
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

55

Securing RESTful APIs with Middleware-based Threat
Mitigation

Mohammed Ali Rizvi
MTech Scholar

Department of Computer Science and Engineering
Jai Narain College of Technology (JNCT), Bhopal

Bhopal, India

Neha Jain
Assistant Professor

Department of Computer Science and Engineering
Jai Narain College of Technology (JNCT), Bhopal

Bhopal, India

ABSTRACT

With the rapid adoption of RESTful APIs in web, mobile, and

cloud-based ecosystems, ensuring their security has become a

critical challenge. Despite the availability of established

standards such as OAuth 2.0, TLS, and JWT, real-world

implementations often remain vulnerable due to inadequate

input validation, weak authentication practices, and insufficient

logging or monitoring mechanisms. This research proposes a

middleware-based security framework designed to enhance

REST API resilience through layered protection and real-time

threat mitigation. The middleware acts as an intermediary

security layer that validates incoming requests, enforces

authentication and authorization policies, and performs

intelligent logging and anomaly detection before allowing data

flow to backend services. Key contributions include the design

and implementation of a modular middleware architecture,

seamless integration with existing authentication systems, and

a unified logging and alerting mechanism to support proactive

incident response. To evaluate the framework, controlled local

experiments were conducted using simulated attack payloads

targeting common vulnerabilities such as SQL injection, cross-

site scripting, and insecure object references. The results

demonstrate a significant reduction in successful attack

attempts and minimal performance overhead, indicating that

middleware-based security can provide an effective and

practical defense for RESTful APIs without compromising

efficiency [1][7].

General Terms

API Security, Web Security, Middleware Systems, Backend

Systems, Software Engineering.

Keywords

RESTful APIs, Middleware Security, Threat Mitigation, API

Authentication, Rate Limiting, Injection Attacks, JWT, Web

Application Security.

1. INTRODUCTION
Over the past decade, RESTful APIs have become the

backbone of digital communication between applications and

services. From mobile apps and cloud platforms to IoT systems

and enterprise software, REST APIs enable seamless data

exchange through lightweight, stateless HTTP-based

interactions. Their simplicity, scalability, and compatibility

have made REST the dominant architectural choice over

alternatives such as SOAP. As organizations increasingly shift

toward microservices and cloud-native infrastructures, APIs

have evolved from being auxiliary components to becoming

critical interfaces that directly impact functionality, user

experience, and business security [18][19]. However, this

growing reliance on APIs has also expanded the potential attack

surface. Modern applications often expose multiple endpoints,

each interacting with sensitive data and authentication systems.

As a result, securing RESTful APIs is no longer just a technical

concern—it is a foundational requirement for maintaining

system integrity, data confidentiality, and user trust [1][14].

Despite the maturity of security protocols such as HTTPS,

OAuth 2.0, and JWT, real-world breaches continue to expose

weaknesses in API implementations. Many developers focus

primarily on functionality and performance, leaving security

considerations to be handled late in the development lifecycle.

This leads to issues such as broken authentication, insecure

direct object references (IDOR), improper input validation, and

inadequate logging or monitoring [6][9][10]. Moreover,

existing security mechanisms are often fragmented across

different layers—authentication handled at the application

level, rate limiting at the gateway, and logging managed by

third-party tools. This fragmented approach not only

complicates maintenance but also creates blind spots where

attacks can go undetected. There is a need for an integrated,

middleware-based framework that enforces security policies

consistently across all API interactions while maintaining

modularity and ease of deployment. This research is motivated

by the practical observation that security should not be an

afterthought but a built-in feature of the API infrastructure. By

embedding security logic directly into the middleware,

developers can achieve real-time threat mitigation, consistent

policy enforcement, and transparent logging—all without

significant changes to existing codebases. This study aims to

design and evaluate a middleware-based security solution for

RESTful APIs. The specific objectives of this research are as

follows: (1) to develop a modular middleware component that

implements core security functions such as request validation,

authentication, authorization, and anomaly logging; (2) to

evaluate its effectiveness against common attack vectors,

including SQL injection, cross-site scripting (XSS), and

insecure direct object references (IDOR), through controlled

local simulations; and (3) to assess the performance impact of

the proposed middleware in terms of latency and throughput

under simulated workloads. These objectives collectively seek

to demonstrate that middleware-based protection can enhance

API security without introducing excessive computational

overhead or architectural complexity. The scope of this

research is confined to controlled, local testing environments

using simulated attack payloads and sample REST API

endpoints. The study focuses on proof-of-concept

implementation rather than production deployment. While the

results provide valuable insights into security effectiveness and

performance trade-offs, they do not encompass large-scale

distributed testing or integration with live enterprise systems.

The middleware is evaluated primarily for its capacity to detect

and block common web-based attacks, not for advanced or

zero-day exploits.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

56

2. Background and Fundamentals
Modern web applications increasingly rely on APIs as the

backbone of communication between distributed components,

mobile clients, and microservices. As organizations shift

toward service-oriented and cloud-native architectures, APIs

have become both essential infrastructure and a significant

attack surface. Securing these interfaces requires a clear

understanding of the architectural foundations that shape how

APIs operate, how they expose resources, and where

vulnerabilities typically emerge. This section provides the

theoretical groundwork for the design and security

considerations of RESTful systems—examining their historical

evolution, comparing them with earlier models such as SOAP,

and analyzing how architectural constraints like statelessness

influence authentication and session management. By

establishing these fundamentals, we create the necessary

context for understanding the importance and role of the

middleware-based security framework proposed in this

research.

2.1 REST Architecture and Design

Principles
Representational State Transfer, or REST, emerged in the early

2000s through Roy Fielding’s doctoral dissertation as an

architectural style for distributed systems on the web. REST

was not intended as a specific protocol but rather as a set of

design constraints that encourage simplicity, scalability, and

independence between client and server components. At its

core, REST relies on standard web technologies—principally

HTTP—to enable communication between software systems.

Each interaction revolves around the transfer of representations

of resources, typically in lightweight formats such as JSON or

XML. The philosophy behind REST emphasizes uniform

interfaces and stateless communication. This means that each

request from a client to a server must contain all the information

necessary to process the request, without relying on stored

context on the server. REST also embraces a client–server

separation, where clients handle user interfaces and servers

manage data and logic. This clear division allows each side to

evolve independently, improving maintainability and

scalability. Furthermore, REST encourages cacheable

responses, layered system organization, and a focus on resource

identification through URIs (Uniform Resource Identifiers).

From a security perspective, these design features have both

advantages and challenges. The uniform interface simplifies

the enforcement of consistent security controls—

authentication, authorization, and input validation can all be

standardized across endpoints. Yet, the openness and

accessibility of REST APIs also make them prime targets for

exploitation, especially when security is not built into the

architecture from the start.

2.2 REST vs. SOAP: Security

Considerations and Trade-offs
Before REST’s widespread adoption, SOAP (Simple Object

Access Protocol) was the dominant method for enabling

communication between web services. SOAP follows a stricter,

XML-based protocol with well-defined security extensions

such as WS-Security, WS-Policy, and WS-Trust. These

extensions provide built-in mechanisms for message integrity,

confidentiality, and token-based authentication, making SOAP

inherently feature-rich from a security standpoint. However,

SOAP’s verbosity, heavy XML overhead, and rigid structure

often made it cumbersome and slower to implement,

particularly for mobile or lightweight applications. REST, by

contrast, gained popularity because of its simplicity,

performance efficiency, and human-readable data formats.

Instead of encapsulating data inside XML envelopes, REST

leverages the existing semantics of HTTP—methods such as

GET, POST, PUT, and DELETE—to represent actions on

resources. This makes REST APIs faster to develop and easier

to integrate across platforms. However, REST does not

prescribe any built-in security mechanism beyond what the

HTTP layer provides. Developers must rely on HTTPS for

transport-level security and implement their own schemes for

authentication, authorization, and data validation. As a result,

REST’s flexibility can become its weakness: without consistent

enforcement of standards, different services may implement

security in incompatible or incomplete ways. The trade-off

between SOAP’s built-in security and REST’s simplicity

underscores a central theme of this research—the need for

modular, middleware-based security frameworks that bring

consistency and protection without sacrificing REST’s agility

[4][17].

2.3 Statelessness and Its Influence on

Authentication and Session Handling
One of REST’s defining constraints is statelessness—each

request must be self-contained and independent. The server

does not store session information between requests, which

greatly improves scalability and reliability because any server

in a cluster can handle any request. Yet, this same property

complicates authentication and session management.

Traditional web applications often maintain user sessions

through server-side storage—session IDs or cookies that

preserve state across multiple interactions. In a RESTful

system, this is discouraged. Instead, authentication must be

achieved through tokens or credentials included with every

request. Common approaches include API keys, OAuth 2.0

bearer tokens, or JSON Web Tokens (JWTs). These tokens

encapsulate the user’s identity and authorization claims and

must be verified at every interaction. While token-based

authentication aligns with REST’s stateless design, it

introduces new responsibilities. Tokens must be securely

generated, transmitted over encrypted channels, and validated

efficiently to prevent replay attacks or token theft. Moreover,

since REST servers do not remember previous interactions,

revoking or expiring tokens can become complex. Many

implementations address this by maintaining a lightweight

token blacklist or short expiration windows combined with

refresh tokens. From a security standpoint, statelessness

demands precision: authentication must be reliable on a per-

request basis, and any lapse in token validation exposes the

system to impersonation or privilege escalation. This paper’s

middleware framework directly addresses this challenge by

embedding token verification and access control checks at a

centralized interception layer.

2.4 Core REST Components: Endpoints,

HTTP Methods, Headers, and

Authentication Models
A RESTful API is composed of several key elements that

together define how clients interact with server resources.

Endpoints serve as unique URIs representing resources—such

as users, products, or services—on which operations can be

performed. The design of endpoints has important security

implications, as overly permissive or predictable endpoints can

lead to enumeration attacks or unintended data exposure.

Effective endpoint design therefore involves clear versioning

strategies, enforcement of least-privilege access, and careful

control over exposed data fields. HTTP methods (verbs) define

the type of operation performed on a resource. The GET

method is used exclusively to retrieve data and must never

modify server state, whereas POST is used to create or process

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

57

new data. The PUT and PATCH methods enable updates to

existing resources, while DELETE is responsible for resource

removal. Security best practices recommend validating method

usage and ensuring idempotency where applicable, as attackers

often exploit misconfigured endpoints that accept unsafe

methods or ignore validation constraints. HTTP headers play

an equally critical role in securing API communication. They

may include authentication tokens, content-type declarations,

cross-origin resource sharing (CORS) rules, and cache control

directives. Poorly configured headers can lead to information

leakage or enable attacks such as cross-site scripting (XSS) and

cross-site request forgery (CSRF). Implementing strict header

policies—such as Content-Security-Policy, X-Frame-Options,

and X-Content-Type-Options—helps mitigate these risks.

Authentication models determine how clients prove their

identity when interacting with RESTful APIs. Common

approaches include Basic Authentication, in which credentials

are encoded in request headers and therefore require HTTPS

for security; API keys, which are often used for service-to-

service communication but provide limited access control

granularity; OAuth 2.0 and OpenID Connect, which enable

delegated and federated identity management; and JSON Web

Tokens (JWTs), which support stateless, portable, and

cryptographically signed identity claims. Each model

represents a trade-off between ease of implementation and

strength of protection, and in practice, robust systems

frequently combine multiple techniques—such as OAuth for

authorization, JWT for tokenized identity, and TLS for

transport-level encryption.

3. Related Work
As API-driven ecosystems have matured, a substantial body of

research has emerged focusing on securing communication

channels, enforcing authentication, and protecting API

resources from evolving threats. Existing literature spans

multiple domains—from foundational security protocols to

specialized middleware techniques—reflecting the increasing

complexity of modern API architectures. While standardized

frameworks such as OAuth, TLS, and JWT provide essential

building blocks, numerous studies highlight persistent gaps in

implementation consistency, runtime monitoring, and

contextual threat detection. In parallel, researchers have

evaluated middleware as a promising layer for integrating

security logic without complicating core application code. This

section synthesizes the most relevant contributions in these

areas, examining current standards, identifying limitations in

practical deployment, and reviewing previous middleware-

based approaches that inform the direction of the proposed

framework [1][3][14].

3.1 Existing API Security Standards and

Protocols
Securing REST APIs has been a central focus of web

application security research for more than a decade. As APIs

have become the backbone of modern applications—powering

mobile apps, microservices, and cloud-based systems—several

authentication and transport security mechanisms have evolved

to protect data in transit and control access to critical endpoints

[6][9].

3.1.1 Authentication and Identity Management
The earliest and simplest form of authentication is Basic

Authentication, which transmits a user’s credentials (username

and password) encoded in Base64 with each request. While

easy to implement, this approach is inherently insecure if not

combined with transport layer encryption, as credentials can be

easily intercepted. To provide better control, API keys became

widely adopted—unique tokens that identify and authenticate a

client application. Although API keys improve traceability,

they still lack fine-grained control and are often static, making

them vulnerable if exposed in public repositories or logs. To

overcome these challenges, the industry moved toward token-

based and delegated authorization models. OAuth 2.0 emerged

as a widely accepted standard, allowing applications to access

resources on behalf of users without directly handling their

credentials. By introducing authorization grants, access tokens,

and scopes, OAuth 2.0 provided flexibility and security suited

to distributed systems. Building on OAuth, OpenID Connect

(OIDC) added an identity layer, enabling federated

authentication using tokens known as ID tokens. This

integration allows services to verify user identity and obtain

basic profile information securely, supporting single sign-on

(SSO) scenarios and reducing password fatigue.

3.1.2 Tokenization and Stateless Security
The introduction of JSON Web Tokens (JWTs) marked a shift

toward stateless authentication. JWTs encapsulate claims about

the user and are cryptographically signed, allowing APIs to

validate requests without maintaining session state on the

server. This model aligns perfectly with REST principles and

microservice architectures, as it supports scalability and

decoupled components. However, improper JWT handling—

such as weak signing algorithms, lack of token expiration, or

missing signature verification—can expose APIs to serious

security risks.

3.1.3 Transport Layer Security
At the network level, HTTPS and Transport Layer Security

(TLS) are the foundational mechanisms for ensuring

confidentiality and integrity of API communications. TLS

provides end-to-end encryption between the client and the API

server, protecting against man-in-the-middle (MITM) attacks,

eavesdropping, and tampering. Modern TLS configurations

also enforce certificate pinning, forward secrecy, and strong

cipher suites to resist known cryptographic attacks. Despite

these measures, many API implementations still rely on

outdated TLS versions or self-signed certificates, weakening

overall protection.

3.1.4 Access Control Models
To govern what authenticated users can do, APIs typically rely

on access control frameworks. Role-Based Access Control

(RBAC) assigns permissions to roles (such as admin,

developer, or guest), simplifying management for large

systems. However, RBAC can be too rigid for fine-grained or

context-dependent permissions. Attribute-Based Access

Control (ABAC) extends this by incorporating attributes—such

as user roles, resource types, and environmental conditions—

to make more dynamic authorization decisions. In theory,

ABAC provides stronger contextual control, but in practice, it

introduces complexity and requires well-defined attribute

policies, which are often lacking in lightweight API

frameworks.

3.2 Identified Limitations and

Fragmentation in Current Frameworks
While the ecosystem of security standards is mature, the

practical implementation of API protection remains

fragmented. Many developers adopt isolated solutions—such

as enabling HTTPS or adding a simple API key check—

without integrating these measures into a cohesive security

model. Frameworks like OAuth 2.0 and OpenID Connect

require careful configuration and understanding, leading to

inconsistent adoption. As a result, many APIs still rely on

outdated authentication methods or incomplete security setups.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

58

Another major limitation lies in middleware support and

compatibility. Although middleware components exist in most

frameworks (e.g., Express.js, Django, Flask), they are often

used for routing or logging rather than security enforcement.

Developers typically bolt on security plugins post-

development, rather than designing APIs with security in mind

from the start. This reactive approach leaves gaps—especially

for input validation, rate limiting, and real-time attack

detection. Furthermore, there is a lack of unified visibility

across authentication, authorization, and transport layers. Logs

are often scattered across multiple services, making it difficult

to correlate security events. Without centralized monitoring or

alerting, intrusion attempts and abnormal traffic patterns

frequently go unnoticed. Existing testing tools focus on

penetration testing or static analysis, but few provide

continuous runtime protection, particularly for locally hosted

or development-stage APIs. Lastly, existing frameworks

struggle to adapt to the rapid evolution of API threats.

Vulnerabilities such as Broken Object Level Authorization

(BOLA), Insecure Direct Object References (IDOR), and API

injection attacks continue to appear despite established

standards. This suggests that conventional mechanisms—

focused primarily on authentication and encryption—are

insufficient for handling contextual or behavioral security risks.

There is an evident need for middleware that can dynamically

detect, log, and block malicious behavior at runtime,

independent of the underlying protocol or authentication

method.

3.3 Review of Prior Middleware-Based

Approaches in API Security
Several researchers and practitioners have explored

middleware-based strategies to address these gaps. Middleware

operates at an ideal layer in the request lifecycle—between the

client and the core business logic—allowing it to inspect,

modify, or reject incoming requests before they reach critical

resources. Prior work has demonstrated middleware’s

effectiveness in rate limiting, input sanitization, and token

validation. For example, studies in Node.js and Express

ecosystems have shown that middleware can intercept requests

to detect suspicious payloads indicative of SQL injection or

cross-site scripting (XSS) attempts. Similarly, security-

oriented middleware like Helmet, CORS handlers, and CSRF

protectors provide partial defenses, but they primarily target

specific attack vectors rather than offering a holistic threat

management framework. Academic research has also proposed

modular middleware frameworks capable of enforcing policies

based on contextual information—such as request frequency,

origin, or user role—though these have seen limited adoption

outside experimental environments. However, most existing

middleware implementations focus on prevention rather than

detection and response. Few integrate comprehensive logging,

alerting, or adaptive mitigation mechanisms. Additionally,

prior approaches often require deep integration with specific

frameworks, reducing portability and making them difficult to

reuse across projects. The gap, therefore, lies in developing a

unified, framework-agnostic middleware solution that not only

enforces security policies but also monitors behavior, logs

events, and reacts dynamically to potential attacks. Such an

approach would bridge the divide between static configuration

and real-time threat intelligence—bringing modern security

practices closer to the application layer in a scalable, developer-

friendly form [2][3][17]. Several studies have systematically

classified and analyzed common threat categories affecting

modern web applications and APIs, highlighting injection

attacks, authorization flaws, and denial-of-service risks as

persistent challenges [8].

4. PROBLEM DEFINITION
Although the landscape of API security has evolved

significantly, a persistent gap remains between established best

practices and the realities of how REST APIs are built, tested,

and deployed in modern environments. The flexibility and

scalability that make REST widely adopted also introduce

architectural weaknesses that are often overlooked during

development. Existing standards—such as OAuth, TLS, and

token-based authentication—provide essential foundations, yet

they fail to guarantee security when misconfigured,

inconsistently implemented, or deployed without continuous

monitoring. Moreover, API ecosystems have grown

increasingly complex, involving distributed microservices,

multiple authentication layers, and diverse client applications.

This complexity creates numerous opportunities for

misalignment, oversight, and fragmented protection. As a

result, many APIs remain vulnerable not because of a lack of

available security tools, but because current development and

deployment practices do not provide holistic, real-time, or

environment-agnostic protection. This chapter defines the core

security problems that motivate the need for a unified,

middleware-driven approach capable of addressing

vulnerabilities across the entire request lifecycle [5][7][15].

Prior research in high-assurance systems emphasizes the

importance of structured security reasoning and assurance

mechanisms, yet such approaches are rarely applied at the API

middleware level in practical deployments [24].

4.1 Common Security Gaps in REST APIs
Despite significant advances in API security frameworks and

authentication standards, real-world REST API deployments

remain vulnerable to a range of common and recurring security

flaws. These weaknesses are often the result of development

practices that prioritize functionality, scalability, or rapid

release cycles over systematic threat modeling. Because REST

APIs are by nature open, stateless, and widely distributed, they

present a large and constantly exposed attack surface.

4.1.1 Input Validation and Injection Attacks

Improper input handling continues to be one of the most

prevalent weaknesses in REST services. APIs that accept

parameters directly from clients—whether in JSON bodies,

query strings, or headers—often fail to sanitize or validate

those inputs thoroughly. Attackers exploit this negligence to

inject malicious code or crafted payloads that can trigger SQL

injection (SQLi), cross-site scripting (XSS), or command

injection vulnerabilities. Even mature frameworks may leave

subtle gaps, for example when user inputs are concatenated into

database queries or used to construct dynamic file paths.

4.1.2 Broken Object-Level Authorization (BOLA)

and IDOR
A major threat specific to REST APIs is Insecure Direct Object

Reference (IDOR), now categorized under OWASP’s “Broken

Object Level Authorization” class. APIs frequently expose

predictable URLs or identifiers such as /users/123 or

/orders/45, assuming that authorization checks will be handled

elsewhere. When these checks are incomplete, attackers can

manipulate object IDs to gain unauthorized access to other

users’ data. Because REST APIs are designed to be stateless

and resource-centric, missing or improperly enforced access

control can easily result in data leakage at scale.

4.1.3 Session Management and Token Security
 In token-based systems, particularly those relying on JWTs or

API keys, improper handling of tokens—such as storing them

in client-side cookies without adequate expiration or signature

verification—creates opportunities for replay attacks and token

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

59

theft. Developers sometimes overlook token invalidation

mechanisms, leaving old tokens active indefinitely. Similarly,

systems that fail to rotate or refresh tokens securely allow long-

term unauthorized access even after credentials are

compromised.

4.1.4 Insufficient Rate Limiting and Brute-Force

Resistance
Because REST APIs are built to handle many concurrent

requests, developers often underestimate the importance of rate

limiting. Without middleware enforcing request thresholds per

user or IP, attackers can perform brute-force attacks, credential

stuffing, or resource exhaustion (DoS) with relative ease. Lack

of rate limiting also contributes to enumeration attacks, where

adversaries methodically probe endpoints to discover valid

resource identifiers or hidden parameters [16].

4.1.5 Weak Logging and Error Handling
Another subtle but damaging weakness is inconsistent logging.

Many APIs log general system errors but omit detailed

security-relevant events, such as failed login attempts, repeated

requests from suspicious origins, or malformed payloads. Even

when logs exist, they may not be aggregated or monitored,

leaving administrators unaware of ongoing attacks. Similarly,

overly verbose error messages can expose sensitive

information—such as database schemas or stack traces—that

attackers can exploit during reconnaissance. Collectively, these

vulnerabilities underscore a central issue: most REST APIs rely

on ad-hoc or partial security layers, leaving large portions of

the request lifecycle unmonitored and unprotected.

4.2 Challenges in Current Testing and

Deployment Practices
Even when developers recognize the importance of API

security, testing and deployment practices often fail to uncover

or mitigate these vulnerabilities effectively. One major reason

is the fragmentation between development and security

workflows. Security testing is frequently performed as a one-

time event—during staging or after deployment—rather than as

a continuous, integrated part of development. This reactive

approach means that vulnerabilities are often identified only

after an attack or penetration test has occurred.

4.2.1 Limited Scope of Automated Testing
Existing automated scanners and static analysis tools (like

OWASP ZAP, Burp Suite, or Snyk) can detect a subset of

known vulnerabilities, but they rarely capture context-specific

logic flaws such as broken authorization or excessive data

exposure. Moreover, these tools require careful configuration

and often produce false positives or miss issues hidden within

custom middleware. Developers, pressed for time, may ignore

or dismiss such warnings rather than investigate them fully

[11][12][13].

4.2.2 Inconsistent Security Across Environments
Testing environments rarely mirror production systems. APIs

tested locally may have debugging enabled, verbose logging,

or simplified authentication—all of which differ in production.

As a result, security assumptions validated in one environment

may not hold in another. Containerized and microservice-based

deployments add further complexity, as each service may have

its own security configuration and version of middleware,

making it difficult to enforce consistent policies.

4.2.3 Lack of Real-Time Detection and Mitigation
Most traditional testing approaches focus on identifying

vulnerabilities, not mitigating them. Even when issues are

found, there is often a delay before patches are deployed.

During this window, APIs remain exposed. Additionally, few

systems integrate runtime defenses capable of detecting attacks

as they happen. For example, a middleware that monitors

unusual input patterns, request frequencies, or access

anomalies could block or log threats before they escalate—but

such systems are rarely implemented at the local or

development level.

4.2.4 Cultural and Process Barriers
Finally, there is a human factor. Many development teams view

security as a specialized discipline rather than a shared

responsibility. With tight deadlines, API developers prioritize

feature delivery, leaving comprehensive threat modeling and

code review for later. This results in a “security after

deployment” mindset, where vulnerabilities are patched

reactively instead of being prevented through proactive,

middleware-level controls.

4.3 Research Goals and Measurable

Outcomes
In response to these gaps, this research aims to design,

implement, and evaluate a middleware-based security

framework specifically for REST APIs. The core objective is

to demonstrate that integrating lightweight, modular

middleware can provide proactive threat mitigation—

detecting, blocking, and logging malicious requests before they

reach critical business logic. The proposed framework will be

evaluated through local testing and controlled attack

simulations to measure its real-world impact. The measurable

goals include:

4.3.1 Attack Detection and Mitigation Efficiency
Quantifying how many simulated attacks (SQLi, XSS, IDOR,

brute-force attempts) are blocked or neutralized by the

middleware compared to an unprotected baseline.

4.3.2 Reduction in Successful Exploits
Calculating the percentage decrease in successful attack

attempts after deploying the security middleware.

4.3.3 Performance Overhead
Measuring any additional latency or resource consumption

introduced by the middleware, ensuring that security does not

compromise efficiency.

4.3.4 Accuracy and False Positives
Evaluating how well the middleware distinguishes between

legitimate requests and malicious traffic to avoid disrupting

normal operations.

4.3.5 Comprehensive Logging and Alerting
Assessing the middleware’s ability to capture meaningful

security events and generate actionable insights for

administrators.

The overarching research hypothesis is that a middleware-

centric, security-first approach can effectively bridge the gap

between theory and practice—offering continuous protection

during both development and production phases, without

requiring major architectural changes. Through this work, the

study seeks to validate the middleware approach as a practical,

adaptable, and measurable improvement over conventional

API security methods.

5. PROPOSED METHODOLOGY
The proposed methodology outlines the architectural,

procedural, and evaluative foundations of a middleware-based

security framework designed to protect RESTful APIs from

common and emerging threats. This section explains the

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

60

system’s underlying architecture, guiding design principles,

middleware mechanisms, and its integration with

authentication, authorization, and monitoring systems. It also

presents the testing and evaluation approach used to validate

the framework’s effectiveness against simulated attacks in a

controlled local environment.

5.1 System Architecture Overview
The architecture of the proposed framework follows a modular,

layered design that integrates security directly into the

communication flow between clients and RESTful endpoints.

Rather than relying solely on external security tools or network-

level configurations, this model embeds defensive logic at the

application middleware layer, ensuring that every incoming

and outgoing request passes through a security checkpoint

before reaching business logic. At its core, the architecture

comprises three main layers:

5.1.1 Client Interaction Layer

Representing applications, users, or automated scripts sending

requests to the API.

5.1.2 Security Middleware Layer
Serving as the heart of the proposed solution. This middleware

inspects, validates, and filters every request and response,

performing both preventive and detective security functions.

5.1.3 Application and Data Layer
Consisting of the main API endpoints, controllers, and

databases, where the actual operations—such as authentication,

data retrieval, or updates—occur.

Requests initiated by clients first pass through the middleware,

where they are parsed, logged, and validated. The middleware

executes a series of security checks, including input validation,

token verification, and anomaly detection. Only requests that

meet the defined security policies are forwarded to the backend

application logic. Suspicious or malicious requests are blocked

and recorded in the system logs, while alerts may be generated

for further investigation. The framework is designed to be

technology-agnostic and easily deployable in existing

Node.js/Express-based APIs. This allows developers to

integrate it with minimal code modification while maintaining

performance and scalability. Furthermore, the system

architecture supports the inclusion of additional components—

such as caching, load balancing, or AI-based intrusion

detection modules—without altering the middleware’s core

structure.

5.2 Security-First Design Principles
The proposed framework adheres to security-first design

principles, ensuring that every decision in its architecture and

implementation prioritizes security without sacrificing

maintainability or usability. Several key principles guide this

methodology.

5.2.1 Defense-in-Depth
Rather than depending on a single layer of protection, the

framework employs multiple, overlapping mechanisms. Input

validation, authentication, authorization, rate limiting, and

anomaly detection each serve as independent safeguards. Even

if one layer fails or is bypassed, others remain active to mitigate

the threat.

5.2.2 Least Privilege and Zero Trust
Every request is treated as potentially untrusted. The

middleware does not assume legitimacy based on network

origin or user session. Instead, every token, header, and

parameter must be explicitly verified. Internally, services are

restricted to the minimal permissions necessary to perform their

functions, reducing the potential damage from compromised

components.

5.2.3 Secure by Default
Default configurations favor security. Logging and validation

features are enabled automatically, error messages are sanitized

to prevent information leakage, and strict content-type

enforcement prevents requests that deviate from expected

formats.

5.2.4 Modularity and Extensibility
The middleware is built using a plug-in architecture, allowing

each function—such as input sanitization or rate limiting—to

exist as an independent module. This ensures that developers

can update or extend specific functions without reworking the

entire system.

5.2.5 Observability and Accountability
Security is not effective without visibility. The system logs

every meaningful event—such as failed authentication, unusual

request frequency, or detected injection attempts—enabling

real-time monitoring and forensic analysis. Each log entry is

timestamped and categorized by severity to aid in later auditing

or visualization through monitoring dashboards. By embedding

these principles directly into the middleware’s logic, the

framework transforms security from an afterthought into a

built-in property of the software lifecycle.

5.3 Middleware-Based Threat Mitigation
The middleware-based threat mitigation engine is the

centerpiece of this methodology. It functions as a security

gatekeeper, positioned between the client and the application

logic. This approach ensures that every request undergoes

rigorous scrutiny before any sensitive operation or data

retrieval occurs.

5.3.1 Request Validation and Sanitization
The middleware inspects all incoming data—query strings,

parameters, headers, and payloads—for patterns associated

with common attacks. For instance, it detects SQL injection

attempts through regex-based pattern matching and input

normalization. Similarly, cross-site scripting (XSS) payloads

are neutralized by escaping or rejecting inputs containing

suspicious tags or scripts.

5.3.2 Rate Limiting and Anomaly Detection
To prevent brute-force and denial-of-service attacks, the

middleware tracks request frequency per IP or token within

defined time windows. Exceeding the allowed threshold

triggers temporary blocking or alert generation. Over time,

anomaly detection rules can be refined based on real-world

traffic, allowing adaptive thresholds to distinguish between

legitimate bursts and malicious flooding.

5.3.3 IP Reputation and Blacklisting
The system maintains an internal registry of known malicious

IP addresses. Requests originating from flagged sources are

immediately rejected, while new suspicious patterns are logged

and added dynamically for future filtering.

5.3.4 Payload Integrity and Schema Validation
Incoming JSON payloads are validated against predefined

schemas. This not only enforces data integrity but also prevents

deserialization attacks and resource misuse. The validation

layer ensures that only properly structured requests reach the

business logic, reducing both accidental and deliberate misuse

of API endpoints.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

61

5.3.5 Response Filtering
The middleware also monitors outgoing responses to prevent

data leakage. Sensitive fields such as tokens, passwords, or

internal identifiers are stripped or masked before being sent to

clients. This holistic filtering mechanism forms the basis for

real-time prevention of common web-based threats, enabling

continuous protection without relying on external proxies or

gateways.

5.4 Authentication and Authorization

Layer
While the middleware performs general request filtering,

authentication and authorization form the second line of

defense. These layers ensure that even valid-looking requests

cannot access unauthorized resources

5.4.1 Authentication Layer
The framework supports multiple authentication schemes,

including API keys, OAuth 2.0 bearer tokens, and JWT-based

identity verification. The middleware intercepts every

incoming request and validates the accompanying credentials.

For JWTs, it checks the token’s signature, issuer, audience, and

expiration claims. Expired or tampered tokens are rejected

immediately, and invalid attempts are logged for monitoring.

5.4.2 Authorization Layer
After verifying identity, the middleware enforces fine-grained

access control using Role-Based Access Control (RBAC) and

Attribute-Based Access Control (ABAC) models. Each

endpoint is annotated with required roles or policies. When a

request is made, the middleware evaluates whether the

authenticated user’s role or attributes satisfy the access

condition. This two-tiered structure—authentication first,

authorization second—ensures that only authenticated and

properly authorized entities can access sensitive API routes.

Together with the middleware’s earlier request validation, this

creates a robust multi-stage filtration pipeline.

5.5 Logging, Monitoring, and Alerting

Systems
Effective security does not end with prevention—it requires

continuous awareness. Logging, monitoring, and alerting are

therefore built as integral components of the proposed

framework.

5.5.1 Logging Subsystem
Every request, regardless of its outcome, generates structured

log entries containing metadata such as timestamps, IP

addresses, endpoints accessed, request methods, and the

validation outcome. Security-relevant events—like repeated

failed logins, high-frequency requests, or detected injections—

are tagged with higher severity levels.

5.5.2 Monitoring and Visualization
Logs are streamed into local dashboards built with tools like

ELK Stack (Elasticsearch, Logstash, and Kibana) or Grafana

for visualization. This enables developers to observe live

traffic, identify trends, and investigate anomalies. For instance,

spikes in failed authentication attempts or unusual patterns in

specific endpoints can reveal ongoing brute-force attacks or

reconnaissance activity.

5.5.3 Alerting Mechanisms
Critical security events trigger real-time alerts. Depending on

configuration, the middleware can send notifications through

channels such as email, webhooks, or Slack integrations. This

ensures that administrators are immediately informed of

potential incidents and can take action before significant

damage occurs. The logging and monitoring infrastructure also

doubles as an analytical resource, helping improve future

iterations of the middleware through data-driven insights.

5.6 Security Testing Framework (Manual

+ Automated)
To validate the effectiveness of the proposed middleware, a

comprehensive security testing framework combining both

manual and automated approaches is adopted.

5.6.1 Manual Testing
Manual penetration testing is conducted using tools like

Postman and cURL to simulate different types of malicious

payloads—SQL injection strings, XSS scripts, and malformed

requests. This allows the researcher to observe how the

middleware reacts to intentional misuse and whether it blocks,

sanitizes, or logs the attempts.

5.6.2 Automated Testing
Automated scans are performed using OWASP ZAP and Burp

Suite, configured to crawl the API endpoints and generate

attack payloads systematically. These tests measure the

middleware’s response times, false positive rates, and blocking

accuracy under varying load conditions.

5.6.3 Static and Dynamic Testing
Static testing evaluates the middleware’s source code to ensure

that its logic is secure, maintainable, and free of hardcoded

secrets or insecure dependencies. Dynamic testing, by contrast,

focuses on runtime behavior—verifying how well the

middleware protects endpoints during actual network

interactions. This blended testing framework provides both

precision and coverage, ensuring that the middleware performs

effectively under realistic attack scenarios.

5.7 Local Testing Strategy and Evaluation

Metrics
The evaluation phase focuses on assessing the middleware’s

real-world practicality and performance using locally simulated

attack scenarios. This controlled setup allows repeatable

experiments without risking production data or systems.

5.7.1 Local Environment Setup
The system is deployed on a Node.js and Express-based local

server, with endpoints representing common API operations

such as user registration, login, and data retrieval. The testing

environment includes logging, request-tracking modules, and

local databases to record metrics.

5.7.2 Simulated Attack Scenarios
A library of malicious payloads—including SQL injection

attempts, cross-site scripting vectors, brute-force login

requests, and IDOR manipulations—is executed against both

unprotected and protected versions of the API. This

comparison reveals the middleware’s defensive impact.

5.7.3 Evaluation Metrics
Evaluation metrics were defined to quantitatively measure both

security effectiveness and performance overhead. These

metrics include the Attack Block Rate (ABR), which represents

the percentage of malicious requests successfully detected and

blocked; the False Positive Rate (FPR), indicating the

proportion of legitimate requests incorrectly blocked; Latency

Overhead (LO), measuring the average increase in response

time introduced by middleware processing; and Logging

Accuracy (LA), which reflects the completeness and clarity of

security-related events captured during simulated attacks. By

analyzing these parameters, the study evaluates not only the

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

62

middleware’s security performance but also its operational

feasibility for real-world API deployments.

6. IMPLEMENTATION
The implementation phase translates the conceptual security

model into a functioning, testable system environment. This

stage aims to validate the middleware-based REST API

protection approach by creating a controlled experimental

setup, integrating security layers, and simulating both

legitimate and malicious requests. The following subsections

describe the development environment, middleware

implementation, authentication and logging integration, attack

simulation strategies, comparative workflows, and false-

positive management mechanisms.

6.1 Development Environment and Tools
The development environment was structured around widely

adopted and open-source technologies to ensure reproducibility

and practical deployment relevance. The core API was

developed using Node.js and Express.js, selected for their

asynchronous event-driven architecture, extensive middleware

support, and ease of integration with third-party modules.

Node.js provided the runtime environment, enabling JavaScript

execution on the server side, while Express.js served as the

application framework, simplifying the setup of RESTful

endpoints and route handling. For testing and debugging,

Postman was used extensively to design and execute HTTP

requests, monitor response headers, latency, and status codes,

and manage authentication tokens during repeated test cycles.

Additionally, a suite of Python-based test scripts was created

using the requests library to automate repetitive attacks and

normal request sequences. These scripts simulated multiple

concurrent clients sending both benign and malicious payloads

to the API endpoints, which allowed for a realistic evaluation

of the middleware’s detection and response mechanisms. The

server was deployed locally using Docker containers to ensure

environmental consistency and isolation from host-level

variations. Containerization also simplified the reconfiguration

of system parameters when switching between baseline and

middleware-protected scenarios.

Fig 1: Development Environment Overview

6.2 Middleware Implementation Details
The middleware forms the cornerstone of the proposed security

model. It was designed as a modular layer that intercepts every

HTTP request before it reaches the core business logic. Each

module within the middleware performs a specific function,

such as request validation, input sanitization, authentication

enforcement, and logging. The request lifecycle begins when

an incoming HTTP request hits the Express.js router. The

middleware immediately examines request headers,

parameters, and body content for anomalies or policy

violations. Regular expressions, parameter whitelisting, and

signature-based pattern matching were used to detect known

attack vectors such as SQL injection strings, command

injection patterns, and malformed JSON payloads. A second

middleware module enforces rate limiting and IP-based

throttling to prevent brute-force or denial-of-service attempts.

Suspicious clients that exceed threshold limits are

automatically blacklisted for a configurable duration. To

maintain flexibility, all middleware configurations were stored

in an external JSON policy file, allowing rapid updates to

security rules without modifying source code. This design

enables continuous improvement of the security posture as new

threats emerge.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

63

Fig 2: Middleware Request Processing Flow

6.3 Integration with Authentication and

Logging Layers
The middleware layer was integrated as a core component

within the overall authentication, authorization, and monitoring

framework of the proposed system. Its primary responsibility

was to act as an intermediary between incoming client requests

and the underlying API endpoints, ensuring that every request

was subjected to consistent security checks before being

processed further. This design choice allowed security controls

to be centralized, reducing redundancy across individual

endpoints while improving maintainability and scalability.

Authentication within the middleware was implemented using

JSON Web Tokens (JWT), enabling a stateless and scalable

validation mechanism suitable for modern RESTful

architectures. Upon successful authentication, clients were

issued signed tokens containing encoded user claims, which

were then included in the Authorization header of subsequent

requests. For each incoming request, the middleware extracted

and verified the token using a predefined secret key. Requests

associated with expired, malformed, or tampered tokens were

immediately rejected, preventing unauthorized access attempts

from reaching protected resources. In addition to blocking such

requests, the middleware recorded detailed information about

the failure, including timestamp, request metadata, and reason

for rejection, ensuring traceability during later analysis.

Beyond authentication, the middleware was closely coupled

with a comprehensive logging and monitoring subsystem

designed to capture both normal and anomalous behavior.

Structured logging was implemented using the Winston

logging library, which provided flexibility in defining log

formats and severity levels. MongoDB was used as the backend

datastore for persisting log records, enabling efficient querying

and aggregation during post-experimental evaluation. Each

significant event—such as authentication failures, blocked

requests, abnormal payload patterns, or repeated access

violations—was classified into predefined severity levels,

including INFO, WARNING, and CRITICAL. This

categorization made it possible to distinguish routine

operational events from potentially malicious activity. To

enhance the system’s responsiveness, a lightweight real-time

alerting mechanism was incorporated into the middleware

pipeline. This component monitored the frequency and severity

of logged security events within configurable time windows.

When the number of critical events exceeded a predefined

threshold, automated email notifications were dispatched to

system administrators using NodeMailer. These alerts provided

immediate situational awareness, allowing administrators to

respond promptly to emerging threats rather than relying solely

on retrospective log analysis. Although intentionally kept

simple for this study, the alerting mechanism demonstrated

how middleware-level monitoring can significantly reduce the

time between attack detection and response in practical

deployments. Overall, the middleware implementation

illustrates how security enforcement, logging, and alerting can

be integrated into a single cohesive layer without imposing

excessive complexity on application logic. By combining

token-based authentication, structured event logging, and

proactive notifications, the proposed approach emphasizes

practicality and real-world applicability, making it suitable for

deployment in resource-constrained environments as well as

larger distributed systems.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

64

Fig 3: Integration of Security Layers

6.4 Attack Simulation and Payload Design
To evaluate the robustness of the middleware, a set of

controlled attack simulations was conducted. These attacks

were designed to mimic real-world API threats and included:

6.4.1 SQL Injection Attempts
Payloads such as id=1 OR 1=1 and 'DROP TABLE users;--'

were sent to endpoints expecting integer parameters.

6.4.2 Cross-Site Scripting (XSS)
Injected JavaScript code snippets (<script>alert('xss')</script>)

were embedded within POST requests to test response

sanitization.

6.4.3 Insecure Direct Object Reference (IDOR)
Attackers attempted to access resources (e.g., /api/user/2)

belonging to other users without proper authorization.

6.4.4 Brute Force and Rate-Limiting Tests
Automated Python loops bombarded login endpoints with

randomized credentials to observe detection thresholds.

6.4.5 Header Manipulation
Crafted requests with altered Content-Type, Accept, and User-

Agent headers to evaluate server resilience against malformed

metadata.

Each simulated attack type was run first against the baseline

(unprotected) API and then against the middleware-protected

version. Key metrics recorded included request success rate,

latency, response codes, and false-positive ratios.

6.5 Workflow: Baseline vs. Middleware-

Protected Scenarios
Two primary workflows were tested to highlight the effect of

the middleware:

6.5.1 Baseline Workflow
In this mode, all incoming requests were routed directly to

Express.js handlers without any security layer. This setup

provided a control environment to measure the natural

vulnerability exposure of the API.

6.5.2 Middleware-Protected Workflow
Here, every request was processed through the security

middleware stack. Suspicious or malformed requests were

blocked, logged, and, in some cases, rate-limited before

reaching application logic.

Comparative analysis showed that while baseline APIs

responded faster (average 5–7% lower latency), they were

highly vulnerable to all simulated attack types. In contrast, the

middleware-protected system demonstrated a 96% reduction in

successful intrusion attempts, confirming the trade-off between

minimal performance cost and substantial security

improvement.

6.6 Handling Normal Requests and

Managing False Positives
One critical challenge in any automated threat mitigation

system is ensuring that legitimate user requests are not

incorrectly blocked. False positives not only degrade user

experience but can also disrupt normal business operations.

During testing, the middleware occasionally flagged legitimate

complex query parameters or nested JSON objects as

suspicious due to their similarity with injection patterns. To

address this, a learning-based whitelist mechanism was

introduced: whenever a false positive was verified, the specific

request signature was added to a temporary “trusted pattern”

list, allowing subsequent requests of similar structure to pass

unchallenged. Additionally, extensive logging of false

positives allowed iterate tuning of validation regex patterns and

rate-limiting thresholds. The middleware was ultimately

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

65

optimized to achieve a false positive rate of under 1.5%,

striking a balance between proactive defense and usability.

7. Evaluation and Results
The effectiveness of the proposed middleware-based REST

API security framework was evaluated through controlled local

testing environments. The primary goal of this phase was to

measure the reduction in successful attacks, performance

overhead, and response latency after integrating the

middleware layer. The experiments were designed to simulate

realistic attack scenarios commonly faced by web APIs, such

as SQL injection (SQLi), cross-site scripting (XSS), path

traversal, and brute-force login attempts.

7.1 Experimental Setup
All experiments were conducted on a local server environment

running Node.js (v18.x) and Express.js (v4.x). The middleware

layer was integrated between the HTTP request handler and the

route controllers. The testing suite included:

7.1.1 Attack simulation tools
OWASP ZAP, Burp Suite, and custom Python scripts.

7.1.2 Traffic generators
Postman and JMeter for controlled request loads.

7.1.3 Database backend
MySQL with a test dataset of mock users and transaction

records.

7.1.4 Logging system
Winston and ELK Stack (Elasticsearch, Logstash, Kibana) for

detailed log aggregation and visualization.

The experimental evaluation was performed under two distinct

operating modes. In the baseline mode, the API was executed

without the middleware layer, representing a vulnerable

configuration. In the protected mode, the middleware was fully

enabled and applied across all routes. Both modes were

subjected to an identical sequence of requests, consisting of a

mix of legitimate traffic and malicious payloads, to facilitate

direct and fair comparison of results.

7.2 Attack Scenarios
A total of five attack categories were simulated:

7.2.1 SQL Injection (SQLi)
 Malicious payloads attempting to manipulate database queries.

7.2.2 Cross-Site Scripting (XSS)
Encoded <script> injections in query and body parameters.

7.2.3 Path Traversal
Attempts to access restricted directories using “../” sequences.

7.2.4 Brute-force Authentication
Rapid login attempts using randomized credentials.

7.2.5 Insecure Direct Object Reference (IDOR)
Directly accessing restricted user resources via modified URLs.

Each category contained multiple payloads with variations in

encoding and obfuscation. The middleware was designed to

sanitize, validate, and block requests based on dynamic rules

and pattern recognition.

7.3 Evaluation Metrics
The following metrics were used for analysis:

7.3.1 Successful Attack Rate (SAR)
Percentage of malicious requests that bypassed protection.

7.3.2 Blocked Request Rate (BRR)
Percentage of attacks detected and blocked.

7.3.3 Response Latency (RL)
Time taken to process requests before and after middleware.

7.3.4 CPU and Memory Utilization
To measure system overhead.

7.4 Experimental Results

7.4.1 Attack Reduction
In the baseline mode (without middleware), the system

registered a success rate of 87% for simulated attacks —

meaning 87% of malicious requests were successfully

executed. After deploying the middleware, the success rate

dropped drastically to 3.4%, representing a 96% reduction in

successful attacks.

Table 1. Reduction in Successful Attacks After

Middleware Deployment

Attack

Type

Total

Attempts

Successful

(Without

Middlewar

e)

Successful

(With

Middlewar

e)

Reductio

n

SQL

Injectio

n

200 174 5 97%

XSS 150 138 4 97.1%

Path

Travers

al

100 86 2 97.6%

Brute

Force

300 250 18 92.8%

IDOR 120 105 6 94.2%

Overall 870 753 35 95.6%

These numbers were verified using log-based analysis, where

each blocked or successful attack attempt was categorized by

request type, payload signature, and timestamp.

7.4.2 Latency and Overhead
Performance testing was conducted using Apache JMeter with

1000 concurrent requests under both modes. The average

latency increased slightly — from 68ms (baseline) to 84ms

(with middleware), indicating a ~23% overhead, which is

acceptable for security-critical applications.

Table 2. Performance Comparison With and Without

Middleware Integration

Parameter Without

Middleware

With

Middleware

Change

Average

Latency (ms)

68 84 +23%

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

66

Throughput

(req/sec)

354 332 -6.2%

CPU

Utilization

41% 49% +8%

Memory Usage 312MB 365MB +17%

This marginal increase in resource usage demonstrates that the

security middleware operates efficiently, balancing protection

and performance effectively.

7.5 Statistical Analysis
A t-test was conducted on attack success rates to verify the

significance of results. The p-value obtained was < 0.01,

confirming that the observed reduction in attacks is statistically

significant. Moreover, correlation analysis between latency and

protection rate showed negligible correlation (r = 0.08),

indicating that increasing security did not meaningfully

degrade performance.

7.6 Visualization and Logging Insights
The ELK dashboard visualized the blocked and successful

requests over time. Peaks in the blocked request graph

corresponded directly to attack waves launched via automated

tools, validating the middleware’s real-time detection

capability. Log data revealed that most blocked attempts

contained encoded payloads (e.g., Base64 or URL-encoded

scripts), confirming the middleware’s ability to decode and

detect threats before request execution.

Fig 4: Visualization and Logging Insights

7.7 Discussion of Results
The experimental outcomes demonstrate that a middleware-

centric security model can effectively mitigate a wide range of

API attacks while maintaining manageable performance trade-

offs. A 95–96% reduction in successful attack attempts,

combined with minimal performance overhead, validates the

framework’s capability for real-world use. The findings also

emphasize that security should be integrated as a proactive

middleware layer rather than being treated as an afterthought at

the endpoint level. These results align with prior theoretical

expectations and extend the concept of defense-in-depth to the

middleware tier, bridging a crucial gap between network-level

and application-level protections.

8. Comprehensive Discussion and

Interpretation
The evaluation phase clearly demonstrated that the

middleware-based REST API security framework achieved

substantial improvements in terms of protection, detection

accuracy, and operational stability. However, beyond raw

numbers, it is essential to interpret what these results truly

signify for API security in practice and how they reflect the

effectiveness of middleware as a proactive defensive layer.

8.1 Significance of Attack Reduction
The reduction of successful attacks by nearly 96% signifies a

crucial breakthrough. In traditional architectures, security

mechanisms are often embedded directly in endpoints or rely

solely on network firewalls. These approaches can detect

surface-level anomalies but fail against deeply embedded

payloads or encoded attacks that bypass static filters. The

middleware architecture, in contrast, acts as a real-time

gatekeeper — analyzing every incoming HTTP request before

it reaches application logic. The results prove that this layer

successfully neutralized injection-based and traversal-based

exploits before they interacted with the backend system. This

demonstrates a shift from reactive defense to preemptive

protection, which is vital in modern API ecosystems.

Furthermore, the encoded payload detection noted in Section

7.6 reinforces this. Attackers often disguise malicious inputs in

Base64, hexadecimal, or URL-encoded formats to evade static

filters. The middleware’s ability to decode, inspect, and flag

these attempts shows that the framework doesn’t merely rely

on blacklists — it implements dynamic decoding and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

67

contextual validation, a hallmark of intelligent middleware

design.

8.2 Interpreting Latency and Overhead
Although there was a 23% increase in latency and slight rises

in CPU and memory usage, these trade-offs are well within

acceptable bounds for high-security applications. In

cybersecurity research, a latency increase of up to 25–30% is

often deemed reasonable if it yields over 90% threat reduction.

Here, the security–performance ratio achieved by the

middleware demonstrates exceptional balance. It proves that

integrating security logic between the transport and application

layers need not cripple performance. Instead, with optimized

asynchronous processing and caching mechanisms,

middleware can sustain throughput while still maintaining

strong inspection depth. This performance efficiency highlights

the potential of modular security architectures. Rather than

embedding complex validation logic into every endpoint,

centralizing security functions in middleware enables code

reusability, easier maintenance, and faster scalability across

multiple APIs.

8.3 Practical Implications for Real-World

Deployment
The findings from this experiment highlight several practical

benefits for developers and system architects. By deploying

middleware-based security, developers can integrate

customized validation logic without modifying individual

endpoint implementations, while organizations can enforce

uniform security policies across heterogeneous microservice

architectures. In addition, security teams benefit from

centralized logging and visualization mechanisms, such as

ELK dashboards, which simplify forensic investigations and

support compliance auditing. This framework also aligns

closely with DevSecOps principles by embedding security

controls directly into the continuous integration and continuous

deployment (CI/CD) pipeline. Middleware rules can be

updated dynamically, tested automatically, and deployed

incrementally without requiring full application redeployment,

thereby supporting an agile and developer-friendly security

model.

8.4 Limitations and Observations
While the results of the study were promising, several

limitations were identified that warrant consideration. First, the

evaluation was conducted in a locally controlled environment

rather than a distributed cloud-based deployment, where factors

such as network latency, elastic scaling, and heterogeneous

infrastructure could influence system behavior. As a result,

performance characteristics observed in this study may differ

under large-scale production conditions. Second, although the

middleware demonstrated strong effectiveness against

common attack patterns, certain complex multi-stage attacks—

such as chained cross-site scripting (XSS) combined with SQL

injection attempts—were only partially detected and not fully

neutralized in all cases. This highlights the inherent difficulty

of addressing sophisticated attack sequences using rule-based

and pattern-driven mechanisms alone. Finally, the

middleware’s decoding and payload analysis layers, while

essential for accurate threat detection, may introduce additional

processing overhead under extreme traffic loads. Although the

observed overhead remained within acceptable limits for the

tested scenarios, sustained high-volume traffic could further

amplify this impact and should be explored in future

evaluations. Despite these constraints, the results are still strong

indicators that middleware-level defenses are a viable and

scalable model for protecting APIs. Future enhancements could

include adaptive rate limiting, AI-driven anomaly detection,

and deeper behavioral correlation between attack patterns.

8.5 Interpretation of Encoded Payload

Detection
As noted in earlier results, the middleware successfully flagged

most encoded or obfuscated payloads. Encoded inputs typically

appear in malicious requests as URL-encoded sequences (like

%3Cscript%3E) or Base64 strings. These are attempts to

disguise malicious code that might bypass conventional filters.

By decoding and validating these patterns dynamically, the

middleware demonstrated resilience against second-order

injection attacks — a class of threats that execute only after

being decoded downstream. This ability to preprocess and

normalize input data is what prevented such attacks from

executing at the application level.

8.6 Summary of Discussion
In essence, the middleware transformed the API environment

from a reactive security posture to a more proactive defense

mechanism. The evaluation demonstrated a high detection

accuracy of approximately 96 percent while introducing only a

modest latency overhead of around 23 percent. In addition, the

design exhibited strong scalability potential, indicating its

suitability for deployment across growing and distributed API

infrastructures. These findings reinforce the view that

middleware-based security models can effectively bridge the

gap between traditional network-level defenses and

application-layer logic, functioning as a critical intermediary

layer for modern API protection.

9. Conclusion and Future Work
This research set out to address persistent security gaps in

REST API architectures by proposing and evaluating a

middleware-based defense framework capable of operating

directly within the application request lifecycle. As modern

APIs continue to grow in scale, complexity, and exposure,

traditional security mechanisms—focused largely on

authentication, encryption, or static rule sets—are no longer

sufficient to defend against dynamic and context-driven threats.

By embedding security logic at a middleware layer, this work

demonstrates how proactive, real-time inspection and

validation can significantly reduce attack success rates while

maintaining operational efficiency. The following sections

summarize the key contributions of the study, outline the

practical advantages of the middleware approach, and present

several directions for future enhancement to ensure the

framework remains adaptable to emerging threats and

production-grade deployment requirements.

9.1 Summary of Contributions and

Findings
This research successfully demonstrated that a middleware-

based REST API security framework can significantly enhance

protection against common web-based attacks such as SQL

Injection, Cross-Site Scripting (XSS), Path Traversal, Brute-

Force Authentication, and Insecure Direct Object Reference

(IDOR). Through controlled experiments conducted in Node.js

and Express.js environments, the framework achieved an

average 95–96% reduction in successful attacks compared to

an unprotected baseline. The evaluation revealed that even with

comprehensive security checks applied at the middleware

layer, system performance remained within acceptable limits,

with only a ~23% latency increase and moderate resource

utilization. This validates that proactive security can coexist

with operational efficiency. The middleware effectively acted

as a dynamic defense shield, detecting encoded payloads,

sanitizing malicious inputs, and preventing unauthorized

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

68

access before requests reached the core application logic. The

project also integrated detailed logging and visualization

mechanisms using the ELK stack (Elasticsearch, Logstash,

Kibana), providing real-time insights into attack trends,

blocked requests, and system behavior. This made the

framework not only defensive but also diagnostic, offering

developers and administrators better control over their API

security landscape.

9.2 Advantages of Middleware-Based API

Security
The study highlights several key advantages of embedding

security controls at the middleware level. Centralizing security

enforcement allows validation rules and access controls to be

applied uniformly across all API routes, thereby reducing

redundancy and minimizing the risk of human error. The

middleware architecture also facilitates ease of integration, as

it can be introduced into existing systems without requiring

extensive refactoring of application code, making it particularly

suitable for legacy APIs. In addition, the proposed approach

offers a high degree of customizability and flexibility, enabling

developers to define, refine, and update validation logic

dynamically in response to evolving threat patterns. Separating

security logic from core business functionality further

improves maintainability by enhancing code clarity,

simplifying debugging, and reducing long-term maintenance

overhead. When combined with monitoring and visualization

tools such as Kibana, the middleware also provides enhanced

visibility into both legitimate and malicious traffic, allowing

system administrators to gain actionable insights into API

usage and attack behavior. Collectively, these characteristics

position middleware-based security as a practical, scalable, and

proactive solution for protecting RESTful APIs in real-world

deployment environments.

9.3 Future Enhancements
While the current results are promising, several future

enhancements can extend the framework’s capability and

readiness for enterprise-grade deployment:

9.3.1 AI-Driven Anomaly Detection
Integrating machine learning models could enable the

middleware to detect zero-day attacks and unusual traffic

patterns that signature-based systems might miss. For example,

anomaly detection algorithms can learn baseline API usage

behavior and automatically flag deviations that may indicate

novel attack vectors.

9.3.2 Integration into DevSecOps Pipelines
Future versions should embed the middleware into DevSecOps

workflows, enabling continuous security testing throughout the

development lifecycle. By incorporating automated

vulnerability scanning and middleware validation into CI/CD

pipelines, teams can ensure that every deployment maintains

consistent protection levels.

9.3.3 Scaling for Distributed and Cloud

Environments
Although testing was done locally, real-world applications

often operate in distributed, multi-node, or microservice

architectures. Future iterations should focus on making the

middleware container-aware, easily deployable via Docker or

Kubernetes, and capable of synchronous coordination across

multiple nodes to preserve consistency and performance.

9.3.4 Adaptive Rule Learning and Self-Healing
The framework could be enhanced to include self-learning rule

mechanisms — dynamically adjusting thresholds and filters

based on historical attack data. Combined with automated

remediation (such as temporarily blocking abusive IPs or

regenerating security keys), this would create a self-healing

security layer that evolves over time.

9.3.5 Enhanced Visualization and Predictive

Analytics
The visualization system can be upgraded with predictive

analytics dashboards in Kibana or Grafana. By correlating

time-based attack data and user activity, administrators can

proactively predict upcoming threats, rather than just react to

them.

9.4 Final Remarks
In conclusion, this work establishes middleware as a critical

yet often overlooked layer of defense in API security. The

experimental results strongly support the hypothesis that

integrating intelligent middleware not only reduces attack

success rates but also bridges the gap between traditional

network security and application-level safeguards.

By treating middleware as the first line of logic defense,

developers can create APIs that are secure by design — not just

by afterthought. With further enhancements such as AI-driven

detection, DevSecOps integration, and distributed scaling, the

proposed framework can evolve into a powerful, enterprise-

grade security solution suitable for modern, large-scale

systems.

10. REFERENCES
[1] Badhwar, R., 2021. Intro to API Security-Issues and Some

Solutions!. In The CISO’s Next Frontier: AI, Post-

Quantum Cryptography and Advanced Security

Paradigms (pp. 239-244). Cham: Springer International

Publishing.

[2] Pardal, M.L., Offensive security assessment of a REST

API for a location proof system.

[3] Ehsan, A., Abuhaliqa, M.A.M., Catal, C. and Mishra, D.,

2022. RESTful API testing methodologies: Rationale,

challenges, and solution directions. Applied Sciences,

12(9), p.4369.

[4] Mylläri, E., 2022. Introducing REST Based API

Management and Its Relationship to Existing SOAP

Based Systems.

[5] Bhateja, N., Sikka, S. and Malhotra, A., 2021. A review of

sql injection attack and various detection approaches.

Smart and Sustainable Intelligent Systems, pp.481-489.

[6] Anugrah, I.G. and Fakhruddin, M.A.R.I., 2020.

Development authentication and authorization systems of

multi information systems based rest api and auth token.

Innovation Research Journal, 1(2), pp.127-132.

[7] OWASP Foundation, "OWASP Top 10: 2021 – The Ten

Most Critical Web Application Security Risks," 2021.

[Online]. Available: https://owasp.org/www-project-top-

ten/

[8] Sadqi, Y. and Maleh, Y., 2022. A systematic review and

taxonomy of web applications threats. Information

Security Journal: A Global Perspective, 31(1), pp.1-27.

[9] Dalimunthe, S., Reza, J. and Marzuki, A., 2022. The

model for storing tokens in local storage (Cookies) using

JSON Web Token (JWT) with HMAC (Hash-based

Message Authentication Code) in e-learning systems.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.72, January 2026

69

Journal of Applied Engineering and Technological

Science, 3(2), pp.149-155.

[10] https://developers.google.com/identity/protocols/oauth2

[11] Wear, S., 2018. Burp Suite Cookbook: Practical recipes to

help you master web penetration testing with Burp Suite.

Packt Publishing Ltd.

[12] Kim, J., 2020. Burp suite: Automating web vulnerability

scanning (Master's thesis, Utica College).

[13] Maniraj, S.P., Ranganathan, C.S. and Sekar, S., 2024.

SECURING WEB APPLICATIONS WITH OWASP

ZAP FOR COMPREHENSIVE SECURITY TESTING.

INTERNATIONAL JOURNAL OF ADVANCES IN

SIGNAL AND IMAGE SCIENCES, 10(2), pp.12-23.

[14] Soni, P., & Kumar, A. (2020). API Security Challenges in

the Digital Finance Ecosystem. International Journal of

Cybersecurity and Digital Forensics, 2(2), 19-30.

[15] McDermott, M., & Harris, J. (2021). Defending Against

Injection Attacks: A Comprehensive Review. Journal of

Cybersecurity, 18(4), 231-245.

[16] Coughlan, S., & Duggan, T. (2019). Denial-of-Service

Attacks in the Context of APIs and Fintech. International

Journal of Information Security, 15(2), 114-126.

[17] Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y.-G.,

2019. Are REST APIs for Cloud Computing Well-

Designed? An Exploratory Study. Université du Québec à

Montréal, Inria Lille-Nord Europe, École Polytechnique

de Montréal, Federal University of Rio Grande do Sul.

[18] R. Fielding, “Architectural Styles and the Design of

Network-based Software Architectures,” Ph.D.

dissertation, University of California, Irvine, 2000.

[19] E. Wilde, “RESTful Web Services: Principles, Patterns,

Emerging Technologies,” IEEE Internet Computing, vol.

13, no. 6, pp. 93–95, 2009

IJCATM : www.ijcaonline.org

