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ABSTRACT

This study proposes a structured, multi-phase framework to en-
hance medical image classification accuracy through early detec-
tion and precise classification of Azheimer’s disease using MRI
scans. Initially, image preprocessing using gaussian filtering and
normalization is applied to suppress noise and standardize intensity
levels. The proposed Deep Intuitionistic Fuzzy Clustering (DIFC)
method effectively models uncertainty and vagueness inherent in
medical imaging by incorporating membership, non-membership,
and hesitation degrees, thereby achieving superior segmentation
performance compared to traditional fuzzy clustering approaches.
The Sea Lion Optimization Algorithm (SLOA) is employed to
fine-tune clustering parameters, ensuring faster convergence and
improved segmentation stability. Subsequently, textual, convolu-
tional, and statistical features extracted from the segmented re-
gions are optimized by Deep Maxout Network (DMN) using SLOA
for multi-stage AD classification. Experimental results demonstrate
that the proposed DIFC-SLOA-DMN framework achieves high ac-
curacy, sensitivity, and specificity, validating its effectiveness as
a robust and reliable computer-aided diagnostic system for early
Alzheimer’s disease detection and progression analysis.
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1. INTRODUCTION

AD is one of the most widespread brain abnormalities in the el-
derly, particularly those over 60 years old and it is currently the
fourth largest cause of death in developed countries. The primary
symptom of this illness is a decline in thinking and memory, and
severe AD will result in memory loss. Prescribed medication and
memory-retention exercises can be administered if the condition is
identified in its early stages, or we can assist the elderly in perform-
ing their daily tasks without difficulty [20]. AD progresses through
various stages, beigning with the mild cognitive impairment (MCI)

stage, which serves as the transitional stage between normal brain
functions and AD [24]]. In this context, early mild cognitive impair-
ment (EMCI) emerges in the initial stages, while late mild cognitive
impairment (LMCI) also refered as progressive mild cognitive im-
pairment, is characterized by symptoms that progressively worsen.
Subtle morphological changes in the brain leisons of patients in the
MCI stage provides biomarkers for diagnosis and monitoring.

However identifying specific variations in symptoms across dif-
ferent subsets remains a significant challenge for researchers. To
address these complexities, various medical imaging techniques,
such as positron emission tomography, magnetic resonance imag-
ing (MRI), and computed tomography, provide standardized testing
protocols and imaging data for experimental analyses [10]. Among
these, MRI is widely used due to its high resolution, good con-
trast, and ability to capture structural changes in the brain [7].
Structural MRI, in particular, plays a key role in detecting hall-
mark features such as atrophy in the medial temporal lobe, includ-
ing the hippocampus and entorhinal cortex, which are critical for
diagnosing AD and differentiating it from other forms of dementia
[8]]. Techniques like ROI analysis and gray matter voxel morphome-
try are commonly applied to structural MRI data for AD diagnosis.
Recent advancements in deep learning techniques have transformed
the analysis of MRI data, significantly improving the accuracy and
efficiency of AD diagnosis [6]. These models, known for their
ability to automatically extract intricate features from complex
datasets, have significantly enhanced the accuracy and efficiency
of AD detection. Leveraging structural insights from MRI scans,
deep learning models can identify subtle anatomical changes criti-
cal for early diagnosis and progression monitoring [3|]. Techniques
such as convolutional neural networks, recurrent neural networks,
and autoencoders have shown remarkable potential in analyzing
high-dimensional MRI data and classifying different stages of AD
[SL 21]. To develop these advancements, optimization algorithms
have been integrated with deep learning techniques to enhance
model performance. Among these, the Sea Lion Optimization Al-
gorithm (SLOA) has emerged as a promising method for hyperpa-
rameter tuning and improving training efficiency. By mimicking the
social hunting behavior of sea lions, SLOA effectively balances ex-



ploration and exploitation, leading to better convergence, reduced
training time, and improved classification accuracy [13].
Numerous studies have explored various innovative approaches
for AD detection, focusing on leveraging advanced computational
techniques and multimodal data analysis to improve diagnostic ac-
curacy and efficiency. These efforts encompass a wide range of
methodologies, including the application of machine learning, deep
learning, optimization algorithms, and hybrid frameworks to pro-
cess and analyze structural and functional imaging data. For the
classification, Shankar et al. [17] proposed a hybrid method com-
bining Group Grey Wolf Optimization with a convolutional classi-
fier for feature selection, achieving notable improvements in classi-
fication performance. Adarsh et al. [15] integrated anatomical, dif-
fusion, and resting-state functional MRI data to enhance individ-
ualized AD diagnosis, demonstrating the potential of multimodal
imaging for better classification accuracy. Liu et al. [14)] employed
sparse logistic regression with spatial regularization for AD clas-
sification using structural MRI, providing a robust framework for
feature selection. Zhang et al. [23] utilized a kernel support vector
machine and decision tree for AD classification, leveraging struc-
tural imaging features to achieve significant accuracy improve-
ments. ramya et al. [4] enhanced AD classification by combining
multiple anatomical MRI measures, emphasizing the advantages of
utilizing diverse structural imaging metrics. Aghajanian et al. [[11]]
applied Locally Linear Embedding to MRI data for dimensionality
reduction and feature extraction, showcasing the benefits of mani-
fold learning techniques in AD diagnosis. Huang et al. [9] utilized
voxel-based morphometry to distinguish early-stage AD from con-
trols, laying the foundation for structural MRI analysis in AD re-
search. Zhang et al. [22]] addressed multiclass AD diagnosis using
multimodal neuroimaging embedding feature selection and fusion,
achieving state-of-the-art performance. Afzal et al. [2]] presented
a data augmentation framework to address class imbalance in AD
stage detection, significantly improving classification accuracy and
showcasing the role of augmentation in enhancing deep learning
models for imbalanced datasets.

Building on these advancements, this study proposes a novel hy-
brid framework for the automated detection and classification of
AD, focusing on the segmentation of critical brain regions and their
classification using a DMN. This combination ensures precise de-
lineation of the hippocampus, cerebral cortex, and ventricles, pro-
viding robust input for the classification phase. The brain regions
are critical for memory and cognitive function, and their degener-
ation provides important biomarkers for disease progression. Ac-
curate segmentation of these regions from MRI scans is a prereq-
uisite for effective feature extraction and subsequent classification.
Traditional segmentation techniques often struggle with noise, in-
tensity inhomogeneity, and complex anatomical structures, neces-
sitating more sophisticated approaches. One of the existing frame-
work integrates the fuzzy clustering technique with advanced deep
learning models has emerged as a promising approach in AD di-
agnosis. Techniques such as Fuzzy C-Means, Kernel-Based Fuzzy
C-Means, Entropy-Weighted Fuzzy C-Means, and Spatial-Based
Fuzzy C-Means are combined with deep learning models like Con-
volutional Neural Networks, Recurrent Neural Networks, and Deep
Neural Networks to enhance the analysis of brain imaging data
[26].

In this framework, the DIFC + SLOA-based DMN model is devel-
oped to overcome the limitations of existing methods. The Gaus-
sian filter effectively removes image artifacts, enhancing accuracy,
DIFC approach provides a robust framework for analyzing large-
scale datasets. Accurate AD classification is achieved through ef-
fective feature extraction, and overfitting is mitigated using data
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augmentation techniques. Additionally, the DMN ensures fast con-
vergence and optimal generalization of results.

1.1 Motivation

The accurate detection and classifying AD is still hard in medical
imaging due to the complex and subtle changes in brain structure.
Existing methods for segmenting and classifying things often not
being able to generalise well, being inaccurate, or not being strong
enough when used on different types of data. Moreover, many tradi-
tional approaches fail to leverage advanced optimization techniques
to improve the precision of brain region segmentation and the re-
liability of classification models. The goal of this study is to fill in
these gaps by creating a strong, automated system that can look at
structural MRI images and make an early and accurate diagnosis of
AD. This will help with making better treatments and giving better
patient care.

Motivated by these problems, this study seeks to achieve the fol-
lowing objectives:

(1) To design an optimal segmentation model capable of effec-
tively handling sparse datasets.

(2) Integrating proposed DMN with optimized SLOA classifies the
images into five stages such as AD, MCI, EMCI, LMCI and
CN.

(3) To demonstrate the efficacy of the SLOA in enhancing both
segmentation and classification tasks, with a particular focus
on optimizing hyperparameters, improving convergence rates,
and ensuring the precise identification of subtle structural and
morphological changes in the brain.

(4) Through comparison with existing methods such as
DFC+CNN and DFC+SLDHOA, shows significant im-
provements in accuracy, sensitivity, and specificity, which
highlights the superiority of the proposed framework.

2. METHODOLOGY

The proposed methodology comprises the steps including image
processing, region of interest, segmentation by DIFC with SLOA
and also classifying the images. The process begins with acquiring
a noisy MRI image, which undergoes pre-processing techniques
such as filtering and enhancement where filtering eliminates noise,
while enhancement improves the image’s contrast. Further, it is
subjected to image segmentation to isolate the ROI. Features are
subsequently extracted from these segmented regions. After the di-
mensionality reduction of the extracted features, the image is clas-
sified into their respective categories. The steps involved in this
methodology, from dimensionality reduction to classification, are
illustrated in the workflow shown in Fig|[I]

2.1 Dataset Description

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
which consists of neuroimaging data, including MRI scans, which
are used for the analysis and classification of AD. The dataset in-
cludes different stages of cognitive impairment associated with AD.
Consider the ADNI dataset as M and it is mathematically repre-
sented as M = Ny, Ns,...,N;,..., N, where M denotes the
dataset, h denotes the number of images and IN; denotes the 7"
image of the input.

2.2 Preprocessing dataset

Here, the preprocessing stage involves noise reduction in the
dataset by using the Gaussian filter. It operates based on the Gaus-
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sian function, which calculates a weighted average of surrounding
pixels, assigning greater weight to central pixels. This function is
represented as
2+ 2
N o)
V2ro?

where p and q are the points in the coordinates of the filter kernel,
o is the standard deviation.

G(p,q) =

1)

2.3 Region of interest in segmentation

ROI in segmentation increases the focus on relevant brain regions,
thus improving the detection and classification of AD. By isolating
specific areas for analysis, the process reduces computational com-
plexity and enhances the accuracy of feature extraction, ultimately
leading to better classification performance in the subsequent deep
learning models [18]]. The ROI in segmentation starts with the pre-
processed brain MRI image, which has undergone Gaussian filter-
ing to reduce noise and improve image quality. It is enhanced using
a DIFC process and optimized by the SLOA. DIFC helps in han-
dling uncertainty and soft boundaries, where each pixel has mem-
bership, non-membership, and hesitation degrees to different clus-
ters. This flexibility allows a better definition of borders between
brain regions, improving segmentation accuracy. SLOA fine-tunes
the hyperparameters of the clustering process, such as the number
of clusters and the fuzziness coefficient, to improve the segmenta-
tion quality. This optimization ensures that the clusters correspond
to meaningful anatomical structures in the brain, enhancing the ac-
curacy of the segmentation. After clustering the regions affected by
AD are identified as ROI.

2.4 Proposed DIFC-DMN Algorithm

Algorithm 1: DIFC-DMN for Alzheimer’s Disease Classifica-
tion

Input: Raw MRI images M

Output: Classified Alzheimer’s disease stages

(1) Load MRI dataset M.

(2) Initialize index ¢ = 0.

(3) While ¢ < |M]|, perform the following:
(a) Apply Gaussian filtering to remove noise.
(b) Normalize pixel intensities to the range [0, 1].
(c) Generate intuitionistic fuzzy representation.
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(d) Increment: =17+ 1.

(4) Obtain preprocessed image set M.
(5) Initialize sea lion population as candidate DIFC cluster centers.
(6) Set iteration counter ¢t = 0.

(7) While t < Ty,ax, perform:

(a) Update positions using spiral encircling and random wan-
dering.

(b) Compute fitness based on intra-cluster variance and en-
tropy.

(c) Update DIFC cluster centers adaptively.

(d) Incrementt =t + 1.

(8) Segment M), into regions of interest to obtain M.

(9) Extract CNN features from M, using convolution and pooling
layers.

(10) Initialize sea lion population for DMN hyperparameter opti-
mization.

(11) While convergence is not reached:

(a) Update hyperparameters.
(b) Evaluate classification accuracy.

(12) Train the DMN with optimal hyperparameters.

(13) Evaluate performance using accuracy, sensitivity, and speci-
ficity.

(14) Return final classification results.

2.5 Deep Intuitionistic Fuzzy clustering

In this research, DIFC provides an approach for segmenting and
classifying AD in brain imaging by integrating IFC within deep
neural networks, allowing it to extract complex, high-level features
from data automatically. After the preprocessing stage, the outputs
of preproccessed images are used as input for the process of DIFC.
The DIFC is formulated by integrating the clustering process with
the SLOA algorithm, enabling the SLOA to optimize the cluster-
ing process effectively. The process involves dividing the samples
M into m/m, batches, with each batch containing a training im-
age N;,© = 1,2,...,m/m.. During training, the autoencoder uti-
lizes weights w and biases D, while A is chosen as the intuitionis-
tic fuzzy clustering center. The hidden features are denoted as @,
while memberships are represented as [,. Pseudo-labels are also
calculated as I,,, which are used to initialize the affinities across all
batches, L,, € R™<*™¢<. This process ensures a more robust repre-
sentation of clustering by incorporating both fuzzy and intuitionis-
tic principles, improving segmentation precision and adaptability.
The loss function for DIFC is expressed as,

1 m
O(Kg) = — 3 lwp,s(M) = M +0-T(E) @)
i=1

Here, || - || denotes the Euclidean norm, Y (E) represents the regu-
larization term, and = g _s(M;) denotes the reconstruction term.
Let g; € R represent the hidden feature vector, and let @), =
{91,92, - -, gm} denote the set of hidden features. In the intuition-
istic fuzzy clustering layer, the input g;, the membership degree
R;;, and the non-membership degree S;; are defined as follows:
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Ri]‘ = 7%1
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Sij=1— Ry =Ty, Ty <1—(Rij +8Sij) (C))

where v is the hyperparameter controlling cluster distance and
space, a is the fuzzification parameter, and T5; is the hesitation de-
gree, ensuring that R;; + S;; + T;; = 1.

Pseudo-labels I, and targets M are calculated as:

q
Mi]: Z(Z R”), ;Mijzl Vi (5)

The loss function for KL-divergence is modified to incorporate in-
tuitionistic fuzzy principles:

min KL(M|I) = mlnzz ( logf + Sij IOgSil;%

=1 j=1
(6)
Graph regularization is represented as:
m
min H, = min Z llg: — gill*eq ™)

il=1

where e;; denotes the affinity between M; and M. High affinity
reduces the distance between h; and g;, minimizing the regulariza-
tion.

Finally, the overall loss function B for DIFC is expressed as: B =

S lwe s (hi) = hil®

+ ﬁl Zz 1 q (Mw IOg‘ R + S” IOg 1 )
+ B2 Zi:l Zz:l ng - ng €il-

where:

e ={ exp(=llgi — gull*/r) X, b = €,0,6: # b (8)

The hyperparameters 31, 82,7, X, fuzzifier m and ¢;, ¢, expresses
the labels of DIFC are optimized using the SLOA.

2.6 Sea Lion Optimization Algorithm

SLOA is a global optimization algorithm inspired by the hunting
behaviors of sea lions, including their encircling and prey-capturing
techniques, as well as their use of tails and whiskers. SLOA has
demonstrated competitive performance compared to establish parti-
cle swarm optimization algorithms across various benchmark func-
tions. SLOA is used to optimize the hyperparameters of the DIFC
framework, ensuring improved clustering accuracy, better assign-
ment, and faster convergence. The following steps outline the pro-
cess of SLOA. [13]]

2.6.1 Initialization Phase. At first, SLOA begins by generating
an initial population of solutions in a D-dimensional search space.
This population represents the possible positions of sea lions, ini-
tialized randomly within the defined boundaries:

)
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XZ”;” = XZ’“;Z" +rand; ; - (X;Z“z — XZ";"L) 9)
where i = 1,2,..., N, j = 1,2,..., D, X{%" is the initial posi-
tion vector of the ¢-th solution, X mm and X maT denote the mini-

mum and maximum bounds for the ]”L dlmensmn of the it"
tion, rand; ; is a uniform random value in the interval [0, 1].

solu-

2.6.2 Detecting and Tracking Phase. The fitness of each sea
lion’s position is evaluated using the objective function. The best-

performing solution, X best , 1s identified. Other sea lions adjust

their positions based on X ; using the encircling mechanism:

be.s

X0 = x o or x - X® (10)

where X ,EZ)S . s the position vector of the best solution at iteration ¢,
X ® is the position vector of a sea lion in iteration ¢, ¢ is the current
iteration, £,,,4. 1S the maximum number of generations, r is a ran-
dom value in the range [0, 1], C' encircling coefficient multiplied
by 2 to increase the search range, C' = 2 (1 - tmt{w) and linearly
decreases from 2 to 0 across iterations.

2.6.3 Vocalization Phase. When a sea lion recognizes prey (e.g.,
fish), it calls other group members to form a net for capturing. This
is modeled using the leader’s signal:

SPleadeT = Ya(1tva)

Va2
Vi = sin(6)
V = sin(¢)
where S Pcqqe- represents the leader’s decisions, = 277 is the
angle of voice reflection, ¢ = 27(1 — r) is the angle of voice
refraction, r is a random number in the range [0, 1].

2.6.4 Attacking Phase (Exploitation Phase). The leader sea lion
leads the hunting process in two key phases:

(1) Dwindling Encircling Technique: The encircling mechanism
(controlled by C) allows the search space to shrink, focusing
the search agents around the best solution.

(2) Circling Updating Position: The position of a sea lion is up-
dated using:

XD = x4 cos(2mm) - ’Xé?st -X®  an

where m is a random number in the range [—1, 1].

2.6.5 Searching for Prey (Exploration Phase). When C > 1, sea
lions prioritize exploration by moving towards randomly selected
solutions to avoid premature convergence. This is described by:

XED =X - Cfr- X - X (12)
where X" () 1,q 18 the position vector of a randomly selected sea lion,

r is a random value in [0, 1] and this phase

2.6.6 Update best solution. The best solution is identified, and
all sea lions adjust their positions toward it. The above algorithm
iterates until the maximum number of iterations . is reached.

2.7 Feature extraction

The features are extracted from the segmented images for the pro-
cess of classification. This extraction includes texture features, sta-
tistical features and the convolutional features which are dicussed
below.
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Table 1. Statistical features with their mathematical
formulations

Statistical Feature
Mean (V3)
Variance (V)

Mathematical Expression

Vs = % Zzy I(z,y)

Vi=R8 >, Uy —Vs)?
= JF L, () - 1)

<

Standard Deviation (V5)

Energy (V) Vo=>. y I(z,y)?
Entropy (V7) Ve =— ZZ piloga(ps)
Contrast (Vg) Vs = Zw y(ﬂC —y)?p(z,y)

* (I(z,y)-Va)*
Kurtosis (V) Vo = Y Z“J v °

5
* (I(z,y)-V3)*

Skewness (V10) Vip = — Zz’y 3 i

5

2.7.1 Texture features. The texture features are extracted from
segmented regions from the methods of Local Gabor Binary Pat-
tern (LGBP) and Symmetric Local Information Pattern (SLIP). The
methods are as follows, (i) LGBP: It is a texture descriptor that cap-
tures local texture information by combining Gabor filters with bi-
nary pattern encoding. The Gabor filters capture different frequency
and orientation responses, allowing for the extraction of multi-scale
texture features and capable of capturing significant texture infor-
mation from brain images. (ii) SLIF: It is another method that an-
alyzes the local intensity values of pixels within a local neighbor-
hood and captures variations in texture. This method is particularly
effective for identifying patterns in brain images associated with
different stages of AD.

2.7.2  Statistical features. The statistical features play a vital role
in analyzing and are used to enhance deep learning techniques for
classification. The features are, (iii)Mean: Mean value represents
the average pixel intensity within a region. It helps the overall
brightness and texture of the image. (ii)Variance: It measures the
spread of pixel values around the mean. High variance indicates
significant texture, while low variance suggests smoother areas.
(iv)Standard Deviation: The square root of variance, quantifies the
variation in pixel intensity. A higher standard deviation often re-
flects greater contrast. (v)Energy: Calculated as the sum of squared
pixel values, energy reflects the amount of textures and high energy
values correlated. (vi)Entropy: A measure of the unpredictability in
the intensity distribution, higher entropy values indicate more com-
plex textures. This can be particularly useful in distinguishing be-
tween different stages of cognitive impairment. (vii)Contrast: As-
sesses the difference in intensity between neighboring pixels and
higher contrast indicates sharper distinct features. (viii)Kurtosis:
Measures the "tailedness” of the intensity distribution. High kurto-
sis indicates more extreme values and significant textural patterns.
(ix)Skewness: Indicates the asymmetry of the distribution of pixel
intensities. Positive skewness means a longer tail on the right side
of the distribution gives the brighter pixels, while negative skew-
ness indicates the opposite distribution gives the darker pixels. The
mathematical formulas for the respective statistical features are de-
scribed in Table[T]

2.7.3 CNN features. CNN feature is one of the neural network
models, which plays a vital role in extracting the features and it
precisely identifies and localizes the ROI by recognizing the pat-
terns of the affected brain regions. It contains 4 input layers, 4
max pooling layers, 4 convolutional layers, and 3 dense layers with
the activation functions of softmax and relu. The above-mentioned
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Input Image
128 x 128 x 3

Conv2D (32, 3 % 3) + MaxPool (2 x 2)
64 = 64 x 32

Conv2D (64, 3 x 3) + MaxPool (2 x 2)
32 % 32 x 64

Conv2D (128,3 x 3) + MaxPool (2 x 2)
16 x 16 x 128

Conv2D (256, 3 x 3) + MaxPool (2 x 2)
8 x B x 256

Flatten
. 384

|
| 8

Dense (2048)
RelU

=

Dense
RelU

Dense (K classes)
Softmax

D

Fig. 2. Overall architecture of the proposed system

structure in flowchar@lextracts the feature and is fed into the DIFC
process with SLOA to refine the segmentation results. The convo-
lutional layer segments, denoted as J, serve as the input, while the
CNN features are the output, represented by C with a dimension of
[1 x 2048]. The output function of the convolutional operation is
mathematically expressed as:

P(k) = (p* C(k)) (13)

where p represents the input to the CNN, P(k) is the resulting fea-
ture map, and C'(k) denotes the kernel or probability density func-
tion applied during convolution.

The features are characterized into vectors V such as
V={V17 ‘/27 V3, ‘/47 ‘/57 V67 V77 V87 V97 ‘/10} where ‘/1 refers
LGBP, V; refers SLIF, V3 refers mean, V, refers variance, V5
refers standard deviation, Vg refers energy, V7 refers entropy, Vs
refers contrast, Vg refers kurtosis, V7 refers skewness.

2.8 Data augmentation

The vector features V is fed into a data augmentation module
that employs several key techniques: feature standardization, zero-
phase component analysis (ZCA), and random rotations, flips, and
shifts[[19]. In feature standardization, features are normalized to
have zero mean and unit variance, ensuring a consistent data dis-
tribution across the training set. ZCA is applied to decorrelate the
input features and reduce redundancy while preserving the original
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spatial structure, thereby enhancing the independence of features
and making the model more robust to noise and variations[12]].
Additionally, random rotations, shifts, and flips are performed to
simulate different viewpoints and orientations, which helps reduce
overfitting by exposing the model to a broader range of data varia-
tions.

2.9 AD classification

The classification process begins with input derived from the seg-
mented regions of the images. These segmented images are sub-
sequently used in a data augmentation process to enhance the ro-
bustness of the dataset. The augmented images are then fed into
the classification framework, which employs a deep maxout net-
work optimized using the SLOA and the evaluation metrics which
are used to adjust the AD classification. After training, the perfor-
mance of the classifier is evaluated using a confusion matrix from
which the following metrics are evaluated:

(1) Accuracy: Measures the overall correctness of the model by
comparing the number of correct predictions to the total num-
ber of predictions.

TP +TN
TP+TN+FP+FN
(2) Sensitivity (Recall): Indicates the model’s ability to correctly

identify positive cases. It is the ratio of true positives to the
sum of true positives and false negatives.
TP

TP+ FN

(3) Specificity: Reflects the model’s ability to correctly identify
negative cases. It is calculated as the ratio of true negatives to
the sum of true negatives and false positives.
TN

TN+ FP

Accuracy = (14)

Sensitivity = (15)

Speci ficity = (16)

3. EXPERIMENTAL RESULTS

The proposed DIFC+SLOA with DMN is evaluated for accuracy,
specificity and sensitivity for varying training datas. By utilizing
the Alzheimer’s Disease-5-Class-Dataset-ADNI [[1]], which con-
sists of MRI images arranged into two directories and classified
into the five stages of AD, namely AD, MCI, LMCI, EMCI, and
CN, are used in the analysis.

3.1 Evaluation of Segmentation

The evaluation of segmentation results using the proposed DIFC
optimized by the SLOA is discussed below. The dataset was pre-
processed using a Gaussian filter to reduce noise and improve im-
age quality. Subsequently, the DIFC algorithm with SLOA was
employed to segment critical regions and Fig illustrates the
segmentation includes the original image, the original mask, the
whole brain abnormality mask, the hippocampus mask and the
enlarged ventricles mask. Additionally, it presents a blank mask,
which signifies the absence of regions to cluster in the cortical at-
rophy. The proposed DIFC+SLOA model achieved an outstanding
accuracy of 0.993, and surpassing the previous DFC+SLDHOA ap-
proach, which yielded an accuracy of 0.826. Additionally, the pro-
posed model exhibited a minimal loss value of 0.0623, emphasizing
improved segmentation performance compared to traditional DFC
methods as depicted in Fig[d] which shows the accuracy and loss of
both training and validation datasets.
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hale Brain Abraamalty Mask

Fig. 3. Mask images for segmentation

Train Loss & Validation Loss Train Accuracy & Validation Accuracy

Fig. 4. Loss and Accuracy of Training and Validation dataset

3.2 Evaluation of Classification

After segmentation, features are extracted, and data augmentation
is applied for the classification of AD. These features are used as
input to the DMN optimized with the SLOA. The proposed model
classifies AD by evaluating accuracy, sensitivity, and specificity
metrics derived from the confusion matrix.The below Table [2] pro-
vides the results various AD detection methods.

Table 2. Comparison of different methods for AD detection

Method Accuracy (%) | Sensitivity (%) | Specificity (%)
DFC + RF 75.9 75.9 86.1
DFC + CNN 76.4 80.8 88.0
TL + CNN 78.4 83.6 87.3
DFC + SLDOA + DMN 79.1 83.9 88.8
Proposed: DIFC + DMN 86.9 96.72 86.9

In comparison to existing methods Fig[3.2] DFC+CNN [3]
achieved an overall accuracy of 76.8%, sensitivity of 80.8%, and
specificity of 88.0%. Similarly, the DFC+SLDHOA method [18]
reported an overall accuracy of 79.1%, sensitivity of 83.9%, and
specificity of 88.8%.

The proposed model demonstrates a significant improvement with
an overall accuracy of 86.90%, reflecting the model’s overall cor-
rectness. The sensitivity of 96.72% highlights the model’s excep-
tional ability to identify positive cases, while the specificity of
86.90% underscores its capability to correctly classify non-positive
cases. Fig[3.2]illustrates the predicted results of AD using TP, TN,
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FP, and FP metrics. Fig @displays the dataset results, categoriz-
ing correctly predicted cases into AD, LMCI, EMCI, MCI, and CN
classes.
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4. COMPARATIVE ANALYSIS OF DIFFERENT
OPTIMIZATION ALGORITHM

In this study, Alzheimer’s disease detection was initially performed
using the SLOA for both segmentation and classification tasks. To
further validate and benchmark the effectiveness of the proposed
framework, we extended the process by employing Grey Wolf Op-
timization (GWO) and Particle Swarm Optimization (PSO).
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4.1 Grey Wolf Optimization (GWO)

The Grey Wolf Optimizer (GWO) is inspired by the social hi-
erarchy and hunting behavior of grey wolves in nature. In this al-
gorithm, the three best solutions are considered as leader wolves-
ai, B1,01-which guide the remaining wolves, called w; wolves,
toward promising regions in the search space to find the global op-
timum. The hunting process in GWO consists of three main steps:
encircling, hunting, and attacking the prey.

(1) Encircling: Wolves surround the prey, which can be mathemat-
ically modeled as:

}7‘:|.DAX'I717)(1|7 Xl(t-ﬁ-l):Xpl*AF (17)
where X, is the prey position, X is the wolf position vector at
iteration ¢, and A and C' are coefficient vectors calculated as:

A=2a-r —a, F =2ry (18)
Here, 71,72 € [0, 1] are random vectors, and a decreases lin-
early from 2 to O over iterations to balance exploration and
exploitation.

(2) Hunting: It is assumed that «, 3,6 have better knowledge
of the prey’s location. Therefore, the other wolves follow
these leaders. The hunting behavior is described by: F,, =
D1 Xa, — Xy,

Fg, =Dy X, — Xuf,
F51 = |D3X51 7X1| ,

Xl :Xa1 7A1Fa17
Xy = X, — A2Fpg,,
X3:X§1 7A3F51’

X(t+1) = XtXetXs
where X, X3, X5 are the positions of the top three wolves,
and Ay, Ao, Az and Dy, Dy, D3 are calculated similarly to A

and D.

(3) Attacking: The hunting concludes when the prey stops moving.
Wolves then move toward the prey’s position for exploitation.
The coefficient a continues to decrease linearly, controlling the
transition from exploration to exploitation. Typically, the first
half of iterations focuses on exploration, while the latter half
emphasizes exploitation, allowing wolves to refine their posi-
tions between their current location and the prey.

4.1.1 Applications in AD Detection Pipeline
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(1) Segmentation:In segmentation optimizes DIFC cluster centers
and fuzzifier values for accurate, noise-robust brain MRI seg-
mentation.

(2) Classification: In classification fine-tune DMN hyperparame-
ters (e.g., number of layers, neurons, learning rate) to maxi-
mize AD stage classification accuracy.

(3) Uncertainty-aware optimization: Performs well in complex,
high-uncertainty medical imaging environments.

4.2 Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm is inspired
by the social behavior of bird flocking and fish schooling. In PSO,
each particle represents a candidate solution and moves through the
search space by updating its velocity and position based on both
its own experience and the experience of the swarm. Each particle
keeps track of its personal best position (pbest) and the global best
position (gbest) found by the swarm.

(1) Velocity Update: The velocity of particle ¢ at iteration ¢ + 1 is
updated as follows:

Vit = wol + eyri (pest; — xt) + cara(gbest — xt) (19)

where:

(a) ! is the current velocity of particle 4,

(b) x!is the current position of particle i,

(c) w is the inertia weight controlling exploration and ex-
ploitation,

(d) ¢y, cq are acceleration coefficients for personal and global
learning,

(e) 71,72 ~ U(0,1) are random numbers.

(2) Position Update: The position of particle ¢ is then updated ac-
cording to:

it =gl p ol (20)
4.2.1 Properties of PSO

(1) Particles share information about their best positions to guide
the swarm toward optimal solutions.

(2) The inertia weight w balances global exploration and local ex-
ploitation.

(3) PSO converges rapidly but may risk premature convergence if
diversity in the swarm is low.

4.2.2  Application in AD Detection Pipeline. In the Alzheimer’s
Disease (AD) detection framework:

(1) Segmentation (DIFC optimization): Each particle encodes a
possible set of DIFC cluster centers and fuzzifier values. Parti-
cles move in the search space to minimize the DIFC objective
function, resulting in optimal segmentation of brain MRI im-
ages.

(2) Classification (DMN optimization): PSO can also be used to
optimize DMN hyperparameters for improved classification
accuracy.

To ensure a comprehensive evaluation, the proposed model was fur-
ther executed using the Grey Wolf Optimizer (GWO) and Particle
Swarm Optimization (PSO) algorithms. The comparative outcomes
are presented in Table[3] while a consolidated summary of the over-
all segmentation and classification performance is reported in Table
21

As shown in Table [3] SLOA consistently achieves superior per-
formance across multiple evaluation metrics. Specifically, SLOA
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Table 3. Comparison of SLOA, GWO, and PSO for AD
segmentation and classification

Optimizer | Acc. (%) | Sens. (%) | Spec. (%) | Time (s/epoch)
SLOA 86.9 96.72 86.9 1.8
GWO 80.8 79.1 88.8 2.4
PSO 82.6 89.5 88.8 1.2

provides the highest classification accuracy (86.9%) compared to
GWO (80.8%) and PSO (82.6%), indicating greater reliability in
detecting AD stages. Similarly, SLOA demonstrates exceptional
sensitivity (96.72%), ensuring that AD-positive cases are identi-
fied with minimal false negatives. Although both GWO and PSO
yield relatively high specificity (88.8%), SLOA achieves a better
balance by combining strong specificity with significantly higher
sensitivity.

In terms of computational efficiency, PSO converges fastest (1.2
s/epoch), but its performance is undermined by premature conver-
gence, which reduces accuracy and robustness. GWO, while offer-
ing stronger global search ability, suffers from slower convergence
(2.4 s/epoch). In contrast, SLOA achieves an effective trade-off
with moderate computation time (1.8 s/epoch), while maintaining
superior accuracy and sensitivity, making it the most reliable choice
for medical imaging tasks.

Table 4. Comparison of SLOA, GWO, and PSO for AD detection
pipeline

Stage SLOA Advantage GWO PSO

Segmentation | Optimal DIFC cluster | Good cluster selec- | Fast; may trap in local

centers; robust to noise tion; slower optima

Classification | Efficient DMN hyperpa- | Effective but slower

rameter tuning racy
Overall Best trade-off of accu- | Moderate perfor- | Fast but sensitive to
racy and robustness mance noise

Experimental results presented in Table [3| further reinforce these
findings. While PSO provides faster convergence, its tendency to
become trapped in local optima reduces its reliability in noisy med-
ical imaging datasets. GWO offers better global search capabili-
ties and competitive accuracy but at the cost of increased compu-
tation time. By contrast, SLOA achieves the most favorable bal-
ance between segmentation accuracy, classification robustness, and
computational efficiency, making it the most effective optimization
strategy for Alzheimer’s Disease detection.

4.3 Ablation Study

The ablation study was conducted to systematically eval-
uate the contribution of each component in the proposed
DIFC+SLOA+DMN for AD classification using MRI images. The
objective was to determine the impact of fuzzy preprocessing, seg-
mentation with DIFC, and classification using the DMN. To this
end, we compared the baseline method TL+CNN with our pro-
posed approach (DIFC-DMN).

The results clearly demonstrate the effectiveness of fuzzy pre-
processing and DIFC-based segmentation. The TL+CNN baseline
achieves an accuracy of 78.4%, sensitivity of 83.6%, and speci-
ficity of 88.8%. In contrast, the proposed DIFC+DMN achieves a
significantly higher accuracy of 86.9% and sensitivity of 96.72%,
while maintaining comparable specificity (86.9%). From the Ta-
bld?] the findings emphasize role of fuzzy preprocessing, contibu-
tion of DIFC segmentation and the impact in classification.

(1) Role of fuzzy preprocessing: Gaussian filtering, intensity nor-
malization, and intuitionistic fuzzy representation enhance

14

Fast, less stable accu-




International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.72, January 2026

Table 5. Ablation study performance of DIFC+DMN

Method Accuracy (%)
Without DIFC 78.4
With DIFC 86.9

Sensitivity (%) | Specificity (%)
83.6 88.8
96.72 86.9

cluster separability, thereby improving segmentation reliabil-
ity and downstream classification.

(2) Contribution of DIFC segmentation: Replacing DIFC with
conventional clustering reduces segmentation fidelity, which
negatively impacts classification metrics.

(3) Impact of classification model: Using CNN features without
DMN compromises stage discrimination, highlighting the im-
portance of the DMN’s representation learning and SLOA-
based hyperparameter optimization.

Thus, the integration of fuzzy preprocessing, DIFC for segmenta-
tion, and DMN for classification is crucial to achieving robust and
precise AD detection. The ablation study validates that each com-
ponent contributes to the overall performance improvement of the
proposed DIFC+DMN.

5. DISCUSSION

Although our model demonstrates outstanding performance over-
all, as analyzed above, it still exhibits deficiencies when diagnosing
certain intermediate stages of AD, particularly in distinguishing be-
tween EMCI and LMCI. Therefore, we consider the current model
suitable only as an auxiliary diagnostic tool. Moreover, the cur-
rent experiments are confined to MRI-based inputs from the ADNI
dataset, so the model’s capacity to generalize across different co-
horts or modalities such as PET or CT scans remains to be verified.
In light of these limitations, we propose that future work should
focus on the following areas:

(1) Enhancing Multi-Stage Discriminative Learning for AD
Staging: While the current framework effectively segments
and classifies Alzheimer’s stages using DIFC and SLOA, the
challenge of classifying adjacent stages (e.g., EMCI vs. LMCI)
still persists. Future models should adopt specialized stage-
wise learning branches or attention mechanisms to emphasize
subtle distinctions in progression stages.

(2) Expanding Cross-Dataset, Multimodal, and
Augmentation-Based Validation: This study introduced
a framework for the segmentation and classification of
AD, demonstrating significant improvements in accuracy,
sensitivity, and specificity. However, our current validation
is confined to single-modality MRI data. In the future, we
plan to incorporate additional imaging modalities—such as
PET, CT, or DTI—to enhance classification accuracy through
multimodal analysis. Furthermore, the use of advanced data
augmentation techniques can be explored to artificially expand
the training dataset and improve the model’s robustness.

(3) Scaling for Real-World Feasibility Using Larger and Di-
verse Datasets: Efforts in future studies by training on such
heterogeneous data, the model can gain robustness to variabil-
ity seen in real-world clinical environments, improving its po-
tential for deployment as a reliable diagnostic support tool.

(4) Developing a Unified Fuzzy-Deep Diagnostic Platform:
Our current system applies deep learning and Intuitionistic
fuzzy clustering sequentially. Future research should allow

fuzzy logic to learn and propagate uncertainty-aware represen-
tations throughout the network, leading to more robust predic-
tions under clinical ambiguities.

6. CONCLUSION

In this study, a novel framework for the segmentation and classi-
fication of AD using structural MRI images was presented. The
proposed method combines DIFC with the SLOA for precise seg-
mentation of critical brain regions such as the hippocampus, en-
larged ventricles, and cortical areas. For classification, DMN opti-
mized with SLOA was employed, effectively categorizing images
into five stages of AD: CN, MCI, LMCI, EMCI, and AD. The in-
tegration of advanced segmentation techniques, feature extraction,
data augmentation, and optimized deep learning models highlights
the potential of the proposed framework in improving the diagnosis
and staging of AD. This work not only provides a robust and reli-
able methodology for AD analysis but also demonstrates the impor-
tance of optimization algorithms in enhancing deep learning-based
medical imaging systems. Furthermore, the segmentation accuracy
achieved in this study surpasses baseline limitations, with the pro-
posed model reaching a high accuracy of 0.972 for larger datasets,
a significant improvement over the previously reported value of
0.826. Unlike prior work, which suffered from poor generalization
due to limited datasets, the proposed framework leverages a larger
dataset to enhance robustness and reliability. By integrating DIFC
with SLOA, this method ensures precise region segmentation, over-
coming challenges faced by earlier approaches and contributing to
improved AD analysis and classification.

6.1 Future Direction

To enhance the robustness, generalization, and clinical applicability
of the proposed framework, future research could focus on integrat-
ing multimodal neuroimaging datas using attention-based fusion
and graph neural networks to capture complementary biomark-
ers for more accurate and reliable diagnosis. Advanced data aug-
mentation techniques, including Generative Adversarial Networks
(GANs), diffusion models, and various transformations, can gener-
ate realistic synthetic data, increasing dataset diversity and improv-
ing generalization. In parallel, transformer-based and hybrid CNN-
RNN architectures can be leveraged to model complex spatial and
temporal dependencies, further enhancing segmentation and classi-
fication performance. Together, these advancements aim to expand
the framework’s capability to detect a wider range of neurodegen-
erative diseases and support its practical integration into real-world
healthcare systems.
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