
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

51

Comparative Performance Analysis of JAMstack and
Monolithic Web Architectures

Khushi R. Shah
Department of ICT

Veer Narmad South Gujarat University
Surat

Payal D. Joshi
Department of ICT

Veer Narmad South Gujarat University
Surat

ABSTRACT

User experience and engagement are the most important factors

in web development, as they greatly influence the speed and

reliability of a website. In recent times, with the emergence of

full-stack development, JAMstack architecture has gained

importance. That said, it does not mean that monolithic

architecture is less useful and should fail to be used at all. Both

quantitative and qualitative analysis of the client-side

performance of two web architectures, monolithic and

JAMstack, help bridge the research gap in existing studies by

providing A clear, data-driven comparison of their efficiency

in handling dynamic content across varying volumes. It shows

how performance metrics such as Time to Interactive (TTI),

Time to First Byte (TTFB), and memory consumption are

sensitive based on architectural characteristics. The monolithic

architecture often suffers from slow initial load times, as it is

heavily dependent on server-side processing, regardless of the

data amount. JAMstack provides a swift supply of static assets

using a CDN, where the performance of this architecture

mainly depends on the amount of dynamic data being fetched

and rendered from the client side. JAMstack is mostly used

when we need to reuse the backend code in multiple frontend

apps. It also investigates how the memory usage of each

architecture differs across browser engines. More importantly,

such information is capable of helping organizations make

better decisions about their web infrastructure that suit their

specific project objectives.

General Terms

Performance, Measurement, Experimentation, Design, Web

Architecture

Keywords

JAMstack, Monolithic Architecture, Web Performance, Time

to Interactive (TTI), Time to First Byte (TTFB), Memory

Usage, Google Lighthouse, GTmetrix, Content Delivery

Network (CDN), Single-Page Application (SPA).

1. INTRODUCTION
The responsiveness of a website strongly influences user

interactions and engagement. Web developers face a big

challenge in designing a site that meets user aesthetics, is

accessible, and is reliable anywhere in the world. This holds

true also for the User Interface (UI) and User Experience (UX)

domains of web design because performance and

responsiveness of a site directly impact how users perceive and

interact with it. Despite the site having good content, a slow

user interface can lead to a poor user experience. This has led

to the emergence of different website architectures, each with

its own strengths and weaknesses.

Monolithic and JAMstack are the two most popular

architectures for building modern Web applications. The

monolithic model is known as the traditional approach, where

the components of website are closely interconnected, both the

frontend and backend operate as a single unit. In contrast, the

JAMstack model separates the components of a website, where

the frontend, backend, and reusable parts are separated using

prebuilt static files and APIs to render content more quickly.

This helps in reusing the backend code in multiple frontend

applications.

Even though there is a lot of discussion about the pros and cons

of both models, there is still a need for quantitative practical

based research that shows how they actually perform in terms

of speed, memory use, SEO, and user experience.

Understanding the benefits and potential limitations of both

architectures is important for:

• Better decision-making during infrastructure design in

organizations.

• Gaining practical insights into how each architecture performs

under varying conditions.

• Evaluating their influence on key performance metrics, such

as load time, memory usage, SEO, and Time to First Byte

(TTFB).

The aim of the study is to fill that gap by creating identical web

applications using both architectures and then comparing their

performance in different scenarios.

To explore and compare important factors influencing the

performance of both the architectures is the primary objective

of this research. This practical and data driven approach can

help provide valuable insights to the developers and

organizations in better understanding which architecture best

suits their needs.

The rest of the paper is organized as follows. The past

researches and studies are discussed in the Related Work

section. The research objectives, the specifics of developing the

web application, the data collection methods and tools for the

performance analysis are discussed in the Research

Methodology section. The Analysis of the metrics from various

tools in detail is elaborated in the Results and Findings section.

The key insights gained from the study are discussed in the

Conclusion section.

2. RELATED WORK
[1] Sam Whitley (2023) carried out a comparison of the

JAMstack and monolithic architectures by using WordPress to

demonstrate the monolithic stack, and a modern JAMstack

stack with React, serverless functions and Netlify. His

outcomes are based on load speed, scalability, and deployment.

Whitley's study convincingly demonstrated JAMStack’s

advantages, as far as load speed and capacity for traffic with

load increases go. However, it was limited as it utilized a pre-

built CMS platform, asset delivery solely using CDNs, and

static asset usage. [2] A mixed-method study by Marković et

al. (2022) evaluated the maturity, adoption, and future potential

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

52

of the JAMstack architecture, where they reviewed 77 studies

and narrowed them down to six key publications. They also

conducted an online survey with 44 web developers and held

semi-structured interviews with 4 experienced professionals.

While the research offered valuable insights into trends in

JAMstack adoption and the views of practitioners, it mainly

relied on surveys. No experimental performance assessments

or considerations of dynamic application scenarios were

included. [3] Both a JAMstack and a WordPress

implementation was done in the Nguyen study, in order to

analyze and compare JAMstack architecture and monolithic

architectures. It was founded that JAMstack provided enhanced

performance, security, and scalability than monolithic

architecture. However, it was limited to a CMS-based

monolithic implementation and lacked a JAMstack evaluation

of dynamic content rendering and real-time capabilities. [4] A

mix of literature review, surveys, and interviews was used for

studying JAMstack architecture in Orosz (2020). This approach

showed better performance in terms of scalability,

performance, and improved security. It also offered the added

benefits of a lower learning curve and less maintenance effort

but it only focused on qualitative insights and did not involve

practical performance testing. [5] CI/CD pipelines for

JAMstack applications were set up using CircleCI and Netlify

in Hoang et al. (2020). A Gatsby-based JAMstack project was

created and deployed where it showcased the automation of

build, test, and deployment workflows. Lighthouse data

showed performance improvements of about 75%, with a

perfect SEO score of 100%. Nevertheless, its scope was

confined to JAMstack, excluding any comparison with

monolithic or database-centric dynamic applications. [6] A

JAMstack based e-commerce website was developed using

Next.js, Sanity, and Tailwind to showcase the applicability of

JAMstack architecture in the study by Nguyen (2022). They

achieved high performance, improved security, scalability, and

readiness for SEO through their approach. However, their

evaluation focused only on one e-commerce case study. There

was no quantitative comparison or direct analysis with

monolithic systems. Furthermore, they did not explore real-

time dynamic content or extensive user interaction. [7] In W.

Ruoxuan and M. Uehara study, a React-based JavaScript

Development Environment (ReJDE) was developed as a

single-page application (SPA) for programming education on

smartphones. The main aim was to address the original JDE's

inability to support multiple curricula and save the learning

history. A headless CMS (microCMS) was used for

implementing a multitenant system and a "notebook" feature,

inspired by Project Jupyter, was also introduced. However, this

study is fundamentally limited by its exclusive focus on a single

architecture and the absence of a direct side-by-side

comparison with a traditional monolithic system. [8] In

practice, a modern Single-Page Application (SPA) architecture

was used in a 2019 case study by Gavrilă, Băjenaru, and Dobre.

The design features client-side rendering, asynchronous data

loading, and API-based content delivery with a deliberate

separation between the frontend and backend. The design led

to faster loading times, better user experience, and reduced

maintenance. No direct comparison with monolithic

architectures was made, but as mentioned, the benefits in some

ways resemble those of scalability and flexibility related to the

latter with reference to Jamstack-based approaches. [9]

Kowalczyk and Szandala (2021) investigated the SEO

performance of Single Page Applications (SPAs) and Multi

Page Applications (MPAs). When techniques such as

prerendering, enhanced metadata, and performance

improvements are applied, it is found that SPAs exhibit similar

SEO performance to MPAs, based on the research conducted.

This study primarily focuses on SEO in SPAs vs MPAs and its

rendering strategies and lacks broader architectural insights and

raw performance metrics. [10] In his 2015 investigation,

Nygard (2015) analyzed how the Single- Page Application

(SPA) architecture can be a basis for creating modern web

applications to be both scalable and responsive. Three SPA

prototypes were created using HTML, CSS, JavaScript, AJAX,

and API-driven data retrieval. The results were that SPAs can

provide a more consistent and smoother user experience (less

page reload and quick transitions) in a unified UI experience.

Yet issues lingered about SEO, semantic HTML support, and

the extensive use of JavaScript.

2.1 Research Gap
These studies uncover and explore many dimensions of various

architectures. Most of the related work looks at strengths of

JAMstack in a qualitative way, often focusing on single

architecture evaluations or comparing it with pre-built CMS

platforms like WordPress, which are not true monolithic

environments. A major gap in the existing research is the lack

of direct, data-driven comparisons between a custom-built

monolithic application and a JAMstack application, especially

when it comes to raw performance under varying data loads and

how resources are consumed across different browsers. This

study addresses that gap by building two identical web

applications and carrying out a practical, data driven analysis

of performance indicators and memory usage, providing a

clearer understanding of the differences between monolithic

and JAMstack architecture.

3. METHODOLOGY

3.1 Research Design
This paper is an analysis of the effectiveness of two versions of

the same web application: a hotel website in a monolithic

architecture and JAMstack architecture. Although the two

websites utilize the same back-end framework including PHP,

HTML, CSS, and a MySQL database, their front-end

architecture as well as the delivery approach is very different.

The website runs in several parts but is built on the data of 200

cities and their corresponding hotels (see Table 1).

• Monolithic Website: This follows a tightly coupled structure

with PHP as the backend framework, HTML as the frontend,

and a MySQL database. The entire page is rendered on the

server with each request. The images are served through CDN.

• JAMstack Website: This decoupled approach leverages APIs

and Ajax for the frontend, with PHP serving as the backend API

and MySQL as the database. The frontend uses a single-page

application (SPA) model, where the navbar, slideshow, footer,

and left navbar remain fixed, and the content is loaded

dynamically within a window frame. The images are served

through CDN.

Table 1. Research Methodology Details

Aspect Details

Study

Type

Experimental study comparing two versions of

a same website based on Monolithic and

JAMstack architectures.

Platform A common back-end platform built with Core

PHP and MySQL, while the front-end

components and data delivery methods differ.

Features • 5 website sections (Home, FAQ,

Contact, Gallery, Hotels)

• Image serving from CDN

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

53

• Dynamic hotel data based on a

dataset of 200 cities

• 4 cities have 100 hotels and rest 196

cities have 5 hotels

Website

A

Monolithic Version: Tightly coupled

architecture. Backend: PHP, Frontend:

HTML/CSS, Database: MySQL. All pages are

server-side rendered (SSR).

Website B JAMstack Version: Decoupled architecture.

Frontend: JavaScript/Ajax with PHP serving

as the backend API. It uses Single-Page

Application (SPA) model where key elements

are fixed, with content loaded dynamically in

a window frame.

Hosting

Platform

InfinityFree

CDN

Service

Provider

Cloudinary

3.2 Research Objectives
• Evaluate and compare key performance indicators (KPIs) and

throughput between monolithic and JAMstack based website.

• Analyze memory usage/heap size by both websites on

different browsers.

• To understand the best situations for using each architecture.

3.3 Website Development and Setup
Both websites are designed to be identical in content, structure,

and functionality, with the only difference being the CDN

integration, hosted on the same server to ensure independent

and fair analysis of performance. Details of the hosting and

CDN platforms are as given below:

• Hosting platform: infinityfree.com

• CDN Integration Service: Cloudinary

InfinityFree is a free web hosting provider that helps in

managing websites based on PHP and MySQL. It operates on

a cloud-based infrastructure that ensure a high uptime,

unlimited storage space, free subdomains, SSL and DNS

services with many other tools providing effortless

deployment. Cloudinary is a SaaS based media asset delivery

platform that handles media upload, storage, optimization and

delivery via CDN services. It has high performance media

processing servers, free tier storage and supports dynamic asset

URLs. The primary purpose of choosing this CDN provider

was for the easy SDK integration with multiple tech stacks

which generate dynamic media URLs after upload. However,

Cloudinary has not publicly disclosed the exact number of edge

servers, but they claim to utilize many strategically placed edge

servers worldwide.

3.3.1 Performance Measurement Tools
To measure website performance, the following tools were

used to track the key metrics:

• Memory tab in browser developer tools

• GTmetrix

• Google Lighthouse

These tools provided quantitative results on performance,

including load times, request handling, Largest Contentful

Paint (LCP) and load times and overall page speed metrics for

both websites.

4. RESULTS AND FINDINGS
The following results were recorded from tools such as GT

Metrix, Google Lighthouse and browser developer tools.

4.1 Memory Usage Analysis
The data from the Memory Tab of browser Developer Tools

were compared for both Websites on the following browsers:

1. Google Chrome

2. Microsoft Edge

3. Mozilla Firefox

On Google Chrome, the Monolithic website occupies

significantly more memory on load. The monolithic site's heap

size is 17.7 MB, which is approximately 153% more than the

JAMstack site's heap size of 7.0 MB (see Figure 1, Figure 2,

Table 2).

Fig 1: Monolithic Website: Google Chrome - Memory

Panel Developer Tools

Fig 2: JAMstack Website: Google Chrome - Memory

Panel Developer Tools

Similarly, on Microsoft Edge, the monolithic website uses

more memory. The monolithic heap size is 11.5 MB, which is

about 60% more than the JAMstack site's heap size of 7.2 MB

(see Figure 3, Figure 4, Table 2).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

54

Fig 3: Monolithic Website: Microsoft Edge - Memory

Panel Developer Tools

Fig 4: JAMstack Website: Microsoft Edge - Memory

Panel Developer Tools

In contrast, the results on Mozilla Firefox are completely

opposite. The JAMstack site consumes 4.77 MB of RAM and

the monolithic site 3.83 MB. The memory footprint of the

JAMstack site is almost 25% larger on Firefox, the opposite

trend as Chrome and Edge (Fig. 5., Fig. 6.). This variation of

results can be ascribed to the contrast of the browser engines,

as Chrome and Edge are Chromium-based while Firefox

utilizes the Gecko engine (Table 2.).

Fig 5: Monolithic Website: Mozilla Firefox - Memory

Panel Developer Tools

Fig 6: JAMstack Website: Mozilla Firefox - Memory

Panel Developer Tools

Monolithic and JAMstack architectures exhibit fundamentally

different performance characteristics. JAMstack excels in

initial user experience and backend efficiency, while the

monolithic site shows some scalability with data reduction, but

at the cost of a much slower start.

Table 2. Memory Analysis Results

Browser Monolithic Site JAMstack Site

Google Chrome 17.7 MB 7.0 MB

Microsoft Edge 11.5 MB 7.2 MB

Mozilla Firefox 3.83 MB 4.77 MB

4.2 GTmetrix Comparison Report

4.2.1 Performance (%)
The Jamstack site has a higher performance score of 65%,

compared to the monolithic site's 55%. This reflects the faster

initial load times and more efficient delivery (see Figure 7).

4.2.2 Structure (%)
The Jamstack site has a much higher structure score of 96%,

compared to the monolithic site's 73%. This indicates a more

optimized and well-organized front-end code and asset delivery

for the Jamstack architecture (see Figure 7).

Fig 7: GTmetrix Grade Comparison

4.2.3 Web Vitals
These metrics are used for determining the User Experience

(UX).

• First Contentful Paint (FCP): How quickly the first piece of

content is rendered on the screen is indicated by FCP. The FCP

of Jamstack site is approximately 0.8-0.9 seconds, indicating

an almost instant display of the first piece of content. Whereas,

the FCP of the monolithic site is around 9.3 seconds, showing

a user waits longer for the content to be rendered (see Figure

8).

• Time to Interactive (TTI): TTI shows when a website

becomes fully interactive. The Jamstack site becomes fully

interactive in 0.8-0.9 seconds. Whereas, the monolithic site

shows a TTI of 14 seconds (see Figure 8) which is much longer

than Jamstack site.

• Speed Index(s): This metric indicates how quickly the content

is visually populated. The Speed Index of Jamstack site is

12.9s, which is better than the monolithic site having Speed

Index of 13.9s (see Figure 8).

• Largest Contentful Paint (LCP): The time taken for the largest

visible element to load is shown by LCP. For Jamstack site the

LCP ranges from 6.6 to 7.6 seconds, while for the monolithic

0%

20%

40%

60%

80%

100%

120%

Monolithic Jamstack

GTmetrix Grade

Performance (%) Structure (%)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

55

site it is around 9.2s showing that the largest element on the

Jamstack page loads faster, contributing to a better perceived

performance (see Figure 8).

• Total Blocking Time (TBT): Both architectures have a Total

Blocking Time of 0, indicating that there is no significant

blocking of the main thread from user interaction for either site

(see Figure 8).

Fig 8: Performance Comparison Chart

4.2.4 Browser Timing Analysis
• Redirect Duration: The monolithic site shows a noticeable

redirect duration of about 3 seconds, whereas the Jamstack site

completes the redirect at 0.001 seconds (see Figure 9).

• Connection Duration: It indicates the time taken to establish

a connection between the server and client. The monolithic site

is 0.151 seconds, which is almost twice as fast as the Jamstack

0.307 seconds (see Figure 9).

• Backend Duration: Jamstack demonstrates an extremely

efficient backend with durations ranging from 0.15s to 0.17s.

This is an order of magnitude faster than the monolithic site,

which has a backend duration of 4.9s to 5.7s. This is a key

bottleneck for the monolithic architecture (see Figure 9).

• Time to First Byte (TTFB): The time taken for the first byte

of data to reach the user is called TTFB. Jamstack has a

consistently low TTFB of 0.468 seconds, a direct benefit of

serving static content from a CDN. The monolithic site's TTFB

is much higher at 8.8 seconds due to extensive server-side

processing (see Figure 9).

• DOM Content Loaded Time: The data provided does not

contain DOM Content Loaded Time values for a direct

comparison (see Figure 9).

• DOM Interactive Time: DOM Interactive Time measures the

time the browser takes to first become interactive. The

monolithic site takes a long 13.9 seconds for the browser to

become interactive, whereas the Jamstack site is ready in just

0.916 seconds (see Figure 9).

• Onload Time: Onload time measures the time the browser

takes for the page to load fully. The monolithic site completes

the page load in 13.9 seconds, while the Jamstack site finishes

in just 0.92 seconds. This is a significant difference (see Figure

9).

• Fully Loaded Time: Fully Loaded Time measures the time

when the entire page, including additional scripts and

resources, has fully loaded. It turns out that the monolithic site

runs a bit faster than that, since Fully Loaded Time varies from

13.9s to 14.8s in the monolithic site, while in the Jamstack it

comes in at 17.7s to 18.9s. While the monolithic site starts slow,

it may perform some server-side optimizations and finishes the

entire page load a little faster. The initial load is fast for the

Jamstack site, but this time around it takes a longer time to fetch

and render many assets from the client-side, so overall loading

times of the site are slow (see Figure 9).

Fig 9: Browser Timings Comparison

4.3 Google Lighthouse Comparison Report
• Performance (%): The monolithic site scores 79, which is

slightly higher than the Jamstack's 75 (see Figure 11, Table 3).

• Accessibility (%): The monolithic site scores 75, which is

significantly higher than the Jamstack score of 57 (see Figure

11, Table 3).

• Best Practices (%): The Jamstack site scores 83, which is

significantly higher than the monolithic score of 57 (see Figure

11, Table 3).

• SEO (%): SEO score of monolithic site is 91 which is higher

compared to the Jamstack score of 80 (see Figure 11, Table 3).

• First Contentful Paint (s): The Jamstack site has a faster

FCP time (1.1s) compared to the monolithic site (1.6s). Here,

the initial content is rendered more quickly in the Jamstack

architecture (see Figure 10, Table 3).

• Largest Contentful Paint (s): Both architectures have the

same LCP time (1.7s). This means the largest element on the

page takes an equal amount of time to render for both the sites

(see Figure 10, Table 3).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

56

• Total Blocking Time (s): As both sites get a TBT of 0s,

meaning they execute JavaScript efficiently without blocking

the main thread (Figure 10).

• Cumulative Layout Shift: Similar to TBT, here also both the

sites have a CLS of 0, their layout is stable and there are no

unexpected shifts (see Figure 10, Table 3).

• Speed Index (s): Monolithic site has a Speed Index of 5.1s

which is slightly faster than that of the Jamstack site (5.6s),

meaning that its visual content is populated more quickly than

the Jamstack site (see Figure 10, Table 3).

• Initial Server Response Time (s): The Initial Server Response

Time of Jamstack site (0.23s) is notably faster than the

monolithic site having 6.37s (see Figure 10, Table 3).

• Avoid Multiple Page Redirects (s): The estimated savings of

monolithic site from avoiding redirects is higher (0.6s) than the

Jamstack site (0.39s) (see Figure 10, Table 3).

• Eliminate Render-Blocking Resources (s): The monolithic

site has estimated savings (0.48s) which are higher than the

Jamstack site (0.37s) from eliminating render-blocking

resources (see Figure 11, Table 3).

• Enable Text Compression (KiB) & Serve Static Assets with

Efficient Cache Policy: The Jamstack site has a higher potential

for savings from text compression (197 KiB) compared to the

monolithic site (118 KiB). The monolithic site has more

resources (9) that could benefit from an efficient cache policy,

while the Jamstack site has fewer (6) (see Table 3).

• Reduce Unused JavaScript (KiB) & Properly Size Images

(KiB): Both sites passed the audit for properly sizing images.

The monolithic site has a slightly higher estimated savings from

reducing unused JavaScript (21 KiB) than the Jamstack site (20

KiB) (see Table 3).

Table 3. Google Lighthouse Metrics

Fig 10: Google Lighthouse Timing Report

Metric Monolithic Jamstack

Performance (%) 79 75

Accessibility (%) 75 57

Best Practices (%) 57 83

SEO (%) 91 80

First Contentful Paint (s) 1.6 1.1

Largest Contentful Paint (s) 1.7 1.7

Total Blocking Time (s) 0 0

Cumulative Layout Shift 0 0

Speed Index (s) 5.1 5.6

Initial Server Response Time (s) 6.37 0.23

Avoid Multiple Page Redirects (s) 0.6 0.39

Eliminate Render-Blocking Resources (s) 0.48 0.37

Enable Text Compression (KiB) 118 197

Serve Static Assets with Efficient Cache Policy (No. of Resources) 9 6

Reduce Unused JavaScript (KiB) 21 20

0

1

2

3

4

5

6

7

First Contentful
Paint (s)

Largest
Contentful Paint

(s)

Total Blocking
Time (s)

Cumulative
Layout Shift

Speed Index (s) Initial Server
Response Time

(s)

Avoid Multiple
Page Redirects

(s)

Eliminate
Render-Blocking

Resources (s)

Google Lighthouse Report : Time-Based Metrics (s)

Monolithic Jamstack

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

57

Fig 11: Google Lighthouse Performance Report

4.4 The Impact of Amount of Data Fetched

from Backend in Monolithic vs JAMstack

Architectures
4.4.1 Impact of Increasing Number of Cities on

Backend Data Fetching Performance
The performance of the monolithic architecture remains

consistently stable, showing minimal change with metrics such

as First Contentful Paint (FCP), Time to Interactive (TTI),

Speed Index (SI), and Largest Contentful Paint (LCP) as the

number of cities is decreased. The FCP and LCP consistently

measure around 9 seconds, while the TTI and SI stay steady at

approximately 13 to 14 seconds. It is thus indicated that the

performance of the monolithic architecture is influenced more

by the fundamental server-side processing overhead than by the

size of the dataset. The primary bottleneck is the time required

to process and send the initial response on the server,

irrespective of the amount of data displayed (see Figure 12,

Table 4).

Whereas, the JAMstack architecture shows a high degree of

responsiveness to changes in data volume. Initial load metrics

such as FCP and TTI, are consistently fast and low (around 0.8

seconds). This result is because of serving pre-rendered static

content from a CDN. The most significant change is seen in the

Largest Contentful Paint (LCP) and Speed Index (SI) where the

LCP drops from approximately 7.5 seconds (at 200 cities) to

6.5 seconds (at 40 cities) and the SI also shows improvement

from around 13 seconds to 12.5 seconds. After the initial quick

load, the overall performance of JAMstack site is primarily

determined by the volume of data that needs to be fetched via

APIs and rendered on the client side. If the number of cities is

reduced means fewer API calls have to be made and thus less

data to process, resulting in a faster LCP and more fast visual

population of the page (see Figure 13, Table 5).

Fig 12: Monolithic Performance Comparison across number of cities

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

58

Fig 13: JAMstack Performance Comparison across number of cities

Table 4. Monolithic Cities Data

Cities First Contentful Paint Time to Interactive Speed Index Largest Contentful Paint

40 cities 9.2 14.1 14 9.2

80 cities 8.7 13.2 13.3 8.7

120

cities

8.7 13.5 13.4 8.7

160

cities

8.6 13.2 13.2 8.6

200

cities

9.3 13.9 13.9 9.3

Table 5. JAMstack Cities Data

Cities First Contentful Paint Time to Interactive Speed Index Largest Contentful Paint

40 cities 0.826 0.918 12.6 6.6

80 cities 0.906 0.994 13.3 7.3

120 cities 0.835 0.93 13.4 7.6

160 cities 0.857 0.916 13.4 7.3

200 cities 0.853 0.92 12.9 7.2

4.4.2 Impact of Increasing Hotel Data Volume on

Backend Data Fetching Performance
As the number of hotels in 4 cities are increased the monolithic

architecture suffers from a significant server-side performance

bottleneck. The Initial Server Response Time degrades sharply

from 4.727 s at 150 images to 5.949 s at 250 images as the

number of hotel increases (see Figure 15). This shows that

backend processing in the monolithic website does not scale

efficiently with data volume. As a result, overall performance

is directly impacted. Therefore, as the load increases the

performance score drops from 88 to 72 (see Figure 14).

On the contrary, the Jamstack architecture provides extremely

fast and stable server responses, even under higher hotel loads.

The maximum Initial Server Response Time recorded in our

analysis is just 0.289 s, which is almost 20 times faster than the

monolithic process. This is mainly due to Jamstack’s decoupled

design and dependence on Content Delivery Network (CDN)

to serve pre-rendered assets. Hence, the user-perceived loading

remains smooth, while the First Contentful Paint (FCP) is as

low as 0.9 seconds even with a growing number of hotels (see

Figure 16).

However, Jamstack has its own limitations. While it eliminates

server-side delays, performance challenges begin to appear on

the client side as the number of hotels increases. The Fully

Loaded Time is 18.8 seconds when the image count reaches

250, as opposed to 11.2 seconds for the monolithic website (see

Figure 18). This means that the browser is the new bottleneck

as it must download, decode and render a large volume of

image assets. Therefore, Largest Contentful Paint (LCP) also

increases from 7.3 seconds to 7.8 seconds (see Figure 17).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

59

Fig 14: Lighthouse Performance Comparison Data for Series of Hotels

Fig 15: Initial Server Response Time Comparison

 Fig 16: First Contentful Paint Comparison

Fig 17: Largest Contentful Paint Comparison

0

10

20

30

40

50

60

70

80

90

100

150 hotels 200 hotels 250 hotels

Lighthouse Performance (%)

Monolithic Jamstack

0

2

4

6

8

150 hotels 200 hotels 250 hotels

Ti
m

e
(s

)

The number of hotels per iteration

Initial Server Response Time

Comparison

Monolithic Jamstack

0

2

4

6

8

150 hotels 200 hotels 250 hotels

Ti
m

e
(s

)

The number of hotels per iteration

First Contentful Paint Comparison

Monolithic Jamstack

0

2

4

6

8

150 hotels 200 hotels 250 hotels

Ti
m

e
(s

)

The number of hotels per iteration

Largest Contentful Paint Comparison

Monolithic Jamstack

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

60

Fig 18: First Contentful Paint Comparison

Fig 19: Monolithic Lighthouse Metrics Data for Series of Images

Fig 20: JAMstack Lighthouse Metrics Data for Series of Hotels

0

10

20

150 hotels 200 hotels 250 hotels

Ti
m

e
(s

)

The number of hotels per iteration

Fully Loaded Time Comparison

Monolithic Jamstack

0

2

4

6

8

10

12

150 hotels 200 hotels 250 hotels

Ti
m

e
(s

)

The number of hotels per iteration

Monolithic Lighthouse Metrics

First Contentful Paint (s) Largest Contentful Paint (s)

Speed Index (s) Initial Server Response Time (s)

0

1

2

3

4

5

6

7

8

150 hotels 200 hotels 250 hotels

Ti
m

e
(s

)

The number of hotels per iteration

Jamstack Lighthouse Metrics

First Contentful Paint (s) Largest Contentful Paint (s)

Speed Index (s) Initial Server Response Time (s)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

61

4.6 Key Findings
• Given its use of a CDN to serve pre-rendered, static content,

JAMstack has a clear advantage in initial performance, with

faster First Contentful Paint (FCP) and Time to Interactive

(TTI).

• The monolithic site which is slow initially is capable of

slightly quicker Fully Loaded Time, which also shows that it

may use some server-side optimizations to be more efficient at

loading the page.

• The two architectures differ in how their data volumes affect

performance. Since, monolithic site is still bottlenecked by

server-side processing its browser performance remains the

same regardless of the number of cities.

• Whereas, the Jamstack site showed a noticeable improvement

with reduced data as less data needs to be fetched and rendered

on the client browser.

• In key Google Lighthouse metrics such as SEO, Performance,

and Accessibility the monolithic site scored higher than

Jamstack site indicating that each architecture has its own

advantages and limitations.

5. CONCLUSION
The web architecture performance analysis domain has to be

revisited as the shift between traditional monolithic and modern

JAMstack models becomes increasingly critical in the current

era. The performance metrics enhance user experience as they

play a vital role in determining the quality of a web application.

The two websites when analyzed revealed that both

architectures demonstrated significant strengths. However,

their core performance characteristics remain fundamentally

different. It has been observed that JAMstack provided fast and

responsive initial experience by making use of CDN for pre-

rendered content. They are ideal for high-performance,

scalable, API-driven applications such as marketing sites,

documentation portals, headless e-commerce, and multi-client

platforms where reusable backend services are required. They

eliminated server-side processing bottlenecks, but its

performance was influenced by the volume of dynamic data

rendered on the client side. Although, JAMstack apps rely

heavily on pre-rendered static content and APIs, which is

indeed great for many cases but it is not always the most ideal

case especially when projects are small and SEO-critical. On

the contrary, the monolithic architecture, though limited by

server-side processing and slower initial load, achieved a

slightly faster fully loaded time and higher scores in Lighthouse

categories such as SEO and accessibility. Monolithic apps

typically use server-side rendering, which improves SEO

automatically but do not benefit from a separate backend layer.

It works best for small-scale, SEO-focused applications such as

blogs, local business sites, admin dashboards, or internal tools

where tight coupling and simplicity are preferred. The data also

revealed that memory usage varied depending on browser

engines. The monolithic site consumed more memory on

Chrome and Edge, whereas the JAMstack site consumed more

on Firefox. It can be inferred that the choice of architecture

must be aligned with project specific priorities, as both

architectures present unique trade-offs in terms of speed,

scalability, and resource utilization.

6. REFERENCES
[1] Whitley, S. (2023). A quantitative study on the

performance and scalability of Jamstack in comparison to

a monolithic web architecture [Bachelor’s thesis]. In

Häme University of Applied Sciences (HAMK),

Bachelor’s Programme in Information and

Communication Technology (pp. 52–53).

https://www.theseus.fi/bitstream/handle/10024/802108/

Whitley_Sam.pdf?sequence=2&isAllowed=y.

[2] Markovic, D., Scekic, M., Bucaioni, A., & Cicchetti, A.

(2022). Could jamstack be the future of web applications

architecture? Proceedings of the 37th ACM/SIGAPP

Symposium on Applied Computing.

https://doi.org/10.1145/3477314.3506991

[3] Nguyen, D. P. (2021). How JavaScript ecosystem and

open-source tooling enable a modern era of Single-Page

Applications. Theseus.

https://www.theseus.fi/handle/10024/495352

[4] Orosz, E. (2020). Modern Web Development with

JAMsatck. Theseus.

https://www.theseus.fi/handle/10024/341469.

[5] Hoang, T. (2020). JAMStack Continuous Integration and

Continuous Deployment with CircleCI and Netlify. In

Metropolia University of Applied Sciences, Bachelor of

Engineering (p. 31) [Thesis].

https://www.theseus.fi/bitstream/handle/10024/342452/H

oang_Tri.pdf?sequence=2

[6] Nguyen, T. (2022). JAMSTACK: A MODERN

SOLUTION FOR E-COMMERCE [Thesis]. VAASAN

AMMATTIKORKEAKOULU UNIVERSITY OF

APPLIED SCIENCES.

https://www.theseus.fi/bitstream/handle/10024/751804/T

hang%20Nguyen%20e1800955.pdf?sequence=2

[7] A multitenant Single-Page application for programming

education. (2023, November 27). IEEE Conference

Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/10409809

[8] Gavrilă, V., Băjenaru, L., & Dobre, C. (2019). Modern

Single Page Application Architecture: A case study.

Studies in Informatics and Control, 28(2).

https://doi.org/10.24846/v28i2y201911

[9] Enhancing SEO in Single-Page web applications in

contrast with Multi-Page applications. (2024). IEEE

Journals & Magazine | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/10403891

[10] International Journal of Recent Research Aspects ISSN

2349-7688. (2020). An architectural style for single page

scalable modern web application. www.academia.edu.

https://www.academia.edu/41538297/An_Architectural_

Style_for_Single_Page_Scalable_Modern_Web_Applica

tion

IJCATM : www.ijcaonline.org

