International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Comparative Performance Analysis of JAMstack and
Monolithic Web Architectures

Khushi R. Shah
Department of ICT
Veer Narmad South Gujarat University
Surat

ABSTRACT

User experience and engagement are the most important factors
in web development, as they greatly influence the speed and
reliability of a website. In recent times, with the emergence of
full-stack development, JAMstack architecture has gained
importance. That said, it does not mean that monolithic
architecture is less useful and should fail to be used at all. Both
quantitative and qualitative analysis of the client-side
performance of two web architectures, monolithic and
JAMstack, help bridge the research gap in existing studies by
providing A clear, data-driven comparison of their efficiency
in handling dynamic content across varying volumes. It shows
how performance metrics such as Time to Interactive (TTI),
Time to First Byte (TTFB), and memory consumption are
sensitive based on architectural characteristics. The monolithic
architecture often suffers from slow initial load times, as it is
heavily dependent on server-side processing, regardless of the
data amount. JAMstack provides a swift supply of static assets
using a CDN, where the performance of this architecture
mainly depends on the amount of dynamic data being fetched
and rendered from the client side. JAMstack is mostly used
when we need to reuse the backend code in multiple frontend
apps. It also investigates how the memory usage of each
architecture differs across browser engines. More importantly,
such information is capable of helping organizations make
better decisions about their web infrastructure that suit their
specific project objectives.

General Terms

Performance, Measurement, Experimentation, Design, Web
Architecture

Keywords

JAMstack, Monolithic Architecture, Web Performance, Time
to Interactive (TTI), Time to First Byte (TTFB), Memory
Usage, Google Lighthouse, GTmetrix, Content Delivery
Network (CDN), Single-Page Application (SPA).

1. INTRODUCTION

The responsiveness of a website strongly influences user
interactions and engagement. Web developers face a big
challenge in designing a site that meets user aesthetics, is
accessible, and is reliable anywhere in the world. This holds
true also for the User Interface (UI) and User Experience (UX)
domains of web design because performance and
responsiveness of a site directly impact how users perceive and
interact with it. Despite the site having good content, a slow
user interface can lead to a poor user experience. This has led
to the emergence of different website architectures, each with
its own strengths and weaknesses.

Monolithic and JAMstack are the two most popular
architectures for building modern Web applications. The
monolithic model is known as the traditional approach, where

Payal D. Joshi
Department of ICT
Veer Narmad South Gujarat University
Surat

the components of website are closely interconnected, both the
frontend and backend operate as a single unit. In contrast, the
JAMstack model separates the components of a website, where
the frontend, backend, and reusable parts are separated using
prebuilt static files and APIs to render content more quickly.
This helps in reusing the backend code in multiple frontend
applications.

Even though there is a lot of discussion about the pros and cons
of both models, there is still a need for quantitative practical
based research that shows how they actually perform in terms
of speed, memory use, SEO, and wuser experience.
Understanding the benefits and potential limitations of both
architectures is important for:

* Better decision-making during infrastructure design in
organizations.

* Gaining practical insights into how each architecture performs
under varying conditions.
« Evaluating their influence on key performance metrics, such
as load time, memory usage, SEO, and Time to First Byte
(TTFB).

The aim of the study is to fill that gap by creating identical web
applications using both architectures and then comparing their
performance in different scenarios.
To explore and compare important factors influencing the
performance of both the architectures is the primary objective
of this research. This practical and data driven approach can
help provide valuable insights to the developers and
organizations in better understanding which architecture best
suits their needs.

The rest of the paper is organized as follows. The past
researches and studies are discussed in the Related Work
section. The research objectives, the specifics of developing the
web application, the data collection methods and tools for the
performance analysis are discussed in the Research
Methodology section. The Analysis of the metrics from various
tools in detail is elaborated in the Results and Findings section.
The key insights gained from the study are discussed in the
Conclusion section.

2. RELATED WORK

[1] Sam Whitley (2023) carried out a comparison of the
JAMstack and monolithic architectures by using WordPress to
demonstrate the monolithic stack, and a modern JAMstack
stack with React, serverless functions and Netlify. His
outcomes are based on load speed, scalability, and deployment.
Whitley's study convincingly demonstrated JAMStack’s
advantages, as far as load speed and capacity for traffic with
load increases go. However, it was limited as it utilized a pre-
built CMS platform, asset delivery solely using CDNSs, and
static asset usage. [2] A mixed-method study by Markovi¢ et
al. (2022) evaluated the maturity, adoption, and future potential

51

of the JAMstack architecture, where they reviewed 77 studies
and narrowed them down to six key publications. They also
conducted an online survey with 44 web developers and held
semi-structured interviews with 4 experienced professionals.
While the research offered valuable insights into trends in
JAMstack adoption and the views of practitioners, it mainly
relied on surveys. No experimental performance assessments
or considerations of dynamic application scenarios were
included. [3] Both a JAMstack and a WordPress
implementation was done in the Nguyen study, in order to
analyze and compare JAMstack architecture and monolithic
architectures. It was founded that JAMstack provided enhanced
performance, security, and scalability than monolithic
architecture. However, it was limited to a CMS-based
monolithic implementation and lacked a JAMstack evaluation
of dynamic content rendering and real-time capabilities. [4] A
mix of literature review, surveys, and interviews was used for
studying JAMstack architecture in Orosz (2020). This approach
showed better performance in terms of scalability,
performance, and improved security. It also offered the added
benefits of a lower learning curve and less maintenance effort
but it only focused on qualitative insights and did not involve
practical performance testing. [5] CI/CD pipelines for
JAMstack applications were set up using CircleCI and Netlify
in Hoang et al. (2020). A Gatsby-based JAMstack project was
created and deployed where it showcased the automation of
build, test, and deployment workflows. Lighthouse data
showed performance improvements of about 75%, with a
perfect SEO score of 100%. Nevertheless, its scope was
confined to JAMstack, excluding any comparison with
monolithic or database-centric dynamic applications. [6] A
JAMstack based e-commerce website was developed using
Next.js, Sanity, and Tailwind to showcase the applicability of
JAMstack architecture in the study by Nguyen (2022). They
achieved high performance, improved security, scalability, and
readiness for SEO through their approach. However, their
evaluation focused only on one e-commerce case study. There
was no quantitative comparison or direct analysis with
monolithic systems. Furthermore, they did not explore real-
time dynamic content or extensive user interaction. [7] In W.
Ruoxuan and M. Uehara study, a React-based JavaScript
Development Environment (ReJDE) was developed as a
single-page application (SPA) for programming education on
smartphones. The main aim was to address the original JDE's
inability to support multiple curricula and save the learning
history. A headless CMS (microCMS) was used for
implementing a multitenant system and a "notebook" feature,
inspired by Project Jupyter, was also introduced. However, this
study is fundamentally limited by its exclusive focus on a single
architecture and the absence of a direct side-by-side
comparison with a traditional monolithic system. [8] In
practice, a modern Single-Page Application (SPA) architecture
was used in a 2019 case study by Gavrild, Bajenaru, and Dobre.
The design features client-side rendering, asynchronous data
loading, and API-based content delivery with a deliberate
separation between the frontend and backend. The design led
to faster loading times, better user experience, and reduced
maintenance. No direct comparison with monolithic
architectures was made, but as mentioned, the benefits in some
ways resemble those of scalability and flexibility related to the
latter with reference to Jamstack-based approaches. [9]
Kowalczyk and Szandala (2021) investigated the SEO
performance of Single Page Applications (SPAs) and Multi
Page Applications (MPAs). When techniques such as
prerendering, enhanced metadata, and performance
improvements are applied, it is found that SPAs exhibit similar
SEO performance to MPAs, based on the research conducted.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

This study primarily focuses on SEO in SPAs vs MPAs and its
rendering strategies and lacks broader architectural insights and
raw performance metrics. [10] In his 2015 investigation,
Nygard (2015) analyzed how the Single- Page Application
(SPA) architecture can be a basis for creating modern web
applications to be both scalable and responsive. Three SPA
prototypes were created using HTML, CSS, JavaScript, AJAX,
and API-driven data retrieval. The results were that SPAs can
provide a more consistent and smoother user experience (less
page reload and quick transitions) in a unified Ul experience.
Yet issues lingered about SEO, semantic HTML support, and
the extensive use of JavaScript.

2.1 Research Gap

These studies uncover and explore many dimensions of various
architectures. Most of the related work looks at strengths of
JAMstack in a qualitative way, often focusing on single
architecture evaluations or comparing it with pre-built CMS
platforms like WordPress, which are not true monolithic
environments. A major gap in the existing research is the lack
of direct, data-driven comparisons between a custom-built
monolithic application and a JAMstack application, especially
when it comes to raw performance under varying data loads and
how resources are consumed across different browsers. This
study addresses that gap by building two identical web
applications and carrying out a practical, data driven analysis
of performance indicators and memory usage, providing a
clearer understanding of the differences between monolithic
and JAMstack architecture.

3. METHODOLOGY
3.1 Research Design

This paper is an analysis of the effectiveness of two versions of
the same web application: a hotel website in a monolithic
architecture and JAMstack architecture. Although the two
websites utilize the same back-end framework including PHP,
HTML, CSS, and a MySQL database, their front-end
architecture as well as the delivery approach is very different.
The website runs in several parts but is built on the data of 200
cities and their corresponding hotels (see Table 1).

» Monolithic Website: This follows a tightly coupled structure
with PHP as the backend framework, HTML as the frontend,
and a MySQL database. The entire page is rendered on the
server with each request. The images are served through CDN.
» JAMstack Website: This decoupled approach leverages APIs
and Ajax for the frontend, with PHP serving as the backend API
and MySQL as the database. The frontend uses a single-page
application (SPA) model, where the navbar, slideshow, footer,
and left navbar remain fixed, and the content is loaded
dynamically within a window frame. The images are served
through CDN.

Table 1. Research Methodology Details

Aspect Details

Study Experimental study comparing two versions of
Type a same website based on Monolithic and
JAMstack architectures.

Platform A common back-end platform built with Core
PHP and MySQL, while the front-end
components and data delivery methods differ.

Features e 5 website sections (Home, FAQ,
Contact, Gallery, Hotels)

e Image serving from CDN

52

e Dynamic hotel data based on a
dataset of 200 cities

e 4 cities have 100 hotels and rest 196
cities have 5 hotels

Website Monolithic Version: Tightly coupled
A architecture. Backend: PHP, Frontend:
HTML/CSS, Database: MySQL. All pages are
server-side rendered (SSR).

Website B | JAMstack Version: Decoupled architecture.
Frontend: JavaScript/Ajax with PHP serving
as the backend API. It uses Single-Page
Application (SPA) model where key elements
are fixed, with content loaded dynamically in
a window frame.

Hosting InfinityFree
Platform

CDN Cloudinary
Service
Provider

3.2 Research Objectives

* Evaluate and compare key performance indicators (KPIs) and
throughput between monolithic and JAMstack based website.
* Analyze memory usage/heap size by both websites on
different browsers.

* To understand the best situations for using each architecture.

3.3 Website Development and Setup

Both websites are designed to be identical in content, structure,
and functionality, with the only difference being the CDN
integration, hosted on the same server to ensure independent
and fair analysis of performance. Details of the hosting and
CDN platforms are as given below:

* Hosting platform: infinityfree.com

* CDN Integration Service: Cloudinary

InfinityFree is a free web hosting provider that helps in
managing websites based on PHP and MySQL. It operates on
a cloud-based infrastructure that ensure a high uptime,
unlimited storage space, free subdomains, SSL and DNS
services with many other tools providing effortless
deployment. Cloudinary is a SaaS based media asset delivery
platform that handles media upload, storage, optimization and
delivery via CDN services. It has high performance media
processing servers, free tier storage and supports dynamic asset
URLSs. The primary purpose of choosing this CDN provider
was for the easy SDK integration with multiple tech stacks
which generate dynamic media URLs after upload. However,
Cloudinary has not publicly disclosed the exact number of edge
servers, but they claim to utilize many strategically placed edge
servers worldwide.

3.3.1 Performance Measurement Tools

To measure website performance, the following tools were
used to track the key metrics:

* Memory tab in browser developer tools

* GTmetrix

* Google Lighthouse

These tools provided quantitative results on performance,
including load times, request handling, Largest Contentful
Paint (LCP) and load times and overall page speed metrics for
both websites.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

4. RESULTS AND FINDINGS

The following results were recorded from tools such as GT
Metrix, Google Lighthouse and browser developer tools.

4.1 Memory Usage Analysis

The data from the Memory Tab of browser Developer Tools
were compared for both Websites on the following browsers:
1. Google Chrome

2. Microsoft Edge

3. Mozilla Firefox

On Google Chrome, the Monolithic website occupies
significantly more memory on load. The monolithic site's heap
size is 17.7 MB, which is approximately 153% more than the
JAMstack site's heap size of 7.0 MB (see Figure 1, Figure 2,
Table 2).

Select JavaScript VM instance

17.7MB 1691 kB/s Main

17.7MB 1691 kB/s Total JS heap size

2. Load profile Take snapshot

Fig 1: Monolithic Website: Google Chrome - Memory
Panel Developer Tools
Select JavaScript VM instance

7.0MB 1250 kB/s Main

7.0 MB 1250 kB/s Total JS heap size

I, Load profile Take snapshot

Fig 2: JAMstack Website: Google Chrome - Memory
Panel Developer Tools

Similarly, on Microsoft Edge, the monolithic website uses
more memory. The monolithic heap size is 11.5 MB, which is
about 60% more than the JAMstack site's heap size of 7.2 MB
(see Figure 3, Figure 4, Table 2).

53

Select JavaScript VM instance

115MB t179 kB/s Main

115 MB 1179 kB/s Total JS heap size

T* Load profile Take snapshot
Fig 3: Monolithic Website: Microsoft Edge - Memory
Panel Developer Tools

Select JavaScript VM instance

7.2 MB 9 kB/s Main

7.2MB 1829 kB/s Total JS heap size

‘I* Load profile
Fig 4: JAMstack Website: Microsoft Edge - Memory
Panel Developer Tools

In contrast, the results on Mozilla Firefox are completely
opposite. The JAMstack site consumes 4.77 MB of RAM and
the monolithic site 3.83 MB. The memory footprint of the
JAMstack site is almost 25% larger on Firefox, the opposite
trend as Chrome and Edge (Fig. 5., Fig. 6.). This variation of
results can be ascribed to the contrast of the browser engines,
as Chrome and Edge are Chromium-based while Firefox
utilizes the Gecko engine (Table 2.).

Fig 5: Monolithic Website: Milla Firefox - Memory
Panel Developer Tools

Fig 6: JAMstack Website: Mozilla Firefox - Memory
Panel Developer Tools

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Monolithic and JAMstack architectures exhibit fundamentally
different performance characteristics. JAMstack excels in
initial user experience and backend efficiency, while the
monolithic site shows some scalability with data reduction, but
at the cost of a much slower start.

Table 2. Memory Analysis Results

Browser Monolithic Site JAMstack Site
Google Chrome 17.7 MB 7.0 MB
Microsoft Edge 11.5 MB 7.2 MB
Mozilla Firefox 3.83 MB 4.77 MB

4.2 GTmetrix Comparison Report
4.2.1 Performance (%)

The Jamstack site has a higher performance score of 65%,
compared to the monolithic site's 55%. This reflects the faster
initial load times and more efficient delivery (see Figure 7).

4.2.2 Structure (%)

The Jamstack site has a much higher structure score of 96%,
compared to the monolithic site's 73%. This indicates a more
optimized and well-organized front-end code and asset delivery
for the Jamstack architecture (see Figure 7).

GTmetrix Grade
120%
100%
80%
60%
40%
20%
0%
Monolithic Jamstack

B Performance (%) B Structure (%)

Fig 7: GTmetrix Grade Comparison
4.2.3 Web Vitals

These metrics are used for determining the User Experience
(UX).

* First Contentful Paint (FCP): How quickly the first piece of
content is rendered on the screen is indicated by FCP. The FCP
of Jamstack site is approximately 0.8-0.9 seconds, indicating
an almost instant display of the first piece of content. Whereas,
the FCP of the monolithic site is around 9.3 seconds, showing
a user waits longer for the content to be rendered (see Figure
8).

* Time to Interactive (TTI): TTI shows when a website
becomes fully interactive. The Jamstack site becomes fully
interactive in 0.8-0.9 seconds. Whereas, the monolithic site
shows a TTI of 14 seconds (see Figure 8) which is much longer
than Jamstack site.

* Speed Index(s): This metric indicates how quickly the content
is visually populated. The Speed Index of Jamstack site is
12.9s, which is better than the monolithic site having Speed
Index of 13.9s (see Figure 8).
« Largest Contentful Paint (LCP): The time taken for the largest
visible element to load is shown by LCP. For Jamstack site the
LCP ranges from 6.6 to 7.6 seconds, while for the monolithic

54

site it is around 9.2s showing that the largest element on the
Jamstack page loads faster, contributing to a better perceived
performance (see Figure 8).
* Total Blocking Time (TBT): Both architectures have a Total
Blocking Time of 0, indicating that there is no significant
blocking of the main thread from user interaction for either site
(see Figure 8).

Performance Chart

First Contentful
Paint (FCP)

Time to
Interactive

Total Blocking
Time

Speed Index Largest

Contentful Paint

B Monolithic(in seconds) ~ mJamstack(in seconds)

Fig 8: Performance Comparison Chart

4.2.4 Browser Timing Analysis

e Redirect Duration: The monolithic site shows a noticeable
redirect duration of about 3 seconds, whereas the Jamstack site
completes the redirect at 0.001 seconds (see Figure 9).
» Connection Duration: It indicates the time taken to establish
a connection between the server and client. The monolithic site
is 0.151 seconds, which is almost twice as fast as the Jamstack
0.307 seconds (see Figure 9).

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Backend Duration: Jamstack demonstrates an extremely
efficient backend with durations ranging from 0.15s to 0.17s.
This is an order of magnitude faster than the monolithic site,
which has a backend duration of 4.9s to 5.7s. This is a key
bottleneck for the monolithic architecture (see Figure 9).

» Time to First Byte (TTFB): The time taken for the first byte
of data to reach the user is called TTFB. Jamstack has a
consistently low TTFB of 0.468 seconds, a direct benefit of
serving static content from a CDN. The monolithic site's TTFB
is much higher at 8.8 seconds due to extensive server-side
processing (see Figure 9).

* DOM Content Loaded Time: The data provided does not
contain DOM Content Loaded Time values for a direct
comparison (see Figure 9).

* DOM Interactive Time: DOM Interactive Time measures the
time the browser takes to first become interactive. The
monolithic site takes a long 13.9 seconds for the browser to
become interactive, whereas the Jamstack site is ready in just
0.916 seconds (see Figure 9).

* Onload Time: Onload time measures the time the browser
takes for the page to load fully. The monolithic site completes
the page load in 13.9 seconds, while the Jamstack site finishes
in just 0.92 seconds. This is a significant difference (see Figure
9).

» Fully Loaded Time: Fully Loaded Time measures the time
when the entire page, including additional scripts and
resources, has fully loaded. It turns out that the monolithic site
runs a bit faster than that, since Fully Loaded Time varies from
13.9s to 14.8s in the monolithic site, while in the Jamstack it
comes in at 17.7s to 18.9s. While the monolithic site starts slow,
it may perform some server-side optimizations and finishes the
entire page load a little faster. The initial load is fast for the
Jamstack site, but this time around it takes a longer time to fetch
and render many assets from the client-side, so overall loading
times of the site are slow (see Figure 9).

Browser Timings

20

15

10

5

0
Redirect Connection Backend
Duration (s) Duration (s) Duration(s) Byte (s)

Loaded
(s)

Time to First DOM Content

First Paint (s) Onload Time Fully Loaded
Interactwe (s) Time (s)

Time (s)

Time

m Monolithic mJamstack

Fig 9: Browser Timings Comparison

4.3 Google Lighthouse Comparison Report
* Performance (%): The monolithic site scores 79, which is
slightly higher than the Jamstack's 75 (see Figure 11, Table 3).
* Accessibility (%): The monolithic site scores 75, which is
significantly higher than the Jamstack score of 57 (see Figure
11, Table 3).

* Best Practices (%): The Jamstack site scores 83, which is
significantly higher than the monolithic score of 57 (see Figure
11, Table 3).

* SEO (%): SEO score of monolithic site is 91 which is higher
compared to the Jamstack score of 80 (see Figure 11, Table 3).
* First Contentful Paint (s): The Jamstack site has a faster
FCP time (1.1s) compared to the monolithic site (1.6s). Here,
the initial content is rendered more quickly in the Jamstack
architecture (see Figure 10, Table 3).
» Largest Contentful Paint (s): Both architectures have the
same LCP time (1.7s). This means the largest element on the
page takes an equal amount of time to render for both the sites
(see Figure 10, Table 3).

55

 Total Blocking Time (s): As both sites get a TBT of Os,
meaning they execute JavaScript efficiently without blocking
the main thread (Figure 10).

» Cumulative Layout Shift: Similar to TBT, here also both the
sites have a CLS of 0, their layout is stable and there are no
unexpected shifts (see Figure 10, Table 3).

* Speed Index (s): Monolithic site has a Speed Index of 5.1s
which is slightly faster than that of the Jamstack site (5.6s),
meaning that its visual content is populated more quickly than
the Jamstack site (see Figure 10, Table 3).

* Initial Server Response Time (s): The Initial Server Response
Time of Jamstack site (0.23s) is notably faster than the
monolithic site having 6.37s (see Figure 10, Table 3).

» Avoid Multiple Page Redirects (s): The estimated savings of
monolithic site from avoiding redirects is higher (0.6s) than the
Jamstack site (0.39s) (see Figure 10, Table 3).

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

» Eliminate Render-Blocking Resources (s): The monolithic
site has estimated savings (0.48s) which are higher than the
Jamstack site (0.37s) from eliminating render-blocking
resources (see Figure 11, Table 3).

» Enable Text Compression (KiB) & Serve Static Assets with
Efficient Cache Policy: The Jamstack site has a higher potential
for savings from text compression (197 KiB) compared to the
monolithic site (118 KiB). The monolithic site has more
resources (9) that could benefit from an efficient cache policy,
while the Jamstack site has fewer (6) (see Table 3).

* Reduce Unused JavaScript (KiB) & Properly Size Images
(KiB): Both sites passed the audit for properly sizing images.
The monolithic site has a slightly higher estimated savings from
reducing unused JavaScript (21 KiB) than the Jamstack site (20
KiB) (see Table 3).

Table 3. Google Lighthouse Metrics

Metric | Monolithic Jamstack
Performance (%) 79 75
Accessibility (%) 75 57
Best Practices (%) 57 83
SEO (%) 91 80
First Contentful Paint (s) 1.6 1.1
Largest Contentful Paint (s) 1.7 1.7
Total Blocking Time (s) 0 0
Cumulative Layout Shift 0 0
Speed Index (s) 5.1 5.6
Initial Server Response Time (s) 6.37 0.23
Avoid Multiple Page Redirects (s) 0.6 0.39
Eliminate Render-Blocking Resources (s) 0.48 0.37
Enable Text Compression (KiB) 118 197
Serve Static Assets with Efficient Cache Policy (No. of Resources) 9 6
Reduce Unused JavaScript (KiB) 21 20

Google Lighthouse Report : Time-Based Metrics (s)

]

H

w

N

[ERN

First Contentful Largest
Paint (s) Contentful Paint Time (s)
(s)

o

Total Blocking ~ Cumulative
Layout Shift

Speed Index (s) Initial Server Avoid Multiple Eliminate
Response Time Page Redirects Render-Blocking
(s) (s) Resources (s)

B Monolithic B Jamstack

Fig 10: Google Lighthouse Timing Report

56

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Google Lighthouse Report : Performance Metrics (%)

100
0

SEO Score

Performance Score

Accessibility Score Best Practices Score

B Monolithic mJamstack

Fig 11: Google Lighthouse Performance Report

4.4 The Impact of Amount of Data Fetched
from Backend in Monolithic vs JAMstack
Architectures

4.4.1 Impact of Increasing Number of Cities on

Backend Data Fetching Performance

The performance of the monolithic architecture remains
consistently stable, showing minimal change with metrics such
as First Contentful Paint (FCP), Time to Interactive (TTI),
Speed Index (SI), and Largest Contentful Paint (LCP) as the
number of cities is decreased. The FCP and LCP consistently
measure around 9 seconds, while the TTI and SI stay steady at
approximately 13 to 14 seconds. It is thus indicated that the
performance of the monolithic architecture is influenced more
by the fundamental server-side processing overhead than by the
size of the dataset. The primary bottleneck is the time required
to process and send the initial response on the server,

irrespective of the amount of data displayed (see Figure 12,
Table 4).

Whereas, the JAMstack architecture shows a high degree of
responsiveness to changes in data volume. Initial load metrics
such as FCP and TTI, are consistently fast and low (around 0.8
seconds). This result is because of serving pre-rendered static
content from a CDN. The most significant change is seen in the
Largest Contentful Paint (LCP) and Speed Index (SI) where the
LCP drops from approximately 7.5 seconds (at 200 cities) to
6.5 seconds (at 40 cities) and the SI also shows improvement
from around 13 seconds to 12.5 seconds. After the initial quick
load, the overall performance of JAMstack site is primarily
determined by the volume of data that needs to be fetched via
APIs and rendered on the client side. If the number of cities is
reduced means fewer API calls have to be made and thus less
data to process, resulting in a faster LCP and more fast visual
population of the page (see Figure 13, Table 5).

Monolithic Performance

20
1

(e

Time (s)

40 cities 80 cities

‘" allin sz slix =iz =lis

120 cities 160 cities 200 cities

The number of cities per iteration

m First Contentful Paint W Time to Interactive

mSpeed Index W Largest Contentful Paint

Fig 12: Monolithic Performance Comparison across number of cities

57

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Jamstack Performance

20

2

g 10

E, __Nm __Nm __ Fm __ fm __Nm

40 cities 80cities 120 cities 160 cities 200 cities
The number of cities per iteration
W First Contentful Paint ~ m Time to Interactive Speed Index W Largest Contentful Paint
Fig 13: JAMstack Performance Comparison across number of cities
Table 4. Monolithic Cities Data
Cities First Contentful Paint Time to Interactive Speed Index Largest Contentful Paint
40 cities | 9.2 14.1 14 9.2
80 cities | 8.7 13.2 133 8.7
120 8.7 13.5 13.4 8.7
cities
160 8.6 13.2 13.2 8.6
cities
200 9.3 13.9 13.9 9.3
cities
Table 5. JAMstack Cities Data

Cities First Contentful Paint Time to Interactive Speed Index Largest Contentful Paint
40 cities 0.826 0918 12.6 6.6
80 cities 0.906 0.994 133 7.3
120 cities | 0.835 0.93 134 7.6
160 cities | 0.857 0916 134 7.3
200 cities | 0.853 0.92 12.9 7.2

4.4.2 Impact of Increasing Hotel Data Volume on

Backend Data Fetching Performance

As the number of hotels in 4 cities are increased the monolithic
architecture suffers from a significant server-side performance
bottleneck. The Initial Server Response Time degrades sharply
from 4.727 s at 150 images to 5.949 s at 250 images as the
number of hotel increases (see Figure 15). This shows that
backend processing in the monolithic website does not scale
efficiently with data volume. As a result, overall performance
is directly impacted. Therefore, as the load increases the
performance score drops from 88 to 72 (see Figure 14).

On the contrary, the Jamstack architecture provides extremely
fast and stable server responses, even under higher hotel loads.
The maximum Initial Server Response Time recorded in our
analysis is just 0.289 s, which is almost 20 times faster than the

monolithic process. This is mainly due to Jamstack’s decoupled
design and dependence on Content Delivery Network (CDN)
to serve pre-rendered assets. Hence, the user-perceived loading
remains smooth, while the First Contentful Paint (FCP) is as
low as 0.9 seconds even with a growing number of hotels (see
Figure 16).

However, Jamstack has its own limitations. While it eliminates
server-side delays, performance challenges begin to appear on
the client side as the number of hotels increases. The Fully
Loaded Time is 18.8 seconds when the image count reaches
250, as opposed to 11.2 seconds for the monolithic website (see
Figure 18). This means that the browser is the new bottleneck
as it must download, decode and render a large volume of
image assets. Therefore, Largest Contentful Paint (LCP) also
increases from 7.3 seconds to 7.8 seconds (see Figure 17).

58

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Lighthouse Performance (%)

100
90
80
70
60
50
40
30
20
10
0
150 hotels 200 hotels 250 hotels
H Monolithic B Jamstack
Fig 14: Lighthouse Performance Comparison Data for Series of Hotels
Initial Server Response Time First Contentful Paint Comparison
Comparison 8
8 6
— 6 1 v
) ® —=C= 24
v 4 €
S [
F o 2
0 @ Q— -9 0
150 hotels 200 hotels 250 hotels 150 hotels 200 hotels 250 hotels
The number of hotels per iteration The number of hotels per iteration
=@=—\onolithic ==@==Jamstack =@ Monolithic ==@==Jamstack
Fig 15: Initial Server Response Time Comparison Fig 16: First Contentful Paint Comparison
Largest Contentful Paint Comparison
8
Z 6
()
£ 4
= 2 @
0
150 hotels 200 hotels 250 hotels

The number of hotels per iteration

e=@==|\onolithic ==@==)amstack

Fig 17: Largest Contentful Paint Comparison

59

20

Time (s)

12

10

Time (s)

Time (s)
O L N W H U OO 0

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Fully Loaded Time Comparison

o— - _J
® —Q O
150 hotels 200 hotels 250 hotels
The number of hotels per iteration
=@==|\Vlonolithic ==@==Jamstack
Fig 18: First Contentful Paint Comparison
Monolithic Lighthouse Metrics
‘.
 — =0
—0
150 hotels 200 hotels 250 hotels
The number of hotels per iteration
== First Contentful Paint (s) =@=argest Contentful Paint (s)
=@==Speed Index (s) =@==|nitial Server Response Time (s)

Fig 19: Monolithic Lighthouse Metrics Data for Series of Images

Jamstack Lighthouse Metrics

o— == ﬂ.

C o

C o— ®
150 hotels 200 hotels 250 hotels

The number of hotels per iteration

=@=="First Contentful Paint (s) =@==| argest Contentful Paint (s)

==@==Speed Index (s) =@=|nitial Server Response Time (s)

Fig 20: JAMSstack Lighthouse Metrics Data for Series of Hotels

60

4.6 Key Findings

 Given its use of a CDN to serve pre-rendered, static content,
JAMstack has a clear advantage in initial performance, with
faster First Contentful Paint (FCP) and Time to Interactive
(TTD).

» The monolithic site which is slow initially is capable of
slightly quicker Fully Loaded Time, which also shows that it
may use some server-side optimizations to be more efficient at
loading the page.

* The two architectures differ in how their data volumes affect
performance. Since, monolithic site is still bottlenecked by
server-side processing its browser performance remains the
same regardless of the number of cities.

* Whereas, the Jamstack site showed a noticeable improvement
with reduced data as less data needs to be fetched and rendered
on the client browser.

* In key Google Lighthouse metrics such as SEO, Performance,
and Accessibility the monolithic site scored higher than
Jamstack site indicating that each architecture has its own
advantages and limitations.

5. CONCLUSION

The web architecture performance analysis domain has to be
revisited as the shift between traditional monolithic and modern
JAMstack models becomes increasingly critical in the current
era. The performance metrics enhance user experience as they
play a vital role in determining the quality of a web application.
The two websites when analyzed revealed that both
architectures demonstrated significant strengths. However,
their core performance characteristics remain fundamentally
different. It has been observed that JAMstack provided fast and
responsive initial experience by making use of CDN for pre-
rendered content. They are ideal for high-performance,
scalable, API-driven applications such as marketing sites,
documentation portals, headless e-commerce, and multi-client
platforms where reusable backend services are required. They
eliminated server-side processing bottlenecks, but its
performance was influenced by the volume of dynamic data
rendered on the client side. Although, JAMstack apps rely
heavily on pre-rendered static content and APIs, which is
indeed great for many cases but it is not always the most ideal
case especially when projects are small and SEO-critical. On
the contrary, the monolithic architecture, though limited by
server-side processing and slower initial load, achieved a
slightly faster fully loaded time and higher scores in Lighthouse
categories such as SEO and accessibility. Monolithic apps
typically use server-side rendering, which improves SEO
automatically but do not benefit from a separate backend layer.
It works best for small-scale, SEO-focused applications such as
blogs, local business sites, admin dashboards, or internal tools
where tight coupling and simplicity are preferred. The data also
revealed that memory usage varied depending on browser
engines. The monolithic site consumed more memory on
Chrome and Edge, whereas the JAMstack site consumed more
on Firefox. It can be inferred that the choice of architecture
must be aligned with project specific priorities, as both
architectures present unique trade-offs in terms of speed,
scalability, and resource utilization.

I[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

6. REFERENCES

[1] Whitley, S. (2023). A quantitative study on the
performance and scalability of Jamstack in comparison to
a monolithic web architecture [Bachelor’s thesis]. In
Hédme University of Applied Sciences (HAMK),
Bachelor’s Programme in Information and
Communication Technology (pp- 52-53).
https://www.theseus.fi/bitstream/handle/10024/802108/
Whitley Sam.pdf?sequence=2&isAllowed=y.

[2] Markovic, D., Scekic, M., Bucaioni, A., & Cicchetti, A.
(2022). Could jamstack be the future of web applications
architecture? Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing.
https://doi.org/10.1145/3477314.3506991

[3] Nguyen, D. P. (2021). How JavaScript ecosystem and
open-source tooling enable a modern era of Single-Page
Applications. Theseus.
https://www.theseus.fi/handle/10024/495352

[4] Orosz, E. (2020). Modern Web Development with
JAMsatck. Theseus.
https://www.theseus.fi/handle/10024/341469.

[5] Hoang, T. (2020). JAMStack Continuous Integration and
Continuous Deployment with CircleCI and Netlify. In
Metropolia University of Applied Sciences, Bachelor of
Engineering (p. 31) [Thesis].
https://www.theseus.fi/bitstream/handle/10024/342452/H
oang_Tri.pdf?sequence=2

[6] Nguyen, T. (2022). JAMSTACK: A MODERN
SOLUTION FOR E-COMMERCE [Thesis]. VAASAN
AMMATTIKORKEAKOULU UNIVERSITY OF
APPLIED SCIENCES.
https://www.theseus.fi/bitstream/handle/10024/751804/T
hang%20Nguyen%20e1800955.pdf?sequence=2

[7] A multitenant Single-Page application for programming
education. (2023, November 27). IEEE Conference
Publication | IEEE Xplore.
https://ieeexplore.ieee.org/abstract/document/10409809

[8] Gavrila, V., Bjenaru, L., & Dobre, C. (2019). Modern
Single Page Application Architecture: A case study.
Studies in Informatics and Control, 28(2).
https://doi.org/10.24846/v28i2y201911

[9] Enhancing SEO in Single-Page web applications in
contrast with Multi-Page applications. (2024). IEEE
Journals & Magazine | IEEE Xplore.
https://ieeexplore.ieee.org/abstract/document/10403891

[10] International Journal of Recent Research Aspects ISSN
2349-7688. (2020). An architectural style for single page
scalable modern web application. www.academia.edu.
https://www.academia.edu/41538297/An_Architectural
Style_for Single Page Scalable Modern Web_Applica
tion

61

