
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

24

iOS App Start-Time Performance: A Comprehensive
Analysis and Optimization Framework

Prasenjit Sinha
Senior iOS Engineer

California, USA, 94587

Ravikiran Karanjkar
Quality Assurance Manager

Amazon Inc, Sunnyvale, USA

Apalak Dutta
Lead App Engineer

West Bengal, India, 700145

ABSTRACT

App start-time is one of the most critical performance

indicators influencing user experience and retention on the iOS

platform. Empirical studies indicate that even minor delays—

such as an additional 500 milliseconds—can significantly

impact user engagement, satisfaction, and App Store ratings.

As iOS application architecture evolves to incorporate

increasingly sophisticated technologies—including Swift

Concurrency, SwiftUI, Metal, UIKit, Core Data, Firebase, and

a growing ecosystem of third-party SDKs—optimizing launch-

time performance becomes a multidimensional challenge.

This paper provides a comprehensive analysis of the iOS

application startup lifecycle, detailing each phase from system-

level initialization to the rendering of the first user interface

frame. It investigates performance bottlenecks using Apple’s

native profiling tools such as Instruments and Xcode Metrics,

and introduces a structured optimization framework that

classifies launch scenarios into cold, warm, and hot starts. The

proposed methodology emphasizes deferred initialization,

structured concurrency via async/await, and the separation of

critical-path tasks from background operations. Quantitative

results derived from production-scale applications demonstrate

significant improvements in startup time—up to 60%

reduction—validating the effectiveness of the framework. This

study offers practical guidance to iOS developers and

performance engineers seeking to improve application

responsiveness, scalability, and perceived quality across

diverse devices and OS versions.

General Terms
Performance, Optimization, Benchmarking

Keywords

iOS, App Launch Time, Cold Start, Instruments, Concurrency,

Optimization Framework.

1.INTRODUCTION
iOS applications serve as the primary interface for enterprise

and consumer workflows. Start-time performance directly

impacts:

1. first-time adoption,

2. user retention,

3. App Store rankings, and

4. perceived responsiveness.

Apple defines app launch time as the duration between a

launch event and the first frame presented to the user (refer

Figure 1). In practice, this involves:

1. System-level initialization

2. Dynamic library loading

3. Obj-C + Swift runtime initialization

4. App delegate execution

5. Scene lifecycle setup

6. UI rendering & first layout pass

7. Network + data preloads This paper dissects these

phases and demonstrates how iOS developers can

design startup paths that minimize waiting time.

This paper dissects these phases and demonstrates how iOS

developers can design startup paths that minimize work on the

main thread, avoid unnecessary synchronous initialization, and

leverage background queues safely.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

25

Fig 1

2.UNDERSTANDING IOS START-TIME

TYPES
Apple categorizes launch states [2]:

2.1 Cold Start
Occurs when the app is not in memory.

Most expensive scenario.

Dominated by:

• dyld shared cache bootstrapping

• Library loading

• Static initializers

• Swift runtime setup

• First UI creation

2.2 Warm Start

App was previously killed but system retains cached libraries.

Warm start still performs:

• AppDelegate/SceneDelegate work

• UI reconstruction

2.3 Hot Start
App returns from background. App background to foreground

state change.

• State restoration

• UI refresh/ authentication (when timed out)

• Pending network callbacks

3.TECHNICAL BOTTLENECKS IN

STARTUP

3.1.dyld + dynamic library loading
As the app grows there is need of third party SDKs and most of

them need at the start of the app, ex: Analytics SDKs, Crash

reporting SDKs and so on. Apple presentation provides a good

source of information about dyld [7].

It results in too many large static libraries that needs to be

loaded to memory and dyld spends almost 30-50 ms on an

average.

3.2.Static Initializers
Swift static/shared instance for a heavy manager is the biggest

blocker or performance reducer for app start launch.

let sharedInstance = HeavyManager()

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

26

If HeavyManager() performs expensive tasks such as:

• Allocating memory buffers

• Reading from disk

• Parsing configuration files

• Opening a database

• Initializing network clients

• Loading ML models

then all of that work happens before the app even reaches

didFinishLaunching. This directly delays the first frame

render. Static initializers always run on the main thread during

binary initialization. Which means app do not have opportunity

to offload the work to background queues or swift concurrency

(async/await) and this makes the delay unavoidable.

3.3.Main Thread Blocking task
UIKit or SwiftUI is the one which needs mostly the main-

thread execution to paint the UI. But sometime developers

accidentally performs some operations which affects the over

start time. For example:

• Parsing a heavy JSON on main thread.

• Load Sqlite or Core Data Database.

• Perform sync disk reads.

All these heavy work cause the main thread to block causing

the increased app launch time.

4.PROPOSED OPTIMIZATION

FRAMEWORKS
The proposed optimization framework has been tested with

applications and data for pre and post has been collected and is

present in this docs for analysis (refer Table 1 and Table

2).There are many third party framework and also apple

provided Xcode instruments can be used to check the

performance improvements.

4.1.Phase-Based Initialization Model
Split launch tasks into

• Critical path

• Background Tasks

• Lazy On-Demand resources

Phase 0 : Critical path:

The aim should be launch the first UI screen as soon as

possible. This includes and not restricted to

• Render first screen

• Show skeleton or loading UI with some activity.

• Initialize the essential services only

Phase 1: Background Tasks:

Perform all heavy works in a detached thread and with a

priority defined as `.background`. It might also worth adding a

small milliseconds delay to get the app perform the UI

rendering first instead of heavy loading work.

Task.detached(priority: .background) {
 // heavy loading work
}

Task categories:

• Database warm up.

• Third party SDKs initialization.

• Analytics boots

Phase2 : Lazy On-Demand Resources

Load only when user navigates to feature.

Initialize non-view functionality ex: Core Data uses or network

service usage until its first usage in app.

Fig 2

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

27

5. TECHNICAL IMPLEMENTATIONS

5.1 Handling Heavy Load in Background

Thread
This code was and is supposed to cause issue, since all this is

doing is performing all heavy work on main thread blocking

the UI. Apple explicitly states that the main thread should

handle only UI and critical user interactions, while long-

running or CPU-intensive tasks must be offloaded to

background threads, especially during app launch. [1]

func application(_:didFinishLaunching...) -> Bool {
 let data = loadJSON() // blocking
 database = CoreDataStack() // blocking
 analytics.start() // blocking
 return true

func application(_:didFinishLaunching...) -> Bool {

 // Critical UI setup
 setupRootView()

 // Phase 1 background work
 DispatchQueue.global(qos: .userInitiated).async {
 prewarmCoreData()
 preloadConfig()
 AnalyticsEngine.shared.initialize()
 }

 return true
}

After (Optimized Code)

5.2 Using Swift6 concurrency:

@main @MainActor
class AppDelegate: UIResponder,
UIApplicationDelegate {

 func application(_ application: UIApplication..) -> Bool {

 // perform the UI rendering first
setupRootView()
Task.detached(priority: .background) { [weak self] in
 self?. bootstrapAsyncServices()
 }

}

func bootstrapAsyncServices() async {
 async let db = preWarmDB()
 async let cache = loadUserCache()
 async let analytics = initializeAnalytics()

 _ = await [db, cache, analytics]
}

}

Why this code helps in performance improvements?

The detached thread perform all its heavy work in a detached

thread with priority as background and it helps in keeping the

main thread unblocked for rendering the UI work which is more

crucial.

If there is needed of more performance turning the

bootstrapAsyncServices() work can be performed on another

task by adding a delay to start the heavy load.

func bootstrapAsyncServices() async {
 Task(priority: .background) {
 try await Task.sleep(for: .milliseconds(10))

 async let db = preWarmDB()
 async let cache = loadUserCache()
 async let analytics = initializeAnalytics()
 _ = await [db, cache, analytics]

 try await Task.sleep(for: .milliseconds(10))
 }
}

This delay can help the main thread to complete the process of

UI painting.

5.3 Reducing Library Load Time
Choosing a right library also important along with the making

the performance improvement.

• Avoid SDKs that add heavy Obj-C categories

• Use Swift Package Manager instead of .framework bundles

• Merge frameworks with Xcode’s “mergeable dynamic

libraries”

Lets talk about each point in a little details.

Avoid SDKs that add heavy Obj-C categories:

Objective-C categories, especially those adding methods to

UIKit/Foundation classes, impose load-time cost:

Why categories are expensive

Every Obj-C category causes:

1. Runtime category registration

2. Method list merging with existing classes

3. Selector resolution for each method

According to Apple developer documentations

| Category + method list registration occurs during dyld

initialization, before the app executes any code.

Each category adds micro to milliseconds, but SDKs hundreds

of categories, resulting in measurable delays.

Use Swift Package Manager instead of .framework

bundles:

While Integrating a library using Swift Package Manager, the

code is compile directly to app’s binary. This helps in reducing

• Number of fix ups.

• Number of dynamic libraries.

• Dynamic symbol resolution.

• Objective-C runtime metadata

While when app use `.framework` bundles, it has

• Separate dynamic libraries.

• It need dyld loading

• Often include resource bundles that require additional steps.

Merge frameworks with Xcode’s “Mergeable libraries”

Apple introduced from Xcode 15+ which got some extra

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

28

metadata so that Xcode can help in merging multiple

frameworks into a single dynamic library. This helps in

reducing

• Number of Mach-o loads

• Amount of relocations.

• Number of init

5.4 SwiftUI Performance blockers
So far the above sections covers on app performance, threads

background benefits and so on, now lets talk about some UI

blockers and how they can cause performance issue, even

though not directly to launch time but from an over all app

performance.

Main Performance reducer:

• Performing a heavy UI work on vStack instead of

LazyVStack.

• Keeping the viewBuilder result instead of keeping the

viewBuilder closure.

• Avoid re-rendering of the SwiftUI Body due to property

changes.

vStack vs LazyVStack:

A regular VStack renders all of its child views eagerly and if

app code has huge amount of subviews to render, it will cause

all child views to be created at once. It also leads to heavy CPU

+ memory usages and cause layout thrashing [4].

While on other hand a `LazyVStack` creates view on demand

based on user scrolling and help in memory usages and scroll

performance. Apple introduced lazy stacks in SwiftUI to

improve scrolling and rendering performance for large content.

In a WWDC 2020 talk, Apple engineers demonstrated that

unlike a regular VStack (which creates all subviews at once and

can block the main thread for large data), a LazyVStack

renders its content incrementally as views become visible

[6].

ScrollView {

 LazyVStack { // renders views lazily

 ForEach(0..<10_000) { i in
 RowView(index: i)
 }
 }
}

@ViewBuilder:
Its recommended to run @ViewBuilder closures during the init

and store the results [5].

Closures aren’t comparable always, which means instead of

doing this

struct HomeView: View {
 @viewBuilder var someview: () -> someViewType
}

Do this instead

struct HomeView: View {
 @viewBuilder var someview: someViewType
}

6. IOS APP START TIME

PERFORMANCE ANALYSIS
Accurately measuring the launch-time performance of an iOS

application is essential for understanding real-world user

experience, particularly in large-scale deployments. To

evaluate the effect of the proposed optimization—offloading

heavy initialization work to a detached background thread—a

detailed analysis was conducted using metrics collected from

both third-party performance SDKs and Apple’s native tooling.

Several commercially available SDKs provide aggregated “app

health” insights, such as cold start time, warm start time, and

session-level performance data. These dashboards were

thoroughly examined to obtain longitudinal trends and device-

specific characteristics. In addition to third-party data, Apple’s

built-in performance reports accessible through Xcode →

Organizer → Metrics → Launch Time were also analyzed.

Apple’s WWDC 2019 talk “Optimizing App Launch”

introduced the dedicated App Launch instrument in

Instruments, which collects detailed metrics and visualizes the

timeline of launch phases (from dyld loading to first frame) [1].

The Organizer dashboards offer a reliable summary of launch-

time behavior across all devices running the released version of

the application.

After applying the optimization, a comparative evaluation of

performance before and after the change was carried out. The

results showed a substantial improvement in launch time,

with approximately ~60% reduction in the measured start

duration for the application under test. This improvement was

consistently observable across the evaluated dataset and was

primarily attributed to removing heavy synchronous work from

the main thread during application startup.

6.1 Methodology:
The analysis was performed on data collected from more than

20,000 real users, comprising approximately 2 million

application sessions. Measurements included sessions

spanning a broad range of iPhone models and multiple iOS

versions. The evaluation therefore reflects diverse device

capabilities and real-world operating conditions.

Figure 3 illustrates the comparison of average cold start and

warm start times before and after applying the optimization.

Both categories show a significant drop in measured time,

further confirming the effectiveness of the adopted strategy.

Fig 3

6.1.1 Experimental Setup
The following experimental setup was used to quantify the

change in application start-time performance:

• Data Sources:

Measurements were obtained from (i) third-party

performance monitoring SDKs that provide app start

latency and session metrics, and (ii) Apple’s Xcode

Organizer, specifically the Metrics → Launch Time

reports for released builds [2].

0

650

1300

1950

2600

3250

Cold Start Warm Start

T
im

e
A

x
is

 (
m

s)

Before After

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

29

• Comparison Window:

Metrics were collected for two builds of the application:

a baseline version (before optimization) and an optimized

version (after moving heavy initialization logic to a

detached thread). Data for both versions was collected

across comparable time periods to avoid seasonal or

traffic-pattern biases.

• User Cohort:

The dataset consists of more than 20k unique devices

and 2M cumulative sessions, capturing a wide range of

hardware capabilities and OS configurations. This

diversity ensures robustness and generalizability of the

results.

◦ iOS version considered were from iOS 18.0 to

iOS 26.0 and with different iPhone model (latest

3 models)

• Launch Types Evaluated:

◦ Cold Launch: App starting from a terminated

state.

◦ Warm Launch: App starting while partially

resident or cached in memory.

Both launch types were included because they

represent distinct user experiences and exhibit

different performance characteristics.

6.1.2 Performance Metric Definition
To ensure clarity and reproducibility, the following definitions

were used for performance measurement:

• App Start Time (Cold/Warm):

The time interval between the user initiating the app (e.g.,

tapping the icon) and the completion of the initial

rendering of the first interactive screen. This metric

includes internal application initialization, system-level

loading, and any synchronous work performed on the

main thread.

◦ Time from app icon tap →
application(_:didFinishLaunchingWithOptions

:) completed

• Measurement Granularity:

The data sources provide aggregated launch-time

statistics at the session level, including:

◦ P75 start time

◦ Distribution across user devices

◦ Cold vs. warm start segmentation

• Reason for Metric Choice:

App start time is a primary determinant of perceived

responsiveness, and reducing it leads to improved user

satisfaction. Since the optimization targeted startup logic,

this metric directly represents the performance impact of

the implemented change.

6.1.3 Optimization Approach
The optimization methodology builds directly upon the

implementation changes described earlier in Section 5

(Technical Implementations). Specifically, the synchronous

heavy workloads originally executed inside

application(_:didFinishLaunchingWithOptions:) were

restructured according to the non-blocking concurrency model

outlined in Section 5.1 and Section 5.2.

In the analysis phase, the objective was not to restate the

implementation but to evaluate how those architectural changes

influenced measurable launch-time performance.

6.1.3.1. Moving Blocking Tasks Off the Main

Thread
As detailed in Section 5.1, tasks such as JSON deserialization,

Core Data initialization, and analytics startup previously

executed synchronously on the main thread.

These tasks were migrated to a detached background thread,

reducing main-thread occupancy during launch.

6.1.3.2. Concurrency-Based Parallel Initialization

(Refer Section 5.2)
The final version adopted Swift concurrency (Task. detached,

async let), enabling multiple independent startup operations to

run in parallel. This significantly reduced the cumulative wall-

clock time for background initialization.

6.1.3.3. Startup Resource Contention Reduction
A short delayed scheduling (5–10 ms), also described in

Section 5.2, was used to avoid immediate CPU/disk contention

with UI rendering.

This contributed to smoother first-frame rendering and reduced

measured launch time.

6.1.3.4. Why These Changes Produce Measurable

Performance Gains
The launch-time improvements are attributable to three

measurable effects:

1. Main-thread unblocking, leading to earlier UI

availability

2. Parallel execution of tasks that were previously

sequential

3. Improved scheduler behavior using detached

background priorities

These architectural changes formed the foundation for the

improvements measured in the subsequent sections.

6.2 Data Statistics:
This section summarizes the dataset used for evaluating the

impact of the optimization techniques described earlier. The

objective of this dataset characterization is to ensure that the

analysis is statistically grounded, reproducible, and reflective

of real-world device and OS diversity.

6.2.1 Overall Dataset Summary
This subsection outlines the scope and composition of the

dataset collected from production devices. It describes user

coverage, session volume, time span, and device/OS diversity

to ensure that the evaluation captures representative behavior

across a broad range of environments.

Table 1

Metric Value

Total unique users 20K

Total sessions 2M

Time period
4 weeks pre-change

4 weeks post-change

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

30

Device range
iPhone18,1 - iPhone18,4

iPhone17,1 - iPhone17,4

OS versions iOS 18.x → iOS 26.x

6.2.2 App Start time Stats
This subsection reports the key aggregated performance

metrics collected before and after the optimization changes.

Percentile-based measures (P75) are selected, as they provide a

robust representation of typical user experience while reducing

sensitivity to extreme outliers.

Metric Before After

P75 cold start ~ 2.2s ~ 900 ms

P75 Warm start ~ 1.9s ~790 ms

 Table 2

6.4 Result Interpretation
This section interprets the empirical results obtained from the

performance measurements. While Section 6.2 presents raw

metrics, the following subsections explain what the changes

imply for end-user experience, app responsiveness, and system

behavior.

6.4.1 Observed Performance Gain
The collected data demonstrates a substantial performance

improvement in both cold and warm app starts following the

introduction of asynchronous initialization and main-thread

load reduction.

• Cold-start P75 latency decreased from approximately

2.2 seconds to 0.9 seconds, representing a ~59%

reduction.

• Warm-start P75 latency decreased from

approximately 1.9 seconds to 0.79 seconds,

representing a ~58% reduction.

These improvements were consistent across the majority of

device and OS variants included in the dataset. Importantly, the

benefit was observed not only in high-end models but also in

older devices where CPU and disk-I/O contention tend to be

more pronounced.

This confirms that the optimization approach generalizes well

across heterogeneous device landscapes.

6.4.2 Why the Optimization Worked
The measured performance gains can be directly linked to the

architectural improvements discussed in Section 5 and the

optimization strategy described in Section 6.1.3. In particular,

three system-level mechanisms explain the reduction in launch

latency:

1. Reduced Main-Thread Contention

Offloading synchronous operations (database

initialization, configuration loading, analytics setup)

eliminated the primary bottleneck that delayed first-

frame rendering. The main thread was freed to focus

exclusively on presenting UI.

2. Parallelism Through Structured Concurrency

The use of async let allowed previously sequential tasks

to run concurrently. This reduced total startup processing

time, as independent tasks no longer blocked one

another.

3. Improved OS Scheduler Behavior

Executing heavy tasks in a detached background priority

thread avoided competition with launch-critical UI tasks.

The optional small delay (5–10 ms) further minimized

early resource contention during the critical

layout/rendering window.

4. Elimination of Launch-Time I/O Spikes

Deferring expensive file reads and Core Data warm-ups

reduced initial file system load, which is a common

source of cold-start delays.

Collectively, these factors resulted in a cleaner separation

between UI-critical and non-critical startup operations, leading

to the significant improvements observed in the data.

6.5 Threats to Validity
Although the evaluation demonstrates clear performance

improvements, certain limitations must be acknowledged to

fully contextualize the results. These threats to validity outline

factors that may influence the accuracy or generalizability of

the findings.

6.5.1 Internal Validity
• Concurrent production changes:

Other app or infrastructure modifications occurring

during the data collection window may have influenced

performance, though none were intentionally introduced.

• Instrumentation overhead:

Metrics sourced from third-party SDKs and Apple's

Organizer may exhibit minor sampling or aggregation

biases.

6.5.2 External Validity
• Usage-pattern variations:

Differences in user behavior (e.g., frequency of app

closures, backgrounding patterns) may affect cold/warm

start proportions.

• Environmental factors:

Network speed, device storage state, and background

system activity can influence launch performance and

may vary across users.

6.5.3 Device and OS Fragmentation
Although the dataset includes a wide range of devices and OS

versions, certain rare device types or older OS versions (below

iOS 18) were underrepresented and may behave differently.

6.5.4 Data Collection Bias
Performance reporting depends on the accuracy of start-time

measurement hooks implemented by SDKs. Any deviation

from recommended Apple guidelines could introduce slight

measurement variation.

7. DISCUSSION
Optimizing startup time has compounding benefits:

• Lower churn

• Faster first interaction

• Better Lighthouse/App Store metrics

• Reduced memory footprint

Technical analysis reveals most delays come from developer-

caused synchronous work rather than system overhead.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

31

Using structured concurrency and modular lazy loading

significantly improves performance.

But it also comes with a caveat. Threading and swift

concurrency is surely have proved to be effective but it required

very careful thread management to avoid race conditions. It

becomes more complicated specially with use of @MainActor

and and global actor uses.

7. LIMITATIONS:
• Old iOS devices specially older than A12 will exhibit some

smaller improvements.

• Swift-UI heavy apps might require some additional layout -

level tuning along with above mentioned improvements.

• User of too much of actors will cause actor hop and will

reduce the performance, so it needs a careful look.

8. CONCLUSION:
Optimizing an iOS app start time is a multi layer challenge that

involves architecture, code design, dependency management,

knowledge of tooling like “Time Profiler” and system-level

behaviors. This paper introduce a system framework that can

be used for a significant improvements across multiple devices.

This paper also demonstrates that inefficiencies in launch-time

of an iOS app do not stem from a single bottleneck but from an

multiple factors which include but not restricted to

• Framework loading.

• Static or shared instance initialization of heavy class.

• Blocking operation on main thread.

• UI composition costs.

The proposed approach of combining static code analysis,

dependency slimming, strategic lazy initialization,

background-thread–driven bootstrapping, and Time-profile

instrumentation to check for result yielded significant

improvements, reducing the start time by up to ~60% across

tested devices. These results validate that systematic launch

optimization has a positive impact on not only performance but

also energy consumption, and user trust regarding the overall

application quality.

These findings have implications beyond performance

engineering: they drive architectural decisions directly. By

prioritizing modular code boundaries, reducing unnecessary

linking of frameworks, and isolating expensive initializers,

developers can build systems that scale well as an application

continues to evolve. Furthermore, with iOS increasingly

embracing asynchronous-first paradigms through Swift

Concurrency and lazy-loading mechanisms, proactive start-

time engineering becomes even more critical.

Caution needs to be taken while integrating bloated sdks

(analytics, adds and also screen profilers) as mentioned to this

journal [8], as those can measurably degrade launch times.

Also care needs to be taken to avoid over optimizations, since

that might cause additional energy costs if it cross to the OS or

need additional computations[9],[10],[11].

9. ACKNOWLEDGMENTS
The author expresses deep gratitude towards the reviewers and

editors of the International Journal of Computer Applications

for their valuable feedback and guidance.

Along with that author acknowledges to all those iOS app

engineers of Apple community who has provided

documentation and conferences to share the knowledge with

the world. WWDC technical sessions and the broader iOS

performance engineering community for publishing research,

tools and best practices that contributed to the methodology

that is used in this study.

10. REFERENCES
[1] Apple Inc., Optimizing App Launch, in Apple Worldwide

Developers Conference (WWDC), 2019. Available:

https://developer.apple.com/videos/play/wwdc2019/423/

[2] Apple developer documentation, Reducing your app’s

launch time. Available:

https://developer.apple.com/documentation/xcode/reduci

ng-your-app-s-launch-time

[3] Apple Inc., Link fast: Improve build and launch times. In

Apple Worldwide Developers Conference (WWDC),

2022 Available:

https://developer.apple.com/videos/play/wwdc2022/1103

62/

[4] Apple Inc., Optimize SwiftUI performance with

Instruments in Apple Worldwide Developers Conference

(WWDC), 2025 Available:

https://developer.apple.com/videos/play/wwdc2025/306/

[5] Apple Inc., Optimize your app’s speed and efficiency

conference Available:

https://www.youtube.com/live/yXAQTIKR8fk?si=GuSm

BzBr9RTn5jHW

[6] Apple Inc., Stack, Grids and Outlines in SwiftUI

Available:

https://developer.apple.com/videos/play/wwdc2020/1003

1/#:~:text=What%20I%20want%20is%20a,my%20VSta

ck%20with%20a%20LazyVStack

[7] Apple Inc, App Start time: Past, Present and Future

Available:

https://nonstrict.eu/wwdcindex/wwdc2017/413/?t=577

[8] Exploring effects of Ad schemes on the performance cost

of mobile phones. Available:

https://dl.acm.org/doi/epdf/10.1145/3243218.3243221

[9] A Survey of performance Optimization for Mobile

applications, Available:

https://solar.cs.ucl.ac.uk/pdf/AppPerformanceOptimizati

onSurvey.pdf

[10] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin,

and D. Watson, “Informed mobile prefetching,” in

Proceedings of the 10th international conference on

Mobile systems, applications, and services. ACM, 2012,

pp. 155–168.

[11] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast

app launching for mobile devices using predictive user

context,” in Proceedings of the 10th international

conference on Mobile systems, applications, and services.

ACM, 2012, pp. 113–126.

IJCATM : www.ijcaonline.org

