International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

Securing RESTful APIs with Middleware-based Threat
Mitigation

Mohammed Ali Rizvi
MTech Scholar
Department of Computer Science and Engineering
Jai Narain College of Technology (JNCT), Bhopal
Bhopal, India

ABSTRACT

With the rapid adoption of RESTful APIs in web, mobile, and
cloud-based ecosystems, ensuring their security has become a
critical challenge. Despite the availability of established
standards such as OAuth 2.0, TLS, and JWT, real-world
implementations often remain vulnerable due to inadequate
input validation, weak authentication practices, and insufficient
logging or monitoring mechanisms. This research proposes a
middleware-based security framework designed to enhance
REST API resilience through layered protection and real-time
threat mitigation. The middleware acts as an intermediary
security layer that validates incoming requests, enforces
authentication and authorization policies, and performs
intelligent logging and anomaly detection before allowing data
flow to backend services. Key contributions include the design
and implementation of a modular middleware architecture,
seamless integration with existing authentication systems, and
a unified logging and alerting mechanism to support proactive
incident response. To evaluate the framework, controlled local
experiments were conducted using simulated attack payloads
targeting common vulnerabilities such as SQL injection, cross-
site scripting, and insecure object references. The results
demonstrate a significant reduction in successful attack
attempts and minimal performance overhead, indicating that
middleware-based security can provide an effective and
practical defense for RESTful APIs without compromising
efficiency [1][7].

General Terms
API Security, Web Security, Middleware Systems, Backend
Systems, Software Engineering.

Keywords

RESTful APIs, Middleware Security, Threat Mitigation, API
Authentication, Rate Limiting, Injection Attacks, JWT, Web
Application Security.

1. INTRODUCTION

Over the past decade, RESTful APIs have become the
backbone of digital communication between applications and
services. From mobile apps and cloud platforms to [oT systems
and enterprise software, REST APIs enable seamless data
exchange through lightweight, stateless HTTP-based
interactions. Their simplicity, scalability, and compatibility
have made REST the dominant architectural choice over
alternatives such as SOAP. As organizations increasingly shift
toward microservices and cloud-native infrastructures, APIs
have evolved from being auxiliary components to becoming
critical interfaces that directly impact functionality, user
experience, and business security [18][19]. However, this
growing reliance on APIs has also expanded the potential attack
surface. Modern applications often expose multiple endpoints,

Neha Jain
Assistant Professor
Department of Computer Science and Engineering
Jai Narain College of Technology (JNCT), Bhopal
Bhopal, India

each interacting with sensitive data and authentication systems.
As aresult, securing RESTful APIs is no longer just a technical
concern—it is a foundational requirement for maintaining
system integrity, data confidentiality, and user trust [1][14].
Despite the maturity of security protocols such as HTTPS,
OAuth 2.0, and JWT, real-world breaches continue to expose
weaknesses in AP implementations. Many developers focus
primarily on functionality and performance, leaving security
considerations to be handled late in the development lifecycle.
This leads to issues such as broken authentication, insecure
direct object references (IDOR), improper input validation, and
inadequate logging or monitoring [6][9][10]. Moreover,
existing security mechanisms are often fragmented across
different layers—authentication handled at the application
level, rate limiting at the gateway, and logging managed by
third-party tools. This fragmented approach not only
complicates maintenance but also creates blind spots where
attacks can go undetected. There is a need for an integrated,
middleware-based framework that enforces security policies
consistently across all API interactions while maintaining
modularity and ease of deployment. This research is motivated
by the practical observation that security should not be an
afterthought but a built-in feature of the API infrastructure. By
embedding security logic directly into the middleware,
developers can achieve real-time threat mitigation, consistent
policy enforcement, and transparent logging—all without
significant changes to existing codebases. This study aims to
design and evaluate a middleware-based security solution for
RESTful APIs. The specific objectives of this research are as
follows: (1) to develop a modular middleware component that
implements core security functions such as request validation,
authentication, authorization, and anomaly logging; (2) to
evaluate its effectiveness against common attack vectors,
including SQL injection, cross-site scripting (XSS), and
insecure direct object references (IDOR), through controlled
local simulations; and (3) to assess the performance impact of
the proposed middleware in terms of latency and throughput
under simulated workloads. These objectives collectively seek
to demonstrate that middleware-based protection can enhance
API security without introducing excessive computational
overhead or architectural complexity. The scope of this
research is confined to controlled, local testing environments
using simulated attack payloads and sample REST API
endpoints. The study focuses on proof-of-concept
implementation rather than production deployment. While the
results provide valuable insights into security effectiveness and
performance trade-offs, they do not encompass large-scale
distributed testing or integration with live enterprise systems.
The middleware is evaluated primarily for its capacity to detect
and block common web-based attacks, not for advanced or
zero-day exploits.

55

2. Background and Fundamentals

Modern web applications increasingly rely on APIs as the
backbone of communication between distributed components,
mobile clients, and microservices. As organizations shift
toward service-oriented and cloud-native architectures, APIs
have become both essential infrastructure and a significant
attack surface. Securing these interfaces requires a clear
understanding of the architectural foundations that shape how
APIs operate, how they expose resources, and where
vulnerabilities typically emerge. This section provides the
theoretical groundwork for the design and security
considerations of RESTful systems—examining their historical
evolution, comparing them with earlier models such as SOAP,
and analyzing how architectural constraints like statelessness
influence authentication and session management. By
establishing these fundamentals, we create the necessary
context for understanding the importance and role of the
middleware-based security framework proposed in this
research.

2.1 REST Architecture and Design

Principles

Representational State Transfer, or REST, emerged in the early
2000s through Roy Fielding’s doctoral dissertation as an
architectural style for distributed systems on the web. REST
was not intended as a specific protocol but rather as a set of
design constraints that encourage simplicity, scalability, and
independence between client and server components. At its
core, REST relies on standard web technologies—principally
HTTP—to enable communication between software systems.
Each interaction revolves around the transfer of representations
of resources, typically in lightweight formats such as JSON or
XML. The philosophy behind REST emphasizes uniform
interfaces and stateless communication. This means that each
request from a client to a server must contain all the information
necessary to process the request, without relying on stored
context on the server. REST also embraces a client—server
separation, where clients handle user interfaces and servers
manage data and logic. This clear division allows each side to
evolve independently, improving maintainability and
scalability. Furthermore, REST encourages cacheable
responses, layered system organization, and a focus on resource
identification through URIs (Uniform Resource Identifiers).
From a security perspective, these design features have both
advantages and challenges. The uniform interface simplifies
the enforcement of consistent security controls—
authentication, authorization, and input validation can all be
standardized across endpoints. Yet, the openness and
accessibility of REST APIs also make them prime targets for
exploitation, especially when security is not built into the
architecture from the start.

2.2 REST vs. SOAP: Security

Considerations and Trade-offs

Before REST’s widespread adoption, SOAP (Simple Object
Access Protocol) was the dominant method for enabling
communication between web services. SOAP follows a stricter,
XML-based protocol with well-defined security extensions
such as WS-Security, WS-Policy, and WS-Trust. These
extensions provide built-in mechanisms for message integrity,
confidentiality, and token-based authentication, making SOAP
inherently feature-rich from a security standpoint. However,
SOAP’s verbosity, heavy XML overhead, and rigid structure
often made it cumbersome and slower to implement,
particularly for mobile or lightweight applications. REST, by
contrast, gained popularity because of its simplicity,
performance efficiency, and human-readable data formats.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

Instead of encapsulating data inside XML envelopes, REST
leverages the existing semantics of HTTP—methods such as
GET, POST, PUT, and DELETE—to represent actions on
resources. This makes REST APIs faster to develop and easier
to integrate across platforms. However, REST does not
prescribe any built-in security mechanism beyond what the
HTTP layer provides. Developers must rely on HTTPS for
transport-level security and implement their own schemes for
authentication, authorization, and data validation. As a result,
REST’s flexibility can become its weakness: without consistent
enforcement of standards, different services may implement
security in incompatible or incomplete ways. The trade-off
between SOAP’s built-in security and REST’s simplicity
underscores a central theme of this research—the need for
modular, middleware-based security frameworks that bring
consistency and protection without sacrificing REST’s agility
[41[17].

2.3 Statelessness and Its Influence on

Authentication and Session Handling

One of REST’s defining constraints is statelessness—each
request must be self-contained and independent. The server
does not store session information between requests, which
greatly improves scalability and reliability because any server
in a cluster can handle any request. Yet, this same property
complicates authentication and session management.
Traditional web applications often maintain user sessions
through server-side storage—session IDs or cookies that
preserve state across multiple interactions. In a RESTful
system, this is discouraged. Instead, authentication must be
achieved through tokens or credentials included with every
request. Common approaches include API keys, OAuth 2.0
bearer tokens, or JSON Web Tokens (JWTs). These tokens
encapsulate the user’s identity and authorization claims and
must be verified at every interaction. While token-based
authentication aligns with REST’s stateless design, it
introduces new responsibilities. Tokens must be securely
generated, transmitted over encrypted channels, and validated
efficiently to prevent replay attacks or token theft. Moreover,
since REST servers do not remember previous interactions,
revoking or expiring tokens can become complex. Many
implementations address this by maintaining a lightweight
token blacklist or short expiration windows combined with
refresh tokens. From a security standpoint, statelessness
demands precision: authentication must be reliable on a per-
request basis, and any lapse in token validation exposes the
system to impersonation or privilege escalation. This paper’s
middleware framework directly addresses this challenge by
embedding token verification and access control checks at a
centralized interception layer.

2.4 Core REST Components: Endpoints,
HTTP Methods, Headers, and

Authentication Models

A RESTful API is composed of several key elements that
together define how clients interact with server resources.
Endpoints serve as unique URIs representing resources—such
as users, products, or services—on which operations can be
performed. The design of endpoints has important security
implications, as overly permissive or predictable endpoints can
lead to enumeration attacks or unintended data exposure.
Effective endpoint design therefore involves clear versioning
strategies, enforcement of least-privilege access, and careful
control over exposed data fields. HTTP methods (verbs) define
the type of operation performed on a resource. The GET
method is used exclusively to retrieve data and must never
modify server state, whereas POST is used to create or process

56

new data. The PUT and PATCH methods enable updates to
existing resources, while DELETE is responsible for resource
removal. Security best practices recommend validating method
usage and ensuring idempotency where applicable, as attackers
often exploit misconfigured endpoints that accept unsafe
methods or ignore validation constraints. HTTP headers play
an equally critical role in securing API communication. They
may include authentication tokens, content-type declarations,
cross-origin resource sharing (CORS) rules, and cache control
directives. Poorly configured headers can lead to information
leakage or enable attacks such as cross-site scripting (XSS) and
cross-site request forgery (CSRF). Implementing strict header
policies—such as Content-Security-Policy, X-Frame-Options,
and X-Content-Type-Options—helps mitigate these risks.
Authentication models determine how clients prove their
identity when interacting with RESTful APIs. Common
approaches include Basic Authentication, in which credentials
are encoded in request headers and therefore require HTTPS
for security; API keys, which are often used for service-to-
service communication but provide limited access control
granularity; OAuth 2.0 and OpenlD Connect, which enable
delegated and federated identity management; and JSON Web
Tokens (JWTs), which support stateless, portable, and
cryptographically signed identity claims. Each model
represents a trade-off between ease of implementation and
strength of protection, and in practice, robust systems
frequently combine multiple techniques—such as OAuth for
authorization, JWT for tokenized identity, and TLS for
transport-level encryption.

3. Related Work

As API-driven ecosystems have matured, a substantial body of
research has emerged focusing on securing communication
channels, enforcing authentication, and protecting API
resources from evolving threats. Existing literature spans
multiple domains—from foundational security protocols to
specialized middleware techniques—reflecting the increasing
complexity of modern API architectures. While standardized
frameworks such as OAuth, TLS, and JWT provide essential
building blocks, numerous studies highlight persistent gaps in
implementation consistency, runtime monitoring, and
contextual threat detection. In parallel, researchers have
evaluated middleware as a promising layer for integrating
security logic without complicating core application code. This
section synthesizes the most relevant contributions in these
areas, examining current standards, identifying limitations in
practical deployment, and reviewing previous middleware-
based approaches that inform the direction of the proposed
framework [1][3][14].

3.1 Existing API Security Standards and

Protocols

Securing REST APIs has been a central focus of web
application security research for more than a decade. As APIs
have become the backbone of modern applications—powering
mobile apps, microservices, and cloud-based systems—several
authentication and transport security mechanisms have evolved
to protect data in transit and control access to critical endpoints

[61[9].

3.1.1 Authentication and ldentity Management

The earliest and simplest form of authentication is Basic
Authentication, which transmits a user’s credentials (username
and password) encoded in Base64 with each request. While
easy to implement, this approach is inherently insecure if not
combined with transport layer encryption, as credentials can be
easily intercepted. To provide better control, API keys became
widely adopted—unique tokens that identify and authenticate a

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

client application. Although API keys improve traceability,
they still lack fine-grained control and are often static, making
them vulnerable if exposed in public repositories or logs. To
overcome these challenges, the industry moved toward token-
based and delegated authorization models. OAuth 2.0 emerged
as a widely accepted standard, allowing applications to access
resources on behalf of users without directly handling their
credentials. By introducing authorization grants, access tokens,
and scopes, OAuth 2.0 provided flexibility and security suited
to distributed systems. Building on OAuth, OpenID Connect
(OIDC) added an identity layer, enabling federated
authentication using tokens known as ID tokens. This
integration allows services to verify user identity and obtain
basic profile information securely, supporting single sign-on
(SSO) scenarios and reducing password fatigue.

3.1.2 Tokenization and Stateless Security

The introduction of JSON Web Tokens (JWTs) marked a shift
toward stateless authentication. JWTs encapsulate claims about
the user and are cryptographically signed, allowing APIs to
validate requests without maintaining session state on the
server. This model aligns perfectly with REST principles and
microservice architectures, as it supports scalability and
decoupled components. However, improper JWT handling—
such as weak signing algorithms, lack of token expiration, or
missing signature verification—can expose APIs to serious
security risks.

3.1.3 Transport Layer Security

At the network level, HTTPS and Transport Layer Security
(TLS) are the foundational mechanisms for ensuring
confidentiality and integrity of APl communications. TLS
provides end-to-end encryption between the client and the API
server, protecting against man-in-the-middle (MITM) attacks,
cavesdropping, and tampering. Modern TLS configurations
also enforce certificate pinning, forward secrecy, and strong
cipher suites to resist known cryptographic attacks. Despite
these measures, many API implementations still rely on
outdated TLS versions or self-signed certificates, weakening
overall protection.

3.1.4 Access Control Models

To govern what authenticated users can do, APIs typically rely
on access control frameworks. Role-Based Access Control
(RBAC) assigns permissions to roles (such as admin,
developer, or guest), simplifying management for large
systems. However, RBAC can be too rigid for fine-grained or
context-dependent permissions. Attribute-Based Access
Control (ABAC) extends this by incorporating attributes—such
as user roles, resource types, and environmental conditions—
to make more dynamic authorization decisions. In theory,
ABAC provides stronger contextual control, but in practice, it
introduces complexity and requires well-defined attribute
policies, which are often lacking in lightweight API
frameworks.

3.2 Identified Limitations and

Fragmentation in Current Frameworks

While the ecosystem of security standards is mature, the
practical implementation of API protection remains
fragmented. Many developers adopt isolated solutions—such
as enabling HTTPS or adding a simple API key check—
without integrating these measures into a cohesive security
model. Frameworks like OAuth 2.0 and OpenID Connect
require careful configuration and understanding, leading to
inconsistent adoption. As a result, many APIs still rely on
outdated authentication methods or incomplete security setups.

57

Another major limitation lies in middleware support and
compatibility. Although middleware components exist in most
frameworks (e.g., Express.js, Django, Flask), they are often
used for routing or logging rather than security enforcement.
Developers typically bolt on security plugins post-
development, rather than designing APIs with security in mind
from the start. This reactive approach leaves gaps—especially
for input validation, rate limiting, and real-time attack
detection. Furthermore, there is a lack of unified visibility
across authentication, authorization, and transport layers. Logs
are often scattered across multiple services, making it difficult
to correlate security events. Without centralized monitoring or
alerting, intrusion attempts and abnormal traffic patterns
frequently go unnoticed. Existing testing tools focus on
penetration testing or static analysis, but few provide
continuous runtime protection, particularly for locally hosted
or development-stage APIs. Lastly, existing frameworks
struggle to adapt to the rapid evolution of API threats.
Vulnerabilities such as Broken Object Level Authorization
(BOLA), Insecure Direct Object References (IDOR), and API
injection attacks continue to appear despite established
standards. This suggests that conventional mechanisms—
focused primarily on authentication and encryption—are
insufficient for handling contextual or behavioral security risks.
There is an evident need for middleware that can dynamically
detect, log, and block malicious behavior at runtime,
independent of the underlying protocol or authentication
method.

3.3 Review of Prior Middleware-Based
Approaches in API Security

Several researchers and practitioners have explored
middleware-based strategies to address these gaps. Middleware
operates at an ideal layer in the request lifecycle—between the
client and the core business logic—allowing it to inspect,
modify, or reject incoming requests before they reach critical
resources. Prior work has demonstrated middleware’s
effectiveness in rate limiting, input sanitization, and token
validation. For example, studies in Node.js and Express
ecosystems have shown that middleware can intercept requests
to detect suspicious payloads indicative of SQL injection or
cross-site scripting (XSS) attempts. Similarly, security-
oriented middleware like Helmet, CORS handlers, and CSRF
protectors provide partial defenses, but they primarily target
specific attack vectors rather than offering a holistic threat
management framework. Academic research has also proposed
modular middleware frameworks capable of enforcing policies
based on contextual information—such as request frequency,
origin, or user role—though these have seen limited adoption
outside experimental environments. However, most existing
middleware implementations focus on prevention rather than
detection and response. Few integrate comprehensive logging,
alerting, or adaptive mitigation mechanisms. Additionally,
prior approaches often require deep integration with specific
frameworks, reducing portability and making them difficult to
reuse across projects. The gap, therefore, lies in developing a
unified, framework-agnostic middleware solution that not only
enforces security policies but also monitors behavior, logs
events, and reacts dynamically to potential attacks. Such an
approach would bridge the divide between static configuration
and real-time threat intelligence—bringing modern security
practices closer to the application layer in a scalable, developer-
friendly form [2][3][17]. Several studies have systematically
classified and analyzed common threat categories affecting
modern web applications and APIs, highlighting injection
attacks, authorization flaws, and denial-of-service risks as
persistent challenges [8].

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

4. PROBLEM DEFINITION

Although the landscape of API security has evolved
significantly, a persistent gap remains between established best
practices and the realities of how REST APIs are built, tested,
and deployed in modern environments. The flexibility and
scalability that make REST widely adopted also introduce
architectural weaknesses that are often overlooked during
development. Existing standards—such as OAuth, TLS, and
token-based authentication—provide essential foundations, yet
they fail to guarantee security when misconfigured,
inconsistently implemented, or deployed without continuous
monitoring. Moreover, APl ecosystems have grown
increasingly complex, involving distributed microservices,
multiple authentication layers, and diverse client applications.
This complexity creates numerous opportunities for
misalignment, oversight, and fragmented protection. As a
result, many APIs remain vulnerable not because of a lack of
available security tools, but because current development and
deployment practices do not provide holistic, real-time, or
environment-agnostic protection. This chapter defines the core
security problems that motivate the need for a unified,
middleware-driven approach capable of addressing
vulnerabilities across the entire request lifecycle [S][7][15].
Prior research in high-assurance systems emphasizes the
importance of structured security reasoning and assurance
mechanisms, yet such approaches are rarely applied at the API
middleware level in practical deployments [24].

4.1 Common Security Gaps in REST APIs
Despite significant advances in API security frameworks and
authentication standards, real-world REST API deployments
remain vulnerable to a range of common and recurring security
flaws. These weaknesses are often the result of development
practices that prioritize functionality, scalability, or rapid
release cycles over systematic threat modeling. Because REST
APIs are by nature open, stateless, and widely distributed, they
present a large and constantly exposed attack surface.

4.1.1 Input Validation and Injection Attacks
Improper input handling continues to be one of the most
prevalent weaknesses in REST services. APIs that accept
parameters directly from clients—whether in JSON bodies,
query strings, or headers—often fail to sanitize or validate
those inputs thoroughly. Attackers exploit this negligence to
inject malicious code or crafted payloads that can trigger SQL
injection (SQLi), cross-site scripting (XSS), or command
injection vulnerabilities. Even mature frameworks may leave
subtle gaps, for example when user inputs are concatenated into
database queries or used to construct dynamic file paths.

4.1.2 Broken Object-Level Authorization (BOLA)

and IDOR

A major threat specific to REST APIs is Insecure Direct Object
Reference (IDOR), now categorized under OWASP’s “Broken
Object Level Authorization” class. APIs frequently expose
predictable URLs or identifiers such as /users/123 or
/orders/45, assuming that authorization checks will be handled
elsewhere. When these checks are incomplete, attackers can
manipulate object IDs to gain unauthorized access to other
users’ data. Because REST APIs are designed to be stateless
and resource-centric, missing or improperly enforced access
control can easily result in data leakage at scale.

4.1.3 Session Management and Token Security

In token-based systems, particularly those relying on JWTs or
API keys, improper handling of tokens—such as storing them
in client-side cookies without adequate expiration or signature
verification—creates opportunities for replay attacks and token

58

theft. Developers sometimes overlook token invalidation
mechanisms, leaving old tokens active indefinitely. Similarly,
systems that fail to rotate or refresh tokens securely allow long-
term unauthorized access even after credentials are
compromised.

4.1.4 Insufficient Rate Limiting and Brute-Force

Resistance

Because REST APIs are built to handle many concurrent
requests, developers often underestimate the importance of rate
limiting. Without middleware enforcing request thresholds per
user or IP, attackers can perform brute-force attacks, credential
stuffing, or resource exhaustion (DoS) with relative ease. Lack
of rate limiting also contributes to enumeration attacks, where
adversaries methodically probe endpoints to discover valid
resource identifiers or hidden parameters [16].

4.1.5 Weak Logging and Error Handling

Another subtle but damaging weakness is inconsistent logging.
Many APIs log general system errors but omit detailed
security-relevant events, such as failed login attempts, repeated
requests from suspicious origins, or malformed payloads. Even
when logs exist, they may not be aggregated or monitored,
leaving administrators unaware of ongoing attacks. Similarly,
overly verbose error messages can expose sensitive
information—such as database schemas or stack traces—that
attackers can exploit during reconnaissance. Collectively, these
vulnerabilities underscore a central issue: most REST APIs rely
on ad-hoc or partial security layers, leaving large portions of
the request lifecycle unmonitored and unprotected.

4.2 Challenges in Current Testing and

Deployment Practices

Even when developers recognize the importance of API
security, testing and deployment practices often fail to uncover
or mitigate these vulnerabilities effectively. One major reason
is the fragmentation between development and security
workflows. Security testing is frequently performed as a one-
time event—during staging or after deployment—rather than as
a continuous, integrated part of development. This reactive
approach means that vulnerabilities are often identified only
after an attack or penetration test has occurred.

4.2.1 Limited Scope of Automated Testing

Existing automated scanners and static analysis tools (like
OWASP ZAP, Burp Suite, or Snyk) can detect a subset of
known vulnerabilities, but they rarely capture context-specific
logic flaws such as broken authorization or excessive data
exposure. Moreover, these tools require careful configuration
and often produce false positives or miss issues hidden within
custom middleware. Developers, pressed for time, may ignore
or dismiss such warnings rather than investigate them fully

[11][12][13].

4.2.2 Inconsistent Security Across Environments
Testing environments rarely mirror production systems. APIs
tested locally may have debugging enabled, verbose logging,
or simplified authentication—all of which differ in production.
As a result, security assumptions validated in one environment
may not hold in another. Containerized and microservice-based
deployments add further complexity, as each service may have
its own security configuration and version of middleware,
making it difficult to enforce consistent policies.

4.2.3 Lack of Real-Time Detection and Mitigation
Most traditional testing approaches focus on identifying
vulnerabilities, not mitigating them. Even when issues are
found, there is often a delay before patches are deployed.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

During this window, APIs remain exposed. Additionally, few
systems integrate runtime defenses capable of detecting attacks
as they happen. For example, a middleware that monitors
unusual input patterns, request frequencies, or access
anomalies could block or log threats before they escalate—but
such systems are rarely implemented at the local or
development level.

4.2.4 Cultural and Process Barriers

Finally, there is a human factor. Many development teams view
security as a specialized discipline rather than a shared
responsibility. With tight deadlines, API developers prioritize
feature delivery, leaving comprehensive threat modeling and
code review for later. This results in a “security after
deployment” mindset, where vulnerabilities are patched
reactively instead of being prevented through proactive,
middleware-level controls.

4.3 Research Goals and Measurable

Outcomes

In response to these gaps, this research aims to design,
implement, and evaluate a middleware-based security
framework specifically for REST APIs. The core objective is
to demonstrate that integrating lightweight, modular
middleware can provide proactive threat mitigation—
detecting, blocking, and logging malicious requests before they
reach critical business logic. The proposed framework will be
evaluated through local testing and controlled attack
simulations to measure its real-world impact. The measurable
goals include:

4.3.1 Attack Detection and Mitigation Efficiency
Quantifying how many simulated attacks (SQLi, XSS, IDOR,
brute-force attempts) are blocked or neutralized by the
middleware compared to an unprotected baseline.

4.3.2 Reduction in Successful Exploits
Calculating the percentage decrease in successful attack
attempts after deploying the security middleware.

4.3.3 Performance Overhead

Measuring any additional latency or resource consumption
introduced by the middleware, ensuring that security does not
compromise efficiency.

4.3.4 Accuracy and False Positives

Evaluating how well the middleware distinguishes between
legitimate requests and malicious traffic to avoid disrupting
normal operations.

4.3.5 Comprehensive Logging and Alerting
Assessing the middleware’s ability to capture meaningful
security events and generate actionable insights for
administrators.

The overarching research hypothesis is that a middleware-
centric, security-first approach can effectively bridge the gap
between theory and practice—offering continuous protection
during both development and production phases, without
requiring major architectural changes. Through this work, the
study seeks to validate the middleware approach as a practical,
adaptable, and measurable improvement over conventional
API security methods.

5. PROPOSED METHODOLOGY

The proposed methodology outlines the architectural,
procedural, and evaluative foundations of a middleware-based
security framework designed to protect RESTful APIs from
common and emerging threats. This section explains the

59

system’s underlying architecture, guiding design principles,
middleware mechanisms, and its integration with
authentication, authorization, and monitoring systems. It also
presents the testing and evaluation approach used to validate
the framework’s effectiveness against simulated attacks in a
controlled local environment.

5.1 System Architecture Overview

The architecture of the proposed framework follows a modular,
layered design that integrates security directly into the
communication flow between clients and RESTful endpoints.
Rather than relying solely on external security tools or network-
level configurations, this model embeds defensive logic at the
application middleware layer, ensuring that every incoming
and outgoing request passes through a security checkpoint
before reaching business logic. At its core, the architecture
comprises three main layers:

5.1.1 Client Interaction Layer
Representing applications, users, or automated scripts sending
requests to the API.

5.1.2 Security Middleware Layer

Serving as the heart of the proposed solution. This middleware
inspects, validates, and filters every request and response,
performing both preventive and detective security functions.

5.1.3 Application and Data Layer

Consisting of the main API endpoints, controllers, and
databases, where the actual operations—such as authentication,
data retrieval, or updates—occur.

Requests initiated by clients first pass through the middleware,
where they are parsed, logged, and validated. The middleware
executes a series of security checks, including input validation,
token verification, and anomaly detection. Only requests that
meet the defined security policies are forwarded to the backend
application logic. Suspicious or malicious requests are blocked
and recorded in the system logs, while alerts may be generated
for further investigation. The framework is designed to be
technology-agnostic and easily deployable in existing
Node.js/Express-based APIs. This allows developers to
integrate it with minimal code modification while maintaining
performance and scalability. Furthermore, the system
architecture supports the inclusion of additional components—
such as caching, load balancing, or Al-based intrusion
detection modules—without altering the middleware’s core
structure.

5.2 Security-First Design Principles

The proposed framework adheres to security-first design
principles, ensuring that every decision in its architecture and
implementation prioritizes security without sacrificing
maintainability or usability. Several key principles guide this
methodology.

5.2.1 Defense-in-Depth

Rather than depending on a single layer of protection, the
framework employs multiple, overlapping mechanisms. Input
validation, authentication, authorization, rate limiting, and
anomaly detection each serve as independent safeguards. Even
if one layer fails or is bypassed, others remain active to mitigate
the threat.

5.2.2 Least Privilege and Zero Trust

Every request is treated as potentially untrusted. The
middleware does not assume legitimacy based on network
origin or user session. Instead, every token, header, and
parameter must be explicitly verified. Internally, services are

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

restricted to the minimal permissions necessary to perform their
functions, reducing the potential damage from compromised
components.

5.2.3 Secure by Default

Default configurations favor security. Logging and validation
features are enabled automatically, error messages are sanitized
to prevent information leakage, and strict content-type
enforcement prevents requests that deviate from expected
formats.

5.2.4 Modularity and Extensibility

The middleware is built using a plug-in architecture, allowing
each function—such as input sanitization or rate limiting—to
exist as an independent module. This ensures that developers
can update or extend specific functions without reworking the
entire system.

5.2.5 Observability and Accountability

Security is not effective without visibility. The system logs
every meaningful event—such as failed authentication, unusual
request frequency, or detected injection attempts—enabling
real-time monitoring and forensic analysis. Each log entry is
timestamped and categorized by severity to aid in later auditing
or visualization through monitoring dashboards. By embedding
these principles directly into the middleware’s logic, the
framework transforms security from an afterthought into a
built-in property of the software lifecycle.

5.3 Middleware-Based Threat Mitigation

The middleware-based threat mitigation engine is the
centerpiece of this methodology. It functions as a security
gatekeeper, positioned between the client and the application
logic. This approach ensures that every request undergoes
rigorous scrutiny before any sensitive operation or data
retrieval occurs.

5.3.1 Request Validation and Sanitization

The middleware inspects all incoming data—query strings,
parameters, headers, and payloads—for patterns associated
with common attacks. For instance, it detects SQL injection
attempts through regex-based pattern matching and input
normalization. Similarly, cross-site scripting (XSS) payloads
are neutralized by escaping or rejecting inputs containing
suspicious tags or scripts.

5.3.2 Rate Limiting and Anomaly Detection

To prevent brute-force and denial-of-service attacks, the
middleware tracks request frequency per IP or token within
defined time windows. Exceeding the allowed threshold
triggers temporary blocking or alert generation. Over time,
anomaly detection rules can be refined based on real-world
traffic, allowing adaptive thresholds to distinguish between
legitimate bursts and malicious flooding.

5.3.3 IP Reputation and Blacklisting

The system maintains an internal registry of known malicious
IP addresses. Requests originating from flagged sources are
immediately rejected, while new suspicious patterns are logged
and added dynamically for future filtering.

5.3.4 Payload Integrity and Schema Validation
Incoming JSON payloads are validated against predefined
schemas. This not only enforces data integrity but also prevents
deserialization attacks and resource misuse. The validation
layer ensures that only properly structured requests reach the
business logic, reducing both accidental and deliberate misuse
of API endpoints.

60

5.3.5 Response Filtering

The middleware also monitors outgoing responses to prevent
data leakage. Sensitive fields such as tokens, passwords, or
internal identifiers are stripped or masked before being sent to
clients. This holistic filtering mechanism forms the basis for
real-time prevention of common web-based threats, enabling
continuous protection without relying on external proxies or
gateways.

5.4 Authentication and Authorization
Layer

While the middleware performs general request filtering,
authentication and authorization form the second line of
defense. These layers ensure that even valid-looking requests
cannot access unauthorized resources

5.4.1 Authentication Layer

The framework supports multiple authentication schemes,
including API keys, OAuth 2.0 bearer tokens, and JWT-based
identity verification. The middleware intercepts every
incoming request and validates the accompanying credentials.
For JWTs, it checks the token’s signature, issuer, audience, and
expiration claims. Expired or tampered tokens are rejected
immediately, and invalid attempts are logged for monitoring.

5.4.2 Authorization Layer

After verifying identity, the middleware enforces fine-grained
access control using Role-Based Access Control (RBAC) and
Attribute-Based Access Control (ABAC) models. Each
endpoint is annotated with required roles or policies. When a
request is made, the middleware evaluates whether the
authenticated user’s role or attributes satisfy the access
condition. This two-tiered structure—authentication first,
authorization second—ensures that only authenticated and
properly authorized entities can access sensitive API routes.
Together with the middleware’s earlier request validation, this
creates a robust multi-stage filtration pipeline.

5.5 Logging, Monitoring, and Alerting

Systems
Effective security does not end with prevention—it requires
continuous awareness. Logging, monitoring, and alerting are
therefore built as integral components of the proposed
framework.

5.5.1 Logging Subsystem

Every request, regardless of its outcome, generates structured
log entries containing metadata such as timestamps, IP
addresses, endpoints accessed, request methods, and the
validation outcome. Security-relevant events—Ilike repeated
failed logins, high-frequency requests, or detected injections—
are tagged with higher severity levels.

5.5.2 Monitoring and Visualization

Logs are streamed into local dashboards built with tools like
ELK Stack (Elasticsearch, Logstash, and Kibana) or Grafana
for visualization. This enables developers to observe live
traffic, identify trends, and investigate anomalies. For instance,
spikes in failed authentication attempts or unusual patterns in
specific endpoints can reveal ongoing brute-force attacks or
reconnaissance activity.

5.5.3 Alerting Mechanisms

Critical security events trigger real-time alerts. Depending on
configuration, the middleware can send notifications through
channels such as email, webhooks, or Slack integrations. This
ensures that administrators are immediately informed of
potential incidents and can take action before significant

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

damage occurs. The logging and monitoring infrastructure also
doubles as an analytical resource, helping improve future
iterations of the middleware through data-driven insights.

5.6 Security Testing Framework (Manual

+ Automated)

To validate the effectiveness of the proposed middleware, a
comprehensive security testing framework combining both
manual and automated approaches is adopted.

5.6.1 Manual Testing

Manual penetration testing is conducted using tools like
Postman and cURL to simulate different types of malicious
payloads—SQL injection strings, XSS scripts, and malformed
requests. This allows the researcher to observe how the
middleware reacts to intentional misuse and whether it blocks,
sanitizes, or logs the attempts.

5.6.2 Automated Testing

Automated scans are performed using OWASP ZAP and Burp
Suite, configured to crawl the API endpoints and generate
attack payloads systematically. These tests measure the
middleware’s response times, false positive rates, and blocking
accuracy under varying load conditions.

5.6.3 Static and Dynamic Testing

Static testing evaluates the middleware’s source code to ensure
that its logic is secure, maintainable, and free of hardcoded
secrets or insecure dependencies. Dynamic testing, by contrast,
focuses on runtime behavior—verifying how well the
middleware protects endpoints during actual network
interactions. This blended testing framework provides both
precision and coverage, ensuring that the middleware performs
effectively under realistic attack scenarios.

5.7 Local Testing Strategy and Evaluation

Metrics

The evaluation phase focuses on assessing the middleware’s
real-world practicality and performance using locally simulated
attack scenarios. This controlled setup allows repeatable
experiments without risking production data or systems.

5.7.1 Local Environment Setup

The system is deployed on a Node.js and Express-based local
server, with endpoints representing common API operations
such as user registration, login, and data retrieval. The testing
environment includes logging, request-tracking modules, and
local databases to record metrics.

5.7.2 Simulated Attack Scenarios

A library of malicious payloads—including SQL injection
attempts, cross-site scripting vectors, brute-force login
requests, and IDOR manipulations—is executed against both
unprotected and protected versions of the APIL This
comparison reveals the middleware’s defensive impact.

5.7.3 Evaluation Metrics

Evaluation metrics were defined to quantitatively measure both
security effectiveness and performance overhead. These
metrics include the Attack Block Rate (ABR), which represents
the percentage of malicious requests successfully detected and
blocked; the False Positive Rate (FPR), indicating the
proportion of legitimate requests incorrectly blocked; Latency
Overhead (LO), measuring the average increase in response
time introduced by middleware processing; and Logging
Accuracy (LA), which reflects the completeness and clarity of
security-related events captured during simulated attacks. By
analyzing these parameters, the study evaluates not only the

61

middleware’s security performance but also its operational
feasibility for real-world API deployments.

6. IMPLEMENTATION

The implementation phase translates the conceptual security
model into a functioning, testable system environment. This
stage aims to validate the middleware-based REST API
protection approach by creating a controlled experimental
setup, integrating security layers, and simulating both
legitimate and malicious requests. The following subsections
describe the development environment, middleware
implementation, authentication and logging integration, attack
simulation strategies, comparative workflows, and false-
positive management mechanisms.

6.1 Development Environment and Tools
The development environment was structured around widely
adopted and open-source technologies to ensure reproducibility
and practical deployment relevance. The core API was
developed using Node.js and Express.js, selected for their
asynchronous event-driven architecture, extensive middleware
support, and ease of integration with third-party modules.
Node.js provided the runtime environment, enabling JavaScript
execution on the server side, while Express.js served as the
application framework, simplifying the setup of RESTful
endpoints and route handling. For testing and debugging,
Postman was used extensively to design and execute HTTP
requests, monitor response headers, latency, and status codes,
and manage authentication tokens during repeated test cycles.
Additionally, a suite of Python-based test scripts was created
using the requests library to automate repetitive attacks and
normal request sequences. These scripts simulated multiple
concurrent clients sending both benign and malicious payloads
to the API endpoints, which allowed for a realistic evaluation
of the middleware’s detection and response mechanisms. The
server was deployed locally using Docker containers to ensure
environmental consistency and isolation from host-level
variations. Containerization also simplified the reconfiguration
of system parameters when switching between baseline and
middleware-protected scenarios.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

'4 N\
DOCKER
s ENVIRONMENT
II\
mm’{ MIDDLEWARE LAYER@J >
POSTMAN Debugging /\
CLIENT v \TM
Node.js API
B SERVER

=2 \ﬁ\ z :
PYTHON ATTACK SCRIPTS

(requests library) Automated Attacks /

Normal Requests

Fig 1: Development Environment Overview

6.2 Middleware Implementation Details

The middleware forms the cornerstone of the proposed security
model. It was designed as a modular layer that intercepts every
HTTP request before it reaches the core business logic. Each
module within the middleware performs a specific function,
such as request validation, input sanitization, authentication
enforcement, and logging. The request lifecycle begins when
an incoming HTTP request hits the Express.js router. The
middleware immediately examines request headers,
parameters, and body content for anomalies or policy
violations. Regular expressions, parameter whitelisting, and
signature-based pattern matching were used to detect known
attack vectors such as SQL injection strings, command
injection patterns, and malformed JSON payloads. A second
middleware module enforces rate limiting and IP-based
throttling to prevent brute-force or denial-of-service attempts.
Suspicious clients that exceed threshold limits are
automatically blacklisted for a configurable duration. To
maintain flexibility, all middleware configurations were stored
in an external JSON policy file, allowing rapid updates to
security rules without modifying source code. This design
enables continuous improvement of the security posture as new
threats emerge.

62

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

(Middleware Processing Layer J

1. Request Interception & Logging

Core Business Logic

L) (API Endpoint)
r v N External JSON Policy File
2. Input Validation & Sanitization . (Security Rules)
‘
(Regex, Whitelisting, Pattern Matching)
Incoming HTTP Request \ y,
(Express.js Router) *
Threat
3. Authentication & Authorization Enforcement Detected? Block Rer!uest &
Log Incident

(Error Response)

\ 4

4. Rate Limiting & Throttling
(IP Blacklisting)

Request Approved

Fig 2: Middleware Request Processing Flow

6.3 Integration with Authentication and
Logging Layers

The middleware layer was integrated as a core component
within the overall authentication, authorization, and monitoring
framework of the proposed system. Its primary responsibility
was to act as an intermediary between incoming client requests
and the underlying API endpoints, ensuring that every request
was subjected to consistent security checks before being
processed further. This design choice allowed security controls
to be centralized, reducing redundancy across individual
endpoints while improving maintainability and scalability.
Authentication within the middleware was implemented using
JSON Web Tokens (JWT), enabling a stateless and scalable
validation mechanism suitable for modern RESTful
architectures. Upon successful authentication, clients were
issued signed tokens containing encoded user claims, which
were then included in the Authorization header of subsequent
requests. For each incoming request, the middleware extracted
and verified the token using a predefined secret key. Requests
associated with expired, malformed, or tampered tokens were
immediately rejected, preventing unauthorized access attempts
from reaching protected resources. In addition to blocking such
requests, the middleware recorded detailed information about
the failure, including timestamp, request metadata, and reason
for rejection, ensuring traceability during later analysis.
Beyond authentication, the middleware was closely coupled
with a comprehensive logging and monitoring subsystem
designed to capture both normal and anomalous behavior.
Structured logging was implemented using the Winston
logging library, which provided flexibility in defining log
formats and severity levels. MongoDB was used as the backend
datastore for persisting log records, enabling efficient querying
and aggregation during post-experimental evaluation. Each
significant event—such as authentication failures, blocked

requests, abnormal payload patterns, or repeated access
violations—was classified into predefined severity levels,
including INFO, WARNING, and CRITICAL. This
categorization made it possible to distinguish routine
operational events from potentially malicious activity. To
enhance the system’s responsiveness, a lightweight real-time
alerting mechanism was incorporated into the middleware
pipeline. This component monitored the frequency and severity
of logged security events within configurable time windows.
When the number of critical events exceeded a predefined
threshold, automated email notifications were dispatched to
system administrators using NodeMailer. These alerts provided
immediate situational awareness, allowing administrators to
respond promptly to emerging threats rather than relying solely
on retrospective log analysis. Although intentionally kept
simple for this study, the alerting mechanism demonstrated
how middleware-level monitoring can significantly reduce the
time between attack detection and response in practical
deployments. Overall, the middleware implementation
illustrates how security enforcement, logging, and alerting can
be integrated into a single cohesive layer without imposing
excessive complexity on application logic. By combining
token-based authentication, structured event logging, and
proactive notifications, the proposed approach emphasizes
practicality and real-world applicability, making it suitable for
deployment in resource-constrained environments as well as
larger distributed systems.

63

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

[

(JWT Authentication Layer

Verify Signed Token
(Secret Key)

v

JWT Authentication Module

heck Token Expiry & Tamperin
Verify Signed Token e IO Sy & U

& Expiry & Tampering

Incoming HTTP Request

2

Rate Limiting
Block Request & Log Incident

Authentication Failure

oken Valid?

v

Core Business Logic
(API Endpoint)

Logging & Alerting Subsystem

Winston
Timestamp, Categorize
(INFO, WARNING, CRITICAL)

MongoDB
(Log Persistence)

NodeMailer
Email Alerts
Threshold Exceeded Notification

~N

Fig 3: Integration of Security Layers

6.4 Attack Simulation and Payload Design
To evaluate the robustness of the middleware, a set of
controlled attack simulations was conducted. These attacks
were designed to mimic real-world API threats and included:

6.4.1 SQL Injection Attempts
Payloads such as id=1 OR 1=1 and 'DROP TABLE users;--'
were sent to endpoints expecting integer parameters.

6.4.2 Cross-Site Scripting (XSS)

Injected JavaScript code snippets (<script>alert('xss')</script>)
were embedded within POST requests to test response
sanitization.

6.4.3 Insecure Direct Object Reference (IDOR)

Attackers attempted to access resources (e.g., /api/user/2)
belonging to other users without proper authorization.

6.4.4 Brute Force and Rate-Limiting Tests
Automated Python loops bombarded login endpoints with
randomized credentials to observe detection thresholds.

6.4.5 Header Manipulation

Crafted requests with altered Content-Type, Accept, and User-
Agent headers to evaluate server resilience against malformed
metadata.

Each simulated attack type was run first against the baseline
(unprotected) API and then against the middleware-protected
version. Key metrics recorded included request success rate,
latency, response codes, and false-positive ratios.

6.5 Workflow: Baseline vs. Middleware-

Protected Scenarios
Two primary workflows were tested to highlight the effect of
the middleware:

6.5.1 Baseline Workflow

In this mode, all incoming requests were routed directly to
Express.js handlers without any security layer. This setup
provided a control environment to measure the natural
vulnerability exposure of the API.

6.5.2 Middleware-Protected Workflow

Here, every request was processed through the security
middleware stack. Suspicious or malformed requests were
blocked, logged, and, in some cases, rate-limited before
reaching application logic.

Comparative analysis showed that while baseline APIs
responded faster (average 5-7% lower latency), they were
highly vulnerable to all simulated attack types. In contrast, the
middleware-protected system demonstrated a 96% reduction in
successful intrusion attempts, confirming the trade-off between
minimal performance cost and substantial security
improvement.

6.6 Handling Normal Requests and

Managing False Positives

One critical challenge in any automated threat mitigation
system is ensuring that legitimate user requests are not
incorrectly blocked. False positives not only degrade user
experience but can also disrupt normal business operations.
During testing, the middleware occasionally flagged legitimate
complex query parameters or nested JSON objects as
suspicious due to their similarity with injection patterns. To
address this, a learning-based whitelist mechanism was
introduced: whenever a false positive was verified, the specific
request signature was added to a temporary “trusted pattern”
list, allowing subsequent requests of similar structure to pass
unchallenged. Additionally, extensive logging of false
positives allowed iterate tuning of validation regex patterns and
rate-limiting thresholds. The middleware was ultimately

64

optimized to achieve a false positive rate of under 1.5%,
striking a balance between proactive defense and usability.

7. Evaluation and Results

The effectiveness of the proposed middleware-based REST
API security framework was evaluated through controlled local
testing environments. The primary goal of this phase was to
measure the reduction in successful attacks, performance
overhead, and response latency after integrating the
middleware layer. The experiments were designed to simulate
realistic attack scenarios commonly faced by web APIs, such
as SQL injection (SQLi), cross-site scripting (XSS), path
traversal, and brute-force login attempts.

7.1 Experimental Setup

All experiments were conducted on a local server environment
running Node.js (v18.x) and Express.js (v4.x). The middleware
layer was integrated between the HTTP request handler and the
route controllers. The testing suite included:

7.1.1 Attack simulation tools
OWASP ZAP, Burp Suite, and custom Python scripts.

7.1.2 Traffic generators

Postman and JMeter for controlled request loads.

7.1.3 Database backend

MySQL with a test dataset of mock users and transaction
records.

7.1.4 Logging system
Winston and ELK Stack (Elasticsearch, Logstash, Kibana) for
detailed log aggregation and visualization.

The experimental evaluation was performed under two distinct
operating modes. In the baseline mode, the API was executed
without the middleware layer, representing a vulnerable
configuration. In the protected mode, the middleware was fully
enabled and applied across all routes. Both modes were
subjected to an identical sequence of requests, consisting of a
mix of legitimate traffic and malicious payloads, to facilitate
direct and fair comparison of results.

7.2 Attack Scenarios

A total of five attack categories were simulated:

7.2.1 SQL Injection (SQLi)

Malicious payloads attempting to manipulate database queries.

7.2.2 Cross-Site Scripting (XSS)

Encoded <script> injections in query and body parameters.

7.2.3 Path Traversal

Attempts to access restricted directories using “../” sequences.

7.2.4 Brute-force Authentication
Rapid login attempts using randomized credentials.

7.2.5 Insecure Direct Object Reference (IDOR)

Directly accessing restricted user resources via modified URLs.

Each category contained multiple payloads with variations in
encoding and obfuscation. The middleware was designed to
sanitize, validate, and block requests based on dynamic rules
and pattern recognition.

7.3 Evaluation Metrics
The following metrics were used for analysis:

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

7.3.1 Successful Attack Rate (SAR)

Percentage of malicious requests that bypassed protection.

7.3.2 Blocked Request Rate (BRR)
Percentage of attacks detected and blocked.

7.3.3 Response Latency (RL)

Time taken to process requests before and after middleware.

7.3.4 CPU and Memory Utilization

To measure system overhead.

7.4 Experimental Results
7.4.1 Attack Reduction

In the baseline mode (without middleware), the system
registered a success rate of 87% for simulated attacks —
meaning 87% of malicious requests were successfully
executed. After deploying the middleware, the success rate
dropped drastically to 3.4%, representing a 96% reduction in
successful attacks.

Table 1. Reduction in Successful Attacks After

Middleware Deployment

Attack | Total Successful Successful Reductio
Type Attempts | (Without (With n

Middlewar | Middlewar

e) e)
SQL 200 174 5 97%
Injectio
n
XSS 150 138 4 97.1%
Path 100 86 2 97.6%
Travers
al
Brute 300 250 18 92.8%
Force
IDOR 120 105 6 94.2%
Overall | 870 753 35 95.6%

These numbers were verified using log-based analysis, where
each blocked or successful attack attempt was categorized by
request type, payload signature, and timestamp.

7.4.2 Latency and Overhead

Performance testing was conducted using Apache JMeter with
1000 concurrent requests under both modes. The average
latency increased slightly — from 68ms (baseline) to 84ms
(with middleware), indicating a ~23% overhead, which is
acceptable for security-critical applications.

Table 2. Performance Comparison With and Without
Middleware Integration

Parameter Without With Change
Middleware Middleware
Average 68 84 +23%
Latency (ms)

65

Throughput 354 332 -6.2%
(req/sec)
CPU 41% 49% +8%
Utilization
Memory Usage | 312MB 365MB +17%

This marginal increase in resource usage demonstrates that the
security middleware operates efficiently, balancing protection
and performance effectively.

7.5 Statistical Analysis

A t-test was conducted on attack success rates to verify the
significance of results. The p-value obtained was < 0.01,

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

confirming that the observed reduction in attacks is statistically
significant. Moreover, correlation analysis between latency and
protection rate showed negligible correlation (r = 0.08),
indicating that increasing security did not meaningfully
degrade performance.

7.6 Visualization and Logging Insights

The ELK dashboard visualized the blocked and successful
requests over time. Peaks in the blocked request graph
corresponded directly to attack waves launched via automated
tools, validating the middleware’s real-time detection
capability. Log data revealed that most blocked attempts
contained encoded payloads (e.g., Base64 or URL-encoded
scripts), confirming the middleware’s ability to decode and
detect threats before request execution.

7.6 Visualization & Logging Insights - Real-time Attack Trends

160 { —@— Blocked Attacks

—8— Successful Attacks

140 +

120 A

100 +

Number of Requests
(=] (-]
(=] (=]

40 A

20 4

O_W

0 5

10

15 20

Time (Hours)

Fig 4: Visualization and Logging Insights

7.7 Discussion of Results

The experimental outcomes demonstrate that a middleware-
centric security model can effectively mitigate a wide range of
API attacks while maintaining manageable performance trade-
offs. A 95-96% reduction in successful attack attempts,
combined with minimal performance overhead, validates the
framework’s capability for real-world use. The findings also
emphasize that security should be integrated as a proactive
middleware layer rather than being treated as an afterthought at
the endpoint level. These results align with prior theoretical
expectations and extend the concept of defense-in-depth to the
middleware tier, bridging a crucial gap between network-level
and application-level protections.

8. Comprehensive Discussion and

Interpretation

The evaluation phase clearly demonstrated that the
middleware-based REST API security framework achieved
substantial improvements in terms of protection, detection
accuracy, and operational stability. However, beyond raw
numbers, it is essential to interpret what these results truly

signify for API security in practice and how they reflect the
effectiveness of middleware as a proactive defensive layer.

8.1 Significance of Attack Reduction

The reduction of successful attacks by nearly 96% signifies a
crucial breakthrough. In traditional architectures, security
mechanisms are often embedded directly in endpoints or rely
solely on network firewalls. These approaches can detect
surface-level anomalies but fail against deeply embedded
payloads or encoded attacks that bypass static filters. The
middleware architecture, in contrast, acts as a real-time
gatekeeper — analyzing every incoming HTTP request before
it reaches application logic. The results prove that this layer
successfully neutralized injection-based and traversal-based
exploits before they interacted with the backend system. This
demonstrates a shift from reactive defense to preemptive
protection, which is vital in modern API ecosystems.
Furthermore, the encoded payload detection noted in Section
7.6 reinforces this. Attackers often disguise malicious inputs in
Base64, hexadecimal, or URL-encoded formats to evade static
filters. The middleware’s ability to decode, inspect, and flag
these attempts shows that the framework doesn’t merely rely
on blacklists — it implements dynamic decoding and

66

contextual validation, a hallmark of intelligent middleware
design.

8.2 Interpreting Latency and Overhead
Although there was a 23% increase in latency and slight rises
in CPU and memory usage, these trade-offs are well within
acceptable bounds for high-security applications. In
cybersecurity research, a latency increase of up to 25-30% is
often deemed reasonable if it yields over 90% threat reduction.
Here, the security—performance ratio achieved by the
middleware demonstrates exceptional balance. It proves that
integrating security logic between the transport and application
layers need not cripple performance. Instead, with optimized
asynchronous processing and caching mechanisms,
middleware can sustain throughput while still maintaining
strong inspection depth. This performance efficiency highlights
the potential of modular security architectures. Rather than
embedding complex validation logic into every endpoint,
centralizing security functions in middleware enables code
reusability, easier maintenance, and faster scalability across
multiple APIs.

8.3 Practical Implications for Real-World
Deployment

The findings from this experiment highlight several practical
benefits for developers and system architects. By deploying
middleware-based security, developers can integrate
customized validation logic without modifying individual
endpoint implementations, while organizations can enforce
uniform security policies across heterogeneous microservice
architectures. In addition, security teams benefit from
centralized logging and visualization mechanisms, such as
ELK dashboards, which simplify forensic investigations and
support compliance auditing. This framework also aligns
closely with DevSecOps principles by embedding security
controls directly into the continuous integration and continuous
deployment (CI/CD) pipeline. Middleware rules can be
updated dynamically, tested automatically, and deployed
incrementally without requiring full application redeployment,
thereby supporting an agile and developer-friendly security
model.

8.4 Limitations and Observations

While the results of the study were promising, several
limitations were identified that warrant consideration. First, the
evaluation was conducted in a locally controlled environment
rather than a distributed cloud-based deployment, where factors
such as network latency, elastic scaling, and heterogeneous
infrastructure could influence system behavior. As a result,
performance characteristics observed in this study may differ
under large-scale production conditions. Second, although the
middleware demonstrated strong effectiveness against
common attack patterns, certain complex multi-stage attacks—
such as chained cross-site scripting (XSS) combined with SQL
injection attempts—were only partially detected and not fully
neutralized in all cases. This highlights the inherent difficulty
of addressing sophisticated attack sequences using rule-based
and pattern-driven mechanisms alone. Finally, the
middleware’s decoding and payload analysis layers, while
essential for accurate threat detection, may introduce additional
processing overhead under extreme traffic loads. Although the
observed overhead remained within acceptable limits for the
tested scenarios, sustained high-volume traffic could further
amplify this impact and should be explored in future
evaluations. Despite these constraints, the results are still strong
indicators that middleware-level defenses are a viable and
scalable model for protecting APIs. Future enhancements could

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

include adaptive rate limiting, Al-driven anomaly detection,
and deeper behavioral correlation between attack patterns.

8.5 Interpretation of Encoded Payload
Detection

As noted in earlier results, the middleware successfully flagged
most encoded or obfuscated payloads. Encoded inputs typically
appear in malicious requests as URL-encoded sequences (like
%3Cscript%3E) or Base64 strings. These are attempts to
disguise malicious code that might bypass conventional filters.
By decoding and validating these patterns dynamically, the
middleware demonstrated resilience against second-order
injection attacks — a class of threats that execute only after
being decoded downstream. This ability to preprocess and
normalize input data is what prevented such attacks from
executing at the application level.

8.6 Summary of Discussion

In essence, the middleware transformed the API environment
from a reactive security posture to a more proactive defense
mechanism. The evaluation demonstrated a high detection
accuracy of approximately 96 percent while introducing only a
modest latency overhead of around 23 percent. In addition, the
design exhibited strong scalability potential, indicating its
suitability for deployment across growing and distributed API
infrastructures. These findings reinforce the view that
middleware-based security models can effectively bridge the
gap between traditional network-level defenses and
application-layer logic, functioning as a critical intermediary
layer for modern API protection.

9. Conclusion and Future Work

This research set out to address persistent security gaps in
REST API architectures by proposing and evaluating a
middleware-based defense framework capable of operating
directly within the application request lifecycle. As modern
APIs continue to grow in scale, complexity, and exposure,
traditional security —mechanisms—focused largely on
authentication, encryption, or static rule sets—are no longer
sufficient to defend against dynamic and context-driven threats.
By embedding security logic at a middleware layer, this work
demonstrates how proactive, real-time inspection and
validation can significantly reduce attack success rates while
maintaining operational efficiency. The following sections
summarize the key contributions of the study, outline the
practical advantages of the middleware approach, and present
several directions for future enhancement to ensure the
framework remains adaptable to emerging threats and
production-grade deployment requirements.

9.1 Summary of Contributions and
Findings

This research successfully demonstrated that a middleware-
based REST API security framework can significantly enhance
protection against common web-based attacks such as SQL
Injection, Cross-Site Scripting (XSS), Path Traversal, Brute-
Force Authentication, and Insecure Direct Object Reference
(IDOR). Through controlled experiments conducted in Node.js
and Express.js environments, the framework achieved an
average 95-96% reduction in successful attacks compared to
an unprotected baseline. The evaluation revealed that even with
comprehensive security checks applied at the middleware
layer, system performance remained within acceptable limits,
with only a ~23% latency increase and moderate resource
utilization. This validates that proactive security can coexist
with operational efficiency. The middleware effectively acted
as a dynamic defense shield, detecting encoded payloads,
sanitizing malicious inputs, and preventing unauthorized

67

access before requests reached the core application logic. The
project also integrated detailed logging and visualization
mechanisms using the ELK stack (Elasticsearch, Logstash,
Kibana), providing real-time insights into attack trends,
blocked requests, and system behavior. This made the
framework not only defensive but also diagnostic, offering
developers and administrators better control over their API
security landscape.

9.2 Advantages of Middleware-Based API

Security

The study highlights several key advantages of embedding
security controls at the middleware level. Centralizing security
enforcement allows validation rules and access controls to be
applied uniformly across all API routes, thereby reducing
redundancy and minimizing the risk of human error. The
middleware architecture also facilitates ease of integration, as
it can be introduced into existing systems without requiring
extensive refactoring of application code, making it particularly
suitable for legacy APIs. In addition, the proposed approach
offers a high degree of customizability and flexibility, enabling
developers to define, refine, and update validation logic
dynamically in response to evolving threat patterns. Separating
security logic from core business functionality further
improves maintainability by enhancing code clarity,
simplifying debugging, and reducing long-term maintenance
overhead. When combined with monitoring and visualization
tools such as Kibana, the middleware also provides enhanced
visibility into both legitimate and malicious traffic, allowing
system administrators to gain actionable insights into API
usage and attack behavior. Collectively, these characteristics
position middleware-based security as a practical, scalable, and
proactive solution for protecting RESTful APIs in real-world
deployment environments.

9.3 Future Enhancements

While the current results are promising, several future
enhancements can extend the framework’s capability and
readiness for enterprise-grade deployment:

9.3.1 Al-Driven Anomaly Detection

Integrating machine learning models could enable the
middleware to detect zero-day attacks and unusual traffic
patterns that signature-based systems might miss. For example,
anomaly detection algorithms can learn baseline API usage
behavior and automatically flag deviations that may indicate
novel attack vectors.

9.3.2 Integration into DevSecOps Pipelines

Future versions should embed the middleware into DevSecOps
workflows, enabling continuous security testing throughout the
development lifecycle. By incorporating automated
vulnerability scanning and middleware validation into CI/CD
pipelines, teams can ensure that every deployment maintains
consistent protection levels.

9.3.3 Scaling for Distributed and Cloud

Environments

Although testing was done locally, real-world applications
often operate in distributed, multi-node, or microservice
architectures. Future iterations should focus on making the
middleware container-aware, easily deployable via Docker or
Kubernetes, and capable of synchronous coordination across
multiple nodes to preserve consistency and performance.

9.3.4 Adaptive Rule Learning and Self-Healing

The framework could be enhanced to include self-learning rule
mechanisms — dynamically adjusting thresholds and filters

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

based on historical attack data. Combined with automated
remediation (such as temporarily blocking abusive IPs or
regenerating security keys), this would create a self-healing
security layer that evolves over time.

9.3.5 Enhanced Visualization and Predictive

Analytics

The visualization system can be upgraded with predictive
analytics dashboards in Kibana or Grafana. By correlating
time-based attack data and user activity, administrators can
proactively predict upcoming threats, rather than just react to
them.

9.4 Final Remarks

In conclusion, this work establishes middleware as a critical
yet often overlooked layer of defense in API security. The
experimental results strongly support the hypothesis that
integrating intelligent middleware not only reduces attack
success rates but also bridges the gap between traditional
network security and application-level safeguards.

By treating middleware as the first line of logic defense,
developers can create APIs that are secure by design — not just
by afterthought. With further enhancements such as Al-driven
detection, DevSecOps integration, and distributed scaling, the
proposed framework can evolve into a powerful, enterprise-
grade security solution suitable for modern, large-scale
systems.

10. REFERENCES

[1] Badhwar, R.,2021. Intro to API Security-Issues and Some
Solutions!. In The CISO’s Next Frontier: Al, Post-
Quantum Cryptography and Advanced Security
Paradigms (pp. 239-244). Cham: Springer International
Publishing.

[2] Pardal, M.L., Offensive security assessment of a REST
API for a location proof system.

[3] Ehsan, A., Abuhaliga, M.A.M., Catal, C. and Mishra, D.,
2022. RESTful API testing methodologies: Rationale,
challenges, and solution directions. Applied Sciences,
12(9), p.4369.

[4] Myllari, E., 2022. Introducing REST Based API
Management and Its Relationship to Existing SOAP
Based Systems.

[5] Bhateja, N., Sikka, S. and Malhotra, A., 2021. A review of
sql injection attack and various detection approaches.
Smart and Sustainable Intelligent Systems, pp.481-489.

[6] Anugrah, [.G. and Fakhruddin, M.A.R.I, 2020.
Development authentication and authorization systems of
multi information systems based rest api and auth token.
Innovation Research Journal, 1(2), pp.127-132.

[7] OWASP Foundation, "OWASP Top 10: 2021 — The Ten
Most Critical Web Application Security Risks," 2021.
[Online]. Available: https://owasp.org/www-project-top-
ten/

[8] Sadqi, Y. and Maleh, Y., 2022. A systematic review and
taxonomy of web applications threats. Information
Security Journal: A Global Perspective, 31(1), pp.1-27.

[9] Dalimunthe, S., Reza, J. and Marzuki, A., 2022. The
model for storing tokens in local storage (Cookies) using
JSON Web Token (JWT) with HMAC (Hash-based
Message Authentication Code) in e-learning systems.

68

Journal of Applied Engineering and Technological
Science, 3(2), pp.149-155.

[10] https://developers.google.com/identity/protocols/oauth2

[11] Wear, S., 2018. Burp Suite Cookbook: Practical recipes to
help you master web penetration testing with Burp Suite.
Packt Publishing Ltd.

[12] Kim, J., 2020. Burp suite: Automating web vulnerability
scanning (Master's thesis, Utica College).

[13] Maniraj, S.P., Ranganathan, C.S. and Sekar, S., 2024.
SECURING WEB APPLICATIONS WITH OWASP
ZAP FOR COMPREHENSIVE SECURITY TESTING.
INTERNATIONAL JOURNAL OF ADVANCES IN
SIGNAL AND IMAGE SCIENCES, 10(2), pp.12-23.

[14] Soni, P., & Kumar, A. (2020). API Security Challenges in
the Digital Finance Ecosystem. International Journal of
Cybersecurity and Digital Forensics, 2(2), 19-30.

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.72, January 2026

[15] McDermott, M., & Harris, J. (2021). Defending Against
Injection Attacks: A Comprehensive Review. Journal of
Cybersecurity, 18(4), 231-245.

[16] Coughlan, S., & Duggan, T. (2019). Denial-of-Service
Attacks in the Context of APIs and Fintech. International
Journal of Information Security, 15(2), 114-126.

[17] Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y.-G.,
2019. Are REST APIs for Cloud Computing Well-
Designed? An Exploratory Study. Université du Québec a
Montréal, Inria Lille-Nord Europe, Ecole Polytechnique
de Montréal, Federal University of Rio Grande do Sul.

[18] R. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures,” Ph.D.
dissertation, University of California, Irvine, 2000.

[19] E. Wilde, “RESTful Web Services: Principles, Patterns,
Emerging Technologies,” IEEE Internet Computing, vol.
13, no. 6, pp. 93-95, 2009

69

