
International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.72, January 2026 

41 

A Comprehensive Review of Object Detection: From 
Handicraft Features to Deep Convolutional and 

Transformer-based Architectures 

Aditya P. Bakshi, PhD 
Assistant Professor, Department of Computer Science & Engineering 

Jawaharlal Darda Institute of Engineering & Technology, Yavatmal, Maharashtra, India 
 
 

ABSTRACT 
Object detection has experienced a substantial evolution over the 

past two decades, transitioning from handcrafted feature-based 

pipelines to highly expressive deep learning and transformer-

driven architectures. Early detection systems relied on manually 

designed descriptors such as Histograms of Oriented Gradients 

(HOG) and Deformable Part Models (DPM), coupled with 

exhaustive sliding-window or part-based search strategies. 

While effective in constrained scenarios, these approaches were 

limited by weak semantic representation, sensitivity to scale and 

illumination variations, and poor generalization to complex real-

world environments. 

The advent of deep convolutional neural networks (CNNs) 

fundamentally reshaped object detection by enabling end-to-end 

hierarchical feature learning from large-scale annotated datasets. 

This shift led to the development of region-proposal-based two-

stage detectors, single-stage dense regression models, and, more 

recently, transformer-based architectures that reformulate 

detection as a global set prediction problem. This paper presents 

a comprehensive and in-depth review of modern object detection 

frameworks, systematically covering two-stage detectors, one-

stage detectors, and transformer-driven models. 

The review emphasizes the theoretical foundations underlying 

these paradigms, including multi-scale feature learning, anchor-

based and anchor-free localization strategies, attention 

mechanisms, loss function design, and hierarchical feature 

aggregation. Key innovations such as Feature Pyramid 

Networks, focal loss, deformable convolutions, and encoder–

decoder transformers are critically analyzed to understand their 

impact on detection accuracy, convergence behavior, 

robustness, and computational efficiency. In addition, the survey 

examines benchmark datasets, evaluation protocols, training 

strategies, and deployment challenges, highlighting persistent 

issues such as small-object detection, long-tail class 

distributions, data efficiency, and inference latency. 

Finally, emerging research directions are discussed, including 

lightweight and efficient transformer architectures, multimodal 

and open-vocabulary object detection, self-supervised and semi-

supervised pretraining, and unified perception models that 

integrate detection with segmentation and tracking. By 

synthesizing both theoretical insights and empirical trends, this 

review aims to provide a cohesive foundation for advancing 

robust, efficient, and scalable object detection systems. 

Keywords 
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Regression, Transformer-Based Architectures, Multi-Scale 
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1. INTRODUCTION 
Object detection is a fundamental task in computer vision that 

involves identifying object instances within an image or video 

and accurately localizing them using bounding boxes. Unlike 

image classification, which assigns a single label to an entire 

image, object detection must simultaneously solve two tightly 

coupled problems: object recognition and spatial localization. 

This dual requirement significantly increases problem 

complexity and makes object detection a critical enabling 

technology for a wide range of applications, including 

autonomous driving, medical image analysis, robotics, 

intelligent surveillance, augmented reality, and visual search 

systems. 

Early object detection methods were dominated by handcrafted 

feature engineering and exhaustive search strategies. 

Techniques such as Histograms of Oriented Gradients (HOG) 

combined with linear classifiers, and Deformable Part Models 

(DPM), relied on sliding-window or part-based formulations to 

localize objects [1], [16], [17]. These methods encoded low-

level gradient or shape information and achieved notable success 

in specific tasks such as pedestrian detection. However, their 

representational capacity was inherently limited, making them 

sensitive to variations in object appearance, pose, scale, 

occlusion, and background clutter. Furthermore, the modular 

nature of these pipelines—where feature extraction, proposal 

generation, and classification were designed and optimized 

independently—restricted their ability to learn robust, task-

adaptive representations. 

The emergence of deep convolutional neural networks (CNNs) 

marked a transformative shift in object detection research. 

CNNs enabled hierarchical feature learning directly from data, 

allowing models to capture increasingly abstract and 

semantically rich representations. The success of AlexNet in 

large-scale image classification demonstrated the effectiveness 

of deep learning for visual recognition tasks and motivated the 

transfer of convolutional architectures to object detection 

problems [4]. The first generation of deep-learning-based 

detectors combined region proposals with CNN-based feature 

extractors, leading to substantial improvements in detection 

accuracy and robustness [5]. 

Following this breakthrough, object detection research diverged 

into two dominant paradigms. Two-stage detectors emphasized 

localization accuracy by first generating candidate object 

proposals and then refining them through classification and 

bounding box regression. These methods achieved strong 

performance, particularly for small and densely packed objects, 

but often incurred high computational costs. In contrast, one-

stage detectors framed detection as a dense regression problem, 

directly predicting object locations and classes from feature 

maps. This design enabled real-time inference and simpler 

pipelines but initially suffered from class imbalance and 

localization challenges. 

More recently, transformer-based object detectors have 
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introduced a new conceptual framework by reformulating 

detection as a set prediction problem. By leveraging global self-

attention mechanisms, these models capture long-range 

dependencies and object–object relationships while eliminating 

heuristic components such as anchor boxes and non-maximum 

suppression [12]. Although transformer-based detectors offer 

conceptual elegance and strong performance in complex scenes, 

they introduce new challenges related to training efficiency, 

computational complexity, and data requirements. 

This paper presents a comprehensive review of object detection 

methodologies, tracing their evolution from handcrafted feature-

based systems to modern deep learning and transformer-driven 

architectures. The review focuses on the theoretical motivations 

behind key design choices, analyzes architectural innovations 

and loss formulations, and examines empirical performance 

across datasets and deployment scenarios. By synthesizing these 

developments, the paper aims to provide a structured 

understanding of the field and highlight promising directions for 

future research. 

2. FROM HANDICRAFT FEATURES TO 

LEARNED REPRESENTATIONS 
The evolution of object detection has progressed through three 

major methodological phases, each redefining how visual 

information is represented, learned, and exploited for 

localization and recognition. These phases correspond to (i) 

handcrafted feature-based detection, (ii) deep convolutional 

representation learning, and (iii) attention-driven transformer-

based modeling. 

2.1 Handcrafted Feature-Based Detection 
Early object detection systems relied on manually designed 

feature descriptors that encoded low-level visual cues such as 

edges, gradients, textures, and simple geometric structures. 

Prominent examples include Haar-like features, Histograms of 

Oriented Gradients (HOG), Scale-Invariant Feature Transform 

(SIFT), and Deformable Part Models (DPM) [1], [3], [16]. These 

features were typically combined with linear classifiers, support 

vector machines, or boosted cascades. 

Haar-based features, popularized for face detection, enabled 

real-time inference through cascaded classifiers but were limited 

to narrowly defined object categories and controlled 

environments [3]. HOG descriptors captured local gradient 

orientation distributions and demonstrated strong performance 

for pedestrian detection by encoding shape and contour 

information [1]. However, HOG-based detectors were highly 

sensitive to illumination variations, viewpoint changes, and 

background clutter. 

Deformable Part Models represented a significant advancement 

by introducing latent part-based representations, where objects 

were modeled as collections of parts connected through 

deformation constraints [16]. This formulation improved 

robustness to partial occlusion and pose variation by allowing 

parts to move relative to each other while incurring deformation 

penalties. Despite their conceptual elegance, DPMs required 

complex optimization procedures and were computationally 

expensive, limiting scalability. 

A defining characteristic of handcrafted pipelines was their 

modular architecture. Feature extraction, candidate window 

generation (via sliding windows or segmentation), and 

classification were designed independently and optimized 

separately. This separation prevented joint optimization and 

constrained the expressive capacity of the models. As visual 

scenes became more complex, these limitations increasingly 

hindered performance, motivating a transition toward data-

driven feature learning. 

2.2 Emergence of Deep Convolution Feature 

Learning 
The introduction of deep convolutional neural networks (CNNs) 

fundamentally transformed object detection by enabling 

hierarchical representation learning directly from data. 

Convolutional layers learn increasingly abstract features—from 

edges and textures in early layers to object parts and semantic 

concepts in deeper layers—providing strong invariance to scale, 

translation, and appearance changes. 

The success of AlexNet on large-scale image classification 

demonstrated that deep CNNs could learn powerful visual 

representations when trained on sufficiently large datasets [4]. 

This breakthrough catalyzed the adoption of CNNs for detection 

tasks, where pretrained classification networks served as feature 

extractors for region-level recognition. Transfer learning from 

ImageNet-trained models such as VGG, ResNet, and later 

EfficientNet allowed detection frameworks to leverage rich 

semantic features without requiring prohibitively large 

detection-specific datasets. 

CNN-based representations eliminated the need for manual 

feature engineering and enabled end-to-end optimization, where 

feature extraction and detection objectives could be jointly 

learned. This transition significantly improved robustness, 

generalization, and performance across diverse object categories 

and environmental conditions. 

2.3 Attention-Driven Representations and 

Transformers 
More recently, transformer-based architectures have introduced 

a new paradigm for visual representation by explicitly modeling 

long-range dependencies and global context through self-

attention mechanisms [11], [12]. Unlike CNNs, which rely on 

local receptive fields and hierarchical aggregation, transformers 

compute pairwise interactions between all spatial positions, 

allowing direct reasoning about object–object relationships and 

scene-level context. 

Vision transformers and hybrid CNN–transformer models have 

demonstrated strong performance in complex scenes involving 

occlusion, clutter, and multiple interacting objects. By reframing 

detection as a set prediction problem, transformer-based 

detectors remove heuristic components such as anchor boxes 

and non-maximum suppression, leading to conceptually simpler 

and more unified detection pipelines. 

This progression—from handcrafted descriptors to learned 

convolutional features and finally to attention-driven 

representations—is summarized in Fig. 1, illustrating the key 

conceptual shifts that have shaped modern object detection 

research. 
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Fig: 1 Evolution of Object Detection Paradigms 

3. TWO STAGE DETECTORS: 

PROPOSAL BASED PRECISION 

Two-stage object detectors represent a foundational class of 

modern detection frameworks, designed to prioritize 

localization accuracy and robust recognition through a 

sequential proposal-and-refinement strategy. These methods 

decompose detection into two distinct stages: (i) generation of 

candidate object regions and (ii) classification and precise 

bounding box regression. 

3.1 R-CNN Family and Region-Based 

Detection 

Region-based Convolutional Neural Networks (R-CNN) 

pioneered the integration of deep CNN features into object 

detection by coupling region proposals with per-region feature 

extraction and classification [5]. Candidate regions were 

generated using selective search, and each region was 

independently processed by a CNN and classified using support 

vector machines. R-CNN demonstrated that CNN-extracted 

features substantially outperform handcrafted descriptors for 

detection tasks. 

However, R-CNN suffered from severe computational 

inefficiencies due to redundant convolutional computation for 

each proposal and a multi-stage training pipeline involving 

separate optimization steps. Fast R-CNN addressed these 

limitations by computing a single convolutional feature map for 

the entire image and extracting fixed-size region features using 

Region of Interest (RoI) pooling [6]. This design enabled end-

to-end training and significantly reduced inference time. 

Faster R-CNN further unified the detection pipeline by 

introducing the Region Proposal Network (RPN), a fully 

convolutional module that generates object proposals directly 

from shared feature maps [7]. The RPN predicts objectness 

scores and bounding box offsets relative to predefined anchor 

boxes at multiple scales and aspect ratios. By sharing features 

between proposal generation and detection, Faster R-CNN 

established a practical and highly effective blueprint for high-

accuracy object detection. 

3.2 Architectural and Theoretical 

Enhancements 

Subsequent research introduced several architectural 

innovations to address limitations related to scale variation, 

localization precision, and geometric modeling. Feature 

Pyramid Networks (FPN) formalized multi-scale feature 

aggregation by combining high-resolution spatial information 

from shallow layers with semantically rich features from deeper 

layers through a top-down pathway and lateral connections [19]. 

This design significantly improved performance on small 

objects without sacrificing detection accuracy on larger objects. 

Cascade R-CNN addressed the mismatch between training and 

inference IoU thresholds by employing a sequence of detectors 

trained with progressively stricter localization criteria [20]. This 

multi-stage refinement strategy reduced overfitting to low-

quality proposals and improved bounding box precision. 

Deformable convolutional networks introduced learnable 

sampling offsets within convolutional kernels, allowing 

receptive fields to adapt dynamically to object geometry [21]. 

This flexibility enhanced the model’s ability to handle variations 

in object shape, pose, and deformation, particularly in cluttered 

or occluded scenes. 

Collectively, these advances reflect a common theoretical 

principle: aligning feature resolution, spatial precision, and 

learning objectives to minimize localization error while 

preserving strong semantic discrimination. 

3.3 Two-Stage Detection Pipeline 

As illustrated in Fig. 2, two-stage detection architectures 

typically begin with an input image processed by a shared 

convolutional backbone network (e.g., VGG, ResNet) to 

produce a dense feature map. The RPN operates on this feature 

map to generate region proposals, which are then refined 

through RoI Align or RoI Pooling operations. These region-level 

features are passed to dedicated classification and bounding box 

regression heads that produce final detection outputs. 

This modular yet unified design enables sophisticated 

hierarchical feature learning and precise spatial refinement, 

making two-stage detectors particularly well suited for 

applications requiring high localization accuracy, such as 

medical imaging and high-resolution aerial analysis. 

 

Fig: 2 Two-Stage Object Detection Pipeline (Faster R-

CNN) 

4. ONE STAGE DETECTORS: 

DIRECTREGRESSION AND REAL TIME 

INFERENCE 

One-stage object detectors emerged primarily from the need for 

real-time inference, reduced computational complexity, and 

simplified training pipelines. Unlike two-stage detectors, which 

decouple proposal generation and classification, one-stage 
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detectors unify these steps into a single dense prediction task, 

enabling end-to-end optimization and high-throughput 

deployment. 

4.1 Dense Regression Formulation 

Early one-stage models such as Single Shot MultiBox Detector 

(SSD) and You Only Look Once (YOLO) framed object 

detection as a dense, per-cell regression problem, where the 

network simultaneously predicts class probabilities and 

bounding box offsets relative to predefined anchor boxes at each 

spatial location [8], [9]. By operating fully convolutionally over 

the image grid, these models eliminate explicit region proposal 

stages and avoid redundant computation. 

The theoretical advantage of this formulation lies in its global 

optimization of detection heads across the entire image, 

allowing gradients to flow uniformly during training and 

enabling efficient GPU utilization. However, this dense 

prediction paradigm introduces a critical challenge: extreme 

foreground–background class imbalance. Since the vast 

majority of spatial locations correspond to background regions, 

early one-stage detectors exhibited biased gradients dominated 

by easy negative examples, leading to poor convergence and 

reduced localization accuracy. 

4.2 Addressing Class Imbalance: Focal Loss 

RetinaNet addressed this limitation through the introduction of 

Focal Loss, a modulated version of cross-entropy loss that 

dynamically down-weights well-classified negative samples 

while amplifying the contribution of hard, misclassified 

examples [10]. From a theoretical perspective, focal loss 

reshapes the loss landscape by reducing gradient dominance 

from abundant background samples and improving gradient 

signal for rare positive instances. 

This innovation significantly narrowed the performance gap 

between one-stage and two-stage detectors, demonstrating that 

dense regression models can achieve competitive accuracy 

while maintaining superior inference speed. Focal Loss became 

a foundational contribution influencing subsequent detection 

frameworks and loss function designs. 

4.3 Architectural Refinements and Anchor-

Free Detection 

Beyond loss function improvements, architectural refinements 

have played a critical role in advancing one-stage detectors. 

Modern backbones such as CSPDarkNet and EfficientNet 

provide improved parameter efficiency and stronger feature 

representations, while feature aggregation modules like Path 

Aggregation Network (PANet) enhance multi-scale information 

flow by strengthening bottom-up and top-down feature fusion. 

A notable conceptual shift within one-stage detection is the 

move toward anchor-free designs, exemplified by methods such 

as FCOS [25]. Anchor-free detectors eliminate the need for 

predefined anchor boxes by predicting object centers, sizes, and 

centerness scores directly from dense feature maps. This design 

simplifies hyperparameter tuning, reduces heuristic 

assumptions, and improves generalization across datasets with 

varying object scales and aspect ratios. 

Overall, the evolution of one-stage detectors reflects a trend 

toward simpler, more direct formulations, where localization 

emerges from learned per-pixel representations rather than 

handcrafted anchor configurations. 

 

4.4 One-Stage Detection Pipeline 

As illustrated in Fig. 3, one-stage detection architectures process 

an input image through a convolutional backbone to generate 

dense feature maps. These features are directly fed into detection 

heads that output class probabilities, bounding box regressions, 

and objectness scores in a single forward pass. By bypassing 

explicit proposal generation, one-stage detectors achieve 

significantly lower latency, making them indispensable for 

applications such as autonomous driving, video surveillance, 

and edge computing. 

 
Fig: 3 One-Stage Detection Pipeline (YOLO / SSD) 

5. TRANSFORMERS & SET 

PREDICTIONS: GLOBAL ATTENTION 

FOR DETECTION 

Transformer-based detectors represent a paradigm shift in object 

detection by introducing global self-attention as the primary 

mechanism for feature interaction and reasoning. Originally 

developed for natural language processing, transformers have 

been adapted to vision tasks by modeling pairwise relationships 

between image patches or feature tokens [11]. 

5.1 DETR and Set Prediction Formulation 

DETR (DEtection TRansformer) reformulated object detection 

as a direct set prediction problem, where a fixed-size set of 

object predictions is generated without reliance on anchor boxes 

or non-maximum suppression [12]. DETR employs a CNN 

backbone to extract feature maps, which are then processed by a 

transformer encoder–decoder architecture. A set of learned 

object queries interacts with encoded image features via 

attention mechanisms to produce final class labels and bounding 

box predictions. 

The use of bipartite matching with Hungarian loss enforces a 

one-to-one correspondence between predictions and ground-

truth objects, ensuring uniqueness and eliminating duplicate 

detections. From a theoretical standpoint, this formulation 

enables explicit modeling of global context and object–object 

relationships, which is particularly beneficial in crowded or 

occluded scenes. 

5.2 Limitations of Vanilla Transformers 

Despite its conceptual elegance, DETR exhibits several 

limitations. The quadratic complexity of self-attention with 

respect to spatial resolution leads to high computational cost. 

Moreover, uniform attention over all spatial positions makes it 
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difficult to capture fine-grained local details, resulting in slow 

convergence and suboptimal performance on small objects. 

5.3 Efficient and Hierarchical Transformer 

Variants 

Deformable DETR addressed these challenges by restricting 

attention to a sparse set of learned sampling points around 

reference locations, significantly reducing computational 

complexity while accelerating convergence [13]. The 

introduction of multi-scale deformable attention further 

improved performance across object sizes. 

Hierarchical transformer architectures such as Swin 

Transformer introduced shifted-window attention mechanisms 

that limit self-attention to local windows while enabling cross-

window interactions through shifting [14]. This design balances 

the locality bias of CNNs with the global modeling capacity of 

transformers. 

Recent approaches such as ViTDet demonstrate that transformer 

backbones, when combined with appropriate detection heads 

and large-scale pretraining, can match or surpass CNN-based 

detectors on standard benchmarks [15]. However, practical 

transformer-based detectors often rely on architectural 

constraints—sparse attention, hierarchical features, or hybrid 

CNN components—to achieve efficient, high-resolution 

localization. 

5.4 Transformer-Based Detection Pipeline 

As depicted in Fig. 4, transformer-based detectors typically 

extract visual features using a CNN or hybrid backbone, 

followed by transformer encoder–decoder processing. A fixed 

set of learnable object queries probe the encoded features, 

producing final predictions in a single inference step without 

post-processing heuristics. 

 

Fig: 4 Transformer-Based Detector (DETR) 

 

6. DATASETS, METRICS & IMPIRICAL 

COMPARISIONS 

6.1 Benchmark Datasets 

The evaluation of object detection models relies heavily on 

large-scale annotated datasets and standardized benchmarks. 

PASCAL VOC introduced early evaluation protocols based on 

mean Average Precision (mAP) at a fixed IoU threshold of 0.5, 

enabling early comparative analysis [28]. MS COCO 

significantly increased dataset complexity by introducing 

diverse object categories, dense scenes, and a more rigorous 

evaluation protocol averaging mAP across multiple IoU 

thresholds (0.50–0.95) [29]. 

Additional datasets such as Open Images provide large-scale 

taxonomies with millions of annotations, while KITTI and 

Waymo focus on domain-specific scenarios such as autonomous 

driving with 3D and multi-sensor annotations [30]–[32]. 

6.2 Evaluation Metrics 

Modern evaluation protocols emphasize both classification and 

localization accuracy. COCO-style mAP captures performance 

across object sizes and localization strictness, offering a more 

holistic assessment than single-threshold metrics. However, 

mAP alone does not capture real-world deployment constraints 

such as inference latency, memory footprint, and energy 

consumption. 

6.3 Comparative Performance Trends 

Empirical studies indicate that two-stage detectors such as Faster 

R-CNN with FPN achieve strong performance on high-precision 

metrics and small-object detection tasks. One-stage detectors 

offer superior inference speed with competitive accuracy when 

equipped with advanced loss functions and feature aggregation 

modules. Transformer-based detectors demonstrate strong 

performance in complex scenes requiring global reasoning but 

often incur higher computational cost and training overhead. 

Crucially, reported performance numbers are highly sensitive to 

experimental configurations, including backbone architecture, 

input resolution, pretraining strategy, data augmentation, and 

training duration. Consequently, fair comparison across 

detectors requires careful standardization of experimental 

settings, and reported benchmark results should be interpreted 

with caution. 

6.4 Extensive Empirical Evaluation Across 

Datasets and Scenarios  

To provide a more comprehensive empirical perspective, this 

review synthesizes reported performance trends of 

representative object detection architectures across multiple 

datasets, application scenarios, and evaluation criteria. Rather 

than presenting isolated benchmark scores, the analysis 

emphasizes cross-dataset generalization, accuracy–efficiency 

trade-offs, and scenario-specific behavior, which are critical for 

real-world deployment. 

6.4.1 Cross-Dataset Performance Analysis 

Performance consistency across datasets is a key indicator of 

detector robustness. Two-stage detectors such as Faster R-CNN 

with FPN consistently achieve high mean Average Precision 

(mAP) on datasets emphasizing localization accuracy, such as 

PASCAL VOC and MS COCO, particularly at higher IoU 

thresholds (≥0.75). These models demonstrate strong 

generalization when trained on COCO and evaluated on VOC, 

highlighting their precise region refinement capabilities. 

In contrast, modern one-stage detectors (e.g., 

YOLOv5/YOLOv7, EfficientDet) exhibit competitive mAP on 

COCO while maintaining significantly higher inference speed. 

Their performance degrades less sharply when evaluated under 

reduced input resolutions, making them suitable for real-time 

and edge-based applications. 
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Transformer-based detectors such as DETR and Deformable 

DETR demonstrate improved performance in datasets 

characterized by crowded scenes and complex object 

relationships, such as COCO and Open Images. However, their 

performance on smaller datasets without extensive pretraining 

(e.g., VOC) is often inferior to CNN-based detectors, indicating 

higher data dependency. 

6.4.2 Scenario-Based Evaluation 

Object detection performance varies significantly depending on 

the application scenario: 

1. Small Object Detection: Datasets such as MS COCO reveal 

that small-object mAP remains a major challenge. Two-stage 

detectors with FPN outperform one-stage detectors in this 

regime due to higher-resolution region features. Transformer-

based models benefit from global context but still rely heavily 

on multi-scale attention mechanisms to mitigate resolution loss. 

2. Real-Time and Low-Latency Scenarios: In latency-sensitive 

applications such as autonomous driving and video surveillance, 

one-stage detectors dominate due to their streamlined inference 

pipelines. YOLO-family models achieve favorable trade-offs 

between accuracy and frames per second (FPS), especially when 

deployed on GPUs or edge accelerators. 

3. Domain-Specific Detection: Domain-focused datasets such as 

KITTI and Waymo emphasize geometric consistency and 

robustness to environmental conditions. CNN-based detectors 

pretrained on COCO and fine-tuned on domain data often 

outperform transformer-only models, which require substantial 

domain-specific adaptation. 

6.4.3 Accuracy–Efficiency Trade-Off Analysis 

A key outcome of comparative evaluation is the identification of 

trade-offs between detection accuracy, computational cost, and 

model complexity: 

1. Two-stage detectors achieve higher localization precision but 

incur higher inference latency. 

2. One-stage detectors offer superior efficiency and scalability, 

with slightly reduced precision in dense or small-object 

scenarios. 

3. Transformer-based detectors provide strong global reasoning 

but introduce higher memory consumption and longer training 

times. 

This trade-off analysis underscores that no single detector 

paradigm is universally optimal, and model selection must be 

guided by application constraints rather than benchmark 

performance alone. 

6.4.4 Summary Comparison Table  

Table 1 summarizes representative object detection paradigms, 

highlighting accuracy–efficiency trade-offs observed across 

widely used benchmarks such as PASCAL VOC and MS COCO 

[28], [29], with model characteristics synthesized from prior 

empirical studies [5]–[26]. 

 

 

 

 

 

Table 1. Object Detection Paradigms 

 

7. PRACTICAL CONSIDERATIONS: 

TRAINING, INFERENCE & 

DEPLOYMENT 

While benchmark performance is critical for academic 

comparison, the practical deployment of object detection 

systems introduces additional constraints related to 

computational resources, memory footprint, latency, scalability, 

and robustness. These considerations often dictate architectural 

choices and training strategies more strongly than marginal 

gains in accuracy. 

7.1 Training Considerations 

Training modern object detectors is computationally intensive, 

particularly for transformer-based architectures that require 

large-scale pretraining to achieve competitive performance. 

CNN-based detectors benefit from inductive biases such as 

locality and translation equivariance, enabling effective training 

even with moderate dataset sizes. In contrast, transformer-based 

detectors typically require extensive supervised or self-

supervised pretraining on large datasets to learn spatial 

relationships effectively. 

Multi-scale training strategies—where input images are resized 

to different resolutions during training—are commonly 

employed to improve scale invariance, especially for small-

object detection. Optimization stability is further enhanced 

through carefully designed learning rate schedules, warm-up 

strategies, gradient clipping, and mixed-precision training. 

Mixed-precision arithmetic reduces memory consumption and 

accelerates training without significantly impacting numerical 

stability, making it a standard practice in large-scale detection 

pipelines. 

Loss balancing and task weighting also play a critical role in 

training stability. Detectors often optimize multiple objectives 

simultaneously, including classification, bounding box 

regression, centerness prediction, and auxiliary losses. Improper 

balancing of these components can lead to suboptimal 

convergence or overfitting to specific tasks. 

7.2 Inference Efficiency and Latency 

Inference efficiency is a key determinant of deployability, 

particularly for real-time applications such as autonomous 

driving, robotics, and video analytics. Two-stage detectors, 

while accurate, often incur higher inference latency due to 

sequential proposal generation and refinement. One-stage 

detectors typically achieve lower latency through unified 

prediction heads and fully convolutional inference. 

Transformer-based detectors introduce additional inference 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.72, January 2026 

47 

challenges due to the quadratic complexity of self-attention with 

respect to spatial resolution. Techniques such as sparse attention, 

deformable attention, and hierarchical token representations are 

essential to reduce inference cost and memory usage. In 

deployment scenarios, batch size is often constrained to one, 

making per-image latency a more relevant metric than 

throughput. 

7.3 Model Compression and Edge 

Deployment 

For deployment on resource-constrained devices such as mobile 

phones, embedded systems, and edge accelerators, model 

compression techniques are indispensable. Pruning removes 

redundant parameters, quantization reduces numerical precision, 

and knowledge distillation transfers knowledge from large 

teacher models to compact student networks. Neural architecture 

search (NAS) further enables the automated discovery of 

efficient detector architectures tailored to specific hardware 

constraints. 

These techniques aim to achieve favorable accuracy–efficiency 

trade-offs without catastrophic performance degradation. 

However, compression often disproportionately affects small-

object detection and rare classes, necessitating task-aware 

optimization strategies. 

7.4 Robustness and Reliability 

Robustness to domain shift remains a significant challenge in 

real-world deployment. Detectors trained on curated datasets 

often experience performance degradation when exposed to 

changes in lighting, weather, sensor characteristics, or 

geographic context. Adversarial perturbations and sensor noise 

further expose vulnerabilities in learned representations. 

Improving robustness requires advances in domain adaptation, 

data augmentation, uncertainty estimation, and continual 

learning. From a systems perspective, reliable deployment also 

demands fail-safe mechanisms and confidence-aware 

prediction, particularly in safety-critical domains. 

 

8. CHALLENGES  

Despite remarkable progress, several fundamental challenges 

continue to limit the effectiveness and generalization of object 

detection systems. 

8.1 Small Object Detection 

Small object detection remains difficult due to the loss of fine-

grained spatial information in deep networks. Although multi-

scale feature fusion mechanisms such as FPN improve 

representation quality, they introduce additional computational 

overhead and architectural complexity. Moreover, extreme 

downsampling in deep backbones can irreversibly remove 

discriminative cues for very small objects. 

8.2 Long-Tail and Class Imbalance 

Real-world datasets often exhibit long-tail distributions, where 

a small number of classes dominate the data while many 

categories have few examples. This imbalance biases learning 

toward frequent classes and degrades performance on rare 

categories. Approaches such as re-weighting losses, resampling 

strategies, synthetic data generation, and few-shot learning 

attempt to address this issue, but no single solution has proven 

universally effective. 

8.3 Data and Compute Requirements 

Transformer-based detectors are particularly data-hungry and 

computationally demanding. Their reliance on large-scale 

pretraining raises barriers to adoption in domains where labeled 

data or compute resources are limited. Reducing these 

requirements through efficient attention mechanisms, transfer 

learning, and self-supervised objectives remain an active 

research area. 

8.4 Interpretability and Safety 

As detection systems are increasingly deployed in safety-critical 

settings, interpretability and reliability become paramount. 

Understanding failure modes, identifying sources of uncertainty, 

and ensuring consistent performance across diverse conditions 

are essential for building trust in automated detection systems. 

9. FUTURE DIRECTIONS 

Future research in object detection is expected to converge 

along several promising directions: 

1. Efficient and Sparse Attention: Advances in sparse, 

linear, and low-rank attention mechanisms are likely to 

make global contextual reasoning feasible under strict 

resource constraints, enabling transformer-like 

capabilities on edge devices. 

2. Multimodal and Open-Vocabulary Detection: 

Vision–language models that leverage text supervision 

enable open-vocabulary and zero-shot detection, reducing 

dependence on fixed label sets and improving adaptability 

across domains. 

3. Self-Supervised and Semi-Supervised Learning: 

Self-supervised pretraining techniques tailored to 

detection objectives can reduce reliance on large labeled 

datasets and improve generalization to unseen categories 

and environments. 

4. Unified and Multi-Task Perception Models: 

Integrating detection with segmentation, tracking, and 

scene understanding into unified frameworks promises 

richer representations and more coherent downstream 

reasoning. 

5. Responsible and Sustainable AI: Future benchmarks and 

evaluation protocols are expected to emphasize 

robustness, fairness, interpretability, and energy 

efficiency, aligning research progress with societal and 

environmental considerations. 

10. CONCLUSION 

The evolution of object detection from handcrafted feature 

pipelines to deep convolutional networks and transformer-based 

architectures reflects a broader shift toward end-to-end learned 

representations and global contextual reasoning. Two-stage 

detectors established foundational principles of region proposal 

generation and precise localization, one-stage detectors 

advanced real-time and scalable inference, and transformer-

based approaches redefined detection as a structured set 

prediction problem. Each paradigm introduced theoretical 

innovations—shared convolutional computation, focal loss for 

class imbalance, deformable sampling, and hierarchical 

attention—that continue to influence modern detector design. 

Despite substantial progress, challenges such as small-object 

detection, long-tail learning, computational efficiency, and 

robustness under real-world conditions remain open. Addressing 

these challenges will require integrating theoretical advances 
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with practical considerations in training, optimization, and 

deployment. By bridging accuracy, efficiency, and reliability, 

future object detection systems can move beyond benchmark 

performance toward robust, scalable, and trustworthy real-world 

applications. From an empirical standpoint, this review 

highlights that detection performance is strongly scenario-

dependent, with accuracy–efficiency trade-offs varying across 

datasets, object scales, and deployment constraints. 

Comprehensive evaluation across diverse benchmarks reveals 

that two-stage, one-stage, and transformer-based detectors each 

excel under different conditions, reinforcing the need for 

context-aware model selection rather than reliance on isolated 

benchmark scores. 
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