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ABSTRACT 
IDEs (Integrated Development Environments) have become 

efficient systems which support team work and debugging in 

coding. However, present IDEs do not help in understanding 

the core concepts over time and majorly focus on particular 

tasks. As a result of this, programmers, specifically the ones 

who are at a beginner or an intermediate level tend to have a 

messy learning experience, limited grasp over core concepts of 

programming and get distracted very often. This paper 

introduces EZ Coder, a hybrid AI-powered mentorship 

framework designed as a VS Code extension. EZ Coder changes 

the IDE into an interactive learning environment. Unlike the 

typical AI assistants that help as passive tools, EZ Coder works 

as an active mentor by adding three major features into the IDE 

directly. These features include a personalised roadmap 

generator which works as an adaptive learning engine, an in-

editor code visualizer to increase the understanding of the 

programs and an AI chatbot which gives context-aware feedback 

based on Abstract Syntax Tree (AST) analysis of code structure. 

An AI inference system is being used by the framework. 

Cloud-based large language models are combined with fast 

local models for real-time feedback generation and teaching 

insights. An ongoing, evidencebased learning cycle tracks the 

programmer’s behavior and updates skill levels using Bayesian 

reasoning. This cycle prioritizes relevant learning actions 

without disturbing the workflow. Evaluation of a prototype with 

programming tasks show that EZ Coder provides extremely 

accurate and relevant feedback, reduces task completion time 

and offers much more meaningful guidance than general AI 

assistants and standard linters. 

General Terms 
Artificial Intelligence, Software Engineering, Programming 

Education, Human-Computer Interaction, Intelligent Systems 

Keywords 
IDE-Integrated learning, Abstract Syntax Tree (AST), Adaptive 

Learning, AI-Powered Mentorship, Code Visualization, Hybrid 

AI Inference 

1 INTRODUCTION 
Integrated Development Environments (IDEs) have become 

complex platforms, fully supporting activities like debugging and 

version control. Nevertheless, most contemporary IDEs remain 

heavily focused on tasks associated with code execution and 

troubleshooting. Notably, this has left a pedagogical divide 

between code authoring and code-related concepts in 

programming, especially in programmers at a beginner and 

intermediate skill-levels. Programming is a cyclic process 

centered around concepts. Unfortunately, most coding processes 

nowadays involve programmers halting a related activity to 

search for answers in various sources, resulting in a shallow 

learning attitude related to a solution or a subject. 

At the same time, AI-powered developer assistants, such as smart 

code completion tools or large language model-driven chat 

interfaces, have further increased code-writing speed by 

minimizing syntactical mistakes in code. Nevertheless, these 

tools have been found to largely operate as passive helper tools, 

providing results to the users while not involving them in 

problem-solving or logical process of code implementation. 

Although promising studies are conducted in the areas of 

intelligent tutoring systems, adaptive learning systems and code 

visualizations have been seen to aid in better conceptualization, 

most of these tools currently exist as separate systems that are not 

well-integrated into current IDE-centric developer workflows. 

To address these challenges, we introduce EZ Coder, a hybrid 

AI-based mentoring system that combines coding, learning and 

conceptual understanding directly in an integrated development 

environment (IDE) via VS Code extension. Contrary to 

traditional assistants, EZ Coder acts as an active mentoring 

system using intelligent feedback that combines ASTbased 

feedback analysis, adaptive learning pathways modeled from 

continuous behavioral analysis and code visualization analysis 

directly in the coding environment to help programmers 

understand program flow. A hybrid inference architecture 

combines local low-latency inference and cloud-based inference 

with selective large language models for detailed conceptual 

learning analysis. The experimental results bring out that 

incorporating mentoring directly into the coding process can 

improve feedback accuracy and reduce cognitive overload and 

switching activity while enhancing productivity directly in the 

development process. 

2 PROBLEM STATEMENT 
Even though significant advancements have been made in 

Integrated Development Environments (IDEs) and AI assisted 

programming tools, a fundamental gap still exists between 

software development and conceptual learning. Current 

development workflows focus on task completion and offer 
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limited understanding of why certain solutions work or how 

programming concepts should be applied across diverse 

contexts. This poses a significant challenge for novice and 

intermediate developers, who are still forming foundational 

mental models of programming concepts. 

A major challenge arises as developers frequently perform 

context switching to consult external resources such as tutorials, 

video lectures and discussion forums which disrupts active 

coding sessions. This repeated context switching increases 

cognitive load, disrupts problem solving continuity and weakens 

the association between theory and practice. As a result, learning 

becomes reactive and solution driven rather than systematic and 

concept oriented. 

Moreover, the existing AI based coding assistants are not 

designed to adapt their explanations and code complexity based 

on learner proficiency. While they provide syntactically correct 

suggestions and rapid fixes, they lack personalization and fail to 

identify recurring conceptual gaps. 

Another limitation is the absence of active mentorship within 

professional development environments. Most tools function as 

passive assistants and rarely guide learners towards structured 

skill development or visualize code structures that supports 

deeper comprehension of control flow and program logic. 

3 LITERATURE SURVEY 
Research on improving programming education and developer 

productivity has enhanced in many related areas, including 

intelligent tutoring systems, AIassisted coding tools, Code 

visualization techniques, and adaptive learning platforms. All 

of these methods face particular challenges in leaning to 

program. However, they also have mostly developed 

separately, leading to scattered solutions that do not directly 

weave together educational support with professional 

development workflows. 

3.1 Intelligent Tutoring Systems in 

Programming Education 
Most of the early works done in programming education mainly 

focused on Intelligent Tutoring Systems (ITS), which focused 

to mimic one-on-one human tutoring system through rule-

based feedback, creating student models, and guided problem 

solving. These systems demonstrated clear improvements in 

learning outcomes by adjusting instruction based on student 

performance. Adaptive learning paths which use probabilistic 

skill models, have improved concept mastery and retention. 

This is especially true when Bayesian inference models learner 

uncertainly and progression [12]. 

However, ITS platforms usually operate in controlled settings 

like classrooms or learning portals because they do not 

integrate so well with many IDEs, hence their usefulness 

decreases when learners move into real world software 

development settings. 

3.2 Chatbot-Based and AI-Assisted 

Programming Tools 
The development of natural language processing has seen the 

rise of learning assistants that use chatbots as well as coding 

tools that use AI. Such tools provide explanations, code 

generation, as well as debugging help through chatbots. Current 

literature has identified the challenges as well as the 

opportunities available through the application of large 

language models in programming [9], [11]. 

Code completion tools that rely on AI to aid in programming 

are especially concerned with speeding up the programming 

process. Though these tools work very well in minimizing 

syntactic errors and code repetition, these tools usually aim to 

maximize plausibility instead of pedagogical order [16]. Thus, 

students may find the right answers to problems despite not 

understanding the concept. 

3.3 Structural Code Analysis and AST-

Based Techniques 
In view of the limitations associated with the analysis of plain 

text at the source code level, various research studies have 

examined the structure-aware representation of code using the 

paradigm of Abstract Syntax Trees (ASTs) in computer 

programming. Based on ASTs, it becomes easier to understand 

control flow and function boundaries in code. Code 

representation Learning Survey studies have highlighted ASTs 

as a fundamental construct for semantic analysis in code 

analysis [15]. 

There are also visual tools that rely on AST for improving the 

understanding of the code structure and flow. These visual tools 

and techniques that depend on AST have been found useful for 

beginner programmers because they aid in the understanding of 

the complex programming concepts. Most of the techniques 

that use AST are only tools that perform only analysis. They do 

not utilize learning capabilities. 

3.4 Adaptive Learning Systems and 

Personalized Guidance 
Adaptive learning systems aim to personalize content by 

modeling learner behavior and dynamically adjusting 

instruction. Bayesian knowledge tracing and probabilistic skill 

modeling are some of the techniques which have proven to be 

effective in identifying conceptual gaps and prioritizing 

necessary learning material[12]. However, these systems are 

implemented within online learning platforms and stay 

disconnected from active coding environments. 

Recent work highlights the need for reducing cognitive load 

through context aware tool support in software development, 

arguing that learning interventions must closely align with the 

developer’s current task and environment to be efficient 

[10].This insight emphasizes the need for adaptive learning 

mechanisms within the IDE rather than alongside it. 

3.5 IDE-Integrated Learning-Oriented 

Tooling 
Recent research has begun exploring IDE based program 

analysis tools specifically designed for learning support. Such 

tools facilitate to bridge the gap between development and 

education by leveraging in editor context to provide relevant 

feedback and explanations[14]. Moreover pedagogical 

discussions stress about the importance of guiding learners 

toward understanding rather than replacing cognitive effort to 

automation[13]. 

Even though these approaches move closer to authentic 

development workflows, they often lack a unified framework 

that integrates structural code understanding, adaptive learning 

logic and AI driven reasoning. 

3.6 Research Gap and Motivation 
The current state of literature displays visible fragmentation of 

methods. Chatbot systems also offer accessibility but they lack 

structural understanding. AST based systems offer structural 

understanding but do not offer adaptivity. LLM-based systems 

offer fluent explanation but they lack pedagogical orientation. 

Adaptive learning systems function independently of real-

world development environments. Current systems offer no 
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integrated functionality of these methods within a single 

framework. The need for a cohesive system centered on 

mentorship because of this gap is what EZ Coder is poised to 

fill by using AST code understanding, hybrid inference using 

AI, and improves a users skills by offering personalized 

mentorship on a constant, uninterrupted basis. 

4 PROPOSED METHODOLOGY 
Unlike standalone educational platforms the EZ Coder 

framework is designed as a continuous, in situ mentorship 

system that integrates learning and development within the 

Integrated Development Environment (IDE). EZ Coder 

operates in real time alongside the developer, forming a closed 

loop system that continuously observes coding behavior and 

delivers optimal feedback. At a high level, EZ Coder follows a 

cyclic operational model in which developer actions trigger 

analysis, inference and learning adaptation, which results in a 

feedback that is contextualized to the current coding task. 

4.1 System Architecture 
EZ Coder adopts a layered architecture and is implemented as 

an IDE integrated framework composed of four logical layers , 

as summarized in Table 1. 

◦ Presentation Layer: 

At the interface level, developer interactions such as code edits 

and cursor movements are captured using the VS Code 

Extension API. As this layer operates entirely within the IDE, 

it eliminates the need of external context switching. 

◦ Application Layer: 

This layer establishes communication between the IDE and the 

backend services. It handles event routing, enforces latency and 

determines whether feedback should be generated through local 

inference or escalated to cloud based reasoning. 

◦ Service Layer: 

This layer contains the Code Analysis Engine, the Hybrid AI 

Inference Engine , the Adaptive Learning Engine which 

together form the analytical core of the EZ Coder. 

◦ Data Layer: 

This layer stores user profiles, learning history and 

configuration settings. Data is primarily stored locally using 

lightweight storage formats to preserve privacy and offline 

functionality. 

4.2 Core Functional Cycle 
EZ coder functions through a four stage functional cycle (see 

Figure 1) that stays active throughout the developer’s coding 

session. The stages of the cycle are as follows: 

◦ Context Acquisitions and Event Capture: 

The EZ coder Extension continuously monitors developer 

activities and captures relevant events. 

◦ Structural Code Analysis: 

The captured code is parsed to generate Abstract Syntax Tree 

(AST). ASTs encode hierarchical and semantic relationships 

which enables identifying control flow structures. 

◦ Hybrid AI Inference: 

The Hybrid AI Inference Engine handles common patterns and 

frequently observed issues using locally available lightweight 

models for low latency feedback. More complex scenarios are 

escalated to cloud based large language model. 

Table 1: System Components and Technologies in EZ 

Coder 

Component Description 

Presentation Layer Technology / Mechanism: VS 

Code Extension API, WebView 

Functional Role: Captures 

developer interactions (code edits, 

cursor events) and renders inline 

feedback, adaptive learning 

roadmaps, and code visualizations 

within the IDE. 

Code Analysis Engine Technology / Mechanism: Tree-

sitter, AST Parsers Functional 

Role: Transforms source code 

into Abstract Syntax Trees (ASTs) 

to enable structural and semantic 

analysis of control flow, function 

boundaries, and conceptual 

constructs. 

Local Inference Module Technology/Mechanism: ONNX 

Runtime (Lightweight Models) 

Functional Role: Performs low-

latency, privacy preserving  analysis 

for common errors, style issues, and 

frequently observed conceptual 

mistakes in real time. 

Cloud Inference Module Technology / Mechanism: Large 

Language Model (LLM) via Secure 

API Functional Role: Provides 

deep pedagogical explanations, 

extended reasoning, and cross-

context analysis for complex or 

low-confidence cases. 

Adaptive Learning Engine Technology / Mechanism: 

Bayesian Inference, Probabilistic 

Skill Model Functional Role: 

Maintains learner proficiency 

estimates, identifies conceptual 

gaps, and dynamically reprioritizes 

personalized learning roadmaps 

based on observed behavior. 

Data Management Layer Technology / Mechanism: Local 

Storage (JSON-based Profiles) 

Functional Role: Stores user 

profiles, probabilistic skill models, 

learning history, and configuration 

settings while preserving user 

privacy and offline functionality. 

◦ Feedback Synthesis and Learning Adaptation 

The inference output is converted into actionable feedback. The 

Adaptive Learning Engine simultaneously updates the user’s 

skill model based on the observed behavior and completes the 

feedback loop. 
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Figure 1: High-level operational workflow of EZ Coder illustrating IDE event capture, AST-based analysis, hybrid AI 

inference, and multi-modal feedback delivery. 

5 IMPLEMENTATION 
The EZ Coder system is implemented as a Visual Studio Code 

extension using a modular and scalable technology stack. The 

architecture is designed to support real-time user interaction, 

AI-assisted code generation, and adaptive learning features 

while carefully considering privacy, latency, and IDE 

performance constraints. Each component is optimized to 

operate efficiently within the Visual Studio Code environment 

while enabling continuous learning and user feedback. 

5.1 IDE Extension and UI Layer 
EZ Coder is developed as a Visual Studio Code extension with 

full TypeScript support. The Visual Studio Code Extension API 

provides access to editor state, open files, cursor movement, 

and user input, allowing EZ Coder to integrate seamlessly into 

the developer’s workflow. 

All user-facing components—including inline coding 

assistance, adaptive learning roadmaps, and code structure 

visualizations—are rendered using VS Code WebView Panels. 

These panels enable rich, interactive content to be displayed 

directly inside the IDE without requiring users to switch 

contexts or leave the editor. 

Event listeners and message-passing mechanisms are carefully 

scoped and optimized to minimize performance overhead. This 

design ensures responsive interactions even during complex 

operations such as real-time AI inference and large-scale code 

analysis. 
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5.2 Code Parsing and Structural Analysis 
The Code Analysis Engine is the central part of EZ Coder’s 

reasoning capability in that it is responsible for performing 

source code structural analysis based on Abstract Syntax Trees 

(ASTs). The source code obtained from the IDE is parsed based 

on the Tree-sitter parsing framework. The framework supports 

efficient parsing in various programming languages. The 

obtained AST is considered the definitive structure 

representation of a program. The system is able to identify the 

syntactical structures, control structures, function bounds, and 

conceptual structures by traversing the structure represented by 

the AST. 

The advantage provided by the use of the structure represented 

by the Abstract Syntax Tree (AST) is the ability to detect 

logical flaws, inefficiencies, and conceptual misinterpretations, 

which cannot be detected when handling tokens or applying 

rules. 

5.3 Hybrid AI Inference Module 
EZ Coder uses a hybrid artificial intelligence inference 

approach which is intended to optimize system performance. 

The hybrid approach is based on responsiveness, analytic 

depth, and data privacy. The module is designed to function as 

a two-layer system, comprising two highly interrelated and 

complementary components, each specialized in a particular 

class of tasks. 

Local Inference Engine: The local inference engine employs 

a light-weight, quantized machine learning model executed 

directly in the user’s development environment using 

the ONNX Runtime framework. It is involved in the analysis 

of syntactic errors, typical logical fallacies, coding 

conventions, and common conceptual misunderstandings. By 

doing the inference task, the locally, EZ Coder provides 

immediate feedback that has a low latency of is very important 

in maintaining the developer workflow when actual coding is 

being carried out. 

Cloud-Based Analysis Engine: It is an intelligent gating 

system that regulates the flow between the local and global 

layers that activate the neurons to communicate cloud inference 

engines. This process takes into consideration factors like 

confidence scores, code complexity measures, dependency 

breadth, and user interactions patterns in order to determine if 

escalation in the cloud is necessary. The remote user can initiate 

the cloud escalation process analysis only where necessary, it 

directs towards achieving a balance between performance 

efficiency, explanatory quality, and strict privacy constraints. 

5.4 Code Visualization Module 
The Code Visualization Module is responsible for program 

comprehension by automatically creating graphical 

representations of code structure in graphical abstractions, such 

as control flow graphs or hierarchical tree diagrams, on demand 

by traversing relevant portions of the AST. These diagrams are 

projected as SVGs in VS Code Webview panes, allowing 

interaction with the program structures by direct manipulation. 

The visual connections between the code fragments and their 

structure form a strong basis for increased insight into 

execution flow and interdependence chains-especially for 

complex or foreign code. 

5.5 Adaptive Learning Engine 
The Adaptive Learning Engine is charged with the 

responsibility of managing learning paths for individuals as 

well as monitoring the skill levels of developers. Every learner 

is associated with a probabilistic skills model that captures 

confidence levels relative to fundamental programming 

concepts like control flow, asynchronous programming, and 

modularity. This model is constantly updated by the engine on 

the basis of the evidence that is obtained during the course of 

coding. Repeated errors, misuse of constructs, and reliance on 

the suggestions made by the engine are associated with the 

constructs using the AST analysis. Bayesian inference is used 

for updating the proficiency levels to reason about uncertainty 

and prevent overcorrecting based on errors. On the basis of new 

estimates of proficiency levels, the learn roadmap is 

automatically reprioritized. Those concepts with proficiency 

levels below the threshold levels and pertaining to the current 

programming scenario a removed up, and mastered concepts 

are deprioritized. Suggestions for learn paths are presented as 

optional and scenario-relative suggestions inside the IDE of 

lexical tokens: 

C(t) = {τ1, τ2, . . . , τn} 

At a specific time t, the system captures the code in the active 

source file from IDE. This code is shown as a series of lexical 

tokens: 
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Figure 2: Adaptive learning engine logic showing evidence 

collection, Bayesian skill modeling, learning frontier 

identification, and dynamic roadmap reprioritization. 

6 FORMAL CONTROL ALGORITHm 
To define the decision making mechanism and information 

flow within the EZ Coder framework, this section introduces a 

control algorithm. It explain how code context, structural 

analysis, AI inference, and adaptive learning all of these work 

together over time. This formulation offers both a definite and 

a probable description of system behaviour. It also ensures 

clarity, reproducibility, and a thorough analysis. 

6.1 Frame Acquisition and Code 

Representation 
At a specific time t, the system captures the content of the active 

source file from the IDE. The code is shown as a series 

τi ∈ V 

where each token belongs to the programming language 

vocabulary V. This representation shows the instantaneous 

coding state observed by the system. 

 

6.2 Abstract Syntax Tree Transformation 
A deterministic parsing function P transforms the obtained 

token sequence C(t) into an Abstract Syntax Tree (AST). 

GAST = P (C(t)) 

Here is a directed graph made up of nodes N that represent 

syntactic constructs such as loops, conditionals, and function 

definitions. The edges E show hierarchical and semantic 

relationships. The Abstract Syntax Tree acts as a structural 

foundation for all further analysis. 

GAST = (N, E) 

6.3 Hybrid Inference and Issue Classification 
The hybrid inference model combines local and cloud based 

reasoning to identify potential issues from a predefined issue 

space I. A local inference model Mlocal processes the AST to 

generate a set of candidate tokens: 

Dlocal = {(ik, γk) | ik ∈ I, γk ∈ R} 

Here, represents the confidence score tied up to issue . An 

inference gateway function G defines final detection set Dfinal 

using the confidence threshhold: 

Dfinal = { ik | (ik, γk) ∈ Dlocal ∧ γk ≥ θ } ∪ ∆ 

The cloud escalation function is defined as: 

∆ = 
Mcloud(GAST ),  if isComplex(GAST 

) = 1 

∅, otherwise 

Here, M-cloud denotes a cloud-hosted large language model, 

and isComplex(.) is a heuristic function which identifies 

complex code contexts which requires deeper reasoning. 

6.4 Personalized Feedback Generation 
Each user has a profile: 

U = {s, g} 

where s indicates estimated skill level and g outlines learning 

goals. A feedback generation function F maps a detected issue 

i Dfinal and user profile U to a context-aware feedback 

message: 

f = F (i, U ) 

This setup emphasizes different learning needs, such that: 

F (i, Ubeginner) ̸= F (i, Uexpert) 

This allows explanations and guidance to match the 

developer’s skill level. 

6.5 User Profile and Roadmap State 

Transition 
The user’s learning roadmap is created as a Directed Acyclic 

Graph (DAG): 

R = (T, L) 

where T includes learning topics and L indicates prerequisite 

relationships. At a time step t, which is a state transition 

function updates the user profile and roadmap based on 

detections: 
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(Ut+1, Rt+1) = Ψ(Ut, Rt, Dfinal(t)) 

The function creates a adaptive learning behavior by updating 

skill estimates and by re-prioritizing learning topics. This 

makes sure that the system grows with the developer’s 

progress. 

6.6 Algorithmic Summary 
The formal control algorithm explains EZ Coder as a closed 

loop system that always observes code context, applies 

structural analysis, performs hybrid AI inference, generates 

personalized feedback, and adjusts learning guidance according 

to the user. This setup makes sure that mentorship decisions 

depend on both clear program structure and learning models, 

leading to consistent and understandable behavior. 

7 EVALUATION METRICS 

7.1 Accuracy 
Accuracy describes the overall correctness of the system in 

classifying source code for relevant issues and conceptual gaps. 

It is defined as the ratio between correctly identified cases—

both true positives and true negatives—and the total instances 

evaluated. This metric serves as a general indicator of the 

reliability of the feedback generation mechanism of EZ Coder. 

7.2 Precision 
Precision measures the system’s strength in suppressing false 

positives. Precision is calculated by the ratio of correctly 

identified problems to the total number of problems pointed out 

by the system. A high precision score reveals that the feedback 

provided by EZ Coder is relevant and does not include any 

intervention that may hamper cognitive load. 

7.3 Recall 
Recall calculates the system’s capacity to point out relevant 

issues for which issues exist. It can be defined as the quotient 

given by the proportion of correctly identified issues to the total 

number of actual issues inside the code samples tested. A good 

recall value proves the efficacy of the structural code analysis 

through the Abstract Syntax Tree technique for discovering 

conceptual errors. 

7.4 Response Latency 
“Response latency” refers to the amount of time that has passed 

between a developer action (including code changes or saving 

a file) and the return of feedback to the developer. The response 

latency is measured independently for local inference and cloud 

analysis in order to assess the response of the hybrid AI system 

to these actions. ” Low latency” is essential in preserving the 

developer workflow and enabling real-time mentoring. 

7.5 Task Completion Time 
Task completion time measures the extent to which the EZ 

Coder system can affect the efficiency of the programming task 

of the developers. Task completion time is defined as the 

average time taken to achieve a particular programming task 

with the help of theEZ Coder system and without using the EZ 

Coder system. 

7.6 Comparative Feedback Quality 
Apart from quantitative measures, qualitative comparison is 

made against traditional static linters and general-purpose 

AIpowered code assistants. These comparisons include 

assessment of contextual awareness of feedback comments, 

quality of conceptual explanations, and adaptability to learner 

ability. Findings of comparisons will be highlighted in the 

analysis section that follows. 

8 SIMULATED RESULTS AND 

ANALYSIS 
A set of controlled experiments has been conducted in a 

simulated development environment to evaluate the efficacy of 

the proposed EZ Coder framework. Its evaluation focuses on 

three aspects: validation of analytical correctness, system 

responsiveness, and the pedagogical quality of feedback, but 

not on long-term learning outcomes. This is appropriate for a 

prototype-stage system and consistent with best practices 

widely adopted for the early-stage evaluation of intelligent 

educational tools. 

8.1 Experimental Setup 
All experiments were conducted on a regular development 

workstation with EZ Coder enabled inside the Visual Studio 

Code environment. A synthetic dataset was built using Python 

and TypeScript as two of the commonly used languages by 

novice and intermediate developers, with more than 500 

curated code snippets. Each code snippet was developed to 

reflect realistic programming contexts and deliberately inserted 

with one or more problems. These problems range from 

syntactic errors and API misuse to semantic and conceptual 

misunderstandings, such as wrong loop termination, improper 

asynchronous flow control, and unoptimal function 

decomposition. A reference solution with pedagogical 

annotation has been maintained for each snippet in the ground 

truth validation process. The three approaches were applied to 

the same dataset: EZ Coder, A classic static linter, A 

generically AI-based coding assistant This setup allowed 

consistent comparative analysis among the tools. 

8.2 Quantitative Results 
The results obtained from the quantitative analysis prove that 

EZ Coder performs satisfactorily with respect to correctness 

and response time in every dimension considered by the report. 

The overall correctness reported by the system showed 93.5% 

accuracy, precision rate of 95%, and recall ratio of 92%. 

Results from response latency tests showed that there were 

definite benefits derived from the hybrid AI architecture. The 

local inference module had an average response latency of 

roughly 180ms, which provided near real-time results during 

active coding. A small-scale user study carried out on ten 

developers showed a further 28% reduction on average task 

completion time enabled by EZ Coder. This result indicates that 

contextual cues and adaptive advice have the ability to optimize 

the solution-seeking process without disrupting the flow of 

developers 

8.3 Comparative Evaluation 
For purposes of comparison with regard to these outcomes, a 

traditional static code linter and a general artificial intelligence-

based code assistant were used. 

EZ Coder clearly outperformed both alternatives in regions 

concerned with understanding, awareness, and adaptability. 

8.4 Feedback Quality Analysis 
As stated Furthermore, aside from quantitative results, there 

was a qualitative difference in feedback style and quality. In 

fact, the EZ Coder was able to clarify the coding constructs that 

a certain programming construct was problematic in relation to, 

as well as how a similar situation would be addressed. Contrary 

to how common AI tools work today, which often place more 

emphasis on corrected code rather than explanations. The 

adaptive learning engine also helped in quality feedback by 

pointing to persistent conceptual knowledge gaps instead of 

viewing mistakes in isolation. 
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Table 2: Compact Comparison of EZ Coder and Existing Code Assistance Tools 

Evaluation Aspect Comparative Observation 

Syntactic Error Detection EZ Coder provides contextual explanations, 

traditional linters offer strong rulebased 

detection, while generic AI assistants support 

detection without structured feedback. 

Logical Error Detection EZ Coder performs AST-based structural 

analysis, whereas traditional linters provide 

limited support and AI assistants offer partial, 

prompt-dependent reasoning. 

Conceptual Understanding EZ Coder delivers explicit concept-level 

guidance, which is absent in linters and 

inconsistent in generic AI tools. 

Feedback Context 

Awareness 

EZ Coder maintains high awareness using code 

structure and learner modeling; linters are rule-

bound, and AI assistants depend on prompt 

quality. 

Adaptivity to Learner 

Skill 

Only EZ Coder supports dynamic, probabilistic 

learner skill modeling; other tools lack adaptivity. 

Learning Roadmap 

Generation 

EZ Coder uniquely generates personalized and 

continuously updated learning roadmaps, which 

are unsupported by alternative tools. 

Latency and 

Responsiveness 

EZ Coder ensures real-time feedback via local 

inference with selective deep analysis; linters are 

real-time, while AI assistants show cloud-

dependent latency. 

Pedagogical Orientation EZ Coder follows a mentorship-driven 

approach, traditional linters remain task focused, 

and AI assistants prioritize solution delivery. 

8.5 Limitations 
Although the results are very promising, some limitations need 

to be noted. The evaluation is carried out on simulated data and 

a small user study. This affects the generalizability of the 

results. Also, the current implementation of the system supports 

only a restricted set of programming languages and only 

predefined mappings of the concept are possible. This is 

expected at the current stage of development and will be dealt 

with in the future stages. 

8.6 Summary of Results 
The simulation analysis proves that EZ Coder strikes an 

optimal balance between accuracy, response, and 

understandability. With its hybrid AI approach, it is now 

possible to achieve response in terms of feedback that is not 

compromising on the analysis or depth of study, and at the same 

time, the adaptive learning system makes sure that all 

instructions are highly personalized and context-specific. 

9 CONCLUSION AND FUTURE WORK 
This paper presents EZ Coder, a hybrid AI-powered mentorship 

framework that integrates conceptual learning support directly 

within the IDEs. By combining AST based structural code 

analysis, hybrid AI reasoning, and an adaptive learning engine 

EZ coder addresses most crucial issues with current developer 

tools: the absence of personalized mentorship within real world 

programming workflows. 

Unlike traditional AI-assisted coding tools that focus on task 

completion, EZ coder emphasizes on conceptual understanding 

and systematic skill development. The framework continuously 

monitors developer behaviour, interprets code structure 

semantically and offers users feedback that adjust according to 

each user’s level. The hybrid AI setup allows for fast, privacy 

friendly feedback through local processing while also using 

cloud based LLM models for more thorough teaching 

explanations. Simultaneously the adaptive learning engine 

keeps probabilistic skill models and adjusts personalized 

learning paths, ensuring that guidance always stay relevant as 

the developer advances. 

The evaluation of the prototype shows that EZ coder can 

provide precise, context aware feedback with high precision 

and recall. It also reduces task completion time and provides 

explanations that deepen conceptual understanding compared 

to regular traditional linters and generated AI coding assistants. 

All these results support the idea of mentorship focused 

intelligence can be integrated into IDE based development 

environment without disrupting professional workflows. 

Future improvements will mainly focus on broadening 

language and paradigm support, refining probabilistic learning 

models using more detailed behavioral signals like revision 

patterns and time spent on tasks, and conducting large scale 

studies to evaluate long term learning outcomes and knowledge 

retention. On focusing more on collaboration and team based 
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development, better support for mentorship can be given in 

shared coding spaces. Developments in explainable AI and 

multidisciplinary interaction also provide room for more 

chances to enhance transparency, engagement and trust in AI 

driven educational tools. 

In conclusion, EZ coder shows that AI assisted development 

tools can always do more than just boost productivity. By 

bringing together adaptive, teaching informed mentorship 

within IDEs the framework suggests a practical way to merge 

software development and education, paving way for more 

effective and a better lasting learning experience for 

developers. 
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