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ABSTRACT

Structural testing, also known as white-box testing, requires the
generation of input data that ensures coverage of program struc-
tures such as statements, branches, and paths. The complexity of
software development makes testing extremely challenging and de-
mands novel approaches with significant advancement in the field.
Manual testing by contrast, remains time-consuming and costly ac-
tivity, accounting for almost 50% of software production costs. To
address these challenges, several automated techniques have been
explored, among which Genetic Algorithms (GAs) have emerged
as one of the most widely adopted and studied approaches. GAs are
a class of search-based optimization techniques inspired by natu-
ral selection, and they are particularly effective in solving complex
search problems. However, the use of traditional GAs for structural
test data generation suffers from premature convergence and popu-
lation stagnation.

To address these limitations, we introduce the Alterable Genetic
Algorithm (AGA), a novel approach in which a single genetic op-
erator is applied per iteration. An adaptive alternation function
dynamically selects the most appropriate operator for the current
state of search, capitalizing on their respective strengths to guide
the search more effectively. This paper investigates the extent to
which AGA improves structural test data generation, particularly
by achieving high branch coverage with fewer fitness evaluations.
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1. INTRODUCTION

Software testing is an essential phase of the software development
life cycle (SDLC) witch consists of executing the program with
the intent of finding errors [3]. Software development has become
increasingly complex, making testing more difficult and requiring
novel, more effective approaches.

Traditional testing methods are often not enough for large and com-
plex systems. This has led to the rise of Search-Based Software
Testing (SBST). Over the years, testing strategies and techniques
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have improved, supported by advances in technology and program-
ming languages.

More broadly, Search-based Software Engineering (SBSE) is a
field of software engineering research and practice that describes
the application of search-based optimization techniques (meta-
heuristics) to software engineering problems.

The application of SBSE that concern software testing problems is
called Search-based software testing (SBST). SBST was the first
and most widely used sub-area of SBSE [[11]] [19].

Structural testing techniques focus on evaluating the internal struc-
ture of the software. Manual test data generation is costly and error-
prone, motivating the need for automated approaches. SBST for-
mulates test data generation as an optimization problem, where
search algorithms like GAs can be employed effectively [11].

1.1 Problem Statement

Testing software systems, allow for early error detection, avoid er-
ror migration and it amplification in advanced SDLC phases, and
consequently master the product quality. It then requires high qual-
ity test data, which is often difficult, expensive and time-consuming
to generate manually.

Automated test data generation tools exist, but they often produce
unrealistic test data and do not adequately cover all possible scenar-
ios [[14] [18]]. This is extremely challenging for software testers who
need to ensure that their test coverage is complete and efficient.

To address this problem, there is a need to develop more sophisti-
cated and efficient methods for test data generation that accurately
represents real-world scenarios and produces reliable test results.

Motivating Example

A simple Python function is considered that returns the middle
value among three variables. Its implementation and correspond-
ing control flow graph (CFG) are illustrated in Figures [I| and
respectively.

Testing the program below (figure[T) implies its execution with test
cases. This process requires identifying with precision high quality
test data that allows the test to go through all possible scenarios [21]
[10]. That is to say, data that cover all the branches of the SUT, in
order to detect possible hidden bugs.

Let B be the set of all branches in the middle function. For exam-
ple, the TRUE branch from node 12 (Figure 2), denoted b € B,
must be executed with specific inputs to expose a potential fault



1 def middle(x, y, z):

2 if x < y:

3 if vy < z:

4 return vy
5 elif x < z:
6 return z
7 else:

8 return x
9 else:

18 if x < z:

11 return x
12 elif y = z:
12 return yy #error
14 else:

15 return z|

Fig. 1: Middle function code
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Fig. 2: Middle function code

in instruction 13 (Figure [I). Manually identifying such inputs is
challenging and time-consuming, especially when considering all
possible execution scenarios.

Let us extend our perspective beyond the middle function (Figure[T)
to large-scale software systems comprising hundreds of thousands
of lines of code. In such contexts, a central and enduring question
in software engineering arises: What is the computational effort
required to systematically generate and evaluate test data for
programs of this scale and complexity?

Search-based test data generation using GA is a well-established
approach, yet traditional GAs suffer from issues like premature
convergence and population stagnation, caused by fixed operator

rates and their simultaneous execution [|8]]. These limitations reduce
their effectiveness in scenarios where the system under test does not
exhibit Royal Road properties [[1] [20].

The main objective of this research is to Realize a novel approach
based on Genetic Algorithm to automate structural test data
generation for efficient branch coverage.

The detailed objectives of this research in order to the aim achieve
are as follows:

—Propose a novel variant of the Genetic Algorithm, referred to as
the Alterable Genetic Algorithm (AGA);

—Decouple the application of genetic operators mutation and
crossover in order to prevent their simultaneous execution,
thereby enabling a more effective balance between exploration
and exploitation through an alternation function;

—Evaluate the performance of AGA through a comparative em-
pirical study with the standard Genetic Algorithm across various
test programs.

In order to achieve the research aims and objectives based on the
problems identified, it is therefore natural to ask the following pri-
mary question:

How efficient is search-based test data generation using Alter-
able Genetic Algorithm for given a set of real-world programs
to achieve structural branch coverage?

Methodically address this main research question by distilling it
down, which led to the following secondary research questions
(RQ1 and RQ2)

—RQ1 : How effective is the generation of test data based on an
alterable Genetic Algorithm for branch coverage?

—RQ2 : What is the efficiency of structural test data generation
based on Alterable Genetic Algorithm as opposed to the tradi-
tional Genetic Algorithm according to branch coverage criteria
for real-world programs?

These questions will be points of reference for us, lines that will
orient the research.

This paper focuses on the generation of structural test data trans-
formed into optimization problems. The test criteria used to eval-
uate the optimazation techniques (GAs , AGAs) and the test data
generated are also various and have different characteristics, but the
one chosen in this study is the control flow criteria and specifically
the branch coverage criteria.

The rest of this paper is structured as follows. In Section 2} the
background and related works are reviewed. The proposed method
is described in Section [3] Section [] presents the experiments and
results. Finally, Section [5] concludes the paper and outlines future
research directions.

2. BACKGROUND & RELATED WORK

Software testing is verification plus validation, it is the process of
verifying that a software system meets the specifications and re-
quirements to ensure that it fulfills its purpose [3] [6].



2.1 Approaches to Software Verification and
Validation

Multiple approaches have been used to verification and validation
software, ringing static testing, dynamic testing to formal verifica-
tion, however no single technique seems to be completely satisfac-
tory [3]]. Thus there is therefore a need for improving the methods
for verification and validation based systems.

2.1.1 Static Testing. Static testing encompasses a category of
software verification techniques aimed at identifying defects with-
out executing the software under test (SUT). These techniques fo-
cus exclusively on the verification phase of the software testing pro-
cess, analyzing artifacts such as code, documentation, and design to
detect errors early [60]]. A defining characteristic of all static testing
methods is that they assess the SUT without requiring its runtime
execution.

Static software testing techniques include:

—Walk-throughs: which is the process of inspecting the software
by developer, development team, testers, users and customers to
detect imperfections;

—Code Inspection: is characterized by going through the software
source code to detect errors;

—Requirements Analysis: the process which involve reviewing
the analysis document;

—Analysis: the process of reviewing the design document

—Static Analysis: Tools the process of using automated tools to
analyze the software source code.

Test data generation for SUT control flow coverage, using graph-
based criteria without any execution, requires measurements based
on symbolic execution techniques [5] [[14].

2.1.2  Dynamic Testing. The dynamic testing is a type of software
testing techniques in which the dynamic behavior of the software
system is examined by compiling and executing its code.

Dynamic testing uses techniques as white box or structural testing,
black box or functional testing and can be deployed at different
levels. There are different software test levels as shown in Figure[3]
They present the test abstraction scale, and according to the SDLC,
the principles are distinguished as follows:

—Unit Testing: Testing individual modules or units which can be
either methods or entire classes of the software independently of
the rest of the program,

—Integration Testing: Individual units and modules are inte-
grated into a larger subsystem and then tested to validate the op-
eration of a set of modules and programs developed and tested
independently at the unit test level,

—System Testing: When units and subsystems are fully integrated
into a system that constitutes the software product, acceptance
testing of the software prior to delivery is applied to verify a
version of the system.

This research focuses only on the dynamic testing methods that
are applied to the first two levels. However, when it comes to the
third level of testing, the system testing, another category of testing
approach is noted, which is defined exclusively for this level as the
formal method.

2.1.3 Formal Method. Software testing is a critical activity to en-
sure system reliability and user satisfaction, yet it remains challeng-
ing due to the inherent ambiguity and imprecision of specifications
written in natural language [18|.

Formal methods are design practices that use rigorously specified
mathematical models to build software or hardware, thus allowing
the mathematical foundation to specify the system in a complete,
precise, clear and unambiguous way.

refinementiconformance
Formall Specificatio
sSP

Testability Hypotheses
HP

") >
€ L

]
1
'
i
I
'
i
L 2

corresponds to

™. Used to Implemente
Test Data Generation .,

Implementation
sSUT

TestCasesfs €T

- ‘,___){ Tests ts Execution JQ_'_J."'
{ Werdict J

Fig. 4: Test process based on formal methods reproduced from [18| p. 7]

Formal methods are increasingly used in software engineering, par-
ticularly in software testing, where the following can be identified:
Z based on the set theory and predicate logic, CSP (communicat-
ing sequential processes) based on concurrency theory or process
algebra, Promela and LOTOS are both based on automaton theory
etc.

In formal methods, a specification precisely defines the behavior of
the SUT using a structured syntax and semantics to express proper-
ties such as preconditions, postconditions, and axioms. This allows
for rigorous verification through formal proofs based on confor-
mance or refinement relations between specifications.

However, since testing is performed on the implemented system
rather than its specification as represented in Figure ] a semantic
gap emerges. To bridge this gap, testability hypotheses are intro-
duced assumptions that connect the system’s behavior to its formal
specification, enabling meaningful testing within a formal verifica-
tion framework [6]] [[18].

The figure (figure ) above expresses the process of testing based
on the formal specification, for a specification SP from which the
SUT was developed. let H P be a set of testability hypotheses on
the SUT, test cases ts belonging to the set of all possible tests T’
are generated from S P and then executed with the SUT, thanks to
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Fig. 3: Software testing levels

the inference system, proofs are formed and the test process can
be guided, thanks to the conformance relation, a verdict is given as
to whether the implementation of the SUT conforms to its formal
specification and if so, the test of this implementation is successful,
otherwise it is a failure and this is demonstrated by a counterexam-
ple [18].

Passing indicates that no evidence, counterexamples of non-
conformance has been found on the test set 7". The completeness of
a test set 1" with respect to the specification SP, is the fact that the
SUT passes all the tests of T if and only if it behaves as a confor-
mance/refinement of .S P, while taking into account the testability
hyppothese on the SUT and which is summarised as follows :

Vts €T, SUT passts < (HP(SP) conformance SP)

On the other hand, the failure of the test is explained by the exis-
tence of at least one counterexample to the mathematical reasoning
presented above

Tretmans and Belinfante [18]] used the Promela language to spec-
ify a labeled transition system used to implement a communication
protocol for a conference system and developed a fully automated
test tool Torx based on the formal specification in Promela that
works in two modes: one manual, i.e., user-guided, and one auto-
matic, i.e., guided by the formal deduction system, Using Torx they
tested 28 SUTs of which there are 27 mutants where Torx was able
to detect 25 of these 27 mutants tested, the other two mutants not
detected by Torx is explained by the fact that the type of behaviour
of the latter was not explicitly modelled in the Promela specifica-
tion and therefore they conform to the specification, which brings

us back to the fact mentioned above, Regarding formal methods,
the focus is on testing a system rather than a specification.

2.2 Test Adequacy Criteria

Structural or white-box testing relies on test adequacy criteria,
which provide metrics to evaluate the effectiveness of test cases
in detecting faults and improving software quality. These criteria,
primarily based on coverage, are commonly classified into control
flow and data flow coverage techniques [3]] [7].

This research is based on the flow criterea, which can be summed
up as follows:

2.2.1 Statement coverage. The nodes of the CFG for a statement
coverage criteria, represent an individual statement connected to
that which represent the next statement by an edge, so the statement
coverage criteria is defined as follows: each statement in the SUT
must be executed at least once during testing.

2.2.2 Branch coverage. A branch is an instruction or a set of in-
structions, that can be executed under one or more different con-
ditions, for example an if statement or a switch or even a loop.
Branch coverage is a measure of the number of branches or deci-
sions of a module that have been executed during testing.

The branch coverage criteria specifies that each branch of a con-
ditional decision statement in the SUT must be executed at least
once during testing. Note that branch coverage already includes
statement coverage, so 100% branch coverage also means 100%
statement coverage [15].

2.2.3  Path coverage. In path coverage every possible path in the
flow of the SUT, must be executed at least once during testing. A
path is a set of branches linked by previous ones if they exist, pass-



ing through conditional nodes. The path always starts from the en-
try node. It is important to note that there are infeasible paths for
which, there is no input data that crosses it.

One of the most persistent challenges in testing techniques based
on path coverage is managing the exponential growth of execution
paths in the system under test (SUT). Boonstoppel et al,; [2] pro-
posed a method to reduce the number of paths explored by elim-
inating those that are guaranteed to have side effects identical to
previously analyzed paths. Their approach, known as RWset analy-
sis, tracks all read and write operations performed by the program.
Using this information, it prunes paths early when it detects that
their execution would be equivalent to one already explored. This
technique directly addresses the path explosion problem by elim-
inating redundant execution paths.

The adequacy criteria are varied and generally depend on the design
of the tests and the SUT Some are included, some are stronger [[15]]
[9] [7]. However, for this research the branch coverage are used as
criteria to evaluate and compare our techniques and tests.

2.3 Search-based Test Data Generation Techniques

The automation of test data generation is the critical point of the
evolving software test automation problem [1f]. The techniques
used for automatic test data generation are always accompanied
by an application of adequacy test criteria, as a metric. This metric
used is called a fitness function or objective function. In this per-
spective of software test automation, several approaches have been
proposed, among which Search-based optimization techniques
or meta-heuristics [11] [1]] [19] [9].

Combining human intelligence and machine computational power
to solve problems, with minimum human effort possible, meta-
heuristics techniques are defined as computational intelligent
paradigms for sophisticated solving optimization problems. The
meta-heuristics often used are classified into two groups the sin-
gle solution meta-heuristics or simple type meta-heuristics which
are Hill Climbing (HC), Tabu Search (TS), Simulated Anneal-
ing (SA) etc and the population based algorithms which are : Ge-
netic Algorithm (GA), Genetic Programming (GP), Evolution
Programming (EP) etc.

Genetic Algorithm

GAs are a class of search-based optimization techniques from the
population based family inspired by natural selection, The GA pro-
ceeds by a selection that determines the set of potential solutions
also called as poulation that are maintained for evolution [[1] [9]
[[19] . The evolution of the population is possible thanks to the ge-
netic operators or evolution operators, which are the crossover and
the mutation. These operations (selection, crossover and mutation)
are iterated until the defined stopping criteria are satisfied, as shown
in the figure (figure |§]) The set of individuals (population) for one
iteration, is called a generation [[12].
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Fig. 5: Genetic Algorithm flow diagram reproduced from [/1} p. 2]

Crossover. is a genetic operator designed to combine genetic ma-
terial from two parent individuals at a selected point, generating
offspring with the aim of inheriting beneficial traits from both par-
ents. This mechanism enhances the exploitation of the current pop-
ulation by refining solutions through recombination, thus enabling
the algorithm to explore the search space more effectively and im-
prove its overall performance in successive generations.

Mutation. is a minor change in the genes of an individual. A form
of mutation can be the replacement of one element of an individ-
ual’s genetic code by another arbitrarily chosen element. It intro-
duces diversity and promote exploration (searching new solution in
new region).

Genetic Algorithm Limitations

GA:s, as sophisticated as they are, have certain limitations. Among
these limitations : The premature convergence problem, which
represents a condition in which the algorithm prematurely con-
verges to a sub-optimal or a local optimum solution, that the ge-
netic operators (crossover and mutation) cannot produce offspring
with better fitness afterwards. This phenomenon occurs when the
population has lost its diversity.

Another GAs problem is the population stagnation, it refers to
the situation in which the algorithm stagnates before converging
to the optimal solution. One possible cause of this problem is the
slowing down of the algorithm during evolutionary search, due to
inadequate operator design and their fixed rates []] [5].

These limitations are manifested as the relevant operators parame-
ters are fixed in GA [8]]. The joint execution of certain types of op-
erators, constitutes a brake to the evolution of the solution’s fitness.



A simple mutation operation after a crossover could, for example,
make a potential solution unprintable by the implementation [/1]].
These problems are generally related to all evolutionary algorithms.
Surprising as it is, the HC, a simple, less sophisticated type of al-
gorithm would in some test generation scenarios outperform evo-
lutionary algorithms and particularly the GA [[12] This paradox is
also explained by the fact that in some scenarios, crossover and
mutation disrupts both the evolution of solution’s fitness which is
illustrated by Schema Theory [[13].

Schema Theory. 1Itis important to note that the aim of this section is
not to present a comprehensive review of schema theory, but rather
an intuitive introduction followed in each case by its generalization
to software testing, as given by Harman and MacMinn [12].

GA'’s schema is a combination of a set of characters: {0, 1, x}, the
* is a wildcard which can be either a 1 or a 0, a schema can be con-
sidered as a model chromosome or a template. An instantiation is
when a chromosome corresponds to a schema where the #s of the
schema are replaced by the bit of the chromosome at the same po-
sition. A chromosome =z is an instantiation of a schema s, is noted
z € s. The number of fixed positions (the number of bits except
the % or |s — {*}| ) in a schema is called the schema order and is
denoted P(s).

It is almost impossible to determine the exact fitness value of a
schema s because the GA selection operation will not identify a
subset of solutions that will necessarily contain all possible instan-
tiations of a schema, it is simply not designed for that.

On the other hand, at each generation ¢, the schema s will be able to
be treated by determining an approximation of its fitness on the ba-
sis of its instantiations present in the generation G(¢).Thus one will
be able to define a measure of the approximate aptitude, f(s,G(i))
, for a set of chromosomes of G(z) from f(x,G(i)) function that
gives the exact fitness of a chromosome x belonging to set that
form the generation G(z).

~ Y 1
f(s,G(i) = {z|z € snz € G(i)|}

[z, G(@) (D)

zeshzeG(i)

Returning to the SBST context, it is observed that the notions stated
above are related to binary GAs. Thus to generate tests of real world
programs it is useful to generalize them. To achieve this, a careful
adaptation of the generalization provided by Harman and MacMinn
[[12] is applied for the schema to each formula.

Knowing that a schema s can be represented by a set of constraints
c of the SUT and that depending on the SUT, the tests will not nec-
essarily be represented in binary, let h(z,c) be the function that
determines whether a chromosome x satisfies c the constraint, then
the generalization of the equation [T] gives us a formula like the fol-
lowing:

~ Ny 1
fle,G(3)) = Hz|h(z,c) Az € G(i)|}

> f@.GE) @

h(z,c)

The distance between the two most extreme fixed bit of the schema
s, called the definition length. The definition length of s, will be
denoted by 4(s).

Let the number of occurrences of s at generation ¢, be denoted by
N(s,1). The schema theory for binary GAs without the effect of
mutation or crossover for a population of size L, given as :

f(s,G())

N(si+1) = N D15=~70-20)

3

and its (equation[3) generalization for test data generation is given
as follows: :

fle, G())

N(c,i+1) > N(c,i)v—=—7—~
e+ 1) 2 Ne DT am)

“

Both mutation and crossover disrupt the schema, and create other
patterns where the previous instances would not match. This can
slow down the evolution of the solutions fitness. To take into ac-
count these effects, let us consider their respective perturbation ef-
fects as: Pm the probability that an individual bit is mutated and
Pc the perturbation effect of the crossover operator. The size of a
chromosome x is denoted by /. Thus the schema theory is extended
from equation[d] and given as follows:
J6,66). _Pm.P(s)
T Z f (IE ) G(Z))

)

recall that P(s) is the order of schema s. The generalization of the

5(s)

N(s,i+1) > N(s,1) o1

(1-Pc

given schema theory for the generation of test data for real-world
programs, while the order of the constraints in this case represent-
ing the order of the schema P(s) and defined as the number of
variables used to constitute the constraint predicate ¢ designated
by P(c). For example, the constraint ¢ constitutes by the following
predicates: (a + b > c) then the order of the constraint ¢ will be
equal to 3(P(c) = 3) because 3 variables a, b and c are used, so the
generalization of the above formula (equation[3]is given as follows

) @66, PO
] -1

— Pm.P(c))
6)

However, genetic operators, especially the crossover remains es-
sential in some scenarios. A building block is a set of fittest
schemas which when recombined produce even more fittest
schemas. Royal Roads are a simple function of separable build-
ing blocks. Used to test the building block hypothesis [20] [12] [4]],
which suggests that a GA will perform much better in the presence
of building blocks because the crossover operation can assemble
the best parts of two or more schemas, into one of the offspring’s
chromosomes, thus assembling lower order schemas of greater than
or equal to average fitness could create higher order schemas that
drive the search towards a convergence to the global optimum [20]].
In the case of test data generation, to exhibit a royal road property,
the best-fit schemas must be expressed as conjunctions of lower or-
der schemas involving disjoint sets of input variables. When this
property holds, the royal road theory predicts that the GA will per-
form well and that it will do so because of the presence of the
crossover operator and the way in which the best-fitting schemas
receive exponentially more leads than the worst-fitting schemas
Thus, to characterize the test data generation scenarios, It is noted
that those favorable to GA are the ones adhering to Royal Road
properties and non-favorable otherwise [20].



Numerous studies have applied evolutionary algorithms to software
testing. This section aims to present some major works done in the
field of search-based test data generation related to the GA.
Aljahdali et al,; [1]] realized a review of some works done in the
field of search-based test data generation and GA, a comparison of
some techniques, are carried out and finally they have classified and
presented some of the GAs limitations in software testing.
Harman and McMinn [12] conducted a theoretical and empirical
study of Random Testing, HC and GAs, applied to structural test
data generation, with various real world programs as SUT. Their
results showed that evolutionary algorithms are suited in many sit-
uations, when it comes to generating input data for structural tests,
while in some cases simpler techniques give surprising results, ca-
pable to overcome evolutionary algorithms including GA. They
also proposed as solution, memetic algorithm that combines dif-
ferent local and global search techniques.

Khor and Gorgono [[16] developed an automatic test generator,
genet, that uses a GA and a Formal Concept Analysis used in the
fitness function for branch coverage. The formal concept analysis
uses data analysis concepts rather than the CFG, which avoids more
human effort and keeps track of the test. The performance of genet
has been tested and compared to a random test generator. The result
showed, genet outperforms the random test in most of the stated
SUTs and had almost the same level of efficiency when the density
of solutions is high.

However, the good performance of a test generator does not depend
essentially on its fitness function but on the GA itself and especially
on the use of the genetic operators (mutation and crossover).
Mairhofer et al,; [[17] developed RuTeG, a GA-based test data
generator for dynamic languages that can handle complex object-
oriented structures of the Ruby language. RuteG uses an analyzer,
a generator to find domain-appropriate data, a test case executor,
and finally a test case generator. The usability of RuTeG is com-
pared to random testing. In the GA parameters, it is noted that the
mutation operator is applied with a probability of 0.2. The results
showed that RuTeG was able to achieve full code coverage in 11
out of 14 cases, where the lowest average code coverage was 88%.
On the other hand, the random test case generator was only able to
find test cases that covered all the code in 4 out of 14 cases.
However, GA limitations described by the Schema Theory, which
present that both genetic operators disrupt schema is not addressed
or at least it is insufficient to address it through low operator rates.

Han and Xiao [8], tried to address this problem with fluctuating
operators’ probability, the proposed called improved adaptive Ge-
netic Algorithm, which involves the performance of conventional
GA by dynamically determining the adaptive crossover probability
and adaptive mutation probability, depending on the fitness of so-
lutions. This allows a balance between exploiting the best solutions
and exploring new search spaces. Thus, to avoid the local optimum.
In this work, the proposed technique has found its application to the
traveling salesman problem (TSP) where it has achieved good re-
sults compared to the traditional GA, but this does not eliminate
any risk of perturbation caused by crossover and mutation because
their execution remains joint.

Esnaashari and Damia [5] have also used a dynamic approach,
to define the probabilities of crossover and mutation, then add a
memetic step, in which the solutions founded, improve themselves
using the reinforcement learning technique, Q-learning. This step
added to GA in their approach consists in identifying the best solu-
tion or chromosome encoded in the form of a set of SUT test cases,
then submit it to a memorization process in order to reinforce its
aptitude by a sequence of checks and errors to modify the duplicate

test cases encoded in this solution and replace one by another test
case that improves the solution, before pass the solutions to the GA
operators of crossover and mutation.

The method proposed by Esnaashari and Damia is therefore called
MAAT for Memetic Algorithm for Automatic Test case generation.
MAAT was compared to several recent meta-heuristic algorithms
applied to the structural test data generation for path coverage, and
showed better results than all the algorithms in terms of number
of fitness evaluations and success rate. On the other hand, some
of the test subjects in the experiments do not represent real-world
programs, and so MAAT is also more considered as a specific ap-
proach to the path coverage criteria, since its memetic step depends
especially on the paths that are not yet covered by the solution to
be improved.

Previous work has shown promising results, but has also identified
challenges related to premature convergence and population stag-
nation.

3. THE PROPOSED METHOD

As exhaustive testing is impossible, Test data generation could
have near-optimal solutions. It is therefore necessary to formalize
it mathematically into an optimization problem.

3.1 Problem Formulation

Structural test objectives include branch coverage can be encoded
as a search goal in the fitness function.

S a set of all possible solutions (test for the SUT),

I set of Y consecutive SUT inputs that form a single solution (test
case) S;,

where i, J € N

I:A{L...1,...Iy} whereY € Nandy € [1...Y]
B aset of all Z branches for a given SUT,

B:{by...b,...bz} where Z € Nandz € [1...Z]
a function F': S — B which associates for each single solution .S;
the set of branches:
{BS;...BS;...BS;} where BS; C B
that it has been covered by. The F function given as:
F(S;) = BS;

another function G : S — B that takes a subset of solutions
S'cS
returns a set of branches covered by this set

5/2>le C BN

BNCB ,S;¢€

G(S') = BN

A final function O : S x C' — B for maximum coverage of a given
SUT branches:

0(S) = S if 35 C S where [G(S)| = |B]
| Maz(G(S")), otherwise



3.2 Search Space Representation

A Chromosome is represented in two distinct but related forms:
genotype and phenotype.

—The genotype encodes the sequence of consecutive inputs ap-
plied to the SUT.

—The phenotype corresponds to the set of program branches cov-
ered by executing these inputs.

Formally, let:

—{I,...,I,,..., Iy} denote the sequence of inputs that make up
the genotype of a solution S;, where Y € Nand y € [1,Y].

—{BS,,...,BS,,...,BS;} denote the set of branches covered
by \S;, which forms its phenotype, where J € Nand i € [1, J].

To store and manage candidate solutions during the search process,
each solution is modeled using the following.

—a list of inputs representing the genotype,

—a list of covered branches representing the phenotype,

—a fitness value assigned via a fitness evaluation function.

This data structure enables an efficient representation of the input-

coverage relationship, supports genetic operations, and facilitates
fitness-based selection.

Figure[f]illustrates an example of a solution .S; consisting of 7 in-
puts, covering 8 branches, with an associated fitness score.

7 Inputs values for unique solution S; 8 branches forms BS; for unique solution S;

B, | B; | B,

B, |Bﬁ

I,|12|I;|14|15|15|17 B,

B- |Bg

Fig. 6: Solutions Coding Example

3.3 Fitness Function

The fitness function evaluates how well a test input satisfies a given
test objective. For example, branch distance and approach level are
common metrics used to guide the search toward branch coverage
[[12].

Considering the function Tsyy7(x, s) which determines at the exe-
cution of the SUT if the target branch x is covered by the inputs of
this solution, this function is given as follows:

1, ifx iscovered
0, otherwise

TSUT(l‘, S) = {

Where x € B, x belongs to the set of SUT branches and s is a
solution to be evaluated. The fitness function used in this research
to evaluate a solution individually is given by:

|covered branches|
+ W2 |[total branch|

F(s)= Wi -Tsur(z,s)

Where W; and W, represent respectively the weight given to ex-
ploration and exploitation, the constraint related to the weights for
a good balance is given by: W7 + W51,

The following table (table ??) represents the different ranges in so-
lution exploration and exploitation.

3.4 Alterable Genetic Algorithm Design

The AGA aims to avoid the joint execution of its operators. For an
iteration, it uses only one of the two, and thus alternates between
them during the search, in order to find the optimum. AGA looks
for the right time to execute the right operator through its alterna-
tion function.

AGA first initializes a set of possible solutions, (test case), evalu-
ates each solution, running them as inputs to the SUT, and then,
through the operation selection, selects according to its strategy the
best solutions for crossover OR the mutation.

The alternation function uses statistical data on the set of solutions
phenotypes (covered branches), to determine the operator that will
be activated at this iteration (this generation). The crossover or mu-
tation produces offspring until the satisfaction of the stoping crite-
ria or the resources are exhausted. The structure of an AGA is given
below in Algorithm

3.4.1 Chromosome Encoding. The test inputs are encoded as
chromosomes. Depending on the type of SUT input, binary or real-
valued encoding can be used.

Alternation Function

The alternation function is the main part of the AGA. It dynami-
cally coordinates the most relevant operators of the algorithm. The
mutation rates are often very low in most techniques [17], to avoid
undesirable effects of genetic operators. However, AGA does not
need to reduce the mutation rate strongly, as the alternation func-
tion allows to activate the right operator (Algorithm |1} at the right
time to face these problems and reduce its effects.

Algorithm 1 Alternation Function

Input: P, CurentOperator
Output: DesignatedOperator
function Alternation Function (P, CurentOperator)
: DesignatedOperator <+ Current Operator
: Compare the Phenotype of the population P;
: Gets the Similarity Ratio S ;
. if (CurentOperator == Crossover)and ( S > 65%) then
DesignatedOperator < Mutation;
. else if (CurentOperator == Mutation) then
DesignatedOperator < Crossover;
: end if
: return DesignatedOperator;

W N =

Selection, Crossover, and Mutation

Roulette wheel selection, uniform single-point crossover, and the
random reset mutation technique are used. These operators ensure
diversity and convergence of the population.



Weight Ranges Outcome
Wy =W, Same balance between exploitation and exploration
Wy < Wy Favoring exploitation over exploration
Wi > W, Favoring exploration over exploitation
0<W; <03 Low level of exploration implies high level of exploitation
0.3 < Wy <0.7 | Medium level of exploration implies medium level of exploitation
0.7<W; <1.0 High level of exploration implies low level of exploitation

Table 1. : Exploitation and exploration ranges representation

Termination Criteria

The algorithm stop after a fixed number of generations or when
full coverage is achieved. The coverage level allows us to obtain
the progression of the branches coverage found by the following
formula:

coveredbranches % 100

levelofcoverage = totalbranch

Algorithm 2 Alterable Genetic Algorithm (AGA)

Input: SUT, Mazx;, Populationg;..
QOutput: Test Suite
1: Generate random initial population P

2: 440

3: CurrentOperator < Crossover

4: repeat

5:  Evaluate fitness f(x) foreachz € P

6:  Select parent from P according to the selection method
7:  AlternationFunction( P, CurrentOperator)

8:  Perform designated operator

9:  Construct new population P’
10 P+ P
11: 1+ i+1
12: until All branches covered or i > Max;

Mathematical Model: The AGAs Schema Theory

From GAs previous schema theory [l AGA’s schema theory used
for test data generation could be deduced. Knowing AGA unlike
traditional GA executes only one genetic operator at each iter-
ation, this performed by the Alternation Function. Therefore, if
the crossover operator is active then logically the mutation would
be deactivated, then the probability of mutation would be zero (
Pm = 0). In the opposite case it is the probability of the crossover
be zero (Pc = 0). Thus, the mathematical model representing the
schema of an AGA would be as follows:

N feG6) g _ pPL)
N(ed) T5icom (E—Pert),
N(c,i+1) >
Ny G g
N(c,1) I3 /.60 (1 — Pm.P(c)),

@)

4. EXPERIMENTS & RESULTS
4.1 Setup

An empirical study were conducted on on five (5) SUTs that were
proposed by third parties to avoid bias. The results are shown in the
figure below (Figure: [7). The proposed AGA result is compared to
the traditional GA in terms of branch coverage.

The parameters are defined, in order to carry out this study fairly
and without bias, these parameters as described in the table below
(table [2), presents according to the used techniques the size, the
scope of experimentation and also the different types of operator
used.

These test subjects were selected after a proposal of a group of
third persons, they are python implementations of the following
algorithms: Euclid, Find, Triangle ISBN10 checker and ISBN13
checker.

4.2 Results

It is important to note that, the approaches used in this study were
executed 15 times each, and for each test subject. The results pre-
sented in the table below (table ??), are the collected average of
these 15 repeated executions.

The table ?? contains a first column, that indicates the SUT, it
also contains two (2) columns (AGA’s level of coverage and GA’s
level of coverage) that represent respectively the average cover-
age level reached by the AGA and GA approach. Two (2) others
columns (AGA’s number of iteration and GA’s number of iteration
), also representing respectively the average number of iterations
exhausted by the AGA and GA to reach their average coverage
level.

The empirical study addresses these two research questions pre-
sented in the prvious section:

RQ1 : How effective is the generation of test data based on an
alterable Genetic Algorithm for branch coverage?

The primary objective of this research is to address the problem
of test data generation. Although the proposed approach may not
guarantee an absolute optimal solution in all scenarios, but a near-
optimal solution, it aims to provide effective and practical results

if i+1 activate K}&RQSVEASES.

RQ2 : What is the efficiency of structural test data generation
based on Alterable Genetic Algorithm as opposed to the

if i+1 activate mufpligi onal Genetic Algorithm according to branch coverage

criteria for real-world programs?
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Paramétres

6 (66,7 %

2. Priarity Scheduler. 2 (22,2 %)
3. Palindrome of the string 1(11,1 %) 1. Find
4. Palindrome number 1(11,1 %) Nombre: 6
5. Second largest eleme...|—0 (0 %)
6.Binom solve hinomial...|-0 (0 %)
7. Calendar: Calculate t... 1(11,1 %)
8. Find the first repeated...| 0 (0 %)
9. Inverting a string whil... 1(11,1 %)
10. Armstrong number|-0 (0 %)
11. Matrix multiplication 3(33,3%)
12. Exchanging two num...[ 0 (0 %)
13. Separating binary 0...{-0 (0 %)
14. Pattern Decide whet... 1(11,1 %)
15. The inversion of the...|{~0 (0 %)
16. Duplicating the elem... 1(11.,1 %)
17. Prime numbers 1(11,1 %)
18. Triangle Return type... 4 (44,4 %)
19. Fibonacci series 2 (22,2 %)
20. Bubble Bubble sortin...|-0 (0 %)
21. Finding the missing...| 0 (0 %)
22. Euclid: Euclid's algor... 4 (44,4 %)
23. Inset's sorting algorit...
24. Factor program 1(11,1 %)
25. Binary search on an... 1(11.,1 %)
26. Inversion of each wo... 1(11,1 %)
27. ISBN13 checker 3 (33,3 %) 0
78. Return the laraest of... -0 (0 %)
Fig. 7: SUTs solicitation by tiers
Parameter Setting Method Comment
Population size 50 GA, AGA
Number of generations 1200 GA, AGA Maximum number of iterations (M ax;)
Selection operator Roulette wheel GA, AGA | Fitter individuals have a higher selection probability
Mutation operator Random reset GA, AGA Genes are randomly modified
Mutation rate 0.2 GA Frequency of gene mutation
Crossover operator Uniform single-point | GA, AGA Recombination from a single crossover point
Mutation rate Dynamic AGA Frequency of single-gene mutation
Initial population Random GA, AGA Random initialization of the first generation

Table 2. : Parameter settings for the empirical study

SUT AGA coverage | AGA iterations | GA coverage | GA iterations
Euclid 100% 8.4 100% 8.533
Find 100% 9 100% 9
Triangle 100% 25.867 100% 27.867
ISBN10 Checker 100% 133.2 98.461% 328.133
ISBN13 Checker 95.833% 1200 94.444% 1200

Table 3. : Results based on achieved branch coverage and number of iterations

To validate the hypothesis, that the AGA outperforms the GA,
where the latter (AGA) is truly an improvement. The AGA is com-
pared to the traditional Genetic Algorithm, with respect to the cho-
sen branch coverage criteria. So the efficiency and the improvement
that the AGA brings, is determined through the number of branches
of the test subjects, that the technique will be able to cover. This
search question allows us in this axis to determine what is the ef-
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ficiency of the AGA compared to the GA for automatic test data
generation?

Answer to RQ1

The proposed AGA provides an effective and practical solution to
the test data generation problem, often yielding near-optimal out-



comes. As evidenced in Table ??, the approach achieves full cover-
age in four (4) out of five (5) systems under test (SUTs).

In the Euclid case, the AGA achieved 100% branch coverage with
an average of 8.4 generations. For the Find program, complete cov-
erage was reached after approximately 9 iterations. In the Triangle
checker scenario, all branches were successfully explored within
an average of 25.867 generations. Finally, in the ISBN10 Checker
case, the algorithm attained full branch coverage in 133.2 iterations
on average, demonstrating consistent effectiveness across diverse
systems under test (SUTSs).

In the case of the ISBN13 Checker, the AGA achieved a near-
optimal solution, reaching 95.833% branch coverage. This slight
reduction in coverage, compared to other SUTs, may be attributed
to the increased structural complexity of the ISBN13 validation
logic and the more intricate conditions governing access to bibli-
ographic information based on the ISBN identifier.

Answer to RQ2

To study AGA contribution in front of the GA, Investigate the ef-
ficiency of the AGA’s alternation function on real world programs.
The results are summarized for each SUT in the 2 figures (figure[g]
and ) below:

Figures [9] illustrates the resources exhausted by the two methods
AGA and GA, for each SUT. The resources used up are translated
by the number of generation.

The number of iterations and the coverage of the branches obtained
are illustrated in the figures in the form of graphs, typical of other
experiments carried out in the field. The average branch coverage
and the corresponding number of iterations obtained by the AGA
is designated by the blue bars, as indicated in the legends, on the
other hand, that of the GA is designated by the orange bars.

The different SUTs of the experiment are placed on the x-axis and
the average coverage of the branches obtained by the methods, is
displayed on the y-axis in figure[§] In figure 0] the SUTs are placed
on the y-axis and the average iteration numbers of the methods are
placed on the x-axis.

The results showed the contrasts between the AGA and the GA, for
the test data generation on the same SUTs. It can be seen from the
table?? that the AGA achieved complete coverage (100%) in 4 of
the 5 scenarios, while the GA scored 3 out of 5. Let’s have a closer
look at the results for each test subject through figure [§]and [0}

The experimental comparison across five case studies demonstrates
the consistent efficiency of the AGA over the traditional GA. In
simpler programs such as Euclid, Find, and Triangle, both meth-
ods achieved 100% branch coverage, with AGA requiring slightly
fewer iterations, indicating a modest yet consistent improvement
in convergence speed. In the more structurally complex ISBN10
Checker, AGA successfully achieved full coverage, while GA stag-
nated at 98.461%, highlighting GA’s vulnerability to local optima.
Finally, in the ISBN13 Checker case, where neither method at-
tained full coverage, AGA still outperformed GA with a higher av-
erage coverage (95.833% vs. 94.444%), reinforcing its robustness
and superior adaptability in challenging scenarios.

This section aims to calculate the time complexity, of the traditional
GA and compare it with the one of the proposed approach. The time
complexity of meta-heuristic algorithms in general depends on the
problem to be solved, from which the fitness function is defined
and the stopping condition is determined. In general the AGA and
traditional GA have a time complexity in the best case O(c), where
c is a constant, because it is quite possible, that the search can con-
verge to the global optimum solution from the first iteration and in
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the worst case, their complexity will be O(o0), because it is also
obvious, there is a possibility that the two algorithms can not find
the expected optimal solution and therefore they enter a kind of in-
finite loop.

On the other hand, in this project the second scenario has been
solved through the definition of a maximum number of iterations,
as Max;, which marks a determining constraint, when the algo-
rithm does not find the optimal solution until this maximum number
of iterations, this one is forced to stop and return the best solution,
that it has been able to find until then.

THE COMPLEXITY OF TRADITIONAL GA

The complexity of the GA. with a defined maximum number of
iterations is given as follows, but first, let us recall the main steps
that compose the algorithm:

M
(@3]

generation of the initial population with size defined as P,

the fitness function to evaluate the aptitude of all individuals
(solution) in the population,

3

select the individuals according to the roulette wheel method,
for the next generation,

(4) according to the crossover probability, the selected individu-
als are crossed and then according to the mutation probability
the newly generated individuals are mutated to generate a new

population,

(6))

evaluate the fitness of the new members, reinsert the new indi-
viduals and select the next population,

(6) steps 2, 3,4 and 5 are repeated until the algorithm reaches the
maximum number of iterations or it has found the expected

solution, that is, its fitness value reaches the norm set.

For the first step (1) of the GA the operation consists in generating
randomly P individuals of size Y, giving a complexity O(P - Y)
for this step. From the second step (2) the algorithm enters a
loop conditioned by a maximum number of iterations Max;
or convergence to the expected optimal solution. An iteration
that executes the second step consisting in evaluating one by
one the P individuals of the population by executing each one
with the SUT. This gives a complexity that strongly depends,
on the complexity of the program chosen to be the SUT. Let us
consider the complexity of the SUT as Csyr. Seeing that it is
executed for each individual of the population it will thus cost
O(P - Cgyr) for one iteration of this step. At the third step (3)
the operation selects among the P individuals and according to a
probability proportional to their abilities. Thus the complexity of
the roulette selection method is O(P - logP) given mainly by the
cost of sorting. Step four (4) or, the joint operation of crossing and
mutation is performed according to their respective probability. Let
Pc be the crossover probability and Pm the mutation probability,
the complexity of this step is defined as O(Maxz(Pc- P, Pm - P))
which is equal to O(P - Pc) because Pc > Pm . At the next step
(5) the operation will consist in reevaluating the new individuals
created by the crossing and the mutation by executing the SUT,
then adding them to the population in order to select the new
population or the next generation, this step has a complexity of
O(Maz(Pc - P - Csyr,Pm - P - Csyr)) which also gives us
O(P - Pc- CSUT)~

The steps 2,34 and 5 are thus iterated Max; times in the
worst case, then, the complexity of all the steps iterated in the
loop will be multiplied by Max; Thus, the complexity of the
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set forming the instruction block of the GA steps is collected as
follows:

—Step1=0(P-Y)

—Step 2= O(P . CSUT . MCMC@)

—Step3=0O(P -logP - Mazx;)

—Step4 =O(P - Pc- Mazx;)

—Step 5= O(P - Pc- CSUT . Maac,)

Let us calculate the complexity of the set by performing the
maximum operation on the complexity of the instructions as

follows:

O(Mazx(P-Y, P-Csyr-Maz;, P-logP-Maz;, P-
Pc-Max;, P-Pc-Csyr-Maz;))

Given that the maximum of these five (5) parameters: P - Y, P -
Csyr-Mazx;, P-logP-Max;, P-Pc-Max;, and P-
Pc - Csyr - Max; consideredis P -Cgsyr - Max; then
the time complexity of the traditional Genetic Algorithm for the
structural test data generation of a defined SUT would be:



O(P . CSUT . Maxl)

THE COMPLEXITY OF AGA

The proposed algorithm includes all the steps mentioned above,
with one difference : the execution of the crossover and mutation
operators is not joint but alternated, thanks to the addition of the al-
ternation function constituting a new step. It can be stated that the
AGA has one more step than the GA. .

The step of the alternation function is in charge of determining the
unique operator to be executed, between the crossover and the mu-
tation during an iteration. This one consists in comparing each cov-
ered branch or phenotype of a solution, with the set of branches
covered by the P — 1 other solutions of the current population. The
comparison of the set of branches gives a percentage of similarity
determining for the choice of the operator, and will thus cost, in
term of temporal complexity O(P?) or O(P - P). It is important
to note also that this step is also iterated M ax; times in the algo-
rithm. Thus the alternation function step costs O(P - P - Max;)
and therefore the complexity of the AGA is calculated as follows
Knowing that O(P - Csyr - M ax;) is the complexity of the rest of
the steps given in the section above are presented as follow:

O(Maz(P-P-Max;, P-Csyr - Maz;))

At this level it is not obvious to determine the maximum of these
two parameters: P - P - Max; and P - Csyr - Max; because
the SUT can vary and its complexity varies too. But the worst
case would be a maximum Cgyr complexity, where the C'syr
would be higher than P (Csyr > P). then the maximum is
P - Csyr - Max; and finally the complexity of the AGA for test
data generation to a given SUT, would be :

O(P . CSUT . Maacz)

Compared to the traditional GA, for each iteration, the proposed
algorithm has one more step that costs O(P - P), but in the worst
case they have similar complexity.

DISCUSSION

The experiments showed an improvement of the solution AGA over
the GA for the test scenarios as SUTs. On the other hand the results
validated the expected ability of the AGA with its alternation func-
tion to guide the solutions, over the premature convergence and
stagnation problems described by the Schema Theory [[12] and re-
duce the effect of perturbation, of the genetic operators which re-
sulted in the AGA outperforming the GA in almost all the scenarios
of this experimentation.

However, challenges remain in handling complex input constraints
and Design AGA’s fitness function in order to achieve path cover-
age.

Comparison of AGA with various recent approaches

After implementing the proposed approach, a comparative analysis
was carried out with other recent state-of-the-art techniques.

The table ?? clearly shows that, AGA approach is superior in terms
of applicability, scalability and computational cost required but the
MAAT approach based on the genetic algorithm and reinforcement
learning [5]] is the most efficient with complete coverage. However,
the test criteria used in experiments for this approach are path cov-
erage and some test subjects do not accurately represent real-world
programs.
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5. CONCLUSION AND FUTURE WORK

This paper made some contributions in the field of SBST, a solution
applied to test data generation named Alterable Genetic Algorithm
(AGA). AGA is a technique from the family of population-based
evolutionary algorithms such as Genetic Algorithm.

The addition at the AGA level, is an alternation function that
rhythms the execution of the genetic operators and especially al-
ternates between the two for each iteration. This function separates
them (mutation and crossover) and allows to activate the right op-
erator, at the right time of the search. A mathematical model rep-
resenting the AGA Schema deduced from the one generalized for
the SBST. Deduced model has theoretically demonstrated the im-
provement that AGA has brought over GA, in terms of undesirable
effects related to crossover or mutation

An empirical study was conducted to evaluate the performance
of the Alterable Genetic Algorithm (AGA) in comparison to the
conventional Genetic Algorithm (GA), grounded in the theoretical
foundations of Schema Theory. The results empirically confirmed
that AGA consistently outperformed the traditional GA across most
scenarios, highlighting its efficiency and improved search capabil-
ity.

Future directions include a deeper analysis of the alternation func-
tion to optimize the trade-off between computational cost and algo-
rithmic sophistication, as well as extending the approach to accom-
modate complex data structures and support path coverage criteria.
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