducing

* Number of Mach-o loads
* Amount of relocations.
¢ Number of init

5.4 SwiftUI Performance blockers

So far the above sections covers on app performance, threads
background benefits and so on, now lets talk about some UI
blockers and how they can cause performance issue, even
though not directly to launch time but from an over all app
performance.

Main Performance reducer:

* Performing a heavy Ul work on vStack instead of
LazyVStack.

* Keeping the viewBuilder result instead of keeping the
viewBuilder closure.

* Avoid re-rendering of the SwiftUl Body due to property
changes.

vStack vs LazyVStack:

A regular VStack renders all of its child views eagerly and if
app code has huge amount of subviews to render, it will cause
all child views to be created at once. It also leads to heavy CPU
+ memory usages and cause layout thrashing [4].

While on other hand a "LazyVStack™ creates view on demand
based on user scrolling and help in memory usages and scroll
performance. Apple introduced lazy stacks in SwiftUl to
improve scrolling and rendering performance for large content.
In a WWDC 2020 talk, Apple engineers demonstrated that
unlike a regular VStack (which creates all subviews at once and
can block the main thread for large data), a LazyVStack
renders its content incrementally as views become visible
[6].
ScrollView {
LazyVStack { I «7 renders views lazily
ForEach(0..<10_000) {iin
RowView(index: i)
}

}
}

@ViewBuilder:

Its recommended to run @ViewBuilder closures during the init
and store the results [5].

Closures aren’t comparable always, which means instead of
doing this

struct HomeView: View {
@viewBuilder var someview: () -> someViewType

}

Do this instead

struct HomeView: View {
@viewBuilder var someview: someViewType

}

6. 10S APP START TIME
PERFORMANCE ANALYSIS

Accurately measuring the launch-time performance of an i0OS
application is essential for understanding real-world user
experience, particularly in large-scale deployments. To
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evaluate the effect of the proposed optimization—offloading
heavy initialization work to a detached background thread—a
detailed analysis was conducted using metrics collected from
both third-party performance SDKs and Apple’s native tooling.

Several commercially available SDKs provide aggregated “app
health” insights, such as cold start time, warm start time, and
session-level performance data. These dashboards were
thoroughly examined to obtain longitudinal trends and device-
specific characteristics. In addition to third-party data, Apple’s
built-in performance reports accessible through Xcode —
Organizer — Metrics — Launch Time were also analyzed.
Apple’s WWDC 2019 talk “Optimizing App Launch”
introduced the dedicated App Launch instrument in
Instruments, which collects detailed metrics and visualizes the
timeline of launch phases (from dyld loading to first frame) [1].
The Organizer dashboards offer a reliable summary of launch-
time behavior across all devices running the released version of
the application.

After applying the optimization, a comparative evaluation of
performance before and after the change was carried out. The
results showed a substantial improvement in launch time,
with approximately ~60% reduction in the measured start
duration for the application under test. This improvement was
consistently observable across the evaluated dataset and was
primarily attributed to removing heavy synchronous work from
the main thread during application startup.

6.1 Methodology:

The analysis was performed on data collected from more than
20,000 real users, comprising approximately 2 million
application sessions. Measurements included sessions
spanning a broad range of iPhone models and multiple iOS
versions. The evaluation therefore reflects diverse device
capabilities and real-world operating conditions.

Figure 3 illustrates the comparison of average cold start and
warm start times before and after applying the optimization.
Both categories show a significant drop in measured time,
further confirming the effectiveness of the adopted strategy.

Before After
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Fig 3

6.1.1 Experimental Setup
The following experimental setup was used to quantify the
change in application start-time performance:

* Data Sources:
Measurements were obtained from (i) third-party
performance monitoring SDKs that provide app start
latency and session metrics, and (ii) Apple’s Xcode
Organizer, specifically the Metrics — Launch Time
reports for released builds [2].
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¢ Comparison Window:
Metrics were collected for two builds of the application:
a baseline version (before optimization) and an optimized
version (after moving heavy initialization logic to a
detached thread). Data for both versions was collected
across comparable time periods to avoid seasonal or
traffic-pattern biases.

e User Cohort:
The dataset consists of more than 20k unique devices
and 2M cumulative sessions, capturing a wide range of
hardware capabilities and OS configurations. This
diversity ensures robustness and generalizability of the
results.

© 108 version considered were from i0OS 18.0 to
108 26.0 and with different iPhone model (latest
3 models)

¢ Launch Types Evaluated:

©  Cold Launch: App starting from a terminated
state.

©  Warm Launch: App starting while partially
resident or cached in memory.
Both launch types were included because they
represent distinct user experiences and exhibit
different performance characteristics.

6.1.2 Performance Metric Definition
To ensure clarity and reproducibility, the following definitions
were used for performance measurement:

* App Start Time (Cold/Warm):
The time interval between the user initiating the app (e.g.,
tapping the icon) and the completion of the initial
rendering of the first interactive screen. This metric
includes internal application initialization, system-level
loading, and any synchronous work performed on the
main thread.

°©  Time from app icon tap —
application(_:didFinishLaunchingWithOptions
:) completed

¢ Measurement Granularity:
The data sources provide aggregated launch-time
statistics at the session level, including:

o P75 start time
o Distribution across user devices

©  Cold vs. warm start segmentation

* Reason for Metric Choice:
App start time is a primary determinant of perceived
responsiveness, and reducing it leads to improved user
satisfaction. Since the optimization targeted startup logic,
this metric directly represents the performance impact of
the implemented change.

6.1.3 Optimization Approach

The optimization methodology builds directly upon the
implementation changes described earlier in Section 5
(Technical Implementations). Specifically, the synchronous
heavy workloads originally executed inside
application(_:didFinishLaunchingWithOptions:) were
restructured according to the non-blocking concurrency model
outlined in Section 5.1 and Section 5.2.
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In the analysis phase, the objective was not to restate the
implementation but to evaluate how those architectural changes
influenced measurable launch-time performance.

6.1.3.1. Moving Blocking Tasks Off the Main
Thread

As detailed in Section 5.1, tasks such as JSON deserialization,
Core Data initialization, and analytics startup previously
executed  synchronously on  the main  thread.
These tasks were migrated to a detached background thread,
reducing main-thread occupancy during launch.

6.1.3.2. Concurrency-Based Parallel Initialization
(Refer Section 5.2)

The final version adopted Swift concurrency (Task. detached,
async let), enabling multiple independent startup operations to
run in parallel. This significantly reduced the cumulative wall-
clock time for background initialization.

6.1.3.3. Startup Resource Contention Reduction

A short delayed scheduling (5-10 ms), also described in
Section 5.2, was used to avoid immediate CPU/disk contention
with Ul rendering.
This contributed to smoother first-frame rendering and reduced
measured launch time.

6.1.3.4. Why These Changes Produce Measurable

Performance Gains
The launch-time improvements are attributable to three
measurable effects:

1. Main-thread unblocking, leading to earlier UI
availability

2. Parallel execution of tasks that were previously
sequential

3. Improved scheduler behavior using detached
background priorities

These architectural changes formed the foundation for the
improvements measured in the subsequent sections.

6.2 Data Statistics:

This section summarizes the dataset used for evaluating the
impact of the optimization techniques described earlier. The
objective of this dataset characterization is to ensure that the
analysis is statistically grounded, reproducible, and reflective
of real-world device and OS diversity.

6.2.1 Overall Dataset Summary
This subsection outlines the scope and composition of the
dataset collected from production devices. It describes user
coverage, session volume, time span, and device/OS diversity
to ensure that the evaluation captures representative behavior
across a broad range of environments.

Table 1
Metric Value
Total unique users 20K
Total sessions 2M

4 weeks pre-change
Time period
4 weeks post-change
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iPhonel8,1 - iPhonel8,4
Device range
iPhonel7,1 - iPhonel7.,4

OS versions i0S 18.x — 10S 26.x

6.2.2 App Start time Stats

This subsection reports the key aggregated performance
metrics collected before and after the optimization changes.
Percentile-based measures (P75) are selected, as they provide a
robust representation of typical user experience while reducing
sensitivity to extreme outliers.

Metric Before After
P75 cold start ~2.2s ~ 900 ms
P75 Warm start ~109s ~790 ms
Table 2

6.4 Result Interpretation

This section interprets the empirical results obtained from the
performance measurements. While Section 6.2 presents raw
metrics, the following subsections explain what the changes
imply for end-user experience, app responsiveness, and system
behavior.

6.4.1 Observed Performance Gain

The collected data demonstrates a substantial performance
improvement in both cold and warm app starts following the
introduction of asynchronous initialization and main-thread
load reduction.

¢ Cold-start P75 latency decreased from approximately
2.2 seconds to 0.9 seconds, representing a ~59%
reduction.

¢ Warm-start P75 latency decreased from
approximately 1.9 seconds to (.79 seconds,
representing a ~58% reduction.

These improvements were consistent across the majority of
device and OS variants included in the dataset. Importantly, the
benefit was observed not only in high-end models but also in
older devices where CPU and disk-I/O contention tend to be
more pronounced.
This confirms that the optimization approach generalizes well
across heterogeneous device landscapes.

6.4.2 Why the Optimization Worked

The measured performance gains can be directly linked to the
architectural improvements discussed in Section 5 and the
optimization strategy described in Section 6.1.3. In particular,
three system-level mechanisms explain the reduction in launch
latency:

1. Reduced Main-Thread Contention
Offloading  synchronous  operations  (database
initialization, configuration loading, analytics setup)
eliminated the primary bottleneck that delayed first-
frame rendering. The main thread was freed to focus
exclusively on presenting UL

2. Parallelism Through Structured Concurrency
The use of async let allowed previously sequential tasks
to run concurrently. This reduced total startup processing
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time, as independent tasks no longer blocked one
another.

3. Improved OS Scheduler Behavior
Executing heavy tasks in a detached background priority
thread avoided competition with launch-critical UI tasks.
The optional small delay (5-10 ms) further minimized
early resource contention during the critical
layout/rendering window.

4. Elimination of Launch-Time 1/O Spikes
Deferring expensive file reads and Core Data warm-ups
reduced initial file system load, which is a common
source of cold-start delays.

Collectively, these factors resulted in a cleaner separation
between Ul-critical and non-critical startup operations, leading
to the significant improvements observed in the data.

6.5 Threats to Validity

Although the evaluation demonstrates clear performance
improvements, certain limitations must be acknowledged to
fully contextualize the results. These threats to validity outline
factors that may influence the accuracy or generalizability of
the findings.

6.5.1 Internal Validity

Concurrent production changes:
Other app or infrastructure modifications occurring
during the data collection window may have influenced
performance, though none were intentionally introduced.

Instrumentation overhead:
Metrics sourced from third-party SDKs and Apple's
Organizer may exhibit minor sampling or aggregation
biases.

6.5.2 External Validity

Usage-pattern variations:
Differences in user behavior (e.g., frequency of app
closures, backgrounding patterns) may affect cold/warm
start proportions.

Environmental factors:
Network speed, device storage state, and background
system activity can influence launch performance and
may vary across users.

6.5.3 Device and OS Fragmentation

Although the dataset includes a wide range of devices and OS
versions, certain rare device types or older OS versions (below
i0S 18) were underrepresented and may behave differently.

6.5.4 Data Collection Bias

Performance reporting depends on the accuracy of start-time
measurement hooks implemented by SDKs. Any deviation
from recommended Apple guidelines could introduce slight
measurement variation.

7. DISCUSSION

Optimizing startup time has compounding benefits:

* Lower churn

* Faster first interaction

* Better Lighthouse/App Store metrics
* Reduced memory footprint

Technical analysis reveals most delays come from developer-
caused synchronous work rather than system overhead.
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Using structured concurrency and modular lazy loading
significantly improves performance.

But it also comes with a caveat. Threading and swift
concurrency is surely have proved to be effective but it required
very careful thread management to avoid race conditions. It
becomes more complicated specially with use of @MainActor
and and global actor uses.

7. LIMITATIONS:

Old i0OS devices specially older than A12 will exhibit some
smaller improvements.

e Swift-UI heavy apps might require some additional layout -
level tuning along with above mentioned improvements.

e User of too much of actors will cause actor hop and will
reduce the performance, so it needs a careful look.

8. CONCLUSION:

Optimizing an i0S app start time is a multi layer challenge that
involves architecture, code design, dependency management,
knowledge of tooling like “Time Profiler” and system-level
behaviors. This paper introduce a system framework that can
be used for a significant improvements across multiple devices.

This paper also demonstrates that inefficiencies in launch-time
of'an i10S app do not stem from a single bottleneck but from an
multiple factors which include but not restricted to

* Framework loading.

* Static or shared instance initialization of heavy class.
* Blocking operation on main thread.

* UI composition costs.

The proposed approach of combining static code analysis,
dependency  slimming, strategic lazy initialization,
background-thread—driven bootstrapping, and Time-profile
instrumentation to check for result yielded significant
improvements, reducing the start time by up to ~60% across
tested devices. These results validate that systematic launch
optimization has a positive impact on not only performance but
also energy consumption, and user trust regarding the overall
application quality.

These findings have implications beyond performance
engineering: they drive architectural decisions directly. By
prioritizing modular code boundaries, reducing unnecessary
linking of frameworks, and isolating expensive initializers,
developers can build systems that scale well as an application
continues to evolve. Furthermore, with iOS increasingly
embracing asynchronous-first paradigms through Swift
Concurrency and lazy-loading mechanisms, proactive start-
time engineering becomes even more critical.

Caution needs to be taken while integrating bloated sdks
(analytics, adds and also screen profilers) as mentioned to this
journal [8], as those can measurably degrade launch times.

Also care needs to be taken to avoid over optimizations, since
that might cause additional energy costs if it cross to the OS or
need additional computations[9],[10],[11].
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