
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

42

EZ Coder: A Hybrid AI-Powered Mentorship Framework

for Integrated Developer Education

Arun K.H.
Assistant Professor

Dept. of Information Science and
Eng.

Acharya Institute of Technology
Bengaluru, India

Rakshith Gowda M.
Dept. of Information Science and

Eng.
Acharya Institute of Technology

Bengaluru, India

Thushar Raj S.G.
Dept. of Information Science and

Eng.
Acharya Institute of Technology

Bengaluru, India

Vishal M. Bharadwaj
Dept. of Information Science and Eng.

Acharya Institute of Technology Bengaluru, India

Vishnu M.T.
Dept. of Information Science and Eng.

Acharya Institute of Technology Bengaluru, India

ABSTRACT
IDEs (Integrated Development Environments) have become

efficient systems which support team work and debugging in

coding. However, present IDEs do not help in understanding

the core concepts over time and majorly focus on particular

tasks. As a result of this, programmers, specifically the ones

who are at a beginner or an intermediate level tend to have a

messy learning experience, limited grasp over core concepts of

programming and get distracted very often. This paper

introduces EZ Coder, a hybrid AI-powered mentorship

framework designed as a VS Code extension. EZ Coder changes

the IDE into an interactive learning environment. Unlike the

typical AI assistants that help as passive tools, EZ Coder works

as an active mentor by adding three major features into the IDE

directly. These features include a personalised roadmap

generator which works as an adaptive learning engine, an in-

editor code visualizer to increase the understanding of the

programs and an AI chatbot which gives context-aware feedback

based on Abstract Syntax Tree (AST) analysis of code structure.

An AI inference system is being used by the framework.

Cloud-based large language models are combined with fast

local models for real-time feedback generation and teaching

insights. An ongoing, evidencebased learning cycle tracks the

programmer’s behavior and updates skill levels using Bayesian

reasoning. This cycle prioritizes relevant learning actions

without disturbing the workflow. Evaluation of a prototype with

programming tasks show that EZ Coder provides extremely

accurate and relevant feedback, reduces task completion time

and offers much more meaningful guidance than general AI

assistants and standard linters.

General Terms
Artificial Intelligence, Software Engineering, Programming

Education, Human-Computer Interaction, Intelligent Systems

Keywords
IDE-Integrated learning, Abstract Syntax Tree (AST), Adaptive

Learning, AI-Powered Mentorship, Code Visualization, Hybrid

AI Inference

1 INTRODUCTION
Integrated Development Environments (IDEs) have become

complex platforms, fully supporting activities like debugging and

version control. Nevertheless, most contemporary IDEs remain

heavily focused on tasks associated with code execution and

troubleshooting. Notably, this has left a pedagogical divide

between code authoring and code-related concepts in

programming, especially in programmers at a beginner and

intermediate skill-levels. Programming is a cyclic process

centered around concepts. Unfortunately, most coding processes

nowadays involve programmers halting a related activity to

search for answers in various sources, resulting in a shallow

learning attitude related to a solution or a subject.

At the same time, AI-powered developer assistants, such as smart

code completion tools or large language model-driven chat

interfaces, have further increased code-writing speed by

minimizing syntactical mistakes in code. Nevertheless, these

tools have been found to largely operate as passive helper tools,

providing results to the users while not involving them in

problem-solving or logical process of code implementation.

Although promising studies are conducted in the areas of

intelligent tutoring systems, adaptive learning systems and code

visualizations have been seen to aid in better conceptualization,

most of these tools currently exist as separate systems that are not

well-integrated into current IDE-centric developer workflows.

To address these challenges, we introduce EZ Coder, a hybrid

AI-based mentoring system that combines coding, learning and

conceptual understanding directly in an integrated development

environment (IDE) via VS Code extension. Contrary to

traditional assistants, EZ Coder acts as an active mentoring

system using intelligent feedback that combines ASTbased

feedback analysis, adaptive learning pathways modeled from

continuous behavioral analysis and code visualization analysis

directly in the coding environment to help programmers

understand program flow. A hybrid inference architecture

combines local low-latency inference and cloud-based inference

with selective large language models for detailed conceptual

learning analysis. The experimental results bring out that

incorporating mentoring directly into the coding process can

improve feedback accuracy and reduce cognitive overload and

switching activity while enhancing productivity directly in the

development process.

2 PROBLEM STATEMENT
Even though significant advancements have been made in

Integrated Development Environments (IDEs) and AI assisted

programming tools, a fundamental gap still exists between

software development and conceptual learning. Current

development workflows focus on task completion and offer

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

43

limited understanding of why certain solutions work or how

programming concepts should be applied across diverse

contexts. This poses a significant challenge for novice and

intermediate developers, who are still forming foundational

mental models of programming concepts.

A major challenge arises as developers frequently perform

context switching to consult external resources such as tutorials,

video lectures and discussion forums which disrupts active

coding sessions. This repeated context switching increases

cognitive load, disrupts problem solving continuity and weakens

the association between theory and practice. As a result, learning

becomes reactive and solution driven rather than systematic and

concept oriented.

Moreover, the existing AI based coding assistants are not

designed to adapt their explanations and code complexity based

on learner proficiency. While they provide syntactically correct

suggestions and rapid fixes, they lack personalization and fail to

identify recurring conceptual gaps.

Another limitation is the absence of active mentorship within

professional development environments. Most tools function as

passive assistants and rarely guide learners towards structured

skill development or visualize code structures that supports

deeper comprehension of control flow and program logic.

3 LITERATURE SURVEY
Research on improving programming education and developer

productivity has enhanced in many related areas, including

intelligent tutoring systems, AIassisted coding tools, Code

visualization techniques, and adaptive learning platforms. All

of these methods face particular challenges in leaning to

program. However, they also have mostly developed

separately, leading to scattered solutions that do not directly

weave together educational support with professional

development workflows.

3.1 Intelligent Tutoring Systems in

Programming Education
Most of the early works done in programming education mainly

focused on Intelligent Tutoring Systems (ITS), which focused

to mimic one-on-one human tutoring system through rule-

based feedback, creating student models, and guided problem

solving. These systems demonstrated clear improvements in

learning outcomes by adjusting instruction based on student

performance. Adaptive learning paths which use probabilistic

skill models, have improved concept mastery and retention.

This is especially true when Bayesian inference models learner

uncertainly and progression [12].

However, ITS platforms usually operate in controlled settings

like classrooms or learning portals because they do not

integrate so well with many IDEs, hence their usefulness

decreases when learners move into real world software

development settings.

3.2 Chatbot-Based and AI-Assisted

Programming Tools
The development of natural language processing has seen the

rise of learning assistants that use chatbots as well as coding

tools that use AI. Such tools provide explanations, code

generation, as well as debugging help through chatbots. Current

literature has identified the challenges as well as the

opportunities available through the application of large

language models in programming [9], [11].

Code completion tools that rely on AI to aid in programming

are especially concerned with speeding up the programming

process. Though these tools work very well in minimizing

syntactic errors and code repetition, these tools usually aim to

maximize plausibility instead of pedagogical order [16]. Thus,

students may find the right answers to problems despite not

understanding the concept.

3.3 Structural Code Analysis and AST-

Based Techniques
In view of the limitations associated with the analysis of plain

text at the source code level, various research studies have

examined the structure-aware representation of code using the

paradigm of Abstract Syntax Trees (ASTs) in computer

programming. Based on ASTs, it becomes easier to understand

control flow and function boundaries in code. Code

representation Learning Survey studies have highlighted ASTs

as a fundamental construct for semantic analysis in code

analysis [15].

There are also visual tools that rely on AST for improving the

understanding of the code structure and flow. These visual tools

and techniques that depend on AST have been found useful for

beginner programmers because they aid in the understanding of

the complex programming concepts. Most of the techniques

that use AST are only tools that perform only analysis. They do

not utilize learning capabilities.

3.4 Adaptive Learning Systems and

Personalized Guidance
Adaptive learning systems aim to personalize content by

modeling learner behavior and dynamically adjusting

instruction. Bayesian knowledge tracing and probabilistic skill

modeling are some of the techniques which have proven to be

effective in identifying conceptual gaps and prioritizing

necessary learning material[12]. However, these systems are

implemented within online learning platforms and stay

disconnected from active coding environments.

Recent work highlights the need for reducing cognitive load

through context aware tool support in software development,

arguing that learning interventions must closely align with the

developer’s current task and environment to be efficient

[10].This insight emphasizes the need for adaptive learning

mechanisms within the IDE rather than alongside it.

3.5 IDE-Integrated Learning-Oriented

Tooling
Recent research has begun exploring IDE based program

analysis tools specifically designed for learning support. Such

tools facilitate to bridge the gap between development and

education by leveraging in editor context to provide relevant

feedback and explanations[14]. Moreover pedagogical

discussions stress about the importance of guiding learners

toward understanding rather than replacing cognitive effort to

automation[13].

Even though these approaches move closer to authentic

development workflows, they often lack a unified framework

that integrates structural code understanding, adaptive learning

logic and AI driven reasoning.

3.6 Research Gap and Motivation
The current state of literature displays visible fragmentation of

methods. Chatbot systems also offer accessibility but they lack

structural understanding. AST based systems offer structural

understanding but do not offer adaptivity. LLM-based systems

offer fluent explanation but they lack pedagogical orientation.

Adaptive learning systems function independently of real-

world development environments. Current systems offer no

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

44

integrated functionality of these methods within a single

framework. The need for a cohesive system centered on

mentorship because of this gap is what EZ Coder is poised to

fill by using AST code understanding, hybrid inference using

AI, and improves a users skills by offering personalized

mentorship on a constant, uninterrupted basis.

4 PROPOSED METHODOLOGY
Unlike standalone educational platforms the EZ Coder

framework is designed as a continuous, in situ mentorship

system that integrates learning and development within the

Integrated Development Environment (IDE). EZ Coder

operates in real time alongside the developer, forming a closed

loop system that continuously observes coding behavior and

delivers optimal feedback. At a high level, EZ Coder follows a

cyclic operational model in which developer actions trigger

analysis, inference and learning adaptation, which results in a

feedback that is contextualized to the current coding task.

4.1 System Architecture
EZ Coder adopts a layered architecture and is implemented as

an IDE integrated framework composed of four logical layers ,

as summarized in Table 1.

◦ Presentation Layer:

At the interface level, developer interactions such as code edits

and cursor movements are captured using the VS Code

Extension API. As this layer operates entirely within the IDE,

it eliminates the need of external context switching.

◦ Application Layer:

This layer establishes communication between the IDE and the

backend services. It handles event routing, enforces latency and

determines whether feedback should be generated through local

inference or escalated to cloud based reasoning.

◦ Service Layer:

This layer contains the Code Analysis Engine, the Hybrid AI

Inference Engine , the Adaptive Learning Engine which

together form the analytical core of the EZ Coder.

◦ Data Layer:

This layer stores user profiles, learning history and

configuration settings. Data is primarily stored locally using

lightweight storage formats to preserve privacy and offline

functionality.

4.2 Core Functional Cycle
EZ coder functions through a four stage functional cycle (see

Figure 1) that stays active throughout the developer’s coding

session. The stages of the cycle are as follows:

◦ Context Acquisitions and Event Capture:

The EZ coder Extension continuously monitors developer

activities and captures relevant events.

◦ Structural Code Analysis:

The captured code is parsed to generate Abstract Syntax Tree

(AST). ASTs encode hierarchical and semantic relationships

which enables identifying control flow structures.

◦ Hybrid AI Inference:

The Hybrid AI Inference Engine handles common patterns and

frequently observed issues using locally available lightweight

models for low latency feedback. More complex scenarios are

escalated to cloud based large language model.

Table 1: System Components and Technologies in EZ

Coder

Component Description

Presentation Layer Technology / Mechanism: VS

Code Extension API, WebView

Functional Role: Captures

developer interactions (code edits,

cursor events) and renders inline

feedback, adaptive learning

roadmaps, and code visualizations

within the IDE.

Code Analysis Engine Technology / Mechanism: Tree-

sitter, AST Parsers Functional

Role: Transforms source code

into Abstract Syntax Trees (ASTs)

to enable structural and semantic

analysis of control flow, function

boundaries, and conceptual

constructs.

Local Inference Module Technology/Mechanism: ONNX

Runtime (Lightweight Models)

Functional Role: Performs low-

latency, privacy preserving analysis

for common errors, style issues, and

frequently observed conceptual

mistakes in real time.

Cloud Inference Module Technology / Mechanism: Large

Language Model (LLM) via Secure

API Functional Role: Provides

deep pedagogical explanations,

extended reasoning, and cross-

context analysis for complex or

low-confidence cases.

Adaptive Learning Engine Technology / Mechanism:

Bayesian Inference, Probabilistic

Skill Model Functional Role:

Maintains learner proficiency

estimates, identifies conceptual

gaps, and dynamically reprioritizes

personalized learning roadmaps

based on observed behavior.

Data Management Layer Technology / Mechanism: Local

Storage (JSON-based Profiles)

Functional Role: Stores user

profiles, probabilistic skill models,

learning history, and configuration

settings while preserving user

privacy and offline functionality.

◦ Feedback Synthesis and Learning Adaptation

The inference output is converted into actionable feedback. The

Adaptive Learning Engine simultaneously updates the user’s

skill model based on the observed behavior and completes the

feedback loop.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

45

Figure 1: High-level operational workflow of EZ Coder illustrating IDE event capture, AST-based analysis, hybrid AI

inference, and multi-modal feedback delivery.

5 IMPLEMENTATION
The EZ Coder system is implemented as a Visual Studio Code

extension using a modular and scalable technology stack. The

architecture is designed to support real-time user interaction,

AI-assisted code generation, and adaptive learning features

while carefully considering privacy, latency, and IDE

performance constraints. Each component is optimized to

operate efficiently within the Visual Studio Code environment

while enabling continuous learning and user feedback.

5.1 IDE Extension and UI Layer
EZ Coder is developed as a Visual Studio Code extension with

full TypeScript support. The Visual Studio Code Extension API

provides access to editor state, open files, cursor movement,

and user input, allowing EZ Coder to integrate seamlessly into

the developer’s workflow.

All user-facing components—including inline coding

assistance, adaptive learning roadmaps, and code structure

visualizations—are rendered using VS Code WebView Panels.

These panels enable rich, interactive content to be displayed

directly inside the IDE without requiring users to switch

contexts or leave the editor.

Event listeners and message-passing mechanisms are carefully

scoped and optimized to minimize performance overhead. This

design ensures responsive interactions even during complex

operations such as real-time AI inference and large-scale code

analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

46

5.2 Code Parsing and Structural Analysis
The Code Analysis Engine is the central part of EZ Coder’s

reasoning capability in that it is responsible for performing

source code structural analysis based on Abstract Syntax Trees

(ASTs). The source code obtained from the IDE is parsed based

on the Tree-sitter parsing framework. The framework supports

efficient parsing in various programming languages. The

obtained AST is considered the definitive structure

representation of a program. The system is able to identify the

syntactical structures, control structures, function bounds, and

conceptual structures by traversing the structure represented by

the AST.

The advantage provided by the use of the structure represented

by the Abstract Syntax Tree (AST) is the ability to detect

logical flaws, inefficiencies, and conceptual misinterpretations,

which cannot be detected when handling tokens or applying

rules.

5.3 Hybrid AI Inference Module
EZ Coder uses a hybrid artificial intelligence inference

approach which is intended to optimize system performance.

The hybrid approach is based on responsiveness, analytic

depth, and data privacy. The module is designed to function as

a two-layer system, comprising two highly interrelated and

complementary components, each specialized in a particular

class of tasks.

Local Inference Engine: The local inference engine employs

a light-weight, quantized machine learning model executed

directly in the user’s development environment using

the ONNX Runtime framework. It is involved in the analysis

of syntactic errors, typical logical fallacies, coding

conventions, and common conceptual misunderstandings. By

doing the inference task, the locally, EZ Coder provides

immediate feedback that has a low latency of is very important

in maintaining the developer workflow when actual coding is

being carried out.

Cloud-Based Analysis Engine: It is an intelligent gating

system that regulates the flow between the local and global

layers that activate the neurons to communicate cloud inference

engines. This process takes into consideration factors like

confidence scores, code complexity measures, dependency

breadth, and user interactions patterns in order to determine if

escalation in the cloud is necessary. The remote user can initiate

the cloud escalation process analysis only where necessary, it

directs towards achieving a balance between performance

efficiency, explanatory quality, and strict privacy constraints.

5.4 Code Visualization Module
The Code Visualization Module is responsible for program

comprehension by automatically creating graphical

representations of code structure in graphical abstractions, such

as control flow graphs or hierarchical tree diagrams, on demand

by traversing relevant portions of the AST. These diagrams are

projected as SVGs in VS Code Webview panes, allowing

interaction with the program structures by direct manipulation.

The visual connections between the code fragments and their

structure form a strong basis for increased insight into

execution flow and interdependence chains-especially for

complex or foreign code.

5.5 Adaptive Learning Engine
The Adaptive Learning Engine is charged with the

responsibility of managing learning paths for individuals as

well as monitoring the skill levels of developers. Every learner

is associated with a probabilistic skills model that captures

confidence levels relative to fundamental programming

concepts like control flow, asynchronous programming, and

modularity. This model is constantly updated by the engine on

the basis of the evidence that is obtained during the course of

coding. Repeated errors, misuse of constructs, and reliance on

the suggestions made by the engine are associated with the

constructs using the AST analysis. Bayesian inference is used

for updating the proficiency levels to reason about uncertainty

and prevent overcorrecting based on errors. On the basis of new

estimates of proficiency levels, the learn roadmap is

automatically reprioritized. Those concepts with proficiency

levels below the threshold levels and pertaining to the current

programming scenario a removed up, and mastered concepts

are deprioritized. Suggestions for learn paths are presented as

optional and scenario-relative suggestions inside the IDE of

lexical tokens:

C(t) = {τ1, τ2, . . . , τn}

At a specific time t, the system captures the code in the active

source file from IDE. This code is shown as a series of lexical

tokens:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

47

Figure 2: Adaptive learning engine logic showing evidence

collection, Bayesian skill modeling, learning frontier

identification, and dynamic roadmap reprioritization.

6 FORMAL CONTROL ALGORITHm
To define the decision making mechanism and information

flow within the EZ Coder framework, this section introduces a

control algorithm. It explain how code context, structural

analysis, AI inference, and adaptive learning all of these work

together over time. This formulation offers both a definite and

a probable description of system behaviour. It also ensures

clarity, reproducibility, and a thorough analysis.

6.1 Frame Acquisition and Code

Representation
At a specific time t, the system captures the content of the active

source file from the IDE. The code is shown as a series

τi ∈ V

where each token belongs to the programming language

vocabulary V. This representation shows the instantaneous

coding state observed by the system.

6.2 Abstract Syntax Tree Transformation
A deterministic parsing function P transforms the obtained

token sequence C(t) into an Abstract Syntax Tree (AST).

GAST = P (C(t))

Here is a directed graph made up of nodes N that represent

syntactic constructs such as loops, conditionals, and function

definitions. The edges E show hierarchical and semantic

relationships. The Abstract Syntax Tree acts as a structural

foundation for all further analysis.

GAST = (N, E)

6.3 Hybrid Inference and Issue Classification
The hybrid inference model combines local and cloud based

reasoning to identify potential issues from a predefined issue

space I. A local inference model Mlocal processes the AST to

generate a set of candidate tokens:

Dlocal = {(ik, γk) | ik ∈ I, γk ∈ R}

Here, represents the confidence score tied up to issue . An

inference gateway function G defines final detection set Dfinal

using the confidence threshhold:

Dfinal = { ik | (ik, γk) ∈ Dlocal ∧ γk ≥ θ } ∪ ∆

The cloud escalation function is defined as:

∆ =
Mcloud(GAST), if isComplex(GAST

) = 1

∅, otherwise

Here, M-cloud denotes a cloud-hosted large language model,

and isComplex(.) is a heuristic function which identifies

complex code contexts which requires deeper reasoning.

6.4 Personalized Feedback Generation
Each user has a profile:

U = {s, g}

where s indicates estimated skill level and g outlines learning

goals. A feedback generation function F maps a detected issue

i Dfinal and user profile U to a context-aware feedback

message:

f = F (i, U)

This setup emphasizes different learning needs, such that:

F (i, Ubeginner) ̸= F (i, Uexpert)

This allows explanations and guidance to match the

developer’s skill level.

6.5 User Profile and Roadmap State

Transition
The user’s learning roadmap is created as a Directed Acyclic

Graph (DAG):

R = (T, L)

where T includes learning topics and L indicates prerequisite

relationships. At a time step t, which is a state transition

function updates the user profile and roadmap based on

detections:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

48

(Ut+1, Rt+1) = Ψ(Ut, Rt, Dfinal(t))

The function creates a adaptive learning behavior by updating

skill estimates and by re-prioritizing learning topics. This

makes sure that the system grows with the developer’s

progress.

6.6 Algorithmic Summary
The formal control algorithm explains EZ Coder as a closed

loop system that always observes code context, applies

structural analysis, performs hybrid AI inference, generates

personalized feedback, and adjusts learning guidance according

to the user. This setup makes sure that mentorship decisions

depend on both clear program structure and learning models,

leading to consistent and understandable behavior.

7 EVALUATION METRICS

7.1 Accuracy
Accuracy describes the overall correctness of the system in

classifying source code for relevant issues and conceptual gaps.

It is defined as the ratio between correctly identified cases—

both true positives and true negatives—and the total instances

evaluated. This metric serves as a general indicator of the

reliability of the feedback generation mechanism of EZ Coder.

7.2 Precision
Precision measures the system’s strength in suppressing false

positives. Precision is calculated by the ratio of correctly

identified problems to the total number of problems pointed out

by the system. A high precision score reveals that the feedback

provided by EZ Coder is relevant and does not include any

intervention that may hamper cognitive load.

7.3 Recall
Recall calculates the system’s capacity to point out relevant

issues for which issues exist. It can be defined as the quotient

given by the proportion of correctly identified issues to the total

number of actual issues inside the code samples tested. A good

recall value proves the efficacy of the structural code analysis

through the Abstract Syntax Tree technique for discovering

conceptual errors.

7.4 Response Latency
“Response latency” refers to the amount of time that has passed

between a developer action (including code changes or saving

a file) and the return of feedback to the developer. The response

latency is measured independently for local inference and cloud

analysis in order to assess the response of the hybrid AI system

to these actions. ” Low latency” is essential in preserving the

developer workflow and enabling real-time mentoring.

7.5 Task Completion Time
Task completion time measures the extent to which the EZ

Coder system can affect the efficiency of the programming task

of the developers. Task completion time is defined as the

average time taken to achieve a particular programming task

with the help of theEZ Coder system and without using the EZ

Coder system.

7.6 Comparative Feedback Quality
Apart from quantitative measures, qualitative comparison is

made against traditional static linters and general-purpose

AIpowered code assistants. These comparisons include

assessment of contextual awareness of feedback comments,

quality of conceptual explanations, and adaptability to learner

ability. Findings of comparisons will be highlighted in the

analysis section that follows.

8 SIMULATED RESULTS AND

ANALYSIS
A set of controlled experiments has been conducted in a

simulated development environment to evaluate the efficacy of

the proposed EZ Coder framework. Its evaluation focuses on

three aspects: validation of analytical correctness, system

responsiveness, and the pedagogical quality of feedback, but

not on long-term learning outcomes. This is appropriate for a

prototype-stage system and consistent with best practices

widely adopted for the early-stage evaluation of intelligent

educational tools.

8.1 Experimental Setup
All experiments were conducted on a regular development

workstation with EZ Coder enabled inside the Visual Studio

Code environment. A synthetic dataset was built using Python

and TypeScript as two of the commonly used languages by

novice and intermediate developers, with more than 500

curated code snippets. Each code snippet was developed to

reflect realistic programming contexts and deliberately inserted

with one or more problems. These problems range from

syntactic errors and API misuse to semantic and conceptual

misunderstandings, such as wrong loop termination, improper

asynchronous flow control, and unoptimal function

decomposition. A reference solution with pedagogical

annotation has been maintained for each snippet in the ground

truth validation process. The three approaches were applied to

the same dataset: EZ Coder, A classic static linter, A

generically AI-based coding assistant This setup allowed

consistent comparative analysis among the tools.

8.2 Quantitative Results
The results obtained from the quantitative analysis prove that

EZ Coder performs satisfactorily with respect to correctness

and response time in every dimension considered by the report.

The overall correctness reported by the system showed 93.5%

accuracy, precision rate of 95%, and recall ratio of 92%.

Results from response latency tests showed that there were

definite benefits derived from the hybrid AI architecture. The

local inference module had an average response latency of

roughly 180ms, which provided near real-time results during

active coding. A small-scale user study carried out on ten

developers showed a further 28% reduction on average task

completion time enabled by EZ Coder. This result indicates that

contextual cues and adaptive advice have the ability to optimize

the solution-seeking process without disrupting the flow of

developers

8.3 Comparative Evaluation
For purposes of comparison with regard to these outcomes, a

traditional static code linter and a general artificial intelligence-

based code assistant were used.

EZ Coder clearly outperformed both alternatives in regions

concerned with understanding, awareness, and adaptability.

8.4 Feedback Quality Analysis
As stated Furthermore, aside from quantitative results, there

was a qualitative difference in feedback style and quality. In

fact, the EZ Coder was able to clarify the coding constructs that

a certain programming construct was problematic in relation to,

as well as how a similar situation would be addressed. Contrary

to how common AI tools work today, which often place more

emphasis on corrected code rather than explanations. The

adaptive learning engine also helped in quality feedback by

pointing to persistent conceptual knowledge gaps instead of

viewing mistakes in isolation.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

49

Table 2: Compact Comparison of EZ Coder and Existing Code Assistance Tools

Evaluation Aspect Comparative Observation

Syntactic Error Detection EZ Coder provides contextual explanations,

traditional linters offer strong rulebased

detection, while generic AI assistants support

detection without structured feedback.

Logical Error Detection EZ Coder performs AST-based structural

analysis, whereas traditional linters provide

limited support and AI assistants offer partial,

prompt-dependent reasoning.

Conceptual Understanding EZ Coder delivers explicit concept-level

guidance, which is absent in linters and

inconsistent in generic AI tools.

Feedback Context

Awareness

EZ Coder maintains high awareness using code

structure and learner modeling; linters are rule-

bound, and AI assistants depend on prompt

quality.

Adaptivity to Learner

Skill

Only EZ Coder supports dynamic, probabilistic

learner skill modeling; other tools lack adaptivity.

Learning Roadmap

Generation

EZ Coder uniquely generates personalized and

continuously updated learning roadmaps, which

are unsupported by alternative tools.

Latency and

Responsiveness

EZ Coder ensures real-time feedback via local

inference with selective deep analysis; linters are

real-time, while AI assistants show cloud-

dependent latency.

Pedagogical Orientation EZ Coder follows a mentorship-driven

approach, traditional linters remain task focused,

and AI assistants prioritize solution delivery.

8.5 Limitations
Although the results are very promising, some limitations need

to be noted. The evaluation is carried out on simulated data and

a small user study. This affects the generalizability of the

results. Also, the current implementation of the system supports

only a restricted set of programming languages and only

predefined mappings of the concept are possible. This is

expected at the current stage of development and will be dealt

with in the future stages.

8.6 Summary of Results
The simulation analysis proves that EZ Coder strikes an

optimal balance between accuracy, response, and

understandability. With its hybrid AI approach, it is now

possible to achieve response in terms of feedback that is not

compromising on the analysis or depth of study, and at the same

time, the adaptive learning system makes sure that all

instructions are highly personalized and context-specific.

9 CONCLUSION AND FUTURE WORK
This paper presents EZ Coder, a hybrid AI-powered mentorship

framework that integrates conceptual learning support directly

within the IDEs. By combining AST based structural code

analysis, hybrid AI reasoning, and an adaptive learning engine

EZ coder addresses most crucial issues with current developer

tools: the absence of personalized mentorship within real world

programming workflows.

Unlike traditional AI-assisted coding tools that focus on task

completion, EZ coder emphasizes on conceptual understanding

and systematic skill development. The framework continuously

monitors developer behaviour, interprets code structure

semantically and offers users feedback that adjust according to

each user’s level. The hybrid AI setup allows for fast, privacy

friendly feedback through local processing while also using

cloud based LLM models for more thorough teaching

explanations. Simultaneously the adaptive learning engine

keeps probabilistic skill models and adjusts personalized

learning paths, ensuring that guidance always stay relevant as

the developer advances.

The evaluation of the prototype shows that EZ coder can

provide precise, context aware feedback with high precision

and recall. It also reduces task completion time and provides

explanations that deepen conceptual understanding compared

to regular traditional linters and generated AI coding assistants.

All these results support the idea of mentorship focused

intelligence can be integrated into IDE based development

environment without disrupting professional workflows.

Future improvements will mainly focus on broadening

language and paradigm support, refining probabilistic learning

models using more detailed behavioral signals like revision

patterns and time spent on tasks, and conducting large scale

studies to evaluate long term learning outcomes and knowledge

retention. On focusing more on collaboration and team based

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.71, January 2026

50

development, better support for mentorship can be given in

shared coding spaces. Developments in explainable AI and

multidisciplinary interaction also provide room for more

chances to enhance transparency, engagement and trust in AI

driven educational tools.

In conclusion, EZ coder shows that AI assisted development

tools can always do more than just boost productivity. By

bringing together adaptive, teaching informed mentorship

within IDEs the framework suggests a practical way to merge

software development and education, paving way for more

effective and a better lasting learning experience for

developers.

10 REFERENCES
[1] S. Tipirneni, M. Zhu, and C. K. Reddy, “StructCoder:

Structure-aware transformer for code generation,” ACM

Transactions on Knowledge Discovery from Data, vol. 37,

no. 4, Jan. 2024.

[2] A. Frommgen et al., “Resolving code review comments

with machine learning,” in Proc. IEEE/ACM 46th

Int.Conf. Software Engineering: Software Engineering in

Practice (ICSE-SEIP), 2024, pp. 52–63.

[3] A. Mathieu, “Development of animated visualizations of

code execution using abstract syntax tree transformations

and web technologies,” Ph.D. dissertation, Hochschule

fu¨r Angewandte Wissenschaften Hamburg, Hamburg,

Germany, 2023.

[4] Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, “CodeT5:

Identifier-aware unified pre-trained encoder– decoder

models for code understanding and generation,” in Proc.

Conf. Empirical Methods in Natural Language Processing

(EMNLP), 2021, pp. 8696–8708.

[5] Z. Guan et al., “ContextModule: Improving code

completion via repository-level contextual information,”

arXiv preprint arXiv:2412.08063, 2024.

[6] F. Gloeckle et al., “Better and faster large language

models via multi-token prediction,” arXiv preprint

arXiv:2404.19737, 2024.

[7] A. Vaswani et al., “Attention is all you need,” in Advances

in Neural Information Processing Systems (NeurIPS), vol.

30, 2017, pp. 6000–6010.

[8] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S.

H. Tan, “Automated repair of programs from large

language models,” in Proc. IEEE/ACM 45th Int. Conf.

Software Engineering (ICSE), Melbourne, Australia,

2023, pp. 1469–1481.

[9] A. N. Ramesh, J. K. Singh, and M. P. Satheesh,

“AIassisted programming education: Opportunities and

challenges,” IEEE Transactions on Learning

Technologies, vol. 16, no. 3, pp. 412–425, 2023.

[10] S. Becker, F. Keller, and T. Fritz, “Reducing cognitive

load in software development with context-aware tool

support,” ACM Transactions on Software Engineering

and Methodology, vol. 32, no. 4, 2023.

[11] J. Liu, Y. Wang, and S. H. Tan, “Understanding the

educational impact of large language models in

programming,” in Proc. IEEE/ACM Int. Conf. Software

Engineering (ICSE), 2024, pp. 987–998.

[12] K. T. Chen and P. Brusilovsky, “Adaptive learning paths

for programming education using probabilistic skill

models,” Computers & Education, vol. 195, 2023.

[13] M. Mozannar, A. Kapoor, and S. Sontag, “Teaching with

AI: Pedagogical implications of generative models,”

Communications of the ACM, vol. 66, no. 8, pp. 64–

73, 2023.

[14] A. Ziegler, J. C. Gerlach, and T. Ka¨stner, “IDE-based

program analysis for learning-oriented developer tooling,”

Empirical Software Engineering, vol. 29, 2024.

[15] Y. Zhang, Q. Li, and D. Lo, “Code representation learning

with abstract syntax trees: A survey,” ACM Computing

Surveys, vol. 56, no. 1, 2024.

[16] R. Karsa, L. Williams, and T. Zimmermann, “Balancing

productivity and learning in AI-assisted software

development,” IEEE Software, vol. 42, no. 1, pp. 28–35,

2025.

IJCATM : www.ijcaonline.org

