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ABSTRACT 
In the ever-evolving world of deep learning, creating 

photorealistic photo editing poses is challenging, especially 

when modifying features such as hairstyles in photos. The 

system leverages advanced generative adversarial networks 

(GANs) to solve problems such as misalignment, texturing, and 

lighting conflicts. A dedicated color adjustment module 

controls hair color change even under different lighting 

conditions, while a refinement module restores fine details for 

highly realistic final images. Recent solutions have shown 

significant improvements in both speed and accuracy. These 

advances are paving the way for more implementation in areas 

like virtual experiments, interactive tournaments, and design 

tools. In this survey, we examine the most advanced deep 

learning techniques for processing real-life images, focusing on 

their ability to handle complex transformations like hair 

editing. 
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1. INTRODUCTION 

In past few years, the implementation of Generative 

Adversarial Networks (GANs) in image generation, 

particularly in facial editing, has significantly advanced. One 

area that has drawn attention is hairstyle transfer, where the 

goal is to manipulate hair attributes—such as shape, color, and 

texture—while maintaining the identity and background of the 

object in the image. This task is not only challenging due to the 

complexity of hair structure but also because it requires careful 

handling of various factors like pose differences between 

images. These challenges are particularly relevant in fields like 

virtual reality, gaming, and photo editing applications. 

Two primary approaches have emerged in solving this 

problem: optimization-based methods, which provide high-

quality results but are often slow, and encoder-based methods, 

which are faster but tend to compromise on output quality. 

Despite progress, limitations remain, especially when dealing 

with large pose differences. To overcome these challenges, this 

paper Bintroduces an innovative technique called HairFast, 

which merges the strengths of existing methods. HairFast 

enables highresolution hair transfers while improving both 

speed and output quality, making it highly effective for real-

time applications. By incorporating new techniques for pose 

adaptation, shape alignment, and color transfer, HairFast offers 

a comprehensive solution to the problem of hairstyle transfer.

 

Fig.1: Outline of Image-to-image transfer system 

2. LITERATURE REVIEW 
1. Generative Adversarial Networks 
The evolution of GANs (Generative Adversarial Networks) is a 

journey of deep learning that is redefining image generation. 

Introduced by Ian Goodfellow in 2014, GANs start with a 

simple yet influentialthought of pitting two neural networks (a 

generator and a discriminator) against each other to create real 

images from loud noises. 

2.GAN-based Unsupervised Image Translation 
Liu & Tuzel (2016) developed Coupled GANs for 

unsupervised image-to-image interpretation, aligning 

distributions between different domains.Huang & Belongie 

(2017) introduced a multimodal image-to-image translation 

method that learns mappings between domains without paired 

training data.Mejjati et al. (2018) proposed an attention-guided 

unsupervised image translation framework that focuses on 

salient regions for better feature adaptation. 

3.Conditional GANs (Mirza & Osindero, 2014) 
Conditional GANs extend the GAN framework by 
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conditioning the generation process on additional information, 

such as class labels or input images. This technique is 

foundational for many image-to-image translation tasks, 

allowing for targeted transformations based on specific input 

conditions. 

 

Table 1: Dataset Survey 

DATASETUSED PAPERTITLE 

CelebA  Generating Synthetic Images for Health care - 13 

 Hair Fast GAN: Realistic and Robust Hair Transfer - 1 

 A Study of State-of-the-Art GAN-Based Strategy - 16 

 High-Resolution Image Generation and Semantic Manipulation - 29 

 Geometry Structure Preserving Based GAN - 38 

 Training Transformers for High-Resolution Image Integration - 17 

 Style and Pose Control for Image Synthesis of Humans - 20 

 Spatial Fusion GAN for Image Synthesis - 14 

COCO  Multimodal Image Synthesis and Editing - 3 

 Stack GAN++: Realistic Image Synthesis - 10 

 Photo-Realistic Image Synthesis from Text Descriptions - 22 

 Scaling up GANs for Text-to-Image Synthesis - 14 

FFHQ(Flicker-Faces-HQ)  Efficient Hair Style Transfer with GANs - 4 

 Rethinking and Improving Robustness of Image Style Transfer - 6 

 Synthesis of Facial Image using Conditional GAN – 35 

ImageNet  Inverting Adversarially Robust Networks - 7 

 Generating Synthetic Images for Healthcare - 13 

 A Survey of State-of-the-Art GAN-Based Approaches - 16 

CUB  A Robust Pose Transformational GAN for Pose Guided - 21 

 Adversarial Text-to-Image Synthesis - 31 

 Photo-Realistic Image Synthesis from Text Descriptions - 22 

 

 

4.CycleGAN (Zhu et al., 2017) 
CycleGAN introduced a framework for unpaired image-to-

image translation, allowing the transformation of images from 

one domain to another without requiring paired examples. The 

method employs two GANs to seek mappings between two 

fields, using cycle consistency loss to asure that the translated 

images can be converted back to their original form. 

5. Pix2Pix (Isola et al., 2017) 

Pix2Pix is a conditional GAN framework designed for paired 

image-to-image translation. It uses a U-Net architecture as the 

generator and a PatchGAN discriminator to ensure that the 

generated images are realistic at the patch level.  

6. StyleGAN (Karras et al., 2019) 

StyleGAN introduced a style-based generator architecture that 

allows for fine control over the generated images' styles at 

different levels of detail.  

7. Hair Fast GAN (Nikolaev et al., 2021) 

Hair Fast GAN specifically addresses the challenge of hair 

transfer in image synthesis. By utilizing a fast encoder-based 

approach, it enables efficient and realistic hair transfer 

between images, showcasing a specialized application of 

image-to-image translation techniques. 

 

Fig.2 Evolution of GANS & Applications 

A. FID Score 
For cases involving generated images, the FID (Fréchet 

Inception Distance) score has become famous. FID evaluates 

the quality of a set of constructed images by comparing their 

distribution to that of real images. It analyzes how similar the 

generated image ―distribution‖ is to the real one using high-

level features extracted from a pre-trained neural network. 

This method is commonly used with GANs (Generative 

Adversarial Networks) and similar models to judge how 

realistic the generated images appear as a whole. Lower FID 

scores indicate that the generated photos are closer to real 

images in terms of their overall style and contentdistribution. 

FID=|µr-µg|2+Tr(∑r+∑g-2√∑r∑g) 
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B. LPIPS Score 
The LPIPS (Learned Perceptual Image Patch Similarity) score 

is a metric that mainly aims on perceptual similarity, aiming 

to measure how similar images ―feel‖ from a human 

perspective. Unlike conventional pixel-based methods, LPIPS 

compares the high-level features of images by leveraging deep 

neural networks, meaning it can identify if two images have 

similar textures and structural characteristics. This score is 

particularly valued in image generation tasks (such as 

enhancing resolution or transforming images) where the 

―visual quality‖ perceived by humans is paramount. A lower 

LPIPS score indicates a closer match in perceptual terms, 

often corresponding well with human judgments of similarity. 

LPIPS(I,K)=
1

𝐿
∑ ∣ 𝜙𝑙(𝐼 − 𝜙𝑙(𝐾 𝐿

𝑖=1 |2  

Table 1.Fid Score 

Paper Title FID Score Methodology Research Gap 

HairFastGAN: Realistic and 

Robust Hair Transfer[1] 
13.7 StyleGANFS,E4E 

Encoder 

Slow optimization, pose misalignment, quality issues in fast 

methods 

Multimodal Image 

Synthesis and Editing   [3] 

8.5 GANs, Diffusion Models,  NeRF Computational complexity, alignment challenges 

across modalities 

Efficient Hair Style Transfer 

with GANs   [4] 

12.1 GAN, AdaIN High computational costs, real-time limitations 

Inverting Adversarially Robust 

Networks    [7] 

15.3 Adversarially Robust Encoder, 

GAN Inversion 

High computational cost, complexity in feature inversion 

A Survey of Image 

Synthesis Methods   [9] 

11.4 GANs, VAEs, CG-based Methods Balancing synthetic data realism, domain fidelity 

End-to-End Learning for HDR 

Image Synthesis [12] 
7.9 Multi-ExposureHDR, 

Recurrent Networks 

Ghosting in HDR, correlation complexity between HDR 

stacks and images 

Generating Synthetic 

Images for Healthcare   [13] 

9.8 Pix2Pix, CycleGAN, 

StyleGAN 

GAN instability, mode collapse, diversity issues 

SpatialFusionGANfor Image 

Synthesis    [14] 
11.0 Spatial Fusion GAN(SF- GAN) Limited exploration in complex scenes, challenges with 

high-resolution outputs 

 

Table 2. LPIPS Score 

 

        Paper Title LPIPS Score Methodology Research Gap 

HairFastGAN: Realistic And 

Robust Hair Transfer[1] 

0.23 StyleGANFS,E4E Encoder Slow optimization, pose misalignment, quality issues in fast 

methods 

Multimodal Image 

Synthesisand Editing        

[3] 

0.19 GANs, Diffusion Models, NeRF Computational complexity, alignment challenges across 

modalities 

Efficient Hair Style 

Transfer with GANs     [4] 

0.21 GAN, AdaIN High computational costs, real-time limitations 

Inverting Adversarially 

Robust Networks     [7] 

0.28 Adversarially Robust Encoder, 

GAN Inversion 

High computational cost, complexity in feature inversion 

A Survey of Image 

Synthesis Methods    [9] 

0.25 GANs,VAEs,CG-based 

Methods 

Balancing synthetic data realism, domain fidelity 
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End-to-End Learning for HDR 

Image Synthesis    [12] 
0.16 Multi-Exposure 

HDR, Recurrent 

Networks 

Ghosting in HDR, correlation complexity between HDR 

stacks and images 

Generating Synthetic 

Images for Healthcare    [13] 

0.20 Pix2Pix,CycleGAN,StyleGAN GAN instability, mode collapse, diversity issues 

Spatial Fusion GANfor Image 

Synthesis    [14] 
0.22 Spatial Fusion GAN(SF-GAN) Limited exploration in complex scenes, challenges with 

high-resolution outputs 

 

C. PSNR Score 
The PSNR (Peak Signal-to-Noise Ratio) score provides a 

simple pixel-based assessment by measuring the ratio between 

the maximum signal strength and the strength of corrupting 

noise. It is commonly used in applications like image 

compression, where higher PSNR indicates less distortion and 

greater fidelity to the original image. While PSNR and SSIM 

both offer valuable information for structural similarity, they 

are not as perceptually aligned with human judgment as 

LPIPS or FID, which consider more nuanced and complex 

features in their calculations. 

PSNR=10⋅log10(
𝑅2

𝑀𝑆𝐸
) 

D. SSIM Score 
The SSIM (Structural Similarity Index Measure) score 

assesses images based on three factors: luminance, contrast, 

and structure. This measure is particularly well- suited for 

tasks that need to preserve fine details and textures, such as 

image compression or transmission. SSIM values range from 

0 to 1, where a score closer to 1 means the images are almost 

identical in structure. SSIM is therefore often used to maintain 

image quality when compressing files for storage or streaming 

because it focuses on preserving details that are critical to 

visual appeal, like edges and contrast. 

SSIM(I,K)=
(2𝜇𝐼𝜇𝑘+𝐶1)(2𝜎𝐼𝐾+𝐶2)

(𝜇 𝐼
2+𝜇𝐾

2 +𝐶1)(𝜎𝐼
2+𝜎𝐾

2+𝐶2)
 

 
Fig 3: Distribution of performance metric used in papers 

E. IS Score 
The IS (Inception Score) is another important metric in image 

generation and evaluation, primarily used to assess the quality 

and diversity of images generated by AI models, especially 

GANs (Generative Adversarial Networks). The Inception 

Score measures two things: the quality of individual generated 

images and the variety across a set of generated images. To 

compute this score, each generated image is transpired 

through a pre-trained Inception network, which classifies the 

image and shows a probability distribution for various object 

classes. If an image has a clear, recognizable object, the 

probability distribution will be highly peaked around that 

class. If the generated images are diverse, the probability 

distributions for different images will vary. IS thus aims to 

achieve both sharp, high-quality images (indicating 

recognizable content) and a broad distribution over classes 

(indicating diversity in the generated. 

IS(G)=exp(Ex∼pg[DKL(p(y∣x)∣∣p(y))]) 

3. CONCLUSION 
Techniques like HairFastGAN, StyleGAN, and StackGAN++ 

achieve high levels of realism, evident in favorable LPIPS and 

FID scores. These methods successfully create lifelike details 

crucial for applications in face and hair synthesis, ensuring 

perceptual quality and natural-looking results. 

Approaches like Efficient Hair Style Transfer aim to balance 

image quality with reduced computational costs. While 

progress has been made toward real-time synthesis, these 

methods still grapple with the trade-off between quality and 

efficiency in resource-intensive tasks. 

Limited dataset diversity, especially in specialized fields like 

healthcare, constrains the generalizability of models. While 

general datasets (e.g., COCO, ImageNet) are widely used, 

fields like medical imaging require richer, domain-specific 

data for more robust model performance. 

Pose-transformational GANs and spatial fusion methods have 

advanced pose-aware synthesis, which is essential for 

generating adaptable human figures. However, maintaining 

structural consistency remains a challenge, especially in 

complex poses where alignment may falter. 
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