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ABSTRACT
Diabetic retinopathy is a leading cause of vision impairment glob-
ally, necessitating timely and accurate diagnosis to prevent irre-
versible damage. This paper proposes a novel hybrid deep learn-
ing framework that combines local and global feature represen-
tations for robust DR classification from retinal fundus images.
Local features are extracted using a convolutional neural network
branch that captures fine-grained pathological patterns such as mi-
croaneurysms and hemorrhages. Simultaneously, global contextual
features are learned through a Vision Transformer, which models
long-range dependencies across the retinal image. The extracted
features from both branches are fused and passed through a series
of dense layers for initial classification. To further enhance gen-
eralization and interpretability, features from the Global Average
Pooling layer are used to train a Random Forest classifier. The pro-
posed methodology is evaluated on a benchmark DR dataset with
five severity classes. Extensive experiments and ablation studies
demonstrate the effectiveness of our architecture in capturing both
fine-grained and holistic features, leading to improved classifica-
tion performance. Our results suggest that the fusion of local and
global features, combined with ensemble post-classification, can
provide a robust and scalable solution for automated DR diagnosis.
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1. INTRODUCTION
Diabetic retinopathy (DR) is a common and serious microvascular
complication of diabetes mellitus, recognized as a leading cause
of vision loss and blindness among working-age adults worldwide.
Approximately 30–36% of individuals with diabetes are affected by
DR, with prevalence rates varying by region and population char-

acteristics [17][18]. In China, for example, the prevalence of dia-
betic retinopathy among adults with diabetes is estimated at 16.3%,
with vision-threatening forms affecting 3.2% of this population [5].
Among children with type 2 diabetes, the prevalence is lower but
increases significantly with disease duration, highlighting the im-
portance of early and regular screening [2]. DR develops as a re-
sult of chronic hyperglycemia, which leads to damage of the reti-
nal blood vessels, neurodegeneration, and chronic inflammation. If
left untreated, DR can progress to proliferative diabetic retinopa-
thy, which is associated with a high risk of irreversible blindness
[18][8]. The risk of developing DR is influenced by factors such as
poor glycemic control, hypertension, duration of diabetes, and so-
cioeconomic status. [5][17][4] The global burden of DR is expected
to rise in the coming decades, particularly in low- and middle-
income countries, due to increasing diabetes prevalence and lim-
ited access to effective screening and treatment [16]. Early detec-
tion and timely intervention are critical to prevent vision loss, and
recent advances in imaging, artificial intelligence, and personal-
ized medicine are poised to transform DR management in the near
future[16][3].
Convolutional neural networks (CNNs) have been extensively ap-
plied to DR classification due to their ability to learn hierarchical
spatial features. However, CNNs primarily focus on local receptive
fields and may fail to capture global contextual information that
is essential for distinguishing between closely related DR severity
levels. On the other hand, Vision Transformers (ViTs) have recently
emerged as powerful architectures capable of modeling long-range
dependencies using self-attention mechanisms, thus providing a
global view of the image. Nonetheless, ViTs often require large
datasets and may underperform in the absence of sufficient training
data. To address these limitations, a hybrid deep learning frame-
work that combines the strengths of CNNs and ViTs for compre-
hensive feature extraction is proposed. The model consists of two
parallel branches: a CNN-based local feature extractor and a ViT-
based global feature extractor. The outputs of both branches are
concatenated and passed through multiple fully connected layers
with dropout and regularization to ensure robust learning. Further-
more, to improve interpretability and enhance classification per-
formance, features are extracted from the Global Average Pooling
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(GAP) layer and used to train a traditional Random Forest (RF)
classifier. This hybrid approach benefits from the expressive power
of deep feature extraction while leveraging the generalization capa-
bilities of ensemble learning. The key contributions are as follows:

(1) To develop a deep learning model that combines CNN and Vi-
sion Transformer to capture both detailed local features and
overall image patterns in retinal images.

(2) The model merges local (CNN) and global (ViT) features,
helping to improve the accuracy of classifying different stages
of diabetic retinopathy.

(3) To use features from the deep model to train a random forest
classifier, which adds reliability and makes the results easier to
understand.

(4) The model was tested on a diabetic retinopathy dataset with
five severity levels and showed good results across all standard
performance measures.

(5) The approach is designed to be easy to extend to other medical
problems and suitable for use in real clinical settings.

2. LITERATURE SURVEY
Recent years have witnessed significant progress in the automated
detection and classification of diabetic retinopathy, driven by the
rapid development of deep learning and machine learning tech-
niques. Early and accurate identification of DR is critical, as man-
ual grading of retinal images is time-consuming, subjective, and
often limited by resource constraints. Deep learning models, par-
ticularly convolutional neural networks (CNNs) and their variants,
have emerged as powerful tools for analyzing retinal images, of-
fering improved accuracy, efficiency, and scalability compared to
traditional methods.
[7] demonstrated that clinicians can use automated ML and public
datasets (Messidor-2, EyePACS) to develop high-performing DR
models, with AUROC up to 0.951 and accuracy up to 96.7%, sup-
porting democratization of AI in healthcare. [1] introduced a hybrid
CNN-SVD model with improved SVM-RBF, DT, and KNN clas-
sifiers, achieving 99.18% accuracy, 98.15% sensitivity, and 100%
specificity on the IDRiD dataset for vision-threatening DR, sur-
passing existing methods. [6] developed and validated code-free
AutoML models for DR classification using 17,829 handheld reti-
nal images, achieving 97% accuracy and high sensitivity/specificity
in both internal and external validation, demonstrating feasibility
for community-based screening.
[13] proposed a parallel CNN for feature extraction and ELM
for classification, achieving 91.78% accuracy on Kaggle DR 2015
and 97.27% on APTOS 2019. The model is efficient, robust to
dataset size and balance, and outperforms state-of-the-art mod-
els in speed and accuracy. [11] evaluated transfer learning mod-
els (VGG16, InceptionV3, DenseNet121, MobileNetV2) on com-
bined datasets (APTOS, Messidor2, IDRiD), with DenseNet121
achieving 98.97% accuracy, showing that combining datasets im-
proves performance. [9] revised ResNet-50 with improved prepro-
cessing and adaptive learning, achieving 83.95% train and 74.32%
test accuracy, outperforming other common CNNs and reducing
overfitting and loss fluctuation. [10] compared a hybrid VGG16-
XGBoost model and DenseNet 121 for DR detection on APTOS
2019. DenseNet 121 achieved 97.3% accuracy, significantly out-
performing the hybrid model (79.5%), highlighting the effective-
ness of advanced deep learning.
[3] developed DeepDR Plus, a deep learning system trained on
over 800, 000 fundus images, predicting time to DR progression
with concordance indexes of 0.754–0.846, enabling personalized

screening intervals and validated on large, multiethnic datasets.
[15] proposed a dual-branch deep learning model using transfer
learning, trained on a large multi-center dataset including APTOS
2019. Achieved 98.5% accuracy (binary), 89.6% (stage grading),
and a QWK of 93.0, outperforming established literature. [12] in-
troduced MAPCRCI-DMPLC, a deep multilayer perceptive learn-
ing model with novel preprocessing and feature extraction, outper-
forming five state-of-the-art approaches on a retinal image dataset.
To provide a concise comparison of recent advancements in dia-
betic retinopathy detection, Table 2 summarizes the key contribu-
tions from various studies and compares state-of-the-art approaches
for DR detection, including parallel CNN architectures, hybrid
deep learning models, automated machine learning frameworks,
and transfer learning strategies. These studies demonstrate the evo-
lution of model architectures, the impact of dataset diversity, and
the growing feasibility of deploying AI-driven DR screening in
real-world clinical and community settings.

3. METHODOLOGY
The proposed framework, termed ViT–Local Global Fusion, inte-
grates convolutional and transformer-based architectures to achieve
a comprehensive feature representation for diabetic retinopathy
(DR) diagnosis from retinal fundus images. The model captures
both fine-grained local structures (microaneurysms, hemorrhages,
and exudates) and global contextual relationships (vascular pat-
terns, optic disc structure) by fusing local and global feature rep-
resentations within a unified deep learning framework. The over-
all architecture comprises three major components: (i) a local fea-
ture extraction branch based on a Convolutional Neural Network
(CNN), (ii) a global feature extraction branch based on a Vision
Transformer (ViT), and (iii) a fusion and classification module that
integrates and interprets these features for final decision-making as
shown in Figure 1.

3.1 Input Representation
Each input image X ∈ RH×W×C represents a color fundus pho-
tograph, where H = W = 224 and C = 3. To ensure numerical
stability, each image is normalized to the range [0, 1] as follows:

Xnorm =
X

255
(1)

The dataset is partitioned into training, validation, and test subsets
using a 70:30 split, ensuring stratification across DR severity lev-
els. Data augmentation, including rotation (±15◦), flipping, zoom-
ing (0.9–1.1), and brightness variation, is applied during training to
improve model generalization.

3.2 Local Feature Extraction (CNN Branch)
The local feature extraction branch learns fine structural and tex-
tural details indicative of DR severity. It consists of three convolu-
tional blocks, each composed of a convolutional layer, batch nor-
malization, and ReLU activation. The local feature mapping pro-
cess can be represented as:

Flocal = fCNN(Xnorm; ΘCNN) (2)

where fCNN denotes the CNN function parameterized by weights
ΘCNN. Each convolutional layer performs spatial filtering as:
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Table 1. Summary of recent literature on diabetic retinopathy detection using deep learning and machine learning techniques. The table
includes model types, best performance metrics, and datasets used.

Paper Title Year Main Method/Model Best Performance Dataset(s) Used
[7] 2023 Automated ML (self-training) AUROC 0.951, accuracy 96.7% Messidor-2, EyePACS, Egypt
[1] 2024 Hybrid CNN-SVD + ISVM-RBF 99.18% accuracy, 100% specificity IDRiD
[6] 2023 AutoML (code-free deep learning) 97% accuracy, high sensitivity/specificity Handheld retinal images (17,829), APTOS
[13] 2023 Parallel CNN + ELM 97.27% (APTOS 2019), 91.78% (Kaggle DR 2015) Kaggle DR 2015, APTOS 2019
[11] 2023 DenseNet121, VGG16, InceptionV3, MobileNetV2 98.97% (DenseNet121, combined) APTOS, Messidor2, IDRiD
[9] 2023 Revised ResNet-50 83.95% train, 74.32% test accuracy Not specified
[10] 2023 DenseNet121, VGG16-XGBoost 97.3% (DenseNet121) APTOS 2019
[3] 2024 DeepDR Plus (DL system) Concordance index 0.754–0.846 717,308 pretrain, 118,868 multiethnic validation
[15] 2023 Dual-branch DL, transfer learning 98.5% (binary), 89.6% (grading), QWK 93.0 APTOS 2019, multi-center dataset
[12] 2024 MAPCRCI-DMPLC Outperforms 5 state-of-the-art models Retinal image dataset (not specified)

Fig. 1. Proposed model ”ViT-Local Global Fusion” for diabetic foot ulcer classification

Yi,j,k = σ

(∑
m,n

Xi+m,j+n ·Wm,n,k + bk

)
(3)

where Wm,n,k and bk represent kernel weights and biases, and σ(·)
denotes the ReLU activation. Filters of size 3× 3 are used with in-
creasing depths of 64, 128, and 256. Batch normalization stabilizes
learning, while a Global Average Pooling (GAP) layer compresses
spatial dimensions into a compact representation:

Flocal =
1

H ′W ′

H ′∑
i=1

W ′∑
j=1

fi,j (4)

resulting in a 256-dimensional local feature vector summarizing
spatial lesion-level features.

3.3 Global Feature Extraction (Vision Transformer
Branch)

The Vision Transformer (ViT) branch captures global spatial de-
pendencies within the retinal image. The input image is divided into
non-overlapping patches of size P × P (with P = 16), resulting
in:

N =

(
H

P

)
×
(
W

P

)
= 196 (5)

Each patch is flattened and projected into a 64-dimensional embed-
ding space using a learnable matrix E ∈ R(P2·C)×D:

Z0 = [x1E;x2E; . . . ;xNE] +Epos (6)

where Epos ∈ RN×D denotes the positional embedding. The em-
bedded sequence is processed through L = 8 transformer encoder
blocks, each composed of layer normalization, multi-head self-
attention (MHSA), feed-forward network (MLP), and residual skip
connections. For each encoder layer ℓ:

Z ′
ℓ = MHSA(LN(Zℓ−1)) + Zℓ−1 (7)

Zℓ = MLP(LN(Z ′
ℓ)) + Z ′

ℓ (8)

The MHSA operation computes contextual attention between all
patch pairs as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (9)

where Q,K, V ∈ RN×D denote the query, key, and value matrices,
and dk is the dimensionality of the key vector. After the final en-
coder block, a Global Average Pooling operation yields the global
feature vector:

Fglobal = GAP(ZL) (10)

resulting in a 64-dimensional global embedding summarizing long-
range dependencies and global contextual cues.

3.4 Feature Fusion and Classification
The local and global features are concatenated to form a joint rep-
resentation:

Ffused = [Flocal;Fglobal] (11)
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The fused feature vector is passed through a series of dense layers
to refine discriminative capability:

h1 = σ(W1Ffused + b1) (12)
h2 = σ(W2h1 + b2) (13)
h3 = σ(W3h2 + b3) (14)

where σ(·) denotes the ReLU activation. Each dense layer employs
L2 regularization (λ = 0.001) and dropout (p = 0.5) to minimize
overfitting. Finally, a softmax classifier predicts the probability dis-
tribution across the five DR severity classes:

ŷ = softmax(Woh3 + bo) (15)

where ŷ ∈ R5 corresponds to the class probability vector.

3.5 Model Optimization
The model is trained end-to-end using the Adam optimizer with
a learning rate of 1 × 10−4 and weight decay of 1 × 10−5. The
objective function is the categorical cross-entropy loss:

L = −
C∑

i=1

yi log(ŷi) (16)

where yi and ŷi denote the true and predicted probabilities of the
ith class, respectively, and C = 5. Model performance is evaluated
using accuracy, precision, recall, F1-score, and AUC metrics.

3.6 Architectural Summary
The ViT–Local Global Fusion model effectively integrates two
complementary feature spaces: (i) local lesion-level features
learned through CNN convolutional operations and (ii) global con-
textual dependencies captured by Vision Transformer encoders.
The final fused representation leverages both detailed and holistic
information for improved diagnostic accuracy. The overall forward
process of the model can be summarized as:

ŷ = ffusion ([fCNN(Xnorm), fViT(Xnorm)]) (17)

This architecture enhances interpretability and classification per-
formance, making it well-suited for real-world diabetic retinopathy
screening and clinical decision-support systems.

3.7 Evaluation strategy
Model performance was evaluated using standard classification
metrics, including overall accuracy, class-wise precision, recall,
and F1-score. Additionally, a confusion matrix was generated to vi-
sualize the performance of the model in differentiating between the
five classes. These metrics provide a comprehensive understand-
ing of the model’s diagnostic effectiveness, particularly in reducing
false negatives for higher severity stages.
The trained RF model was evaluated using multiple metrics. Ac-
curacy was calculated as the proportion of correctly predicted in-
stances over the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

where TP , TN , FP , and FN denote true positives, true nega-
tives, false positives, and false negatives, respectively. To assess

the agreement between predicted and actual labels beyond chance,
Cohen’s Kappa Score was computed. Additionally, a confusion ma-
trix and a detailed classification report (including precision, recall,
and F1-score for each class) were generated to provide insights into
class-wise performance.
To evaluate the model’s discriminatory power, Receiver Operating
Characteristic (ROC) curves were plotted using a one-vs-rest strat-
egy, and Area Under the Curve (AUC) values were calculated for
each class i as follows:

AUCi =

∫ 1

0

TPRi(FPRi)dFPRi (19)

where TPRi and FPRi are the true positive rate and false pos-
itive rate for class i, respectively. These curves help visualize the
trade-off between sensitivity and specificity for each class. Finally,
the overall and per-class effectiveness of the classifier was vali-
dated using these ROC curves and the confusion matrix. This post-
classification approach using Random Forest not only improved
the prediction performance but also enhanced the model’s trans-
parency, making it more suitable for real-world clinical decision
support systems.

4. RESULTS AND DISCUSSION
4.1 Dataset
The dataset [14] used in this study comprises a total of 3,662
color fundus images categorized into five diabetic retinopathy (DR)
classes: No DR (1,805), Mild (370), Moderate (999), Severe (193),
and Proliferative DR (295), and Figure 2 shows some sample im-
ages from the dataset. To ensure balanced evaluation and effective
model training, the dataset was stratified into training, testing, and
validation sets in a 60:20:20 ratio. The training set contains 2,197
images, the test set includes 733 images, and the validation set com-
prises 732 images. The class-wise distribution across each subset is
detailed in Table 4.1.
To enhance the diversity of the training samples and improve model
generalizability, a set of real-time data augmentation techniques
was applied. These included horizontal flipping, a zoom range of
0.2, a shear range of 0.2, width and height shifts up to 20%, and ran-
dom rotations up to 30◦. This augmentation strategy was designed
to simulate various real-world imaging conditions and reduce the
risk of model overfitting.

4.2 Experimental setup
The model was compiled using the Adam optimizer with an initial
learning rate of 1× 10−4 and a weight decay of 1× 10−5 to ensure
optimal convergence and avoid overfitting. The categorical cross-
entropy loss function was selected due to the multiclass nature of
the problem, where the true label is one of five possible classes.
Training was performed using a batch size of 8 over 20 epochs, with
early stopping and model checkpointing enabled to preserve the
best-performing model based on validation loss. A validation split
of 20% from the training dataset was used for real-time monitoring
of performance metrics during training.

4.3 Results
This section presents and analyzes the results obtained through two
experimental phases of the proposed model. The primary aim was
to classify retinal fundus images into five diabetic retinopathy (DR)
classes. The first phase involved end-to-end training of the deep
network with a softmax output layer. The second phase involved
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Table 2. Class-wise distribution of images across training, testing, and validation sets for the diabetic retinopathy dataset.

Data split/Classes Mild Moderate No DR Proliferate DR Severe TOTAL IMAGES
Train 222 599 1083 177 115 2197
Test 74 201 361 59 40 733

Validation 74 199 361 59 38 732
TOTAL IMAGES 370 999 1805 295 193 3662

Fig. 2. Representative fundus images from the diabetic retinopathy dataset showing different severity levels. The rows correspond to the five classes: No DR,
Mild, Moderate, Severe, and Proliferative DR (from top to bottom). Each column displays distinct examples within a class, capturing the variation in lesion
presentation and image quality across the dataset.

extracting features from the Global Average Pooling (GAP) layer
of the trained model and classifying them using machine learning
algorithms such as Random Forest (RF), Support Vector Machine
(SVM), and Decision Tree (DT).

4.3.1 Performance of End-to-End Model with Softmax Output.
The initial experiment evaluated the complete hybrid model (CNN
+ ViT) using the softmax activation for direct five-class classifi-
cation. As shown in the learning curves in Figure 3, the model
converged well with minimal overfitting. The final training accu-
racy achieved was 73.37%, with a corresponding training loss of
0.7226. On the validation dataset, the model achieved an accuracy
of 72.95% and a validation loss of 0.7925, indicating balanced gen-
eralization.
The model was further tested on the unseen test set, where it
achieved a test accuracy of 70.12% and a test loss of 0.7820. The
class-wise performance, represented via the confusion matrix in
Figure 4, demonstrates that the model correctly classified most of
the samples across all five categories. However, minor misclassi-
fications were observed, particularly in intermediate classes (e.g.,
Moderate vs. Severe), which share overlapping visual features. The

ROC curve for each class depicted in Figure 5 indicated strong per-
formance, with AUC values ranging from 0.77 to 0.98. Notably,
the model achieved the highest AUC of 0.98 for Class 2 (Moder-
ate DR), suggesting strong discriminative capability for mid-stage
severity detection.

4.3.2 Feature-Based Classification using GAP Layer and Ma-
chine Learning Models. To further enhance classification perfor-
mance and investigate the discriminative power of learned fea-
tures, deep features are extracted from the GAP layer of the trained
model. These features were then fed into classical machine learning
classifiers—Random Forest (RF), Support Vector Machine (SVM),
Decision Tree (DT), and Gaussian Naive Bayes (GNB). Among
these, both Random Forest and Decision Tree classifiers achieved a
perfect classification performance, with 100% accuracy, precision,
recall, F1-score, and an AUC of 1.0, as shown in Figure 6 and the
confusion matrix in Figure 7. This indicates that the hybrid archi-
tecture was highly effective in learning discriminative latent rep-
resentations, even though the original softmax-based classifier had
not fully exploited this capability.
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Fig. 3. Training and validation performance curves over 20 epochs of the proposed model. The left plot shows the decrease in training and validation loss,
indicating model convergence. The right plot presents the training and validation accuracy trends, demonstrating consistent improvement and generalization
performance across epochs.

Fig. 4. Confusion matrix illustrating the classification performance of the diabetic retinopathy model before extraction of features from the GAP layer.

Fig. 5. Receiver Operating Characteristic (ROC) curves for the five-class diabetic retinopathy classification model before extraction of features from the GAP
layer.
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Fig. 6. Post-classification ROC analysis using the
Random Forest classifier to evaluate model discrim-
ination capability.

Fig. 7. Confusion matrix illustrating the
classification performance of the proposed
diabetic retinopathy model.

Further comparative analysis using SVM and Gaussian Naive
Bayes showed AUC values of 0.94 and 0.80, with slightly lower
classification metrics, thus reinforcing the superiority of ensemble
tree-based methods for this particular feature space. This stage-
wise decoupling of feature extraction and classification not only
boosts performance but also opens up the possibility for using the
extracted features in clinical decision support systems.
These findings suggest that while end-to-end deep learning models
are effective, the extracted features from intermediate layers (like
GAP) can be highly informative and better leveraged by traditional
classifiers. The proposed ViT-LocalGlobalFusion model demon-
strates strong potential in real-world clinical settings, especially
when combined with interpretable classifiers like decision trees.
Furthermore, the hybrid fusion of local (CNN) and global (ViT)

features enables better encoding of retinal structures ranging from
microaneurysms to widespread hemorrhages, thereby supporting
robust multi-stage DR diagnosis.

4.3.3 Ablation study. To understand the impact of each com-
ponent in the proposed architecture, a step-by-step ablation
study was conducted. Initially, the performance of the individual
branches—CNN for local features and Vision Transformer (ViT)
for global features was evaluated. The local feature branch achieved
an accuracy of 68.89% with an F1-score of 60.16%, while the
global feature branch yielded a slightly better performance with
72.31% accuracy and an F1-score of 64.36%. This suggests that
global contextual information captured by the ViT plays a signifi-
cant role in classifying diabetic retinopathy (DR) severity levels.
Subsequently, the local and global features extracted from both
branches were fused, and a classifier was trained on the resulting
combined feature vector. This fusion substantially improved per-
formance, resulting in an accuracy of 78% and an F1-score of 73%,
highlighting the complementary nature of local and global repre-
sentations.
Finally, the proposed method was evaluated by extracting features
from the Global Average Pooling (GAP) layer after fusion and
feeding them into a post-classification stage using machine learning
classifiers. The Random Forest (RF) and Decision Tree (DT) classi-
fiers both achieved 100% across all evaluation metrics—precision,
recall, F1-score, and accuracy—indicating the strong discrimina-
tive power of the fused features. These results, as illustrated in
Figure 8, demonstrate that the combination of deep feature extrac-
tion and classical ensemble classifiers significantly enhances per-
formance and reliability in DR classification.
To further enhance classification reliability, features were extracted
from the Global Average Pooling (GAP) layer after fusion and
were used as input to classical machine learning classifiers: Ran-
dom Forest (RF), Decision Tree (DT), Support Vector Machine
(SVM), and Naı̈ve Bayes (NB). As shown in Figure 9, RF and
DT yielded perfect scores across all metrics (100% precision, re-
call, F1-score, and accuracy), highlighting the strong discriminative
power of the extracted features. SVM performed moderately well,
achieving 76.94% accuracy and a 72.64% F1-score, while NB un-
derperformed with 49.52% accuracy and an F1-score of 51.58%.
These findings confirm that the fusion of local and global features
produces highly informative representations and that ensemble-
based classifiers such as RF and DT can effectively leverage these
for superior classification in diabetic retinopathy diagnosis. Addi-
tionally, the confusion matrices for each of the machine learning
classifiers are presented in Figure 10, providing a detailed view of
the class-wise performance and further validating the classification
outcomes.
The discriminative capability of the machine learning classi-
fiers was further assessed using Receiver Operating Characteris-
tic (ROC) curves and their corresponding Area Under the Curve
(AUC) values. As illustrated in Figure 11, Random Forest and De-
cision Tree both achieved an AUC of 1.00, reflecting perfect classi-
fication performance. The SVM model followed closely with an
AUC of 0.94, whereas Gaussian Naı̈ve Bayes exhibited a lower
AUC of 0.80. These findings reinforce the effectiveness of the
ensemble-based models (RF and DT) in fully exploiting the fused
feature representations for accurate diabetic retinopathy detection.

5. CONCLUSION
This study presents a comprehensive evaluation of the proposed
ViT-LocalGlobalFusion framework for diabetic retinopathy (DR)
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Fig. 8. Bar chart illustrating the results of the ablation study. The performance metrics are compared across different stages of the proposed architec-
ture—CNN branch, ViT branch, fused features, and post-classification using Random Forest (RF).

Fig. 9. Performance comparison of different machine learning classifiers (RF, DT, SVM, KNN) on fused features extracted from the proposed hybrid deep
learning model.

classification. Through a series of controlled experiments, the in-
dividual and combined contributions of local features extracted
by CNN and global contextual features captured by Vision Trans-
former (ViT) were systematically assessed. While both branches
demonstrated effectiveness independently, their fusion led to a sig-
nificant boost in classification performance, particularly in chal-
lenging intermediate stages such as Moderate DR.
The unified representation achieved an accuracy of 78.23% and
an F1-score of 73.23%, with ROC analysis showing AUC values
exceeding 0.90 across all classes—highlighting the complemen-
tary nature of local and global features. Furthermore, when the
fused features were input into classical machine learning classi-
fiers, ensemble-based models like Random Forest (RF) and Deci-

sion Tree (DT) achieved perfect scores across all evaluation met-
rics. In contrast, SVM and Naı̈ve Bayes performed less effectively,
with NB showing considerable performance limitations.
These results, supported by confusion matrices and ROC curves,
validate the robustness and discriminative strength of the learned
feature representations. Overall, the proposed framework not only
enhances classification reliability but also demonstrates strong po-
tential for integration into real-world clinical decision support sys-
tems aimed at early and accurate diagnosis of diabetic retinopa-
thy. Future work will focus on extending the evaluation of the pro-
posed ViT–Local Global Fusion framework to multiple retinal im-
age datasets such as APTOS 2019, Messidor-2, and IDRiD, en-

22



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

(a) (b)

(c) (d)

Fig. 10. Confusion matrices of machine learning classifiers (Random Forest, Decision Tree, Support Vector Machine, and Naı̈ve Bayes) applied to the fused
features. The matrices illustrate the class-wise prediction performance, with RF and DT showing perfect classification, while SVM and NB exhibit varying
degrees of misclassification. (a) RF (b) DT (c) SVM (d) NB

abling a more comprehensive analysis of its robustness and gener-
alization capability across varied imaging conditions.
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