
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

6

MDFBA: A Mobile Agent and Device Fingerprint-based

Authentication Scheme for Enhanced Android Security

Umesh Kumar, PhD
Assistant Professor, Computer Engineering Department,

JC Bose University of Science and Technology,
YMCA, Faridabad, Haryana, India

ABSTRACT

Modern digital ecosystems, from enterprise infrastructures to

Internet of Things networks, depend heavily on authentication

mechanisms. Based on important performance and security

criterias, such as authentication accuracy, latency, scalability,

security resilience, computational overhead, and network

traffic generation, this study assesses three authentication

models: OAuth, Zero Trust, and a Mobile Agent and Device

Fingerprint-Based Authentication Scheme (MDFBA). Using

mobile agents and signature-based authentication, the

implemented algorithm ensures low latency (1.23 ms) and

minimum traffic overhead (~5,000 bytes for 100 nodes),

making it ideal for resource-constrained situations. OAuth

provides excellent scalability and interoperability and is

commonly used for web authentication and Single Sign-On

(SSO). However, it has middling authentication accuracy

(~85%) due to security flaws including token theft and

phishing attempts. In high-performance networks, its latency

(72.8 ms) and traffic generation (~15,000 bytes per 100

nodes) pose scalability issues. The most secure of the three

models, Zero Trust, uses dynamic policy enforcement and

continuous verification, which makes it extremely resistant to

replay, credential theft, and man-in-the-middle attacks. This

security feature is limited in low-resource situations due to its

high latency (~166.2 ms), high processing needs, and

substantial network traffic (~40,000 bytes per 100 nodes).

Performance and security are traded off, according to a

quantitative examination conducted across different node

scales. Zero Trust adds significant processing and network

overheads, but it guarantees better security. On the other hand,

the Implemented Algorithm balances security and efficiency,

making it appropriate for Internet of Things applications,

whereas OAuth offers scalability but is still susceptible to

attack vectors. This study emphasizes the urgent need for

hybrid authentication strategies that combine the scalability of

OAuth, the security robustness of Zero Trust, and

optimizations based on mobile agents. Future research will

examine blockchain-based decentralized identity verification,

AI-powered adaptive authentication, and quantum-resistant

cryptographic improvements.

Keywords

Device Fingerprint, Android security, malware, data breach,

privacy, vulnerabilities, mobile security, security measures,

device identification, cybersecurity

1. INTRODUCTION
Authentication and Intrusion detection is the most challenging

task in the modern era, as number of internet connected

devices has increased to approximately 20 billions in 2025

and these devices are expected to rise upto 39.6 billions in

2033[2]. With the rising number of internet devices, there is a

vast increase in the number of cybersecurity attacks like

Malware, Denial of Service (DoS) attacks, Phishing,

Spoofing, Identity based attacks, Code injection attacks,

Supply chain attacks, Insider threats, DNS tunneling, IoT

based attacks and many more. So, in the modern world apart

from quick and fast internet access, we require a safe and

efficient internet access.

This article at hand studies the recent methods of device

fingerprinting, its different approaches and different scenarios

where it is used. This paper, also explored a new method to

authenticate a device on the network which can also be used

to detect the intrusion on the network. Proposed method uses

mobile agent which is known for its intelligence and decision

making capability. Another less known and better feature of

mobile agent is its ability to generate less traffic as compared

to client server model. I have deeply analyzed the proposed

algorithm onmultiple devices and different access points to

generate the device signature. Device signature uses some

static and dynamic parameters for generation of the signature.

Static parameters can be used to authenticate the device or

access point on the network whereas dynamic parameters can

be very useful for intrusion detection. Finally, it provides

android sdk based implementation to collect device

parameters to generate device fingerprint. So contribution of

this work can be as follows:

 Explore the basics and requirement of device

fingerprinting based approach for authentication of

device.

 Propose a new kind of device fingerprint collection

method using mobile agent.

 Propose a new architecture for authentication of

device using device fingerprint.

 Develop an android sdk based solution for

collection of device fingerprint.

The rest of this paper is organized as follows: Section 2

presents preliminaries regarding Device Fingerprint and its

use for authentication while section 3 offers the related work

regarding the paper subject. Section 4 presents the mobile

agent based software platform for building the proposed

system which illustrates the proposed framework. Section 5

shows the working of the proposed model. Section 5.1 shows

the implementation and analysis of the proposed work. The

results analysis is described in section 6 and the paper’s

conclusion and future scope are provided in section 7 and

8.This work is an extended version of my previous publication

at IJFGCN [3]. In this extended version, a more detailed

analysis, additional experimental results and a novel

enhancement to the methodology is proposed.

2. PRELIMINARIES
This section presents the concept of the mobile agent along

with the device signature for authentication as preliminaries

for the proposed work.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

7

Mobile agent is an autonomous code which can roam inside

the network by following multiple nodes which is called

itinerary of the mobile agent [4]. This itinerary can be

dynamic or static [5]. Mobile agent technology has seen a

good amount of growth over last few years. In some

scenarios, this technology can be used instead of client server

architecture for reduction in traffic around the network[6].

2.1 Mobile Agent Life Cycle
Mobile agent follows a typical life cycle. A mobile agent can

have multiple states during its lifecycle. Complete lifecycle is

explained in Fig. 1.

Initiate: This is the first state when mobile agent is being

initiated.

Active: After initiation, mobile agent is in active state and

becomes an autonomous code, which can take decision on its

own.

Waiting: Mobile agent can go in waiting state due to some

internal or external factors.

Suspend: This is the state which represent that mobile agent is

not executing currently.

Fig 1:Mobile Agent Lifecycle

Transit: As mobile agent can move from one node to another

during its execution, it enters in transit state when it is in

move from one node to another.

Deleted: Mobile agent, once finishes its job, can be destroyed.

2.2 Advantages of mobile agent
There are number of advantages of mobile agent as compared

to client server model. Some of these are:

Efficient bandwidth utilization: Mobile agent requires less

data to be transmitted as compared to original data. Mobile

agent can also pre-process data and can transmit compressed

information.

Asynchronous: Mobile agents are asynchronous in nature.

Once mobile agents are downloaded, they can perform their

task asynchronously without any interaction from the parent

machine.

Heterogeneous network support: Mobile agent depends

only upon the framework in which it is designed with no

limitation on underlying architecture. So, mobile agents are

separate from the environment in which they are running by

the framework in which they are developed.

Increased availability of resources: Mobile agent helps in

reduction of traffic so, there will be increase in availability of

resources to clients.

3. RELATED WORK
The risk of cybersecurity threats has increased in tandem with

the proliferation of internet-connected gadgets. In

manynetwork environments, device fingerprinting has become

an essential method for intrusion detection and authentication.

The methods, difficulties, and uses of recent developments in

device fingerprinting are examined in this overview of the

literature.

Device Fingerprinting Techniques and Approaches

Device fingerprinting is the process of identifying distinctive

features of devices in order to facilitate intrusion detection

and authentication. Numerous studies have presented

innovative strategies to raise the precision and resilience of

device fingerprinting methods. A scalable and cross-domain

RF device fingerprinting technique that improves device

identification accuracy across domains was proposed by Zhao

et al. (2024). In a similar vein, Sánchez et al. (2024)

investigated how resistant hardware-based and machine

learning-based fingerprinting methods are to hostile attacks

and suggested countermeasures. DeviceRadar, an online IoT

device fingerprinting system that uses programmable switches

to increase fingerprinting efficiency in ISP contexts, was

introduced by Li et al. in 2024. A different method was used

by Heid and Heider (2024), who examined Android apps for

device fingerprinting activity and found that tracking methods

are common in mobile apps.

Applications of Device Fingerprinting

Device fingerprinting is used in a variety of fields, including

lifecycle management and Internet of Things security. Using

device fingerprinting, Lin et al. (2024) suggested a lifecycle

management architecture for power equipment that would

improve critical infrastructure tracking and maintenance. A

thorough analysis of radio frequency fingerprinting methods

was carried out by Abbas et al. (2024), emphasising their use

in secure device identification.

In their study on distributed PV network terminal

identification, Lv et al. (2024) showed how fingerprinting

approaches improve energy distribution networks'

cybersecurity. Similar to this, Xi et al. (2024) improved

device identity detection by introducing an adaptable

environment for intrinsic security fingerprints.

Enhancements through Machine Learning and Deep

Learning

The incorporation of machine learning to improve device

fingerprinting has been the subject of numerous studies.

DevPF, a passive fingerprinting method for Internet of Things

devices, was created by Zhang et al. (2024) and has shown

increased accuracy in identifying devices without the need for

active user intervention. An intelligent fingerprinting method

designed for low-power embedded Internet of Things devices

was presented by Kohli et al. (2024), who demonstrated its

efficacy in limited settings.

A channel-resilient deep learning-driven fingerprinting

technique was presented by Basha et al. (2023), who used

numerous data streams to boost robustness. To ensure data

integrity and dependability, Cui et al. (2023) used device

fingerprinting for trust assessment in mobile crowdsensing.

Sang et al. (2023) showed how key-blocks aware techniques

enhance security by advancing IoT fingerprinting using

proprietary protocol traffic analysis.

Device fingerprinting still faces a number of difficulties

despite developments, such as flexibility to changing

surroundings, scalability, and durability against hostile

attacks. A comparative analysis of fingerprinting techniques

for resource-constrained IoT devices was presented by

Chowdhury et al. (2022), who also identified important

research gaps and problems. Deep convolutional neural

networks were used by Aneja et al. (2022) for device

fingerprinting, demonstrating the promise of AI-driven

techniques to improve security.

Destroy

Waiting

Active

Suspended

Transit Initiate

Resume

Wait

Wake

Up

Move

Execute

Create

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

8

Monaco (2022) introduced a new temporal-based identifying

technique by investigating fingerprinting using peripheral

timestamps. The sensitivity of deep learning-based

fingerprinting in LoRa-IoT networks was evaluated by

Hamdaoui and Elmaghbub (2022), indicating its potential for

protecting extensive IoT deployments. Wan et al. (2022) made

it easier to conduct more research in this area by introducing

DevTag, a benchmark dataset for fingerprinting IoT devices.

Lastly, a semi-supervised deep RF device fingerprinting

technique that uses meta-learning to increase classification

accuracy was presented by Ren et al. (2022).Table 1

summarizes all the related work.

Table 1: Various Device fingerprinting techniques

comparison

Author(s) Techniques

Used

Advantages Disadvantages

Zhao,

Tianya,

Xuyu

Wang, and

Shiwen

Mao

Cross-

domain RF

fingerprinting

using deep

learning

Scalable and

interpretable

across

different

domains

May require

large datasets

for training

Sánchez,

Pedro

Miguel et

al.

Adversarial

attack and

defense

mechanisms

for ML-based

and

hardware-

based

fingerprinting

Enhances

security

against

adversarial

threats

Increased

computational

overhead

Li, Ruoyu

et al.

IoT device

fingerprinting

using

programmabl

e switches in

ISPs

Enables real-

time device

identificatio

n

Dependence on

ISP

infrastructure

Heid, Kris

and Jens

Heider

Detection of

fingerprinting

activity in

Android apps

Identifies

privacy-

invasive

fingerprintin

g techniques

Focused only on

Android

ecosystem

Lin, Ziqing

et al.

Lifecycle

management

for power

equipment

via device

fingerprinting

Enhances

equipment

monitoring

and

reliability

Specific to

power

equipment

applications

Abbas,

Sohail et

al.

Survey on RF

fingerprinting

techniques

for device

identification

Comprehens

ive analysis

of existing

methods

Lacks

implementation

and

experimental

results

Lv, Zhuo

et al.

Distributed

PV network

terminal

identification

using

fingerprint

generation

Improves

security in

distributed

PV networks

Domain-

specific

application

Xi,

Zesheng et

al.

Adaptive

environment-

based

intrinsic

security

fingerprinting

Enhances

adaptability

to changing

environment

s

Possible

complexity in

implementation

Zhang,

Dahua et

al.

Passive

fingerprinting

for IoT

device

identification

Energy-

efficient and

non-

intrusive

Limited

accuracy in

noisy

environments

Kohli, Intelligent Optimized Potential trade-

Varun,

Muhamma

d Naveed

Aman, and

Biplab

Sikdar

fingerprinting

for low-

power

embedded

IoT devices

for resource-

constrained

environment

s

offs in accuracy

and security

Kumar &

Paul

Survey on

device

fingerprinting

for cyber-

physical

systems

Provides

taxonomy

and

categorizatio

n of

fingerprintin

g methods

No practical

implementation

or evaluation

Basha et

al.

Multiple data

streams for

channel-

resilient

fingerprinting

Improves

robustness

against

channel

variations

High

complexity in

data processing

Cui et al. Trust

assessment

via device

fingerprinting

Enhances

security in

mobile

crowdsensin

g

Depends on the

reliability of

collected data

Sang et al. Key-blocks

aware

fingerprinting

for

proprietary

protocol

traffic

Works with

proprietary

IoT

protocols

May not

generalize well

across different

protocols

Chowdhur

y & Abas

Survey on

device

fingerprinting

for IoT

Comparative

study of

techniques;

highlights

research

challenges

Lacks

experimental

validation

Aneja et al. Deep

convolutional

neural

networks

(CNN)

High

accuracy in

fingerprintin

g devices

Computationall

y expensive

Monaco Peripheral

timestamp-

based

fingerprinting

Low

overhead;

works with

existing

hardware

Sensitive to

timing

variations and

environmental

factors

Hamdaoui

&

Elmaghbub

Deep

learning-

based

fingerprinting

for LoRa-IoT

Enhances

security in

LoRa

networks

Performance

degrades with

network

topology

changes

Wan et al. DevTag

benchmark

for IoT

fingerprinting

Provides a

standard

benchmark

for

evaluation

Limited scope

in real-world

deployment

4. PROPOSED FRAMEWORK
This section will describe the overview for device fingerprint

based authentication model. The Model describes the working

of various components like Access Point (AP), Authenticator

(A) and Authentication Server (AS). Various mobile nodes

are connected to the access point with the help of 802.11

technologies. Architecture allows heterogeneous

communication devices to contact each other in a secure

manner. Here, the authenticator acts as an interface between

the AP and the AS. The authentication process goes through

the access point to authenticator and then to the authentication

server. Fig 2 shows the architecture and working of Device

Signature based Authentication Model. Here, multiple AP’s

are connected to the Authenticator (A). Authenticator in turn

is connected to the Authentication Server (AS).

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

9

1. Access Point (AP): Access point provides the network

access to multiple devices within the wireless range. Multiple

access points can be within the range of a single device.

Device is connected to an access point with the strongest

signal after registration process (if not registered) and

authentication. An access point supports multiple devices.

2. Authenticator (A): All access points are connected to the

authenticator for authentication purposes. Authenticator

contains three modules:

 Device Fingerprint Scanner: It extracts the device

fingerprint parameters from the mobile agent and

creates fingerprint with the help of those

parameters. It stores it in cache memory and

forwards it to the Authentication Server for

registration purpose. If the device requires

authentication, then device fingerprint is forwarded

to the cache memory.

 Cache Memory: Cache memory stores the

fingerprint of most recent devices which are

connected to the AP or the devices which are

recently registered on the network. Cache memory

forwards device fingerprint to the threshold

comparator.

 Threshold Comparator: It compares two

fingerprints and gives true or false depending upon

the value of the threshold matched

3. Authentication Server (AS): Authenticator is connected to

the Authentication Server. AS provides the necessary

authentication information for the devices and access points

within the network. It registers all the device signatures in the

database and provides the signature value when required by

the authenticator.

5. WORKING OF THE PROPOSED

MODEL
Proposed model supports both single device authentication

and multi device authentication. Step 1 in Figure 2 shows the

single device authentication involving only the single device.

Multi device authentication will take more time as compared

to single device authentication, as in former case mobile agent

will have to traverse through multiple devices for device

signature extraction. Step 2 in Figure 2 shows the description

of multi device authentication involving multiple devices.

Single Device Authentication: Single device authentication

is required when a new device comes into the range of an

access point and wants to connect to the network. This single

device can be either a user mobile device or a fixed access

point.

Multi Device Authentication: Proposed model also supports

the authentication of multiple devices in one go. Mobile agent

from authenticator follows the itinerary for multiple devices

and carries the device signatures of these devices. If the

signature matches to the calculated one, then it gives success,

otherwise failure. This loaded mobile agent then comes to the

authenticator along with necessary information.Device

fingerprint is a unique signature of a device. This device

fingerprint is generated depending upon the various

parameters. These parameters will be extracted from the

device using mobile agent which is being sent by the

Authenticator and executed on the target machine.Various

parameters that are used to calculate a device signature value

are listed below. It may be the case that device have only

some parameters value. Using these available parameters of

the device, fingerprint will be calculated.

Parameters to calculate device fingerprint:

Geo location lat/long:Itis the geographic location of a device.

The location can be calculated by the network or Global

Positioning System (GPS) (if supported).

IP addresses: Itis the unique 32/128 bit address which is

allocated to the device. The version of the IP address can be

IPv4 or IPv6.

MAC addresses:Itis the Media Access Control (MAC)

address which is assigned to the network interface card of the

device.

Network ID: Every existing network has a unique id value

associated with it. This is the id of the network to which the

device is connected.

Browser name and version:Itis the name and version of the

browser currently installed. Device may have more than one

browser, the details of all are included in the fingerprint.

OS name and version: This is the name and current version

of the operating system of the device.

Electronic Serial Number (ESN): This number is generated

by the manufacturer on the microchip on mobile devices.

International Mobile Equipment Identity or Mobile

Identification Number (IMEI / MIN): It is the unique

identification number that all mobile phones have.

Received Signal Strength Indicator (RSSI): With this

parameter, the received signal power from access point to

mobile device can be measured. RSSI is usually measured in

decibels relative to a milliwat (dBm). The stronger the signal

is, closer it is to zero.

Basic Service Set Identifier (BSSID):Itis the MAC address

of the access point, which is the combination of the

organization unique identifier and identifier for the radio

chipset.

Service Set Identifier (SSID): Itis the name which is

assigned to the wireless local area network. Mobile devices

use SSID to identify the network and to join the network also.

CenterFreq: It is the measure of the frequency between

upper and lower frequency cutoffs. Arithmetic mean or

geometric mean of the lower and upper cutoff frequency is

used to define this.

Frequency:Itis the frequency value in MHz. This is the value

over which the communication will take place.

Level:Itis the strength of the GSM/CDMA signal received.

Lower the level, lower will be the strength of the signal.

Timestamp:Itcontains the time of a particular communication

between device and the access point. This value is generally

mentioned in microseconds.

VenueName:Itis the name of the location that is distributed

by the access point.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

10

Fig 2:Architecture and working of the proposed model

Device to AP RTT Supported:Itis the value of the inbuilt

function supported by the device. Using this function, mobile

device can calculate the distance between the access point and

device.

isTdlsSupported: It is the value of the tunneled direct link

setup. IEEE 802.11z supports this. Its value will be true if

supported.

WifiConfiguration.GroupCipher:Itis the cipher mechanism

supported by device. Its value can be CCMP which is AES in

Counter mode with CBC-MAC or TKIP which is Temporal

Key Integrity Protocol.

LinkSpeed: Itis the current speed in Mbps of the channel

between device and the access point.

Capabilities: It describes the authentication, key

management, and encryption schemes supported by the access

point.

Camera characteristics: If a device has camera features, then

camera characteristics can also be included in the signature.

Gateway address:Itis the address of the router, which is

maintained by Internet Service Provider (ISP).

These parameters are entered in to the device fingerprint

generator, which generates the device fingerprint. Some of the

parameters mentioned above will give the real time dynamic

values like location, IP address, Link Speed and some values

will remain unchanged like IMEI number, MAC address and

camera characteristics etc.

Every time the mobile agent fetches the device fingerprint

parameters, it is compared with the earlier stored one. If the

percentage of signature matching is more than threshold, then

access can be granted.

The threshold value can be decided by the administrator

depending upon the criticality of the application. In the

proposed model, a device needs to be registered to the

Authentication Server for having access of the network

resources. The step by step registration algorithm is shown in

Algorithm 1.

Algorithm 1: Registration

Input:

1. Number of Nodes

2. Client addresses i.e. client(i)

3. Authenticator address i.e. authenticator_address

4. Authentication Server address

5. itinerary[]

Output: Success or failure of registration.

1.create itinerary[] of i number of nodes for MA

2.create MA sign_Collector()

3.while itinerary[] is not empty

 3.1 if node itinerary[i] is active then

3.1.1 dispatch sign_Collector() to

the itinerary[i] node.

3.1.2 compute device signature and append it to

the results

3.2 else

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

11

 3.2.1 continue

 3.3 end if

4. end while

5. authenticator stores all signatures in the cache

memory and forwards it to the Authentication Server.

Algorithm 1

After the registration, device can use the network services. If a

device comes later on in the network for the use of network

services, then the device needs to be authenticated. Mobile

agent used for the authentication purpose, collects all the

authentication information from either single or multiple

devices. The itinerary created in this approach can use the

location fingerprinting technique to create the three

dimensional graph of various mobile stations. Later on, Local

Closest First (LCF) or Global Closest First (GCF) technique is

applied to create the itinerary for the mobile agent.

Authentication steps are shown in Algorithm 2.

Algorithm 2: Authenticator

Input:

1. Necessary information for authentication process e.g.

username, password or device fingerprint

2. Client addresses i.e. client(i)

3. Authenticator address i.e. authenticator_address

4. Authentication server address

5. itinerary[]

Output: Success or failure of authentication.

1. create and load mobile agent signature_Verifier() with

device signature of all the devices.

 1.1 For all the devices whose signature are not

 present at the Authenticator’s cache memory

 1.1.1 creates a mobile agent

signature_Collector(devices []), loads it with the

device id’s of all devices.

1.1.2 Server loads the signatures from the

database.

 1.1.3 dispatch signature_Collector() to the

Authentication Server.

 1.1.4 append the signatures to signature_Verifier()

agent.

1.2 end for

2. create itinerary[] of MA using itinerary algorithm like

LCF or GCF

3. while itinerary[] is not empty

 3.1 dispatch mobile agent signature_Verifier() from

Authenticator to node itinerary [i].

 3.2 agent collects and checks the device fingerprint

against the stored signature.

 3.3 agent gives the success/ failure message

depending upon the threshold

 value of the signature verification result.

4. end while.

5. Last client dispatches the signature_Verifier() to

authenticator.

6. Authenticator collects success or failure message from

mobile agent signature_Verifier() based on the device

signature verification and provides the access.

Algorithm 2

Authentication Server stores information of all devices that

are registered and authorized to use network resources.

Algorithm for the same is presented in Algorithm 3.

Bulk data transmission facility which is not provided in

traditional EAP based approach has been incorporated into the

proposed mobile agent based approach. Agents can be loaded

with bulk data and can be dispatched to the destination. Steps

for the same are presented in Algorithm 4.

Algorithm 3: Authentication Server

Input:

1. Mobile agent

Output:

Successful retrieval or storage of signature.

Repeat for every request from Authenticator

1. if signature_Collector() arrives for registration

 1.1 retrieve signatures from mobile agent

 1.2 store it into the database.

2. if signature_Collector() arrives for device signature

 2.1retrieve signatures from database of

Authentication Server

 2.2 load and dispatch the mobile agent

signature_Collector() to Authenticator.

Algorithm 3

Algorithm 4: Data_Transmission

Input:

1. Data to be transmitted

2. Destination address (server or client)

Output: Success or failure of data transmission

1. Repeat while client or server has data to send

 1.1 create agent Load_Data().

 1.2 load agent with the requisite data &session_key.

2. dispatch agent to the destination

Algorithm 4

5.1 Implementaion and Analysis
Proposed device signature based authentication mechanism is

implemented on Android platform. Mobile application

extracts parameters of a device, which helps in generation of

signature of a device. This signature can be used in one form

or another to authenticate the device on to the network. Figure

3,4 shows the mobile application screenshots used to capture

the parameters needed to generate device signature.Using this

application, device signatures of multiple devices are

collected as shown in Figure 5.These device signatures

comprising of multiple device characteristics can be used to

identify the device on the network in one form or another.

5.2 Authentication using Device Signature
Captured device signature parameters can be used in many

forms for authentication in addition to the currently existing

authentication protocols like EAP.

Some of the parameters usages are:

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

12

Fig 3:Application showing device signature parameters on

Motorola device

Fig 4:Application showing device signature parameters on

Motorola device

Location: Figure 6 shows the MyLocationListener class,

which is used to capture the current location of the mobile

device. Location captured using this class can be used to

check whether a device is within the range of the Access Point

or not. Figure 7 shows the snapshot of MyLocationChecker

class which can be used to compare the location of the device

and already stored location of the Access Point. This class

compares the current device location if it is within the 500

meter radius of the access point or not. This check can be very

useful for checking an unauthorized person or device

pretending to be a valid one.

class MyLocationListener implements LocationListener {

 Context mycontext = null;

 public MyLocationListener(Context context) {

 // TODO Auto-generated constructor stub

 mycontext = context;

 }

 @Override

 public void onLocationChanged(Location loc) {

 Log.d("Location changed",

 loc.getLatitude() + ", "

+ loc.getLongitude());

 String longitude = "Longitude: " +

loc.getLongitude();

 Log.v("long=", longitude);

 String latitude = "Latitude: " + loc.getLatitude();

 Log.v("lat=", latitude);

 String cityName = null;

 Geocoder gcd = new Geocoder(mycontext,

Locale.getDefault());

 List<Address> addresses;

 try {

 addresses = gcd.getFromLocation(loc.getLatitude(),

 loc.getLongitude(), 1);

 if (addresses.size() > 0)

 System.out.println(addresses.get(0).getLocality());

 cityName = addresses.get(0).getLocality();

 } catch (IOException e) {

 e.printStackTrace();

 }

 String s = longitude + "\n" + latitude + "\n\nMy Current

City is: "

 + cityName;

 Log.d("Location=", s);

 }

}

Fig6: Location Listener

Public class MyLocationChecker {

 public boolean checkLocationWithinRadius(Location

deviceLocation,

 Location accessPointLocation) {

 float[] dist = new float[1];

 if (deviceLocation != null &&

accessPointLocation != null) {

 Location.distanceBetween(deviceLocation.getLatitud

e(),

 deviceLocation.getLongitude(),

 accessPointLocation.getLatitude(),

 accessPointLocation.getLongitude(), dist);

 if (dist[0] / 500 > 1) {

 // If device Location is outside 500m radius area

 return false;

 } else

 return true;

 }

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

13

 return false;

 }

}

Fig 7: Location Checker

IP Address: IP address of the device can also be one of the

parameter for authentication. Whenever a network is created,

a range of IP addresses are assigned to it. With the help of

device IP address, algorithm can check whether the device IP

address is within the valid range or not. If it is not within the

valid range, then mobile device can be blocked. Class is

shown in Fig 8.

public class IPRangeChecker {

 public static long ipToLong(InetAddress ip) {

 byte[] octets = ip.getAddress();

 long result = 0;

 for (byte octet : octets) {

 result <<= 8;

 result |= octet & 0xff;

 }

 return result;

 }

 public static boolean isValidRange(String ipStart,

String ipEnd, String ipToCheck) {
 try {

 long ipLo =

ipToLong(InetAddress.getByName(ipStart));

 long ipHi =

ipToLong(InetAddress.getByName(ipEnd));

 long ipToTest =

ipToLong(InetAddress.getByName(ipToCheck));

 return (ipToTest >= ipLo &&

ipToTest <= ipHi);

 } catch (UnknownHostException e) {

 e.printStackTrace();

 return false;

 }

 }

 public static void main(String[] args) {

 System.out.println(isValidRange("122.170.122.0",

"122.170.122.255","122.170.122.215"));

 }

}

Fig 8: Valid IP Range Checker

Fig 5: Multiple Android Device Signatures (Access Point)

MD5 Fingerprint: From the device signature static and

dynamic values are extracted as shown in Table 2 and Table

3. Static values are the values which are not going to change

throughout the life of the device. These static values of a

device are taken to produce MD5 Fingerprint of the device.

Similarly, static signature values for AP can be used as shown

in Table 2 to produce the MD5 Fingerprint of the access point.

The fingerprint for Access Point shown in Table 4 can be used

to capture the fake access point into the network.Advantage of

creating MD5 Fingerprint is to create the MD5 Fingerprint

from static device or access point parameters but reverse is

not possible i.e. device or access point parameters cannot be

extracted from the MD5 Fingerprint. Apart from the MD5

Fingerprint, Hamming distance can be used to match and

compare two mobile device signatures.

Table 2: Static parameters of device
Sr.

No. Static Parameters

Device

1 Mac Address

2 Device ID

3 IMEI

4 Camera Characteristics

5 Screen Resolution

6 Operating System

7 Operating System Version

Table 3: : Dynamic parameters of device
Sr.

No.

Dynamic

Parameters

1 Latitude Device

2 Longitude

3 IP address

Table 4: Static parameters of access point
Sr.

No.

Static

Parameters

AP

1 BSSID

2 SSID

3 Frequency

4 tdls supported

5 ccmp support

6 tkip support

Hamming Distance: Hamming distance of two device

signatures can also be one of the mechanism for identification

of mobile device. Distance between two signatures is

measured using the hamming distance formula.

Hamming distance gives minimum number which is required

for a string to be similar with other. For device signature

matching, hamming distance based formula is used as shown

in equation 1.

𝑑 𝑥, 𝑦 =
 (𝑥𝑖 ! = 𝑦𝑖)

𝐹
𝑖=1

𝐹
, 0 ≤ 𝑑 𝑥, 𝑦

≤ 1 … (1)

Where, F is the number of features and 𝑥𝑖 and 𝑦𝑖 represents ith

Sr. No. Latitude Longitude IP address Mac Address Device ID IMEI RSSI (dB)
Network

ID

gateway

address

camera

characteris

tics

Screen_Re

solution

O perating

System (O S)

O S

Version

WiFi

Signal

Level

1 28.3673571 77.3164947 10.0.124.68 5C:51:88:A6:31:3D 210b06dab268cb5 358978061181330 -36 -74 1 200.0.0.10 7.803 720*1184 LOLLIPOP_MR1 23 1

2 28.3673867 77.3164891 10.0.102.81 5C:51:88:A6:31:3D 210b06dab268cb5 358978061181330 -36.0-79 1 200.0.0.10 7.803 720*1184 LOLLIPOP_MR1 23 4

3 28.36661523 77.31622427 10.0.102.83 C4:0B:CB:6E:74:4D 92ad48e64838558f 863194034228707 -127 -83 1 200.0.0.10 0.1 1080*1798 M 24 4

4 28.36786543 77.31509557 192.168.0.106 D8:32:E3:6E:F4:9D 707d9a7021b2f189 869048031585622 -69 -92 9 1.0.168.192 0.1 1080*1798 N 25 4

5 28.4125847 77.3547662 192.168.1.4 5C:51:88:A6:31:3D 210b06dab268cb5 358978061181330 -55.0-89 1 1.1.168.192 7.803 720*1184 LOLLIPOP_MR1 23 4

6 28.36936204 77.31673351 192.168.0.102 00:EC:0A:9A:5A:A9 36636b40942cd957 863675038302563 -50-105 70 1.0.168.192 0.1 1080*1798 N 25 4

7 28.412209 77.3545501 192.168.1.4 5C:51:88:A6:31:3D 210b06dab268cb5 358978061181330 -44.0-87 1 1.1.168.192 7.803 720*1184 LOLLIPOP_MR1 23 4

8 28.3673979 77.3164271 10.0.103.204 5C:51:88:A6:31:3D 210b06dab268cb5 358978061181330 -127-67 1 200.0.0.10 7.803 720*1184 LOLLIPOP_MR1 23 4

9 28.3674017 77.3164239 10.0.103.204 5C:51:88:A6:31:3D 210b06dab268cb5 358978061181330 -50-73 2 200.0.0.10 7.803 720*1184 LOLLIPOP_MR1 23 4

10 33.7885096 151.075712 192.168.0.5 80:58:F8:1E:F5:D7 dc898264b08c544f 351892081906096 -63-92 17 1.0.168.192 11.907 1080*1798 O 27 3

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

14

feature of the device signature stored and extracted respectively.

If 𝑥𝑖 equals 𝑦𝑖 , then it contributes 1 to the summation.

If the device signature parameters are different, only then they

will contribute to distance.

Let’s compare two signatures of same device using the equation

1.

𝑥 = {𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛}

𝑦 = {𝑦1, 𝑦2 , 𝑦3 , … . . 𝑦𝑛}
Where x represents device signature stored in the database

during registration and y represents the signature supplied by

the mobile agent when it tries to connect to the network.

𝑥 = {28.4125847, 77.3547662, 192.168.1.4,

5C:51:88:A6:31:3D, 210b06dab268cb5, 358978061181330,

74:da:da:73:0d:f9, 72, -55.0-89, 1,Vibhu, 2452, FALSE, 3, 2,

200.0.0.10, 0.192, 720*1184, LOLLIPOP_MR1, 23, 1}

𝑦={28.412209, 77.3545501, 192.168.1.4, 5C:51:88:A6:31:3D,

210b06dab268cb5, 358978061181330, 74:da:da:73:0d:f9, 72, -

44.0-87, 1, Vibhu, 2452, FALSE, 3, 2, 200.0.0.10, 0.192,

720*1184, LOLLIPOP_MR1, 23, 1}

Using the equation 1 hamming distance of the signatures x and

y is calculated. The Java code for the same is shown in Figure

10. Output of the same i.e. the hamming distance is

0.1428571492433548. This hamming distance tells about the

mismatch of the two signatures. Larger the hamming distance

value, larger the mismatch is. This hamming distance can be

used to identify the signature of mobile device.Figure 7 shows

the MainActivity of the Android based mobile application.

public class MainActivity extends ActionBarActivity {

 LocationManager locationManager;

 WifiManager wifiManager;

 WifiInfo wifiInfo;

 TelephonyManager telephonyManager;

 CellInfoGsm cellinfogsm;

 CellInfo cellInfo;

 CellSignalStrengthGsm cellSignalStrengthGsm;

 CameraManager cameraManager;

 DhcpInfo dhcpInfo;

 deviceSignature mySignature;

 LocationManager mLocationManager;

 Location myLocationl;

 Geocoder geocoder;

 List<Address> addresses;

 String cityName;

 EditText mEdtTxtSgn;

 EditText mEdtTxtLctn;

 Button btnSndDta;

 String data;

 float megaPixel = -1;

 @Override

 protected void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 if (android.os.Build.VERSION.SDK_INT

> 9) {

 StrictMode.ThreadPolicy policy

= new StrictMode.ThreadPolicy.Builder().permitAll().build();

 StrictMode.setThreadPolicy(policy);

 }

 mySignature = new deviceSignature();

 mySignature.screenDisplay = new

ScreenDisplay();

 wifiManager = (WifiManager)

getSystemService(WIFI_SERVICE);

 locationManager = (LocationManager)

getSystemService(LOCATION_SERVICE);

 telephonyManager = (TelephonyManager)

this

 .getSystemService(Context.TELEPHONY_SERVIC

E);

 wifiInfo =

wifiManager.getConnectionInfo();

 cameraManager = (CameraManager)

getSystemService(CAMERA_SERVICE);

 dhcpInfo = wifiManager.getDhcpInfo();

 getDeviceLocation();

 getIPAddress();

 getRSSI_WiFi();

 getMacAddress();

 getBSSID();

 getWiFiLinkSpeed();

 getNetworkID();

 getSSID();

 getIMEI();

 getWiFiFrequency(); // in MHz

 getdevicetoAPRTT();

 getTDLSValue();

 getGroupCipherValue();

 getCameraInfo();

 getGatewayAddress();

 getOperatingSystem();

 getAllCellInfo();

 getWiFiSignalLevel();

 getDeviceID();

 getScreenDisplay();

 writeToFile();

 mEdtTxtSgn = (EditText)

findViewById(R.id.edtTxtDvcSgntr);

 mEdtTxtSgn.setText(data);

 mEdtTxtLctn = (EditText)

findViewById(R.id.edtTxtLocation);

 mEdtTxtLctn.setText(cityName);

 btnSndDta = (Button)

findViewById(R.id.sndData);

 btnSndDta.setOnClickListener(new

OnClickListener() {

 @Override

 public void onClick(View v) {

 final Intent emailIntent

= new Intent(

 android.content.Intent.ACTION_SEND);

 emailIntent.setType("text/plain");

 emailIntent.putExtra(android.content.Intent.EXTRA_

EMAIL, new String[] { "umesh554@gmail.com" });

 emailIntent.putExtra(android.content.Intent.EXTRA_

SUBJECT, "My Device Signature");

 emailIntent.putExtra(android.content.Intent.EXTRA_

TEXT, data);

 emailIntent.setType("message/rfc822");

 try {

 startActivity(Intent.createChooser(emailIntent,

 "Send email using..."));

 }

catch (android.content.ActivityNotFoundException ex) {

 }

 }

 });

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

15

 }

 private void getScreenDisplay() {

 Display display =

getWindowManager().getDefaultDisplay();

 Point size = new Point();

 display.getSize(size);

 mySignature.screenDisplay.setData(size.x,

size.y);

 }

 private void getDeviceID() {

 mySignature.deviceID =

Secure.getString(getApplicationContext()

 .getContentResolver(), Secure.ANDROID_ID);

 }

 private void getWiFiSignalLevel() {

 int x = (int) mySignature.rssi_WiFi;

 // Integer.valueOf(mySignature.rssi_WiFi);

 mySignature.wifiSignalLevel =

WifiManager.calculateSignalLevel(x, 5);

 }

 private void getAllCellInfo() {

 List<CellInfo> cellInfos =

telephonyManager.getAllCellInfo();

 if (cellInfos != null) {

 for (int i = 0; i < cellInfos.size();

i++) {

 if

(cellInfos.get(i).isRegistered()) {if (cellInfos.get(i) instanceof

CellInfoWcdma) { CellInfoWcdma

cellInfoWcdma = (CellInfoWcdma) telephonyManager

 .getAllCellInfo().get(0);

 CellSignalStrengthWcdma cellSignalStrengthWcdma

= cellInfoWcdma

 .getCellSignalStrength();

 mySignature.rssi_Cell =

String.valueOf(cellSignalStrengthWcdma.getDbm());

 } else if

(cellInfos.get(i) instanceof CellInfoGsm) {

 CellInfoGsm cellInfogsm =

(CellInfoGsm) telephonyManager.getAllCellInfo().get(0);

CellSignalStrengthGsm cellSignalStrengthGsm = cellInfogsm

 .getCellSignalStrength();

 mySignature.rssi_Cell = String

 .valueOf(cellSignalStrengthGsm.getDbm());

 } else if

(cellInfos.get(i) instanceof CellInfoLte) {

 CellInfoLte cellInfoLte = (CellInfoLte)

telephonyManager

 .getAllCellInfo().get(0);

 CellSignalStrengthLte cellSignalStrengthLte =

cellInfoLte

 .getCellSignalStrength();

 mySignature.rssi_Cell = String

 .valueOf(cellSignalStrengthLte.getDbm());

 }

 }

 }

 }

 }

 private void writeToFile() {

 try {

 OutputStreamWriter

outputStreamWriter = new OutputStreamWriter(

 openFileOutput("config.txt",

Context.MODE_APPEND));
 data = "Latitude=" +

Double.toString(mySignature.latitude)

 + "

Longitude=" + Double.toString(mySignature.longitude)

 + " IP

Address=" + mySignature.ipAddress + " Mac add="

 +

mySignature.macAddress + " BSSID=" + mySignature.BSSID

 + "Link

speed wifi= "

 +

Integer.toString(mySignature.linkSpeed_WiFi) + "RSSI="

 +

Double.toString(mySignature.rssi_WiFi)

 +

mySignature.rssi_Cell + "Network ID="

 +

Integer.toString(mySignature.networkID_WiFi)

 + "SSID

WiFi=" + mySignature.SSID_WiFi + " deviceID="

 +

mySignature.deviceID + "WiFi Frequency="

 +

Integer.toString(mySignature.wifiFrequency)

 + " Center

Frequency0"

 +

Integer.toString(mySignature.centerFrequency0)

 + " Center

Frequency1="

 +

Integer.toString(mySignature.centerFrequency1)

 + "

Capabilities=" + mySignature.capabilities

 + "Venue

Name=" + mySignature.venueName + " devicetoAPRTT="

 +

Boolean.toString(mySignature.devicetoAPRTT)

 + "

tdlsSupported="

 +

Boolean.toString(mySignature.tdlsSupported)

 + "

ccmpSupport="

 +

Integer.toString(mySignature.ccmpSupport)

 +

"tkipSupport="

 +

Integer.toString(mySignature.tkipSupport)

 + "camera

characteristics= " + mySignature.maxResolution

 + "

gateWayAddress=" + mySignature.gatewayAddress

 +

"operatingsystemname=" + mySignature.operatingSystemName

 +

"operatingSystemVersion= "

 +

Integer.toString(mySignature.operatingSystemVersion)

 + "

WiFisigLevel=" + mySignature.wifiSignalLevel

 +

"deviceID=" + mySignature.deviceID + " imei="

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

16

 +

mySignature.imei + "screen resol=" + ""

 +

mySignature.screenDisplay.getData();

 Log.i("mySign", data);

 Log.d("mySign", data);

 Log.i("mySign", data);

 //

outputStreamWriter.write(data);

 outputStreamWriter.close();

 } catch (IOException e) {

 Log.e("Exception", "File write

failed: " + e.toString());

 }

 }

 private void getOperatingSystem() {

 mySignature.operatingSystemName =

android.os.Build.VERSION_CODES.class

 .getFields()[android.os.Build.VERSION.SDK_INT].

getName();

 mySignature.operatingSystemVersion =

android.os.Build.VERSION.SDK_INT;

 }

 private void getGatewayAddress() {

 mySignature.gatewayAddress =

mySignature.intToIp(dhcpInfo.gateway);

 }

 private void getGroupCipherValue() {

 mySignature.ccmpSupport =

WifiConfiguration.GroupCipher.CCMP;

 mySignature.tkipSupport =

WifiConfiguration.GroupCipher.TKIP;

 }

 private void getTDLSValue() {

 mySignature.tdlsSupported =

wifiManager.isTdlsSupported();

 }

 private void getdevicetoAPRTT() {

 mySignature.devicetoAPRTT =

wifiManager.isDeviceToApRttSupported();

 }

 private void getWiFiFrequency() {

 mySignature.wifiFrequency =

wifiInfo.getFrequency();

 int channel_number = 0;

 if (mySignature.wifiFrequency == 2484) {

 channel_number = 14;

 Log.i("channel_Number=", "" +

channel_number);

 return;

 }

 if (mySignature.wifiFrequency < 2484) {

 channel_number =

(mySignature.wifiFrequency - 2407) / 5;

 Log.i("channel_Number=", "" +

channel_number);

 return;

 }

 channel_number =

mySignature.wifiFrequency / 5 - 1000;
 Log.i("channel_Number=", "" +

channel_number);

 }

 private void getIMEI() {

 telephonyManager.getDeviceId();

 mySignature.imei =

telephonyManager.getDeviceId(0);

 String imeiSIM1 =

telephonyInfo.getImsiSIM1();

 }

 private void getSSID() {

 mySignature.SSID_WiFi =

wifiInfo.getSSID();

 }

 private void getNetworkID() {

 mySignature.networkID_WiFi =

wifiInfo.getNetworkId();

 }

 private void getWiFiLinkSpeed() {

 mySignature.linkSpeed_WiFi =

wifiInfo.getLinkSpeed();

 }

 private void getBSSID() {

 mySignature.BSSID =

wifiInfo.getBSSID();

 }

 private void getMacAddress() {

 mySignature.macAddress =

wifiInfo.getMacAddress();

 try {

 List<NetworkInterface> all =

Collections.list(NetworkInterface

 .getNetworkInterfaces());

 for (NetworkInterface nif : all) {

 if

(!nif.getName().equalsIgnoreCase("wlan0"))

 continue;

 byte[] macBytes =

nif.getHardwareAddress();

 if (macBytes == null)

{

 // return "";

 }

 StringBuilder res1 =

new StringBuilder();

 for (byte b : macBytes)

{

 res1.append(String.format("%02X:", b));

 }

 if (res1.length() > 0) {

 res1.deleteCharAt(res1.length() - 1);

 }

 mySignature.macAddress = res1.toString();

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 Log.i("Exception in mac address

", "");

 mySignature.macAddress =

"02:00:00:00:00:00";

 }

 }

 private void getRSSI_WiFi() {

 mySignature.rssi_WiFi =

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

17

wifiManager.getConnectionInfo().getRssi();

 }

 private void getIPAddress() {

 int ipAddress = wifiInfo.getIpAddress();

 String ip = String.format("%d.%d.%d.%d",

(ipAddress & 0xff), (ipAddress >> 8 & 0xff), (ipAddress >> 16

& 0xff), (ipAddress >> 24 & 0xff));

 mySignature.ipAddress = ip;

 }

 static class CompareSizesByArea implements

Comparator<Size> {

 @Override

 public int compare(Size lhs, Size rhs) {

 // We cast here to ensure the

multiplications won't overflow

 return Long.signum((long)

lhs.getWidth() * lhs.getHeight()

 - (long) rhs.getWidth() * rhs.getHeight());

 }

 }

 private void getCameraInfo() {

 CameraManager cameraManager =

(CameraManager)

getSystemService(Context.CAMERA_SERVICE);

 long pixelCount = -1;

 long tempPixelCount = -1;

 Size largest = new Size(0, 0);

 try {

 for (String cameraId :

cameraManager.getCameraIdList()) {

 CameraCharacteristics

chars = cameraManager

 .getCameraCharacteristics(cameraId);

 StreamConfigurationMap map = chars

 .get(CameraCharacteristics.SCALER_STREAM_CO

NFIGURATION_MAP);

 if (map == null) {

 continue;

 }

 // For still image

captures, we use the largest available size.

 largest = Collections.max(

 Arrays.asList(map.getOutputSizes(ImageFormat.JPE

G)), new CompareSizesByArea());

 tempPixelCount = largest.getHeight() *

largest.getWidth();

 if (tempPixelCount > pixelCount) {

 pixelCount

= tempPixelCount;

 }

 }

 } catch (CameraAccessException e) {

 e.printStackTrace();

 }

 Log.e("pixelCount=",

Long.toString(pixelCount));

 Log.e("pixelCount=",

Long.toString(pixelCount));

 Log.e("pixelCount=",

Long.toString(pixelCount));

 Log.e("pixelCount=Largest",

Long.toString(pixelCount));

 megaPixel = (float) pixelCount /

(1024000.0f);

 mySignature.maxResolution =

Float.toString(megaPixel);

 Log.e("megaPixel=",

Float.toString(megaPixel));
 }

 private void getDeviceLocation() {

 // TODO Auto-generated method stub

 mLocationManager = (LocationManager)

getApplicationContext()

 .getSystemService(LOCATION_SERVICE);

 List<String> providers =

mLocationManager.getProviders(true);

 Location bestLocation = null;

 for (String provider : providers) {

 Location l =

mLocationManager.getLastKnownLocation(provider);

 if (l == null) {

 continue;

 }

 if (bestLocation == null

 ||

l.getAccuracy() < bestLocation.getAccuracy()) {

 // Found best last

known location: %s", l);

 bestLocation = l;

 }

 }

 mySignature.latitude=

bestLocation.getLatitude();

 mySignature.longitude =

bestLocation.getLongitude();

 Geocoder geocoder;

 List<Address> addresses;

 geocoder = new

Geocoder(MainActivity.this, Locale.getDefault());

 try {

 addresses =

geocoder.getFromLocation(mySignature.latitude,

 mySignature.longitude, 1);

 if (!addresses.isEmpty()) {

 Address returnedAddress = addresses.get(0);

 StringBuilder

strReturnedAddress = new StringBuilder("");

for (int i = 0; i < returnedAddress.getMaxAddressLineIndex();

i++) {

 strReturnedAddress

.append(returnedAddress.getAddressLine(i)).append(

 " ");

 }

 Log.e("MyCurrentLoctionAddress",

 "" + strReturnedAddress.toString());

 cityName =

addresses.get(0).getLocality();

Log.e("City Name=", "" + strReturnedAddress.toString());

 } else {

Log.e("MyCurrentLoctionAddress", "No Address returned!");

 }

 MyLocationChecker

myLocationChecker = new MyLocationChecker();

 mySignature.isLocationInRadius

= myLocationChecker

.checkLocationWithinRadius(bestLocation, bestLocation);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Fig. 7:Main Acitivity Class

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

18

6. COMPARISON RESULTS
Proposed algorithm is also compared with existing OAuth 2.0

and Zero Trust on various metrics like authentication time,

accuracy, scalability, security, energy consumption,

computational overhead, memory usage, key management

complexity, resistance to replay attacks, interoperability and

privacy protection. As shown in Table 5 below the proposed

algorithm performs well in various metrics.

Table 5: Comparison table using multiple metrics

Metric
Implemented

Algorithm
OAuth 2.0 Zero Trust

Average

Authentication

Time (s)

0.0000123 0.0728 0.1662

Accuracy (%) 100% 80% 100%

Scalability
High (Fast

response)
Medium Medium

Security

Very High

(Signature-

based)

High

(Token-

based,

vulnerable

to token

theft)

Very High

(Multi-factor,

continuous

verification)

Energy

Consumption

(Joules)

Low (~0.5 J)
Medium (~5

J)
High (~15 J)

Computational

Overhead

Minimal

(Lightweight

signature

processing)

Moderate

(Token

encryption

&

High

(Multiple

encryption &

verification

decryption) steps)

Memory Usage

(MB)
Low (~2 MB)

Moderate

(~50 MB)

High (~150

MB)

Key

Management

Complexity

Simple

(Predefined

signatures)

Moderate

(Token

expiration,

refresh

mechanisms

)

Complex

(Continuous

authentication

, MFA keys)

Resistance to

Replay Attacks
High

High

(Tokens are

time-bound

but

vulnerable

to theft)

Very High

(Continuous

verification

prevents stale

attacks)

Interoperabilit

y

High (Custom

implementatio

n required due

to mobile

agents)

High

(Widely

supported

by web &

mobile

apps)

Medium

(Requires

strict policy

enforcement)

Privacy

Protection

High (Device

signature

stored

centrally)

Low

(Tokens can

be leaked or

stolen)

High (Zero

trust

minimizes

access to

sensitive

data)

Fig 8: Charts showing Authentication time, accuracy and traffic generated

Fig 8 shows that proportions remain the same, showing that

Zero Trust has the highest delay, while Implemented Algorithm

is the fastest. OAuth with 80% accuracy, making it more

competitive but is still lower than Implemented Algorithm &

Zero Trust (100%). No change in traffic, as it is determined by

the authentication process structure. Further, one of the

advantage of using mobile agent is that it produces less traffic

as compared to traditional client server model.Fig 9 shows that

implemented algorithm produces very less traffic.

7. CONCLUSION
In this paper device fingerprint and agent based device

authentication mechanism has been proposed. Mechanism

uses various parameters for device signature calculation.

Proposed device signature based authentication mechanism

includes device fingerprint generation and comparison with

the stored signature. Signature can be used in many ways

including location checking of the device with the stored

Access Point location. IP address of the device can be

checked with the range of IP addresses available in to the

network. Static parameters of the signature can be used to

produce MD5 Fingerprint of the device which can be matched

with the stored MD5 Fingerprint for authentication. Benefit of

using MD5 approach is to produce the signature from the

static parameters but reverse is not possible i.e. device

parameters cannot be generated from the MD5 Fingerprint.

Proposed algorithm is also compared with existing popular

algorithms and performs well on various parameters

8. FUTURE WORK
AI-Powered Anomaly Detection: Implementing machine

learning-based authentication using device signature to detect

behavioral anomalies in real time. This can also help specially

in intrusion detection. Blockchain for Decentralized

Identity Management: We can use blockchain to eliminate

central authorities, reducing risks of credential theft.

Blockchain can also help in creating and maintaining the trust

score using consensus algorithm.

9. REFERENCES
[1] U. Kumar and S. Gambhir, "Device fingerprint and

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.7, May 2025

19

mobile agent-based authentication technique in wireless

networks," Int. J. Fut. Gen. Comm. Netw., vol. 11, no. 3,

pp. 33–48, 2018.

[2] Statista, "Number of IoT connected devices worldwide,"

2024.[Online].Available:

https://www.statista.com/statistics/1183457/iot-

connected-devices-worldwide/

[3] U. Kumar and S. Gambhir, “Device Fingerprint and

Mobile Agent based Authentication Technique in

Wireless Networks,” *Int. J. Future Gener. Commun.

Netw.*, vol. 11, no. 3, pp. 33–48, 2018.

[4] M. El Fissaoui, A. Beni-hssane, and M. Saadi, "Multi-

mobile agent itinerary planning-based energy and fault

aware data aggregation in wireless sensor networks,"

EURASIP J. Wireless Commun. Netw., 2018.

[5] X. Wang, M. Chen, T. Kwon, and H. C. Chao, "Multiple

mobile agents’ itinerary planning in wireless sensor

networks: Survey and evaluation," IET Commun., vol. 5,

pp. 1769–1776, 2011.

[6] H. Q. Qadori, Z. A. Zulkarnain, Z. M. Hanapi, and S.

Subramaniam, "Multi-mobile agent itinerary planning

algorithms for data gathering in wireless sensor

networks: A review paper," Int. J. Distrib. Sensor Netw.,

vol. 13, no. 2, pp. 1–13, 2017.

[7] T. Zhao, X. Wang, and S. Mao, "Cross-domain, scalable,

and interpretable RF device fingerprinting," in Proc.

IEEE INFOCOM, 2024.

[8] P. M. Sánchez et al., "Adversarial attacks and defenses

on ML-and hardware-based IoT device fingerprinting

and identification," Future Gener. Comput. Syst., vol.

152, pp. 30–42, 2024.

[9] R. Li et al., "DeviceRadar: Online IoT device

fingerprinting in ISPs using programmable switches,"

IEEE/ACM Trans. Netw., 2024.

[10] K. Heid and J. Heider, "Haven't we met before?-

Detecting device fingerprinting activity on Android

apps," in Proc. Eur. Interdiscip. Cybersecurity Conf.,

2024.

[11] Z. Lin et al., "A life cycle management architecture for

power equipment based on device fingerprinting," in

Proc. IEEE Int. Symp. Auton. Syst. (ISAS), 2024.

[12] S. Abbas et al., "Radio frequency fingerprinting

techniques for device identification: A survey," Int. J.

Inf. Secur., vol. 23, no. 2, pp. 1389–1427, 2024.

[13] Z. Lv et al., "Research on distributed PV network

terminal identification technology based on device

fingerprint generation," in Proc. 3rd Int. Conf. Comput.

Technol., Inf. Eng., Electron. Mater. (CTIEEM), vol.

12987, SPIE, 2024.

[14] Z. Xi et al., "Device identity recognition based on an

adaptive environment for intrinsic security fingerprints,"

Electronics, vol. 13, no. 3, p. 656, 2024.

[15] D. Zhang et al., "DevPF: Device identification through

passive fingerprints in IoT," in Proc. IEEE Int. Symp.

Auton. Syst. (ISAS), 2024.

[16] V. Kohli, M. N. Aman, and B. Sikdar, "An intelligent

fingerprinting technique for low-power embedded IoT

devices," IEEE Trans. Artif. Intell., 2024.

[17] V. Kumar and K. Paul, "Device fingerprinting for cyber-

physical systems: A survey," ACM Comput. Surv., vol.

55, no. 14s, pp. 1–41, 2023.

[18] N. Basha et al., "Channel-resilient deep-learning-driven

device fingerprinting through multiple data streams,"

IEEE Open J. Commun. Soc., vol. 4, pp. 118–133, 2023.

[19] H. Cui et al., "Trust assessment for mobile crowdsensing

via device fingerprinting," ISA Trans., vol. 141, pp. 93–

102, 2023.

[20] Y. Sang et al., "Toward IoT device fingerprinting from

proprietary protocol traffic via key-blocks aware

approach," Comput. Secur., vol. 131, p. 103145, 2023.

[21] R. R. Chowdhury and P. E. Abas, "A survey on device

fingerprinting approach for resource-constraint IoT

devices: Comparative study and research challenges,"

Internet Things, vol. 20, p. 100632, 2022.

[22] S. Aneja et al., "Device fingerprinting using deep

convolutional neural networks," Int. J. Commun. Netw.

Distrib. Syst., vol. 28, no. 2, pp. 171–198, 2022.

[23] J. V. Monaco, "Device fingerprinting with peripheral

timestamps," in Proc. IEEE Symp. Secur. Privacy (SP),

2022.

[24] B. Hamdaoui and A. Elmaghbub, "Deep-learning-based

device fingerprinting for increased LoRa-IoT security:

Sensitivity to network deployment changes," IEEE

Netw., vol. 36, no. 3, pp. 204–210, 2022.

[25] S. Wan et al., "DevTag: A benchmark for fingerprinting

IoT devices," IEEE Internet Things J., vol. 10, no. 7, pp.

6388–6399, 2022.

[26] Z. Ren, P. Ren, and T. Zhang, "Deep RF device

fingerprinting by semi-supervised learning with meta

pseudo time-frequency labels," in Proc. IEEE Wireless

Commun. Netw. Conf. (WCNC), 2022.

10. AUTHOR'S PROFILE
Umesh Kumar received his B.Tech. degree in Computer

Engineering from DCRUST University, Sonepat, Haryana,

India, in 2007. He completed his M.Tech. and Ph.D. degrees

in Wireless Security from JC Bose University of Science and

Technology, YMCA, Faridabad, Haryana, India, in 2010 and

2020, respectively. From 2010 to 2012, he worked as an

Android Application Developer at Tata Consultancy Services.

Since 2012, he has been serving as an Assistant Professor in

the Department of Computer Engineering at JC Bose

University of Science and Technology, YMCA. His research

interests include Wireless Security, Blockchain, and Artificial

Intelligence

IJCATM : www.ijcaonline.org

