International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

EZ Coder: A Hybrid Al-Powered Mentorship Framework
for Integrated Developer Education

Arun K.H.
Assistant Professor
Dept. of Information Science and

Eng. Acharya Institute of Technology
Bengaluru, India

Acharya Institute of Technology
Bengaluru, India

Vishal M. Bharadwaj
Dept. of Information Science and Eng.
Acharya Institute of Technology Bengaluru, India

ABSTRACT

IDEs (Integrated Development Environments) have become
efficient systems which support team work and debugging in
coding. However, present IDEs do not help in understanding
the core concepts over time and majorly focus on particular
tasks. As a result of this, programmers, specifically the ones
who are at a beginner or an intermediate level tend to have a
messy learning experience, limited grasp over core concepts of
programming and get distracted very often. This paper
introduces EZ Coder, a hybrid Al-powered mentorship
framework designed as a VS Code extension. EZ Coder changes
the IDE into an interactive learning environment. Unlike the
typical Al assistants that help as passive tools, EZ Coder works
as an active mentor by adding three major features into the IDE
directly. These features include a personalised roadmap
generator which works as an adaptive learning engine, an in-
editor code visualizer to increase the understanding of the
programs and an Al chatbot which gives context-aware feedback
based on Abstract Syntax Tree (AST) analysis of code structure.
An Al inference system is being used by the framework.
Cloud-based large language models are combined with fast
local models for real-time feedback generation and teaching
insights. An ongoing, evidencebased learning cycle tracks the
programmer’s behavior and updates skill levels using Bayesian
reasoning. This cycle prioritizes relevant learning actions
without disturbing the workflow. Evaluation of a prototype with
programming tasks show that EZ Coder provides extremely
accurate and relevant feedback, reduces task completion time
and offers much more meaningful guidance than general Al
assistants and standard linters.

General Terms
Artificial Intelligence, Software Engineering, Programming
Education, Human-Computer Interaction, Intelligent Systems

Keywords

IDE-Integrated learning, Abstract Syntax Tree (AST), Adaptive
Learning, AI-Powered Mentorship, Code Visualization, Hybrid
Al Inference

1 INTRODUCTION

Integrated Development Environments (IDEs) have become
complex platforms, fully supporting activities like debugging and
version control. Nevertheless, most contemporary IDEs remain
heavily focused on tasks associated with code execution and

Rakshith Gowda M.
Dept. of Information Science and

Thushar Raj S.G.
Dept. of Information Science and
Eng.
Acharya Institute of Technology
Bengaluru, India

Vishnu M.T.
Dept. of Information Science and Eng.
Acharya Institute of Technology Bengaluru, India

troubleshooting. Notably, this has left a pedagogical divide
between code authoring and code-related concepts in
programming, especially in programmers at a beginner and
intermediate skill-levels. Programming is a cyclic process
centered around concepts. Unfortunately, most coding processes
nowadays involve programmers halting a related activity to
search for answers in various sources, resulting in a shallow
learning attitude related to a solution or a subject.

At the same time, Al-powered developer assistants, such as smart
code completion tools or large language model-driven chat
interfaces, have further increased code-writing speed by
minimizing syntactical mistakes in code. Nevertheless, these
tools have been found to largely operate as passive helper tools,
providing results to the users while not involving them in
problem-solving or logical process of code implementation.
Although promising studies are conducted in the areas of
intelligent tutoring systems, adaptive learning systems and code
visualizations have been seen to aid in better conceptualization,
most of these tools currently exist as separate systems that are not
well-integrated into current IDE-centric developer workflows.

To address these challenges, we introduce EZ Coder, a hybrid
Al-based mentoring system that combines coding, learning and
conceptual understanding directly in an integrated development
environment (IDE) via VS Code extension. Contrary to
traditional assistants, EZ Coder acts as an active mentoring
system using intelligent feedback that combines ASTbased
feedback analysis, adaptive learning pathways modeled from
continuous behavioral analysis and code visualization analysis
directly in the coding environment to help programmers
understand program flow. A hybrid inference architecture
combines local low-latency inference and cloud-based inference
with selective large language models for detailed conceptual
learning analysis. The experimental results bring out that
incorporating mentoring directly into the coding process can
improve feedback accuracy and reduce cognitive overload and
switching activity while enhancing productivity directly in the
development process.

2 PROBLEM STATEMENT

Even though significant advancements have been made in
Integrated Development Environments (IDEs) and Al assisted
programming tools, a fundamental gap still exists between
software development and conceptual learning. Current
development workflows focus on task completion and offer

42

limited understanding of why certain solutions work or how
programming concepts should be applied across diverse
contexts. This poses a significant challenge for novice and
intermediate developers, who are still forming foundational
mental models of programming concepts.

A major challenge arises as developers frequently perform
context switching to consult external resources such as tutorials,
video lectures and discussion forums which disrupts active
coding sessions. This repeated context switching increases
cognitive load, disrupts problem solving continuity and weakens
the association between theory and practice. As a result, learning
becomes reactive and solution driven rather than systematic and
concept oriented.

Moreover, the existing Al based coding assistants are not
designed to adapt their explanations and code complexity based
on learner proficiency. While they provide syntactically correct
suggestions and rapid fixes, they lack personalization and fail to
identify recurring conceptual gaps.

Another limitation is the absence of active mentorship within
professional development environments. Most tools function as
passive assistants and rarely guide learners towards structured
skill development or visualize code structures that supports
deeper comprehension of control flow and program logic.

3 LITERATURE SURVEY

Research on improving programming education and developer
productivity has enhanced in many related areas, including
intelligent tutoring systems, Alassisted coding tools, Code
visualization techniques, and adaptive learning platforms. All
of these methods face particular challenges in leaning to
program. However, they also have mostly developed
separately, leading to scattered solutions that do not directly
weave together educational support with professional
development workflows.

3.1 Intelligent Tutoring

Programming Education

Most of the early works done in programming education mainly
focused on Intelligent Tutoring Systems (ITS), which focused
to mimic one-on-one human tutoring system through rule-
based feedback, creating student models, and guided problem
solving. These systems demonstrated clear improvements in
learning outcomes by adjusting instruction based on student
performance. Adaptive learning paths which use probabilistic
skill models, have improved concept mastery and retention.
This is especially true when Bayesian inference models learner
uncertainly and progression [12].

Systems in

However, ITS platforms usually operate in controlled settings
like classrooms or learning portals because they do not
integrate so well with many IDEs, hence their usefulness
decreases when learners move into real world software
development settings.

3.2 Chatbot-Based and AI-Assisted

Programming Tools

The development of natural language processing has seen the
rise of learning assistants that use chatbots as well as coding
tools that use AL Such tools provide explanations, code
generation, as well as debugging help through chatbots. Current
literature has identified the challenges as well as the
opportunities available through the application of large
language models in programming [9], [11].

Code completion tools that rely on Al to aid in programming
are especially concerned with speeding up the programming

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

process. Though these tools work very well in minimizing
syntactic errors and code repetition, these tools usually aim to
maximize plausibility instead of pedagogical order [16]. Thus,
students may find the right answers to problems despite not
understanding the concept.

3.3 Structural Code Analysis and AST-

Based Techniques

In view of the limitations associated with the analysis of plain
text at the source code level, various research studies have
examined the structure-aware representation of code using the
paradigm of Abstract Syntax Trees (ASTs) in computer
programming. Based on ASTs, it becomes easier to understand
control flow and function boundaries in code. Code
representation Learning Survey studies have highlighted ASTs
as a fundamental construct for semantic analysis in code
analysis [15].

There are also visual tools that rely on AST for improving the
understanding of the code structure and flow. These visual tools
and techniques that depend on AST have been found useful for
beginner programmers because they aid in the understanding of
the complex programming concepts. Most of the techniques
that use AST are only tools that perform only analysis. They do
not utilize learning capabilities.

3.4 Adaptive Learning

Personalized Guidance

Adaptive learning systems aim to personalize content by
modeling learner behavior and dynamically adjusting
instruction. Bayesian knowledge tracing and probabilistic skill
modeling are some of the techniques which have proven to be
effective in identifying conceptual gaps and prioritizing
necessary learning material[12]. However, these systems are
implemented within online learning platforms and stay
disconnected from active coding environments.

Systems and

Recent work highlights the need for reducing cognitive load
through context aware tool support in software development,
arguing that learning interventions must closely align with the
developer’s current task and environment to be efficient
[10].This insight emphasizes the need for adaptive learning
mechanisms within the IDE rather than alongside it.

3.5 IDE-Integrated Learning-Oriented
Tooling

Recent research has begun exploring IDE based program
analysis tools specifically designed for learning support. Such
tools facilitate to bridge the gap between development and
education by leveraging in editor context to provide relevant
feedback and explanations[14]. Moreover pedagogical
discussions stress about the importance of guiding learners
toward understanding rather than replacing cognitive effort to
automation[13].

Even though these approaches move closer to authentic
development workflows, they often lack a unified framework
that integrates structural code understanding, adaptive learning
logic and Al driven reasoning.

3.6 Research Gap and Motivation

The current state of literature displays visible fragmentation of
methods. Chatbot systems also offer accessibility but they lack
structural understanding. AST based systems offer structural
understanding but do not offer adaptivity. LLM-based systems
offer fluent explanation but they lack pedagogical orientation.
Adaptive learning systems function independently of real-
world development environments. Current systems offer no

43

integrated functionality of these methods within a single
framework. The need for a cohesive system centered on
mentorship because of this gap is what EZ Coder is poised to
fill by using AST code understanding, hybrid inference using
Al, and improves a users skills by offering personalized
mentorship on a constant, uninterrupted basis.

4 PROPOSED METHODOLOGY

Unlike standalone educational platforms the EZ Coder
framework is designed as a continuous, in situ mentorship
system that integrates learning and development within the
Integrated Development Environment (IDE). EZ Coder
operates in real time alongside the developer, forming a closed
loop system that continuously observes coding behavior and
delivers optimal feedback. At a high level, EZ Coder follows a
cyclic operational model in which developer actions trigger
analysis, inference and learning adaptation, which results in a
feedback that is contextualized to the current coding task.

4.1 System Architecture

EZ Coder adopts a layered architecture and is implemented as
an IDE integrated framework composed of four logical layers ,
as summarized in Table 1.

o Presentation Layer:

At the interface level, developer interactions such as code edits
and cursor movements are captured using the VS Code
Extension API. As this layer operates entirely within the IDE,
it eliminates the need of external context switching.

o Application Layer:

This layer establishes communication between the IDE and the
backend services. It handles event routing, enforces latency and
determines whether feedback should be generated through local
inference or escalated to cloud based reasoning.

o Service Layer:
This layer contains the Code Analysis Engine, the Hybrid Al

Inference Engine , the Adaptive Learning Engine which
together form the analytical core of the EZ Coder.

o Data Layer:

This layer stores user profiles, learning history and
configuration settings. Data is primarily stored locally using
lightweight storage formats to preserve privacy and offline
functionality.

4.2 Core Functional Cycle

EZ coder functions through a four stage functional cycle (see
Figure 1) that stays active throughout the developer’s coding
session. The stages of the cycle are as follows:

o Context Acquisitions and Event Capture:
The EZ coder Extension continuously monitors developer
activities and captures relevant events.

o Structural Code Analysis:

The captured code is parsed to generate Abstract Syntax Tree
(AST). ASTs encode hierarchical and semantic relationships
which enables identifying control flow structures.

o Hybrid AI Inference:
The Hybrid Al Inference Engine handles common patterns and
frequently observed issues using locally available lightweight

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

models for low latency feedback. More complex scenarios are
escalated to cloud based large language model.

Table 1: System Components and Technologies in EZ
Coder

Component

Description

Presentation Layer

Technology / Mechanism: VS
Code Extension API, WebView

[Functional Role: Captures
developer interactions (code edits,)
cursor events) and renders inling
feedback, adaptive learning
roadmaps, and code visualizations
within the IDE.

Code Analysis Engine

Technology / Mechanism: Tree-|
sitter, AST Parsers Functional
Role: Transforms source code
into Abstract Syntax Trees (ASTs)
to enable structural and semantic|
analysis of control flow, function|

boundaries, and conceptuall
constructs.
Local Inference Module Technology/Mechanism: ONNX

Runtime (Lightweight Models)
Functional Role: Performs low-
latency, privacy preserving analysis|
for common errors, style issues, and
frequently observed conceptual
mistakes in real time.

Cloud Inference Module

Technology / Mechanism: Large
Language Model (LLM) via Secure|
API Functional Role: Provides|
deep pedagogical explanations,
extended reasoning, and cross-
context analysis for complex o
low-confidence cases.

Adaptive Learning Engine

Technology / Mechanism:
Bayesian Inference, Probabilistic
Skill Model Functional Role:
Maintains learner proficiency
estimates, identifies conceptual
gaps, and dynamically reprioritizes
personalized learning roadmaps|
based on observed behavior.

Data Management Layer

Technology / Mechanism: Local
Storage (JSON-based Profiles)

Functional Role: Stores user
profiles, probabilistic skill models,
learning history, and configuration|
settings while preserving user
privacy and offline functionality.

o Feedback Synthesis and Learning Adaptation

The inference output is converted into actionable feedback. The
Adaptive Learning Engine simultaneously updates the user’s
skill model based on the observed behavior and completes the

feedback loop.

44

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Developer edits code in IDE

VS Code Extension captures
editor events

|

Parse source code into
Abstract Syntax Tree (AST)

|

Contextual data aggregation
(AST + editor state + user
profile)

Routine / frequent issues

|

Hybrid AI Inference Decision

Complex / low-confidence

Local Inference Engine
(low-latency analysis)

Cloud-Based LLM Analysis
(deep pedagogical reasoning)

S

o

Feedback Synthesis Engine
(explanations + guidance)

|

Feedback Modality Selection

Inline Concept-Aware
Suggestions
(in-editor)

Adaptive Learning Roadmap
Update

Code Structure Visualization
(AST-based)

\

l

Render feedback in IDE UI
(WebView & editor hints)

—

Figure 1: High-level operational workflow of EZ Coder illustrating IDE event capture, AST-based analysis, hybrid Al

inference, and multi-modal feedback delivery.

S IMPLEMENTATION

The EZ Coder system is implemented as a Visual Studio Code
extension using a modular and scalable technology stack. The
architecture is designed to support real-time user interaction,
Al-assisted code generation, and adaptive learning features
while carefully considering privacy, latency, and IDE
performance constraints. Each component is optimized to
operate efficiently within the Visual Studio Code environment
while enabling continuous learning and user feedback.

5.1 IDE Extension and UI Layer

EZ Coder is developed as a Visual Studio Code extension with
full TypeScript support. The Visual Studio Code Extension API
provides access to editor state, open files, cursor movement,
and user input, allowing EZ Coder to integrate seamlessly into

the developer’s workflow.

All user-facing components—including inline coding
assistance, adaptive learning roadmaps, and code structure
visualizations—are rendered using VS Code WebView Panels.
These panels enable rich, interactive content to be displayed
directly inside the IDE without requiring users to switch
contexts or leave the editor.

Event listeners and message-passing mechanisms are carefully
scoped and optimized to minimize performance overhead. This
design ensures responsive interactions even during complex
operations such as real-time Al inference and large-scale code
analysis.

45

5.2 Code Parsing and Structural Analysis
The Code Analysis Engine is the central part of EZ Coder’s
reasoning capability in that it is responsible for performing
source code structural analysis based on Abstract Syntax Trees
(ASTs). The source code obtained from the IDE is parsed based
on the Tree-sitter parsing framework. The framework supports
efficient parsing in various programming languages. The
obtained AST is considered the definitive structure
representation of a program. The system is able to identify the
syntactical structures, control structures, function bounds, and
conceptual structures by traversing the structure represented by
the AST.

The advantage provided by the use of the structure represented
by the Abstract Syntax Tree (AST) is the ability to detect
logical flaws, inefficiencies, and conceptual misinterpretations,
which cannot be detected when handling tokens or applying
rules.

5.3 Hybrid Al Inference Module

EZ Coder uses a hybrid artificial intelligence inference
approach which is intended to optimize system performance.
The hybrid approach is based on responsiveness, analytic
depth, and data privacy. The module is designed to function as
a two-layer system, comprising two highly interrelated and
complementary components, each specialized in a particular
class of tasks.

Local Inference Engine: The local inference engine employs
a light-weight, quantized machine learning model executed
directly in the user’s development environment using

the ONNX Runtime framework. It is involved in the analysis
of syntactic errors, typical logical fallacies, coding
conventions, and common conceptual misunderstandings. By
doing the inference task, the locally, EZ Coder provides
immediate feedback that has a low latency of is very important
in maintaining the developer workflow when actual coding is
being carried out.

Cloud-Based Analysis Engine: It is an intelligent gating
system that regulates the flow between the local and global
layers that activate the neurons to communicate cloud inference
engines. This process takes into consideration factors like
confidence scores, code complexity measures, dependency
breadth, and user interactions patterns in order to determine if

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

escalation in the cloud is necessary. The remote user can initiate
the cloud escalation process analysis only where necessary, it
directs towards achieving a balance between performance
efficiency, explanatory quality, and strict privacy constraints.

5.4 Code Visualization Module

The Code Visualization Module is responsible for program
comprehension by automatically creating graphical
representations of code structure in graphical abstractions, such
as control flow graphs or hierarchical tree diagrams, on demand
by traversing relevant portions of the AST. These diagrams are
projected as SVGs in VS Code Webview panes, allowing
interaction with the program structures by direct manipulation.
The visual connections between the code fragments and their
structure form a strong basis for increased insight into
execution flow and interdependence chains-especially for
complex or foreign code.

5.5 Adaptive Learning Engine

The Adaptive Learning Engine is charged with the
responsibility of managing learning paths for individuals as
well as monitoring the skill levels of developers. Every learner
is associated with a probabilistic skills model that captures
confidence levels relative to fundamental programming
concepts like control flow, asynchronous programming, and
modularity. This model is constantly updated by the engine on
the basis of the evidence that is obtained during the course of
coding. Repeated errors, misuse of constructs, and reliance on
the suggestions made by the engine are associated with the
constructs using the AST analysis. Bayesian inference is used
for updating the proficiency levels to reason about uncertainty
and prevent overcorrecting based on errors. On the basis of new
estimates of proficiency levels, the learn roadmap is
automatically reprioritized. Those concepts with proficiency
levels below the threshold levels and pertaining to the current
programming scenario a removed up, and mastered concepts
are deprioritized. Suggestions for learn paths are presented as
optional and scenario-relative suggestions inside the IDE of
lexical tokens:

c(t) ={r, 12,..., T}

At a specific time t, the system captures the code in the active
source file from IDE. This code is shown as a series of lexical
tokens:

46

User coding session starts

Monitor coding behavior
(errors, patterns, concept
usage)

l

Aggregate evidence over
time
(recurring mistakes &
successes)

l

Map evidence to
programming concepts
(AST-grounded)

l

Update probabilistic skill
model
(Bayesian inference)

l

Recompute concept

proficiency scores

l

Is the concept below

mastery threshold
and relevant to current
context?

Yes

Promote concept to learning W
o

frontier l

Deprioritize mastered

Reprioritize personalized

learning roadmap concepts
Suggest targeted learning v

resources

Continue passive monitorin
(tutorials, exercises, P 2

explanations)

User continues coding
session

Figure 2: Adaptive learning engine logic showing evidence
collection, Bayesian skill modeling, learning frontier
identification, and dynamic roadmap reprioritization.

6 FORMAL CONTROL ALGORITHm

To define the decision making mechanism and information
flow within the EZ Coder framework, this section introduces a
control algorithm. It explain how code context, structural
analysis, Al inference, and adaptive learning all of these work
together over time. This formulation offers both a definite and
a probable description of system behaviour. It also ensures
clarity, reproducibility, and a thorough analysis.

6.1 Frame Acquisition and Code

Representation
At a specific time t, the system captures the content of the active
source file from the IDE. The code is shown as a series

Lev

where each token belongs to the programming language
vocabulary V. This representation shows the instantaneous
coding state observed by the system.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

6.2 Abstract Syntax Tree Transformation
A deterministic parsing function P transforms the obtained
token sequence C(t) into an Abstract Syntax Tree (AST).

Gast = P(C(t))

Here is a directed graph made up of nodes N that represent
syntactic constructs such as loops, conditionals, and function
definitions. The edges E show hierarchical and semantic
relationships. The Abstract Syntax Tree acts as a structural
foundation for all further analysis.

Gast = (N, E)

6.3 Hybrid Inference and Issue Classification
The hybrid inference model combines local and cloud based
reasoning to identify potential issues from a predefined issue
space 1. A local inference model Mlocal processes the AST to
generate a set of candidate tokens:

Diocal = {(i, vi) | ix € I, yx € R}

Here, represents the confidence score tied up to issue . An
inference gateway function G defines final detection set Dfinal
using the confidence threshhold:

Drinal = {ix | (ix, V) € Diocal A vk = 9} U A

The cloud escalation function is defined as:

F=1

a, otherwise

Meciowd(Gast), if isComplex(Gasr

Here, M-cloud denotes a cloud-hosted large language model,
and isComplex(.) is a heuristic function which identifies
complex code contexts which requires deeper reasoning.

6.4 Personalized Feedback Generation
Each user has a profile:

U={s, g}

where s indicates estimated skill level and g outlines learning
goals. A feedback generation function F maps a detected issue
i Dfinal and user profile U to a context-aware feedback
message:

f=FGU)

This setup emphasizes different learning needs, such that:

F(i/ Ubeginnery= F(i, Uexpen)

This allows explanations and guidance to match the
developer’s skill level.

6.5 User Profile and Roadmap State

Transition
The user’s learning roadmap is created as a Directed Acyclic
Graph (DAG):

R=(T, L)

where T includes learning topics and L indicates prerequisite
relationships. At a time step t, which is a state transition
function updates the user profile and roadmap based on
detections:

47

(Ut+1, Re+1) = W(Uy Ry, Diinal(t))

The function creates a adaptive learning behavior by updating
skill estimates and by re-prioritizing learning topics. This
makes sure that the system grows with the developer’s
progress.

6.6 Algorithmic Summary

The formal control algorithm explains EZ Coder as a closed
loop system that always observes code context, applies
structural analysis, performs hybrid Al inference, generates
personalized feedback, and adjusts learning guidance according
to the user. This setup makes sure that mentorship decisions
depend on both clear program structure and learning models,
leading to consistent and understandable behavior.

7 EVALUATION METRICS
7.1 Accuracy

Accuracy describes the overall correctness of the system in
classifying source code for relevant issues and conceptual gaps.
It is defined as the ratio between correctly identified cases—
both true positives and true negatives—and the total instances
evaluated. This metric serves as a general indicator of the
reliability of the feedback generation mechanism of EZ Coder.

7.2 Precision

Precision measures the system’s strength in suppressing false
positives. Precision is calculated by the ratio of correctly
identified problems to the total number of problems pointed out
by the system. A high precision score reveals that the feedback
provided by EZ Coder is relevant and does not include any
intervention that may hamper cognitive load.

7.3 Recall

Recall calculates the system’s capacity to point out relevant
issues for which issues exist. It can be defined as the quotient
given by the proportion of correctly identified issues to the total
number of actual issues inside the code samples tested. A good
recall value proves the efficacy of the structural code analysis
through the Abstract Syntax Tree technique for discovering
conceptual errors.

7.4 Response Latency

“Response latency” refers to the amount of time that has passed
between a developer action (including code changes or saving
a file) and the return of feedback to the developer. The response
latency is measured independently for local inference and cloud
analysis in order to assess the response of the hybrid Al system
to these actions. ” Low latency” is essential in preserving the
developer workflow and enabling real-time mentoring.

7.5 Task Completion Time

Task completion time measures the extent to which the EZ
Coder system can affect the efficiency of the programming task
of the developers. Task completion time is defined as the
average time taken to achieve a particular programming task
with the help of theEZ Coder system and without using the EZ
Coder system.

7.6 Comparative Feedback Quality

Apart from quantitative measures, qualitative comparison is
made against traditional static linters and general-purpose
Alpowered code assistants. These comparisons include
assessment of contextual awareness of feedback comments,
quality of conceptual explanations, and adaptability to learner
ability. Findings of comparisons will be highlighted in the
analysis section that follows.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

8 SIMULATED RESULTS AND
ANALYSIS

A set of controlled experiments has been conducted in a
simulated development environment to evaluate the efficacy of
the proposed EZ Coder framework. Its evaluation focuses on
three aspects: validation of analytical correctness, system
responsiveness, and the pedagogical quality of feedback, but
not on long-term learning outcomes. This is appropriate for a
prototype-stage system and consistent with best practices
widely adopted for the early-stage evaluation of intelligent
educational tools.

8.1 Experimental Setup

All experiments were conducted on a regular development
workstation with EZ Coder enabled inside the Visual Studio
Code environment. A synthetic dataset was built using Python
and TypeScript as two of the commonly used languages by
novice and intermediate developers, with more than 500
curated code snippets. Each code snippet was developed to
reflect realistic programming contexts and deliberately inserted
with one or more problems. These problems range from
syntactic errors and API misuse to semantic and conceptual
misunderstandings, such as wrong loop termination, improper
asynchronous flow control, and unoptimal function
decomposition. A reference solution with pedagogical
annotation has been maintained for each snippet in the ground
truth validation process. The three approaches were applied to
the same dataset: EZ Coder, A classic static linter, A
generically Al-based coding assistant This setup allowed
consistent comparative analysis among the tools.

8.2 Quantitative Results

The results obtained from the quantitative analysis prove that
EZ Coder performs satisfactorily with respect to correctness
and response time in every dimension considered by the report.
The overall correctness reported by the system showed 93.5%
accuracy, precision rate of 95%, and recall ratio of 92%.
Results from response latency tests showed that there were
definite benefits derived from the hybrid Al architecture. The
local inference module had an average response latency of
roughly 180ms, which provided near real-time results during
active coding. A small-scale user study carried out on ten
developers showed a further 28% reduction on average task
completion time enabled by EZ Coder. This result indicates that
contextual cues and adaptive advice have the ability to optimize
the solution-seeking process without disrupting the flow of
developers

8.3 Comparative Evaluation

For purposes of comparison with regard to these outcomes, a
traditional static code linter and a general artificial intelligence-
based code assistant were used.

EZ Coder clearly outperformed both alternatives in regions
concerned with understanding, awareness, and adaptability.

8.4 Feedback Quality Analysis

As stated Furthermore, aside from quantitative results, there
was a qualitative difference in feedback style and quality. In
fact, the EZ Coder was able to clarify the coding constructs that
a certain programming construct was problematic in relation to,
as well as how a similar situation would be addressed. Contrary
to how common Al tools work today, which often place more
emphasis on corrected code rather than explanations. The
adaptive learning engine also helped in quality feedback by
pointing to persistent conceptual knowledge gaps instead of
viewing mistakes in isolation.

48

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

Table 2: Compact Comparison of EZ Coder and Existing Code Assistance Tools

Evaluation Aspect

Comparative Observation

Syntactic Error DetectionEZ Coder provides contextual explanations,

traditional linters offer strong rulebased|
detection, while generic Al assistants support
detection without structured feedback.

Logical Error Detection

EZ Coder performs AST-based structural
analysis, whereas traditional linters provide|
limited support and Al assistants offer partial,
prompt-dependent reasoning.

Conceptual Understanding

EZ Coder delivers explicit concept-level
guidance, which is absent in linters and
inconsistent in generic Al tools.

Feedback Context

EZ Coder maintains high awareness using code
structure and learner modeling; linters are rule-

Awareness bound, and Al assistants depend on prompt
quality.

Adaptivity to Learner Only EZ Coder supports dynamic, probabilistic

Skill learner skill modeling; other tools lack adaptivity.

Learning Roadmap

EZ Coder uniquely generates personalized and|
continuously updated learning roadmaps, which|

(Generation are unsupported by alternative tools.
Latency andEZ Coder ensures real-time feedback via locall
Responsiveness inference with selective deep analysis; linters are]

real-time, while Al assistants show cloud-
dependent latency.

Pedagogical Orientation

EZ Coder follows a mentorship-driven|
approach, traditional linters remain task focused,

and Al assistants prioritize solution delivery.

8.5 Limitations

Although the results are very promising, some limitations need
to be noted. The evaluation is carried out on simulated data and
a small user study. This affects the generalizability of the
results. Also, the current implementation of the system supports
only a restricted set of programming languages and only
predefined mappings of the concept are possible. This is
expected at the current stage of development and will be dealt
with in the future stages.

8.6 Summary of Results

The simulation analysis proves that EZ Coder strikes an
optimal balance between accuracy, response, and
understandability. With its hybrid Al approach, it is now
possible to achieve response in terms of feedback that is not
compromising on the analysis or depth of study, and at the same
time, the adaptive learning system makes sure that all
instructions are highly personalized and context-specific.

9 CONCLUSION AND FUTURE WORK

This paper presents EZ Coder, a hybrid Al-powered mentorship
framework that integrates conceptual learning support directly
within the IDEs. By combining AST based structural code
analysis, hybrid Al reasoning, and an adaptive learning engine
EZ coder addresses most crucial issues with current developer
tools: the absence of personalized mentorship within real world
programming workflows.

Unlike traditional Al-assisted coding tools that focus on task
completion, EZ coder emphasizes on conceptual understanding
and systematic skill development. The framework continuously
monitors developer behaviour, interprets code structure
semantically and offers users feedback that adjust according to
each user’s level. The hybrid Al setup allows for fast, privacy
friendly feedback through local processing while also using
cloud based LLM models for more thorough teaching
explanations. Simultaneously the adaptive learning engine
keeps probabilistic skill models and adjusts personalized
learning paths, ensuring that guidance always stay relevant as
the developer advances.

The evaluation of the prototype shows that EZ coder can
provide precise, context aware feedback with high precision
and recall. It also reduces task completion time and provides
explanations that deepen conceptual understanding compared
to regular traditional linters and generated Al coding assistants.
All these results support the idea of mentorship focused
intelligence can be integrated into IDE based development
environment without disrupting professional workflows.

Future improvements will mainly focus on broadening
language and paradigm support, refining probabilistic learning
models using more detailed behavioral signals like revision
patterns and time spent on tasks, and conducting large scale
studies to evaluate long term learning outcomes and knowledge
retention. On focusing more on collaboration and team based

49

development, better support for mentorship can be given in
shared coding spaces. Developments in explainable Al and
multidisciplinary interaction also provide room for more
chances to enhance transparency, engagement and trust in Al
driven educational tools.

In conclusion, EZ coder shows that Al assisted development
tools can always do more than just boost productivity. By
bringing together adaptive, teaching informed mentorship
within IDEs the framework suggests a practical way to merge
software development and education, paving way for more
effective and a better lasting learning experience for
developers.

10 REFERENCES

[1] S. Tipirneni, M. Zhu, and C. K. Reddy, “StructCoder:
Structure-aware transformer for code generation,” ACM
Transactions on Knowledge Discovery from Data, vol. 37,
no. 4, Jan. 2024.

[2] A. Frommgen et al., “Resolving code review comments
with machine learning,” in Proc. IEEE/ACM 46th
Int.Conf. Software Engineering: Software Engineering in
Practice (ICSE-SEIP), 2024, pp. 52-63.

[3] A. Mathieu, “Development of animated visualizations of
code execution using abstract syntax tree transformations
and web technologies,” Ph.D. dissertation, Hochschule
fu'r Angewandte Wissenschaften Hamburg, Hamburg,
Germany, 2023.

[4] Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, “CodeT5:
Identifier-aware unified pre-trained encoder— decoder
models for code understanding and generation,” in Proc.
Conf. Empirical Methods in Natural Language Processing
(EMNLP), 2021, pp. 8696-8708.

[5] Z. Guan et al., “ContextModule: Improving code
completion via repository-level contextual information,”
arXiv preprint arXiv:2412.08063, 2024.

[6] F. Gloeckle et al., “Better and faster large language
models via multi-token prediction,” arXiv preprint
arXiv:2404.19737, 2024.

[71 A. Vaswani et al., “Attention is all you need,” in Advances

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.71, January 2026

in Neural Information Processing Systems (NeurIPS), vol.
30,2017, pp. 6000-6010.

[8] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S.
H. Tan, “Automated repair of programs from large
language models,” in Proc. IEEE/ACM 45th Int. Conf.
Software Engineering (ICSE), Melbourne, Australia,
2023, pp. 1469-1481.

[97 A. N. Ramesh, J. K. Singh, and M. P. Satheesh,
“Alassisted programming education: Opportunities and
challenges,” IEEE Transactions on Learning
Technologies, vol. 16, no. 3, pp. 412425, 2023.

[10] S. Becker, F. Keller, and T. Fritz, “Reducing cognitive
load in software development with context-aware tool
support,” ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 4, 2023.

[11]J. Liu, Y. Wang, and S. H. Tan, “Understanding the
educational impact of large language models in
programming,” in Proc. [EEE/ACM Int. Conf. Software
Engineering (ICSE), 2024, pp. 987-998.

[12] K. T. Chen and P. Brusilovsky, “Adaptive learning paths
for programming education using probabilistic skill
models,” Computers & Education, vol. 195,2023.

[13] M. Mozannar, A. Kapoor, and S. Sontag, “Teaching with
Al: Pedagogical implications of generative models,”
Communications of the ACM, vol. 66, no. 8, pp. 64—
73,2023.

[14] A. Ziegler, J. C. Gerlach, and T. Ka'stner, “IDE-based
program analysis for learning-oriented developer tooling,”
Empirical Sofiware Engineering, vol. 29, 2024.

[15] Y. Zhang, Q. Li, and D. Lo, “Code representation learning
with abstract syntax trees: A survey,” ACM Computing
Surveys, vol. 56, no. 1, 2024.

[16] R. Karsa, L. Williams, and T. Zimmermann, ‘“Balancing
productivity and learning in Al-assisted software
development,” IEEE Software, vol. 42, no. 1, pp. 28-35,
2025.

50

