
International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

Location-Dependent Cryptosystem: Geographically
Bounded Decryption via UWB Timing-Encoded Key

Reconstruction

Kunal Mukherjee
University of Evansville

1800 Lincoln Ave
Evansville, IN, USA

ABSTRACT
Digital content distribution and propitiatory research driven in-
dustries face persistent risks from intellectual property theft and
unauthorized redistribution. Conventional encryption schemes such
as AES, TDES, ECC, and ElGamal provide strong cryptographic
guarantees, but they remain fundamentally agnostic to where de-
cryption takes place. In practice, this means that once a decryption
key is leaked or intercepted, any adversary can misuse the key to
decrypt the protected content from any location.
This paper presents a location-dependent cryptosystem in which
the decryption key is not transmitted as human- or machine-
readable data, but implicitly encoded in precise time-of-flight dif-
ferences of ultra-wideband (UWB) data transmission packets. The
system leverages Ciholas DWETH101 hardware and a custom
TiCK (Timing-encoded Cryptographic Keying) protocol to map a
32-byte SHA-256–derived AES key onto scheduled transmission
timestamps. Only receivers located within a predefined spatial re-
gion can observe the packet timings that align with the intended
“time slot” pattern, enabling them to reconstruct the key and de-
crypt the secret. Receivers outside the authorized region observe
yield incorrect keys.
A complete prototype is implemented that encrypts and transmits
audio data using our cryptosystem, and only when the receiver is
within the authorized data they are able to decrypt the data. Our
evaluation demonstrates that the system (i) removes the need to
share decryption passwords electronically or physically, (ii) ensures
the decryption key cannot be recovered by the eavesdropper, and
(iii) provides a non-trivial spatial tolerance for legitimate users.

General Terms
Cryptography, Location-based Security, Wireless Systems, Secure Content
Distribution

Keywords
Location-dependent cryptosystems, Ultra-WideBand (UWB), Geo-
graphically Bounded Decryption, Key Distribution, Secure Content
Delivery

1. INTRODUCTION
Cryptographic primitives such as AES, TDES, ECC, and ElGamal
have made it possible to protect data from digital piracy and intel-
lectual property theft [7, 23]. These schemes are widely deployed
across entertainment, cloud, financial, and research-driven indus-
tries [1, 2, 5, 6, 8, 10, 12, 14–19, 24]. However, while modern ci-
phers offer strong guarantees on confidentiality and integrity, they
are fundamentally indifferent to the geographic location in which
decryption occurs. Once an adversary obtains a valid decryption
key, by intercepting it during transit or stealing it from an endpoint,
there is nothing in the cryptosystem itself that prevents them from
decrypting the protected content anywhere and at any time. These
industries need new security measures to protect their intellectual
property from corporate or international espionage.
This limitation is particularly problematic for domains where dis-
tribution is unavoidable but control is critical. Intellectual property
theft occurs during data transfer [13]. For example, the entertain-
ment industry routinely ships high-value content (e.g., pre-release
films) to theaters or partners under contractual agreements, encrypt-
ing the media in transit and then sharing keys later. The standard
pattern is to encrypt content with an industry-standard cipher such
as AES-256 and deliver the decryption key via a separate channel,
either electronically or physically [3]. This key-distribution step in-
troduces a structural weakness: if the key is intercepted, copied, or
misdirected, any unauthorized party can decrypt the content from
any location.
Therefore, a viable solution is that the user should be able to de-
crypt a file only if he or she is at an acceptable geographic location
pre-authorized by the sender. Therefore, this system will transfer
the encrypted key so that only the user at the authorized location
can decrypt it, without having prior knowledge of the sender or the
password. Therefore, the need for sharing the password electroni-
cally or physically is omitted.
This intuition motivated the defense presented in this paper: design-
ing a cryptosystem that ties decryption capability to a geographic
region. Intuitively, we want a mechanism such that: (1.) a legitimate
receiver located within an authorized region can reconstruct the de-
cryption key automatically, without ever seeing the key in cleartext
or manually entering a password, and (2.) any party outside that
region, even if they capture all encrypted traffic, cannot recover the
key from the signals they observe.

25



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

Fig. 1: Authorized-decryption geometry. Multiple UWB transmitters (an-
chors) define an authorized spatial region in which a receiver observes the
intended time-of-flight–aligned packet timing pattern and can reconstruct
the key for decryption.

Rather than transmitting a key as a conventional data payload or
shared separately, we exploit precise timing information in ultra-
wideband (UWB) radio signals. By mapping each byte of a 32-
byte SHA-256–derived key to carefully scheduled packet transmis-
sion times, we ensure that only receivers experiencing the correct
time-of-flight delays (i.e., those physically located in the intended
region) reconstruct the intended key.
We design and implement a location-dependent cryptosystem built
on Ciholas DWETH101 [4] hardware and a custom TiCK (Timing-
encoded Cryptographic Keying) protocol. The sender encrypts data
with AES-256 [20] using a password provided by the sender, de-
rives a fixed-length key (32 bytes) by hashing the password us-
ing SHA-256 [21], and encodes that key across a sequence of 33
UWB transmissions. The mapping from password encrypted bytes
to transmission timestamps is computed using:

(1) a global network time maintained by the server,

(2) a configurable initial offset that aligns with the server’s internal
timing windows,

(3) a minimum inter-packet delay to ensure receiver can process
packets in real time, and

(4) per-transmitter time-of-flight offsets corresponding to the au-
thorized decryption region.

A receiver within the authorized region (as shown on 1 observes
packet arrival times whose time-of-flight align with the pre-defined
“time slots” for each key byte, allowing it to reconstruct the SHA-
256 key and decrypt the AES-encrypted payload. An eavesdropper
at a different location, however, will observe shifted time-of-flight
patterns; without precise knowledge of both reference timestamps
and per-transmitter distances, they derive an incorrect key and fail
to decrypt the content.
We implement a full prototype, where a UWB-based system en-
crypts audio files, transmits the key implicitly via packet timings,
and automatically decrypts and plays the audio only within the au-
thorized area. The prototype demonstrates that:

(1) the decryption password never appears in a human- or
machine-readable form on the wire,

(2) the authorized region is a configurable zone rather than a single
point, giving legitimate users spatial tolerance, and

(3) unauthorized receivers outside this zone do not reconstruct the
correct key, even when they capture all packets.

To the best of our knowledge, we are the first work to explore how
physical location can be elevated from an external policy constraint
to a first-class factor in cryptographic key distribution. Instead of
treating decryption keys as static secrets that must be guarded and
transported, we embed the key into the physical properties of ultra-
wideband (UWB) communication—specifically, the time-of-flight
patterns observed only within an authorized region. The rest of this
paper first provides the necessary background, then describes the
system design and implementation in detail.

2. BACKGROUND
The current encryption standards for industries are AES256 (128
bits or higher), TDES (double-length keys), ECC (160 bits or
higher) and ElGamal (1024 bits or higher) [1,2,5,6,8,10,12]. These
encryption standards are secure as the underlying base problem, the
discrete log problem (DLP), is intractable and exponentially hard
for large primes [11]. Intractable is defined as taking thousands of
years to brute force through the function, even for the top five su-
percomputers of the world.
In industry, the encryption standard used to encrypt data is
AES [20]. The encrypted data is then transmitted using any one
of the cryptographic network protocols, such as Internet Protocol
Security (IPsec) [9]. However, the key of the encryption is inde-
pendent of the location and it needs to be transferred to the re-
ceiver physically or electronically. Therefore, in this cryptosystem,
to make sure the encrypted data can only be decrypted at the au-
thorized location, the key of the encrypted data is associated with
the approved location. The system will start the decryption process
automatically without the need for the receiver’s assistance, thus
protecting the password’s integrity.

3. SYSTEM DESIGN
3.1 Hardware
The cryptosystem requires a device that can emit ultra-precise tim-
ing information. Therefore, Ciholas’ DWETH101 [4] was used as
transmitter and NetApp server to relay DWETH101 timing infor-
mation accurately up to eight nanoseconds. DWETH101 contains a
DecaWave [22] chip that can emit timestamps accurately up to ten
picoseconds. NetApp server uses the timestamp from DecaWave
chip and makes it more precise by using the most significant bits
to get information in the nanoseconds range or resulting in ±3 cm
precision in space.

3.2 Software
3.2.1 Audio Extraction. The software 1 was developed in multi-
ple part and as an example demonstration an audio file was chosen,
with the goal that the audio file will be decrypted only at the autho-
rized located originally determined by the sender. Therefore, the
development of an audio extraction tool was important. The audio
extraction script takes an audio file, input.wav, and converts it
into principal frequency values. The values are then stored in a file,
which can later be used to convert the principal frequency values
back into audio. The script uses the ffmpeg utility to convert the
.wav file to principal frequency values.

3.2.2 AES-256 and SHA-256 Implementation. AES-256 encryp-
tion was used, and the encryption process operates on a specific

1The code is provided in https://github.com/kunmukh/Location_

Dependent_Cryptosystem

26

https://github.com/kunmukh/Location_Dependent_Cryptosystem
https://github.com/kunmukh/Location_Dependent_Cryptosystem


International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

buffer (e.g., 32 bytes). AES-256 encrypts the buffer using an initial-
ization vector (IV) and the provided key. AES encryption produces
32 bytes, or one block, of encrypted data from the unencrypted
buffer. The encrypted block is stored in a text file that would be
transmitted later. This encryption process continues until all data
has been converted into encrypted blocks.
The decryption process takes the encrypted data and the password
and recreates the unencrypted data. The cryptosystem converts the
user-provided password to a fixed 32-byte value using SHA-256.
An SHA-256 hashing function has two important properties. First,
it protects the integrity of the user’s password since no one has
knowledge of the plain text key except the user. Secondly, it creates
a fixed length key every time, thus broadening the collision domain
of the encrypted passwords.

3.2.3 TiCK (Timing-encoded Cryptographic Keying) Protocol.
The TiCK (Timing-encoded Cryptographic Keying) protocol uses
the 32 bytes of the SHA password and transmits it via the times-
tamp difference. To transmit 32 bytes of SHA, 33 packets are
needed, since the first transmission serves as a reference for the
first SHA calculation.
A timestamp is the time the NetApp server transmits when one of
the transmitters (i.e. DWETH101) connected to it receives or trans-
mits a packet. If a device receives a packet, the reception timestamp
is Trx. Additionally, if the device transmits a packet, the timestamp
is called the transmission timestamp, Ttx. The server runs an inter-
nal clock that provides time in Network Time (NT) ticks. Kf is a
conversion factor that converts seconds to NT ticks and is numer-
ically equal to 975000 × 65536, or 6,389,760,000. One NT tick
is equal to 16.5 nanoseconds or one second is 6,389,760,000 NT
ticks. This shows how precise and accurate the NetApp server is.
The TiCK protocol had to be made compatible with the NetApp. If
the protocol asked the NetApp to transmit one of its packets when
the NetApp was scheduled to transmit one of NetApp’s packets,
then the TiCK packet would not be transmitted due to NetApp’s in-
ternal packet taking higher priority. Thus, an initial offset had to be
introduced for the protocol to work. This ensured the protocol did
not interfere with the scheduling of the NetApp’s internal packets
and also marked the beginning of the 33-timestamp transmission
sequence. The initial offset is called TstartOffset and is numerically
equal to 5 milliseconds or 319,488,000 NT ticks.
The time window is the amount of time after which the NetApp
sends out its internal packets to make sure that all devices con-
nected to it are time synchronized. This occurs after 100 millisec-
onds. Therefore, another offset, Tnet or the network offset, is added
so that the 33 transmissions can happen in one time window. The
network offset is numerically equal to n × Kf NT ticks, where n
represents a value that can be found by taking the current network-
ing of the NetApp and dividing it by Kf . Hence, to begin a trans-
mission and to give the reference for the first SHA calculation, a
packet is transmitted at Tnet +TstartOffset. Tnet +TstartOffset is called the
initial network cadence. A transmission time window can be seen
in Figure 2.
Once the protocol has determined which time window it is trans-
mitting in as well as the first transmission packet, the protocol then
schedules the next 32 packet transmissions so the differences can
give the SHA back. The 32 packet transmissions must have at least
a 2.5 millisecond gap between them. This is the time the devices
need to process the received packet and return to listening mode.
This time difference is called TbetweenOffset. TbetweenOffset is known
by both the receiver and the transmitter side. The transmitter also
knows the time of flight a packet takes from each anchor to the
approved location, TdistA.

Fig. 2: NetApp timing window and network cadence. Illustration of the syn-
chronization window in which the 33-packet TiCK transmission sequence
is scheduled (starting at Tnet+TstartOffset

Fig. 3: Slotting scheme for timing-encoded key bytes. A SHA-256 byte
is mapped to a discrete slot number (0–255) and transmitted via an inter-
packet delay of SlotNumber x Tslot, with Tslot chosen to match the
desired spatial tolerance of the authorized region.

Next, the protocol considers the time allocated per slot correspond-
ing to the SHA values, Tslot. Tslot depends on the amount of ap-
proved space of the decryption region. For example, a decryption
region, a sphere of radius 2 meters, would be 2 meters divided by
c or 6.667 nanoseconds. There are 256 time slots corresponding to
the 255 values (0 to FF) that the SHA can take. A transmission slot
window can be seen in Figure 3.
After determining all the constants, the TiCK protocol determines
which values of the SHA need to be transferred. 5D will be used
as an example. The transmission side will take the last transmis-
sion timestamp calculated, Ttx(n − 1), and add the time of flight
of the packet from the last chosen anchor to the reception region,
TdistA(n − 1). This gives the transmitter the reference point. Then,
the transmission side adds TbetweenOffset. This ensures that the re-
ceiver is in the listening state. Then, the transmission side takes the
SHA value SlotNumber 5D or 93 and multiplies it by Tslot. The
final step is to subtract the time of flight, TdistA(n), to account for
the time it takes from this current packet to go from the current
transmitter to the approved location. Therefore, the transmission
equation is:

Ttx(n) = Ttx(n− 1) + TdistA(n− 1) + TbetweenOffset

+(SlotNumber × Tslot)− TdistA(n).
(1)

After the receiver accepts a second timestamp, the receiver first
saves this timestamp as it becomes the reference for the second
SHA transfer. Secondly, the receiver utilizes the second timestamp
to get the first SHA value. The reception side takes the second
timestamp and subtracts the first timestamp from it. Then, the re-
ception side subtracts TbetweenOffset from it. As a result, the receiver
is now left with Tslot times the SHA value. Therefore, after dividing
the result by Tslot, the slot value is equal to the first SHA transmitted
value. Thus, the reception equation is the following:

SHA value(n) =
Trx(n)− Trx(n− 1)− TbetweenOffset

Tslot
.

27



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

Fig. 4: Transmit/receive timeline for decoding one key byte. Timeline view
of the transmission and reception equations showing how the receiver can-
cels fixed offsets (e.g., TbetweenOffset) and uses the remaining delay to
recover the slot value (and thus the SHA byte).

Fig. 5: Threat model: intended receiver vs. eavesdropper. An unauthorized
receiver outside the approved region observes shifted time-of-flight timing,
causing incorrect slot decoding and failure to reconstruct the correct key.

Figure 4 shows how the different constant parameters can be visu-
alized in a reception timeline.
The eavesdropper is a receiver who is not at the approved loca-
tion, represented in Figure 5. For the eavesdropper to obtain the
SHA byte, they must overcome two security measures. First, the
eavesdropper must know the reference timestamp, Trx(n−1), from
which the second timestamp would be subtracted. Secondly, the
eavesdropper must know the distances, TdistA(n− 1) and TdistA(n),
from which both packet transmissions are made. Without this in-
formation, the result of the second timestamp minus the first times-
tamp cannot be divided by the Tslot value to get the correct SHA
value. From using Figure 6 and Figure 7, one can observe that be-
ing just 1.06 meters away from the approved location can change
the SHA value.

3.2.4 Cryptosystem Simulator. The cryptosystem simulator was
developed as a proof-of-concept to determine whether the trans-
mission and reception equations will work. The simulator was built
using TCP, which substituted UWB. Because the real-world system
will have atmospheric noise, the simulation modified the reception
equation by adding Tnoise to account for it. As a result, the reception
equation became:

SHA value(n) =
Trx(n)− Trx(n− 1)− TbetweenOffset + Tnoise

Tslot
.

The simulator server took an audio file, password, and the distances
of the three anchors from the approved location. The server first
generated an SHA hash of the password and then encrypted the
audio file. Then, the server divided the encrypted data into 800-byte
blocks and sent them as payload with each packet. The server also
included the transmission timestamp as part of the payload. The
transfer terminated once all encrypted data had been transferred.
The first packet for the transfer, Tnet, was set to n×Kf NT ticks.
The simulator client connected, and the transfer began. The client
used the transmission timestamps to generate a 32-byte SHA-1
value. The client then used the SHA value to decrypt the received
encrypted data. After the decryption process was over, the client
played the decrypted data back. If the correct SHA had been trans-
mitted, it would play the same audio back as intended by the server.
If not, the client would just play noise, indicating that the decryp-
tion process was unsuccessful.
The cryptosystem simulator accounted for atmospheric noise and
showed that, with UWB as the medium of transfer, the cryptosys-
tem would function.

3.2.5 Cryptosystem Server and Client. The cryptosystem server
listens to NetApp’s timing packets and maintains a time window so
it can transmit the 33 packets within that window. First, the crypto
system takes the password from the sender and encrypts the data
using the SHA of the password. Then selects an appropriate Tnet as
the first packet transmission time and transmits the first packet with
an 800-byte payload of encrypted data. This process continues until
all encrypted data has been transferred.
The approved receivers keep receiving the packets and use the
timestamps of the received packets to create the SHA back. The
receiver waits for 2 seconds. If the receiver receives no packets
within 2 seconds, it stops listening and starts to generate a SHA to
decrypt the received data. After the decryption process completes,
the crypto system presents the data to the user (e.g., by playing the
audio file back).

3.3 Social and Environmental Impact
There are no social or environmental concerns associated with this
project. This is a research endeavor to create a secure and robust
cryptosystem. This will benefit everyone and improve the social
aspect of sharing. This project will make sharing secure and trust-
worthy. Ciholas hardware is FCC approved, so the devices poses
no environmental or health risks.

3.4 Industry Standards, Health and Safety
Consideration

There are no comparable standards that map an encryption key to
a location and transmit it wirelessly to the receiver. However, the
user data will be encrypted before transmission using the industry-
standard AES-256 encryption protocol. Therefore, AES-256 en-
sures that even if a packet is intercepted by an unintended receiver
during transmission, the receiver cannot decipher it.

4. RESULTS
The cryptosystem demonstrated all requirements and features as
stated during the development process. The cryptosystem was able
to transfer the SHA of the password in a form that was neither
machine-readable nor human-readable. The approved location was
a space rather than a point. This ensured that the user had a cer-
tain degree of freedom and the location had a certain tolerance.
The cryptosystem also started the decryption process without the

28



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

Fig. 6: Numerical example: reference mismatch outside the au-
thorized region. Example calculation comparing the intended re-
ceiver’s reference timing to an eavesdropper’s; even small displace-
ment changes the computed reference value used for slot decoding.

Fig. 7: Numerical example: SHA-byte decoding divergence. Exam-
ple showing that the intended receiver and eavesdropper decode dif-
ferent SHA values from observed timings, leading to different re-
constructed AES keys and unsuccessful decryption outside the au-
thorized region.

receiver’s assistance, and any receiver not at the approved location
did not receive the correct SHA value.

5. DISCUSSION
This study demonstrates that physical location can be elevated from
an external policy constraint to a first-class input to key reconstruc-
tion by encoding a SHA-256, derived AES key into UWB packet
timing patterns that are only decodable within an authorized re-
gion. While the prototype validates feasibility, several deployment
and security questions naturally arise.

5.1 Design Trade-offs and Practical Constraints
A central design knob is the slot duration Tslot, which directly gov-
erns the spatial tolerance of the authorized region (e.g., a larger
region implies a larger timing tolerance). In practice, this creates
a location-utility trade-off: increasing tolerance reduces false re-
jections for legitimate receivers but also reduces the timing sep-
aration that protects against off-region reconstruction. The proto-
col also imposes real-time scheduling constraints (e.g., minimum
inter-packet spacing so receivers can process packets), which af-
fects throughput and robustness under load.
Does the security argument extend beyond a passive off-region
eavesdropper?
The current rationale focuses on a passive adversary who records
all packets but experiences different time-of-flight and therefore re-
constructs an incorrect key. For stronger real-world assurance, the
evaluation should explicitly consider (i) replay (retransmitting pre-
viously captured timing sequences), (ii) relay/wormhole (forward-
ing signals to emulate being in-region), (iii) anchor compromise
(malicious transmitter emitting attacker-chosen timing), and (iv)
collusion (multiple off-region receivers combining observations).
Practical mitigations include time-bounded sessions (short valid-
ity windows tied to Tnet cadence), per-session nonces folded into
the key derivation, and transmitter authentication of the timing se-
quence (e.g., cryptographic tags over the intended schedule). These
steps align with adversarial-evaluation practices commonly used in
robust security research: explicitly enumerating attacker capabili-
ties, then stress-testing the system under those capabilities rather
than relying on a single threat model.
How should Tslot and the authorized region be selected in a princi-
pled way?
The work already links Tslot to region size through timing toler-
ance (e.g., meters divided by c), and uses 256 slots corresponding
to byte values. A principled selection should incorporate measure-

ment noise (clock jitter effects) and application requirements (ac-
ceptable false-reject rate). One robust approach is to treat slot selec-
tion as an optimization: choose Tslot to minimize off-region key suc-
cess subject to an on-region decoding success constraint. Inspired
by privacy-utility tuning in other security work (e.g., differential-
privacy budget selection), Tslot can be viewed as a “physical toler-
ance budget” that must be justified empirically.
What are the scalability limits (latency/throughput) of a timing-
encoded key channel?
The design transmits 32 SHA bytes using a 33-packet schedule
(one reference plus 32 differences). This fixed overhead means
key distribution cost is non-trivial if the system refreshes keys
frequently or serves many receivers. Two ways to improve scal-
ability: (i) transmit fewer bits per session by deriving multiple
content keys from a single in-region “seed” (key hierarchy), and
(ii) add redundancy selectively (error-correcting encoding across
bytes) only when channel conditions degrade. These improvements
mirror ideas from resilient distributed systems and robustness re-
search: amortize expensive secure setup, and add redundancy only
where the failure modes concentrate.

6. FUTURE WORK
Even with these security features, this system can be defeated by
implementing many secondary anchors and using them to triangu-
late the approved location. The secondary anchors are used to de-
termine which anchor sent which packets and their relative times
of flight. Moreover, an important feature can be developed called
a rolling key encryption system. With this, the receiver must im-
mediately transmit a specific packet upon receiving an encrypted
packet. The server will determine whether the timestamp for this
specific packet is from the approved location. If not, the server will
change the encryption key and re-transmit. If so, the next packet
will be sent. This will continue until all of the packets have been
transmitted and the cryptosystem can function normally.

7. CONCLUSION
By carefully scheduled UWB packet timing, this location-
dependent cryptosystem enforces that decryption is possible only
where the sender intends. Legitimate receivers within the autho-
rized zone reconstruct the correct key and transparently decrypt
audio content, while receivers outside this zone, even if they cap-
ture all packets, observe shifted timing patterns that yield incorrect
keys. The system operates without ever exposing the password in
human- or machine-readable form on the wire and initiates decryp-

29



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

tion without explicit user action, reducing both operational friction
and key-handling risk.
More broadly, this cryptosystem suggests that cryptographic sys-
tems can benefit from tighter integration with the physical world:
radio geometry, timing, and spatial constraints can all be treated
as additional dimensions of access control. Future research may
explore integrating location-dependent keying with hardware se-
curity modules, multi-factor attestation, or streaming telemetry, as
well as formalizing security guarantees under stronger adversarial
models. We hope this study provides both a concrete blueprint and
a conceptual foundation for geographically bounded decryption as
a practical complement to traditional cryptographic protections.

8. REFERENCES
[1] Ansi x9.52-2016: Triple data encryption algorithm modes of

operation. Technical report, Accredited Standards Committee
X9, Financial Industry Standards, 2016. Specifies Triple DES
(TDES) modes widely used for data protection in the financial
services industry.

[2] Payment card industry data security standard, version 4.0.
Technical report, PCI Security Standards Council, 2022. Rec-
ommends strong cryptography such as AES and modern
public-key schemes for protecting cardholder data across pay-
ment environments.

[3] Elaine Barker. Recommendation for key management part 1:
General. NIST Special Publication 800-57 Part 1 Rev. 5, Na-
tional Institute of Standards and Technology, 2020. Recom-
mends that cryptographic keys (e.g., AES keys) be protected
and distributed via secure key management mechanisms dis-
tinct from the channels carrying the encrypted data.

[4] Ciholas, Inc. Anchors. https://cuwb.io/docs/v3.
3/system-components/anchors/, 2020. CUWB 3.3
(Bernoulli) Documentation.

[5] Morris Dworkin. Recommendation for block cipher modes
of operation: Methods and techniques. NIST Special Publi-
cation 800-38A, National Institute of Standards and Technol-
ogy, 2001. Defines standard modes of operation for block ci-
phers such as AES and 3DES for data protection in a wide
range of applications.

[6] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4):469–472, 1985. Original descrip-
tion of the ElGamal cryptosystem, a building block for many
practical public-key schemes used for confidentiality and au-
thentication.

[7] Omar Flor-Unda, Lino Casado, Wilmer Aguilar, and Marı́a
Muñoz. A comprehensive analysis of the worst cybersecurity
incidents: Lessons learned. Informatics, 10(3):71, 2023.

[8] Ralph Holz, Johanna Amann, Olivier Mehani, Matthias
Wachs, and Thomas C. Schmidt. A survey of SSL/TLS de-
ployment on the internet. In Proceedings of the 2011 IEEE
Conference on Network and Service Management (CNSM),
pages 163–170, 2011. Documents widespread deployment of
block ciphers (e.g., AES) and public-key primitives (includ-
ing ECC) in Internet-scale services such as web and cloud
platforms.

[9] Stephen Kent and Karen Seo. Security architecture for the
internet protocol. Request for Comments 4301, Internet En-
gineering Task Force (IETF), December 2005. Defines the
IPsec architecture for providing confidentiality, integrity, and
authentication for IP packets.

[10] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48(177):203–209, 1987. Introduces elliptic-
curve cryptography, which is now widely deployed in pro-
tocols and products for secure communication and data pro-
tection.

[11] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Reducing discrete logarithms in a finite field to discrete
logarithms in a subgroup. Journal of Algorithms, 16(2):173–
190, 1993. Analyzes the discrete logarithm problem and un-
derpins the hardness assumptions used for discrete-log-based
cryptosystems.

[12] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Handbook of Applied Cryptography. CRC Press, 1996.
Survey of cryptographic primitives such as block ciphers and
public-key schemes and their deployment in real-world appli-
cations across multiple industries.

[13] Miller IP Law. The double-edged sword of technology trans-
fer: Risks and rewards, 2024. Highlights that the risk of intel-
lectual property theft increases when transferring technology,
especially across borders.

[14] Kunal Mukherjee, Zachary Harrison, and Saeid Balaneshin.
Z-rex: Human-interpretable gnn explanations for real estate
recommendations. In KDD Workshop on Machine Learn-
ing on Graphs in the Era of Generative AI (MLoG-GenAI),
Toronto, Canada, 2025. Oral presentation.

[15] Kunal Mukherjee and Murat Kantarcioglu. Llm-driven prove-
nance forensics for threat intelligence and detection. arXiv
preprint / manuscript, 2025. Under submission; preprint avail-
able.

[16] Kunal Mukherjee, Joshua Wiedemeier, Qi Wang, Junpei
Kamimura, John Junghwan Rhee, James Wei, Zhichun Li,
Xiao Yu, Lu-An Tang, Jiaping Gui, and Kangkook Jee.
Proviot: Detecting stealthy attacks in iot through federated
edge-cloud security. In Applied Cryptography and Network
Security (ACNS), LNCS 14585, pages 241–268. Springer,
2024.

[17] Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang,
Muhyun Kim, Feng Chen, Murat Kantarcioglu, and
Kangkook Jee. Interpreting gnn-based ids detections using
provenance graph structural features. 2023. Under submis-
sion; preprint available.

[18] Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James
Wei, Feng Chen, Muhyun Kim, Murat Kantarcioglu, and
Kangkook Jee. Evading provenance-based ml detectors with
adversarial system actions. In Proceedings of the 32nd
USENIX Security Symposium, Anaheim, CA, USA, 2023.

[19] Kunal Mukherjee, Jonathan Yu, Partha De, and Dinil Mon
Divakaran. Provdp: Differential privacy for system prove-
nance dataset. In Applied Cryptography and Network Security
(ACNS), 2025.

[20] National Institute of Standards and Technology. Advanced en-
cryption standard (aes). Federal Information Processing Stan-
dards Publication FIPS 197, NIST, November 2001. Defines
AES with key sizes of 128, 192, and 256 bits (AES-256).

[21] National Institute of Standards and Technology. Secure hash
standard (shs). Federal Information Processing Standards
Publication FIPS 180-4, NIST, 2015. Defines the SHA-1 and
SHA-2 families of hash functions, including SHA-256.

[22] Qorvo, Inc. Dw1000: Ieee 802.15.4-2011 uwb wireless
transceiver, 2025. Product page for the DW1000 ultra-
wideband transceiver.

30

https://cuwb.io/docs/v3.3/system-components/anchors/
https://cuwb.io/docs/v3.3/system-components/anchors/


International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.71, January 2026

[23] Adriano Terra. Copyright law and digital piracy: An econo-
metric global study. North Carolina Journal of Law & Tech-
nology, 17(4):563–626, 2016.

[24] Tianhao Wang, Simon Klancher, Kunal Mukherjee, Josh
Wiedemeier, Feng Chen, Murat Kantarcioglu, and Kangkook
Jee. Provcreator: Synthesizing complex heterogenous
graphs with node and edge attributes. arXiv preprint
arXiv:2507.20967, 2025.

31


	Introduction
	Background
	System Design
	Hardware
	Software
	Audio Extraction
	AES-256 and SHA-256 Implementation
	TiCK (Timing-encoded Cryptographic Keying) Protocol
	Cryptosystem Simulator
	Cryptosystem Server and Client

	Social and Environmental Impact
	Industry Standards, Health and Safety Consideration

	Results
	Discussion
	Design Trade-offs and Practical Constraints

	Future Work
	Conclusion
	References

