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ABSTRACT

Stereo disparity estimation is a fundamental problem in
computer vision, forming the basis for 3D reconstruction,
autonomous navigation, and robotics. Unlike optical flow,
which describes unconstrained 2D displacements, disparity in
rectified stereo geometry is strictly aligned with the epipolar
axis. This geometric property implies that one component of
the flow field contains the true disparity signal, while the
orthogonal component predominantly reflects distortion,
miscalibration, or noise. However, most existing approaches
either neglect this constraint or require dedicated disparity
networks trained from scratch, leading to redundant
computation and limited generality.

This paper introduces Epipolar-Aligned Channel Selection
(EACS), a parameter-free and geometry-aware post-processing
operator that isolates the disparity-aligned component of
optical flow while discarding the non-epipolar channel.
Implemented as a fixed linear projection with negligible
overhead, EACS ensures that only geometrically meaningful
information is retained. When coupled with RAFT, a state-of-
the-art optical flow network, the resulting RAFT + EACS
pipeline enables direct and efficient disparity estimation from
optical flow, without requiring additional training or
specialized stereo architectures.

Experiments conducted on synthetic stereo data generated at
TU Chemnitz (Technische Universitdt Chemnitz) confirm the
effectiveness of this approach. The proposed method achieves
sub-pixel disparity accuracy (MAE =0.3007, RMSE = 0.9470)
and extremely low error rates under stringent evaluation
protocols (Dl1-all = 0.4%). Qualitative analysis further
demonstrates that RAFT + EACS preserves fine structural
details and produces smooth, consistent disparity maps, even in
challenging low-texture regions. These findings establish
geometry-aware post-processing as a simple yet powerful
alternative to specialized stereo disparity networks.
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1. INTRODUCTION

The estimation of 3D motion from visual data has long been a
central challenge in computer vision, with applications
spanning autonomous navigation, robotics, immersive media,
and environmental monitoring. A key formulation of this
problem is scene flow, which represents the dense 3D motion
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field of points in a scene [1]. Traditionally, scene flow can be
decomposed into two tightly related sub-tasks: optical flow,
capturing 2D displacements between temporally adjacent
frames [2—4], and stereo disparity, describing pixel
correspondences across left-right stereo pairs [5-8]. By
combining these two complementary modalities, depth and
motion can be jointly inferred, enabling a full reconstruction of
dynamic 3D geometry.

Despite their conceptual similarity, optical flow and stereo
disparity are often treated as distinct problems, each with its
own datasets, architectures, and optimization objectives.
Optical flow estimation typically searches for correspondences
over the entire image domain [2, 4, 7], whereas stereo disparity
estimation restricts matching to epipolar lines determined by
the stereo baseline [5, 6, 8]. This geometric distinction has
motivated separate model designs and training pipelines.
However, such separation can lead to inefficiencies:
information that is useful for one task (e.g., flow smoothness
priors, stereo consistency) is not fully exploited by the other.
Recent advances in joint modeling, building on high-quality
optical flow backbones such as RAFT [9] and RAFT-Stereo
[10], have shown that shared architectures can effectively
leverage cross-task regularities across optical flow, stereo, and
depth. More recent transformer-based joint frameworks further
unify pose, depth, and optical flow within a single architecture,
underscoring the benefit of exploiting geometric relationships
across tasks [11].

In rectified stereo geometry, only one component of the optical
flow field is geometrically meaningful for disparity estimation.
The two-channel flow vector (fy, f;) captures apparent 2D
motion between two views, but in left-right stereo setups the
true disparity signal lies almost entirely along the horizontal
axis, while the vertical component contains only distortion,
calibration residuals, or wide-FOV artefacts. Conversely, in
top—bottom rigs the vertical component carries the geometry,
and the horizontal component becomes negligible. Under ideal
epipolar geometry, the disparity is strictly constrained to the
baseline direction and the orthogonal component should
theoretically vanish. These structural properties motivate the
central idea of this work: isolating the epipolar-aligned flow
component provides exactly the information required for
disparity estimation, while discarding the orthogonal
component removes nuisance variation that is irrelevant to the
task.

A critical yet underexplored issue in this joint setting is the
representation gap between optical flow and disparity. Raw
optical flow fields contain both horizontal (f;) and vertical (f;)
displacement components, while disparity in rectified stereo
geometry is constrained to a single axis aligned with the
baseline (horizontal for conventional rigs, vertical for top—



bottom stereo). As a result, one of the flow channels
predominantly carries the true disparity signal, whereas the
orthogonal channel mainly reflects distortions, miscalibration,
or noise. Recent depth-estimation approaches that explicitly
leverage optical flow as an auxiliary supervisory signal further
demonstrate the usefulness of flow—geometry interactions for
depth prediction [12]. Feeding the full 2D flow into disparity-
related networks introduces redundancy and may even degrade
performance.

In this work, this gap has been addressed by proposing
Epipolar-Aligned Channel Selection (EACS), a lightweight
and differentiable post-processing operator that is applied after
optical flow estimation to extract the disparity-aligned
component while suppressing the orthogonal component. This
is a challenge because the orthogonal component often has
large magnitude but carries no geometric meaning; without

explicitly removing it, downstream networks must implicitl
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learn to ignore this misleading signal, which increases training
complexity and leads to unstable or suboptimal disparity
predictions. . Implemented as a fixed 1 X 1 convolution, EACS
introduces no trainable parameters and negligible
computational overhead, yet it ensures that only the
geometrically meaningful signal is propagated downstream.
This formulation offers both theoretical grounding—since it
directly encodes epipolar constraints—and practical benefits by
reducing nuisance variation. By integrating EACS into existing
optical-flow—to—disparity pipelines as a post-processing
projection on the flow output (e.g., from RAFT), this work
shows that stereo disparity estimation can be made more robust
and efficient. Moreover, our approach is fully compatible with
modern architectures such as RAFT [9] and RAFT-Stereo [10],
and can be seamlessly deployed in joint optical flow and stereo
disparity networks.

(b)

Fig 1: Conceptual relationship between optical flow and stereo disparity estimation. (a): optical flow estimation involves dense
correspondence search across the entire two-dimensional image plane. (b): stereo disparity estimation restricts matching to the
epipolar line, reducing the search space to a single axis.

To further motivate our approach, Fig 1 highlights the
conceptual relationship between optical flow and sterco
disparity. Both tasks can be understood as dense
correspondence problems: optical flow seeks pixel matches
across temporally adjacent frames with a two-dimensional
search space, while stereo disparity restricts the matching
problem to the one-dimensional epipolar line determined by the
stereo baseline. This structural similarity suggests that disparity
can, in principle, be recovered directly from optical flow if the
search space is appropriately constrained. This motivates using
optical flow as a surrogate representation for disparity

estimation and provides the conceptual foundation for the
proposed EACS operator, which explicitly enforces epipolar
alignment. Recent generative approaches have also begun to
explore depth estimation through flow-based transformations,
reinforcing the relevance of flow—depth relationships even
beyond discriminative frameworks [13].

The contributions of this work are both methodological and
conceptual. At the methodological level, this paper introduces
Epipolar-Aligned Channel Selection (EACS) as a geometry-
aware post-processing operator that enforces epipolar



constraints by projecting dense optical flow fields onto the
stereo baseline. This simple yet principled design eliminates
the influence of the non-epipolar channel while preserving the
disparity-aligned signal, and it can be implemented as a
parameter-free, differentiable 1x1 convolution. At the
conceptual level, this work reframes disparity estimation not as
an independent learning problem requiring a dedicated
network, but as a constrained projection of optical flow,
highlighting the sufficiency of geometry-aware post-
processing in bridging the two tasks. Finally, through
systematic experiments on synthetic stereo data with dense
ground truth, this paper demonstrates that RAFT + EACS
achieves sub-pixel disparity accuracy while preserving fine
structural detail, all with negligible computational overhead.
These findings underscore the broader significance of
incorporating simple, theoretically grounded operators into
deep pipelines, showing that lightweight geometry-aware post-
processing can serve as an effective alternative to dedicated
disparity estimation networks.

2. RELATED WORK
2.1 Stereo Disparity Estimation

Stereo disparity estimation has long been recognized as a
fundamental component of 3D reconstruction. Classical
approaches typically relied on local correlation windows or
global energy minimization frameworks, often incorporating
smoothness priors and occlusion handling [2, 3, 14]. While
effective under controlled conditions, these methods were
prone to failure in the presence of noise, illumination changes,
or textureless regions, reflecting the limitations of handcrafted
optimization schemes.

With the rise of deep learning, convolutional neural networks
(CNNs) have been applied successfully to optical flow and
stereo disparity estimation, achieving superior accuracy and
performance [5, 7]. Zbontar et al. [15] first used CNNs to learn
image patch similarities, inspiring subsequent encoder—decoder
architectures [16—18]. The introduction of end-to-end stereo
networks, such as PSMNet [6] and GC-Net [5], marked a
turning point by directly regressing disparity from rectified
stereo pairs. Central to these methods is the construction of cost
volumes, either in 3D through correlations between left—right
features [16] or in 4D by concatenating features to preserve
channel dimensions. Architectures adopting 3D or 4D
convolutions for cost aggregation [19, 20] have proven highly
successful, particularly when integrating classical concepts
such as semi-global matching [19]. Despite these advances,
stereo disparity remains inherently constrained by epipolar
geometry: disparities must align with the stereo baseline, a
property that deep networks do not always explicitly encode.

2.2 Optical Flow Estimation

Optical flow estimation generalizes disparity prediction to
arbitrary temporal displacements in video. CNN-based models
such as FlowNet [17] and PWC-Net [7] significantly advanced
the field by introducing encoder—decoder pipelines, warping
mechanisms, and cost-volume operations in multiple
resolutions [18, 21]. While cost-volume—based approaches
improved accuracy, 4D convolutions were computationally and
memory intensive, often requiring millions of iterations to
train.

To address this, the RAFT architecture [9] introduced an
iterative refinement strategy using a gated recurrent unit (GRU)
with high-resolution correlation volumes. RAFT reduced
model size while improving accuracy on standard benchmarks,
and it remains a cornerstone for both optical flow and scene-
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flow estimation [22-24]. More recently, RAFT-Stereo [10]
extended this framework to disparity estimation by aligning
correlation volumes with the epipolar direction.

Beyond classical CNN-based flow models, several recent
works have highlighted the strong coupling between optical
flow and geometric structure. F?Depth [12] employs optical-
flow consistency and feature-map synthesis losses to supervise
self-supervised monocular depth estimation, showing that
accurate flow is an effective geometric supervisory signal. In
parallel, DepthFM [13] formulates monocular depth estimation
as a flow-matching transport problem, demonstrating that
trajectory-based flow modeling can enhance both training and
inference efficiency. These developments further emphasize
the close relationship between optical flow and geometric
quantities—an observation that directly motivates geometry-
aware refinements of flow for disparity estimation.

Nevertheless, raw optical flow inherently contains both
horizontal and vertical components, which are not equally
meaningful in stereo setups where disparity is restricted to a
single axis. This discrepancy between general-purpose flow
and epipolar geometry motivates specialized refinements.

2.3 Multi-Task and Joint Models

Given the close relationship between stereo disparity and
optical flow, a variety of works have sought to unify them.
Early efforts were inspired by variational methods that applied
similar objectives to both tasks [25, 26]. Neural-network—based
approaches later demonstrated that sharing encoders or
correlation volumes can improve both disparity and flow
estimation by leveraging cross-task regularities [27, 28].
Beyond pairwise matching, multi-task learning has been
extended to broader scene-flow estimation. For example,
DispNet and FlowNet were combined with occlusion
estimation for joint scene-flow prediction [29], while PWC-Net
[7] variants integrated stereo, flow, and semantic segmentation
within a shared encoder [30]. RAFT-3D [23] further advanced
this line by combining RAFT’s recurrent refinement with pre-
estimated depth to predict full 3D motion under rigid-motion
constraints. Transformer-based approaches [31] have also
shown promise across both tasks.

More recently, transformer-driven joint frameworks have
explored even tighter geometric coupling. PDF-Former [11]
jointly estimates pose, depth, and optical flow through a
competition—cooperation mechanism, demonstrating that
transformer architectures can effectively exploit shared
structure across geometric tasks and benefit from mutual
supervision. These modern multi-task approaches highlight the
potential of unified representations, yet most still treat disparity
and flow as distinct outputs requiring dedicated network heads.
In doing so, they fail to exploit the theoretical fact that stereo
disparity is not an independent modality but a projection of
optical flow along the epipolar axis—resulting in unnecessary
architectural complexity and redundancy.

2.4 Summary and Motivation

Existing stereo and optical-flow methods have made
substantial progress, yet they typically treat the two tasks as
separate problems with independent network branches and
training objectives. Despite the conceptual overlap between
them, current approaches rarely exploit the fact that, in rectified
stereo geometry, the disparity signal corresponds to a single
epipolar-aligned component of the optical flow field. As a
result, most models preserve and process both flow channels,
introducing redundancy and additional learning complexity.



This observation gives rise to the central objective of this work:
to determine whether accurate stereo disparity can be recovered
directly from optical flow by isolating only the epipolar-aligned
component and discarding the orthogonal one, without relying
on a dedicated stereo network.

To investigate this objective, this work proposes Epipolar-
Aligned Channel Selection (EACS), a lightweight post-
processing operator that projects dense optical flow onto the
baseline direction, removing the non-epipolar component while
preserving the disparity-relevant signal. The method is
parameter-free, compatible with modern flow architectures,
and designed as a minimal test of the theoretical sufficiency of
the epipolar-aligned optical-flow component.

3. METHODOLOGY

As discussed in Section 1, in rectified stereo geometry only one
component of the optical flow field is aligned with the epipolar
direction and therefore carries the disparity-relevant signal,
while the orthogonal component contains residual distortions
or wide-FOV artefacts. Building on this observation, our goal
is to construct an operator that isolates the epipolar-aligned
flow component and suppresses the non-epipolar one in a
principled and computationally lightweight manner.

3.1 Problem Formulation

The objective of this work is to recover a single-channel stereo
disparity map directly from a two-channel optical flow field,
without training a stereo network or modifying the underlying
flow architecture. In optical flow representation, each pixel
(i,j) is associated with a displacement vector consisting of
horizontal and vertical components. Formally, the flow field
can be written as:

N V1))

iL,j) = g 1
fan=|Fah (1)
where f,(i,j) denotes the displacement along the horizontal
axis and f, (i,j) denotes the displacement along the vertical
axis. Collecting these vectors over the entire image yields the

flow tensor:

F e ]RZXH xXW (2)
where H, W are the spatial dimensions.

Our goal is to construct a mapping that discards the horizontal
channel and preserves only the vertical channel. This mapping
can be expressed as:

M: RZXHXW - RlXHXW (3)
M(F) = exF+ ey F, %

Where for vertical baseline e = [0, 1]7, this reduces to F,,, and
for horizontal baseline e = [1, 0]7, this reduces to F,.
To implement this mapping in the form of a neural network, a

single convolutional layer with kernel size 1 X 1 is used. The
convolution operation at each spatial location is defined as:

vy, ) = wy (L)) + Wy-fy(i’j) 5
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where w, and w,, are the weights associated with the two input
channels. In order to select only the vertical channel, by setting:

w, =0, wy, =1 (6)
which reduces (5) to:
y(@@.j) = f, @) (7

This formulation ensures that the output is exactly the vertical
flow component, while the horizontal component is completely
suppressed.

By expressing the channel selection as a fixed 1Xx1
convolution, the operation remains differentiable and
compatible with common deep learning frameworks. The
network contains no trainable parameters, which guarantees
negligible computational overhead, yet it can be exported and
deployed as part of larger models without requiring special
handling. In this way, the simple task of discarding the x-
channel is achieved in a mathematically principled and
framework-friendly =~ manner. the operation remains
differentiable and compatible with common deep learning
frameworks. The network contains no trainable parameters,
which guarantees negligible computational overhead, yet it can
be exported and deployed as part of larger models without
requiring special handling. In this way, the simple task of
discarding the x-channel is achieved in a mathematically
principled and framework-friendly manner.

3.2 Epipolar-Aligned Channel Selection
(EACS)

To generalize the fixed channel selection described in Section
3.1, the Epipolar-Aligned Channel Selection (EACS) operator
is formalized as a projection onto the stereo baseline direction.
Given an optical flow vector f(i,j) = [f,(i.)), f, NI, a
baseline unit vector e is defined as e = "i—”, where b is the

stereo baseline vector. For rectified horizontal rigs e = [1,0]”
(retain f,); and for vertical rigs e = [0, 1] (retain f;,).

EACS computes a projection of the two-channel flow onto the
(unit) baseline direction e:

feacs(i)) = €. f (i, )= ex- (L) + ey (i) ®)

This operation discards the orthogonal component and retains
only the disparity-aligned signal. In implementation, Eq. (8)
corresponds exactly to the fixed 1 X 1 convolution described
earlier, with weights determined by the baseline orientation.

To provide an intuitive overview of the proposed operator,
Fig 2 illustrates the internal structure of the Epipolar-Aligned
Channel Selection (EACS) module. Starting from dense optical
flow fields (fy, fy) of size 2 X H X W, EACS applies a fixed
1 X1 convolution that selects only the epipolar-aligned
channel while discarding the orthogonal one. The resulting
single-channel feature map directly constitutes the estimated
disparity The resulting single-channel output constitutes the
estimated disparity, which can later be evaluated using standard
disparity metrics.

10
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Fig 2: Schematic representation of the Epipolar-Aligned Channel Selection (EACS) operator. The module processes two-
channel optical flow (u, v) through a fixed 1x1 convolution to suppress the non-epipolar component. The resulting single-
channel output corresponds to the estimated disparity map, which is subsequently evaluated against ground-truth disparity
using standard metrics

3.3 Integration into Existing Architectures

In our framework, disparity estimation is obtained by coupling
RAFT with the proposed Epipolar-Aligned Channel Selection
(EACS) module, which is straightforward and does not require
retraining. The input stereo image pairs (I;, ) for horizontal
stereo or (I, I,) for vertical stereo, are first processed by RAFT

[9], which produces a dense two-channel optical flow field F =
[fo fy]" € RZW_ The flow field is then passed through
Epipolar-Aligned Channel Selection (EACS) operator which
projects this field onto the epipolar axis, producing a single-
channel disparity map D = fgacs € RV*W,

[ Optical Flow Estimation ]

Disparity Map

Micro-CNN

Optcal Flow

Fig 3: Overall pipeline of the proposed RAFT + EACS framewor

k. Two rectified stereo frames are first processed by RAFT to

compute dense optical flow. The flow field is then passed through the Epipolar-Aligned Channel Selection (EACS) module,
implemented as a fixed 1 X 1 convolution, which removes the non-epipolar component. The output is a single-channel
disparity map, obtained without the need for a dedicated stereo network.

In the case of a horizontal-baseline stereo configuration, the
disparity signal is aligned with the horizontal axis, and thus
EACS suppresses the vertical component f;,, retaining only the
horizontal component f,. Conversely, for a vertical-baseline
stereo configuration, the disparity manifests along the vertical
axis, and therefore EACS suppresses the horizontal component
fx, preserving only the vertical component f,. In both cases,
the operation yields a single-channel disparity map, that is
directly consistent with the underlying geometry and can be
without dedicated stereo estimation networks such as RAFT-
Stereo [10] and CREStereo [32]. Fig 3 illustrates the complete
RAFT + EACS pipelinein. Stereo image pairs are first
processed by RAFT to generate dense two-channel optical
flow, which is then passed through the proposed Epipolar-
Aligned Channel Selection (EACS) operator. Implemented as
a fixed 1x1 convolution, EACS discards the non-epipolar
component and outputs the disparity-aligned signal. The

resulting one-channel map directly constitutes the disparity
estimate, demonstrating that the entire disparity estimation
process can be achieved without additional trainable
components.

3.4 Theoretical Analysis

The theoretical grounding of this approach can be expressed
using projection matrices. Let P = ee”, where e is the epipolar
unit vector. In the case of horizontal stereo,

1 0
Prorizontar = [0 0] ©)
while for vertical stereo,
0 0
Pyerticat = 0 1 (10)

Applying P to a flow vector f yields:

11



feacs = P-f (11)

From an error propagation perspective, retaining both flow
components introduces unnecessary variance into the disparity
estimation process. Since disparity is strictly aligned with the
epipolar direction in rectified stereo geometry, any orthogonal
flow component acts as structured noise. By explicitly
projecting the flow vector onto the baseline direction, EACS
removes this noise at the representation level, reducing
ambiguity and stabilizing downstream disparity estimation.
Unlike learned suppression mechanisms, this projection is
deterministic and guaranteed to preserve the physically
meaningful component of motion, thereby improving
robustness without increasing model complexity. Applying the
projection P = ee” retains only the flow component aligned
with the baseline direction, which is the quantity relevant for
disparity estimation.In practical terms, the operator reduces the
dimensionality of the flow representation from 2 X H X W to
1 x H X W, lowering the memory footprint and simplifying
subsequent cost-volume construction. Because it is
implemented as a convolutional layer with fixed weights,
EACS can be exported in standard formats such as ONNX or
TorchScript, and integrated into real-time pipelines without any
modification to the backbone network. This makes the
approach highly practical for deployment in resource-
constrained environments.

4. EVALUATION

The goal of our experiments is to evaluate the central
hypothesis that accurate stereo disparity can be recovered
directly from optical flow by projecting the flow onto the
epipolar (baseline) direction and suppressing the orthogonal
component. In the proposed pipeline, rectified stereo pairs are
first processed by RAFT to produce dense optical flow; the
resulting flow field is then passed through the Epipolar-Aligned
Channel Selection (EACS) operator, which performs the
projection and yields a single-channel disparity map. This
procedure introduces no trainable parameters and incurs
negligible computational overhead.

Accuracy is reported using MAE and RMSE (pixels) and
follow the KITTI D1-all protocol [33] (error >3 px and >5% of
ground truth). Threshold outlier rates (>3 px, >5 px) and
runtime measured on a system equipped with an NVIDIA
TU102-based GPU is also provided. While the current
evaluation focuses on a controlled synthetic dataset, this choice
was made deliberately to isolate the geometric effect of the
proposed EACS operator under ideal calibration conditions. By
eliminating confounding factors such as sensor noise, rolling
shutter effects, and imperfect rectification, the experiments
provide a clear cause—effect validation of the central
hypothesis. This controlled setting allows us to rigorously
assess whether disparity can be recovered from optical flow
through epipolar-aligned projection alone. The remainder of
this section details the setup (section 4.1), quantitative results
(section 4.2), qualitative analysis (section 4.3), and
discussion/limitations (section 4.4).

4.1 Experimental Setup

All experiments were conducted on synthetic data in order to
isolate and clearly demonstrate the effect of the proposed
operator. Specifically, the synthetic dataset generated at
Technische Universitdt Chemnitz, has been employed. This
data provides stereo image pairs with dense ground-truth
disparity annotations under controlled rendering conditions.
The use of synthetic data guarantees perfect calibration and
accurate ground truth, which is essential for isolating and
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analyzing the geometric contribution of EACS. The primary
goal of this evaluation is therefore a controlled proof of concept
and a cause—effect analysis—demonstrating that the proposed
projection operator behaves as theoretically expected when
applied to high-quality flow fields. A comprehensive
performance assessment on large-scale public benchmarks is
beyond the scope of this initial validation and will be conducted
in future work..

Disparity accuracy was quantified using complementary error
measures. The Mean Absolute Error (MAE) captures the
average deviation between estimated and ground-truth
disparity, providing a measure of overall accuracy. The Root
Mean Square Error (RMSE) additionally penalizes larger
deviations, thereby serving as a robustness indicator against
outliers. MAE and RMSE are reported in pixels. To ensure
comparability with standard stereo benchmarks, the KITTI D1-
all criterion is used as defined by the KITTI protocol, which
measures the fraction of pixels whose disparity error exceeds
both three pixels and five percent of the ground-truth value.
Furthermore, outlier rates beyond fixed thresholds of three and
five pixels were computed to provide an additional perspective
on robustness. Finally, runtime performance was recorded as
the average inference time per frame, including both RAFT
flow estimation and the EACS post-processing step, in order to
assess the computational efficiency of the proposed pipeline.

4.2 Quantitative Results

The quantitative evaluation demonstrates that the RAFT +
EACS pipeline is capable of producing highly accurate
disparity estimates from optical flow with sub-pixel precision.
On the TU Chemnitz synthetic dataset, the system achieved a
Mean Absolute Error (MAE) 0f 0.3007 pixels and a Root Mean
Square Error (RMSE) of 0.9470 pixels. The relatively small
difference between these two measures indicates that large
errors were rare and that the majority of deviations from ground
truth remained small and evenly distributed.

Complementing these findings, the D1-all metric yielded an
error rate of only 0.4%, confirming that the fraction of pixels
suffering from significant errors was very limited. Threshold-
based robustness analysis further revealed that 0.3% of pixels
exceeded the three-pixel error margin, while fewer than 0.05%
exceeded the five-pixel margin. These values provide strong
evidence that the proposed method remains stable even under
stringent error definitions. The quantitative performance of
RAFT + EACS, together with several baseline comparisons, is
summarized in Table 1.

From a computational perspective, the introduction of EACS
had negligible impact on runtime performance. The complete
pipeline, executed on an NVIDIA RTX 3090 GPU, achieved
an average throughput of approximately 10 frames per second
at full resolution. The EACS operator itself required less than
0.01 milliseconds per frame, underscoring its suitability for
real-time applications where efficiency is critical. Considering
the evaluation metrics jointly provides further insight into the
behavior of the proposed method. The low MAE indicates high
overall accuracy, while the relatively small gap between MAE
and RMSE suggests that large disparity errors are rare. This
observation is reinforced by the very low DI-all score and
threshold-based outlier rates, confirming that most pixels
remain well within strict error bounds. Together, these metrics
indicate that EACS does not merely improve average accuracy,
but also effectively suppresses extreme failure cases by
removing geometrically irrelevant flow components.

12
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Table 1. Quantitative comparison of disparity estimation methods on the TU Chemnitz synthetic dataset. RAFT + EACS
achieves sub-pixel accuracy with negligible runtime overhead, demonstrating that disparity can be effectively recovered from
optical flow without a dedicated stereo network.

Method MAE (px) RMSE (px) | D1-all (%) | >3 px (%) | >5px (%) | FPS
Naive Channel Selection 0.4121 1.2815 1.2 1.0 04 10
No Selection (Flow
Magnitude) 0.6894 2.0472 3.8 34 1.2 9
RAFT-Stereo (reference) 0.2105 0.8129 0.3 0.2 0.05 5.5
RAFT + EACS (ours) 0.3007 0.9470 0.4 0.3 0.05 10

4.3 Qualitative Results

Beyond numerical evaluation, qualitative inspection provides
additional insight into the behavior of RAFT + EACS.
Representative examples, illustrated in Fig 4, compare
estimated disparity maps with their ground-truth counterparts.
The wvisual results confirm that the proposed approach
successfully preserves fine structural details and produces
globally consistent disparities across entire scenes. Object
boundaries are well preserved, and thin structures are
reconstructed with high fidelity.

(b)

An especially notable observation is the robustness of the
method in texture-poor regions, where traditional disparity
estimation often struggles. By discarding the orthogonal
component of optical flow and retaining only the epipolar-
aligned channel, EACS eliminates spurious variations that
might otherwise lead to irregularities or ghosting artifacts. The
resulting disparity maps appear smooth and geometrically
consistent, further corroborating the quantitative findings.

A
~ -

()

Fig 4: Qualitative results of RAFT + EACS disparity estimation. (a) Ground-truth disparity. (b) Estimated disparity map. The
black region in the estimated disparity corresponds to the sky, where disparity is undefined. (c) Pixelwise RMSE error map,
where dark colors indicate errors close to zero. Together, the results demonstrate that RAFT + EACS produces disparity maps
that are highly consistent with ground truth, with minimal error concentrated only at fine object boundaries.

Representative qualitative results are presented in Fig 4.
Subfigure (a) shows the ground-truth disparity, while (b)
illustrates the estimated disparity obtained using the RAFT +
EACS pipeline. The visual comparison demonstrates that the
predicted disparity map closely follows the ground truth,
including fine structural details and smooth surfaces. The black
region in the estimated disparity corresponds to the sky, where
disparity is undefined and can thus be disregarded. Subfigure
(c) presents the pixelwise RMSE error map, which is
predominantly black, indicating errors close to zero across
most of the scene. Only small regions near object boundaries
exhibit non-negligible error, confirming that EACS effectively
extracts the geometrically meaningful disparity signal.

4.4 Discussion
Taken together, the experimental results validate the core claim
of this work, i.e. accurate stereo disparity can indeed be

obtained directly from optical flow by removing the non-
epipolar channel. Despite its conceptual simplicity, the EACS
operator consistently produced results that were both
numerically precise and visually convincing. The strong
performance can be attributed to two complementary factors.
First, RAFT provides dense and accurate flow fields in which
the disparity signal is already implicitly encoded. Second, the
explicit enforcement of epipolar geometry through channel
selection ensures that this signal is cleanly extracted without
interference from irrelevant components.

A closer examination of Table 1 reveals a clear trade-off
between architectural specialization and computational
efficiency. While RAFT-Stereo achieves slightly lower error
rates, it does so at the cost of a dedicated stereo architecture and
reduced inference speed. In contrast, RAFT + EACS achieves
competitive accuracy using a generic optical flow backbone
and a parameter-free projection step, effectively closing much
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of the performance gap while nearly doubling runtime
throughput. The performance difference can be attributed to the
fact that RAFT-Stereo explicitly optimizes a disparity-aligned
cost volume during training, whereas RAFT + EACS relies
solely on the quality of the underlying optical flow.
Importantly, the results demonstrate that a large portion of the
disparity signal is already present in standard optical flow
representations and can be recovered through geometry-aware
post-processing alone.

These findings carry important implications for the design of
future disparity estimation systems. They demonstrate that
dedicated stereo networks are not strictly necessary when high-
quality optical flow is available, since RAFT + EACS achieves
competitive results without retraining or architectural
modifications. At the same time, the results highlight the
limitations of the approach: Because the method builds directly
on RAFT’s optical flow, any flow inaccuracies—such as those
introduced by occlusions, motion discontinuities, or reflective
surfaces—also appear in the resulting disparity map. This
behavior is not unique to our approach; most stereo methods
experience similar challenges in these regions due to the
inherent ambiguity of correspondence estimation.
Furthermore, the experiments were conducted exclusively on
synthetic data under perfect calibration, and extending
validation to real-world datasets remains an important next
step. Finally, while EACS is readily applicable to rectified
stereo pairs with horizontal or vertical baselines, its
generalization to arbitrary epipolar orientations will require
further extensions, such as locally adaptive projections.

S. CONCLUSION AND FUTURE WORK

This study has introduced Epipolar-Aligned Channel Selection
(EACS), a lightweight post-processing operator designed to
extract disparity directly from optical flow by enforcing
epipolar constraints. In contrast to specialized stereo networks,
the proposed method adds no trainable parameters and
introduces negligible computational overhead, yet it
successfully converts dense optical flow fields into disparity
maps that closely align with ground truth. By coupling EACS
with RAFT, this paper demonstrated that accurate disparity can
be achieved without the need for retraining or architectural
modifications. Experimental results on the TU Chemnitz
synthetic dataset confirm the claim that the RAFT + EACS
pipeline consistently delivered sub-pixel disparity accuracy,
with a Mean Absolute Error of 0.3007 pixels, a Root Mean
Square Error of 0.9470 pixels, and exceptionally low error rates
under strict benchmarks (D1-all = 0.4%). The qualitative
evaluation further highlighted the method’s ability to preserve
fine structural details, avoid spurious noise, and remain robust
in low-texture regions where disparity estimation is generally
challenging.

The broader implication of these findings is that geometry-
aware post-processing can serve as a powerful alternative to
network retraining in stereo disparity estimation. The proposed
approach demonstrates that when a high-quality optical flow
estimator is available, the disparity signal is already embedded
within one channel of the flow representation. Rather than
explicitly encoding geometric knowledge into the network, the
method leverages prior geometric understanding to guide the
design of the post-processing operator—specifically, by
selecting the disparity-aligned flow component based on
epipolar geometry. This perspective bridges classical vision
principles with modern deep architectures without modifying
or retraining the underlying network.
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Nevertheless, the study also uncovers several limitations that
warrant further investigation. First, because the approach is
entirely dependent on the accuracy of RAFT’s optical flow,
errors introduced by occlusions, motion discontinuities, or
reflective surfaces inevitably propagate into the disparity
output. Second, the current evaluation has been restricted to
synthetic data under ideal calibration, and extending the
analysis to real-world benchmarks such as KITTI or
Middlebury is a necessary step to assess robustness in practical
conditions. Third, the present formulation of EACS assumes a
globally fixed baseline orientation (horizontal or vertical).
While this assumption holds for most rectified stereo setups,
generalizing the operator to arbitrary or spatially varying
baselines remains an open challenge. In practice, when the
baseline is horizontal, only the horizontal component of the
flow (f,) is preserved, whereas in vertical stereo rigs the
selection is reversed to retain f,. For more general stereo
geometries (e.g., wide-baseline or oblique rigs), EACS could
be extended to select a linear combination of the horizontal and
vertical flow components (fy, f) (i.e. feacs(i, ) = ™. f (i, /)=
ex.fx +ey.f,) , projected along the baseline vector e
(optionally local, e(i,j), for spatially varying baselines),
thereby maintaining alignment with the underlying epipolar
geometry. Addressing this may require locally adaptive
extensions of EACS, potentially supported by lightweight
trainable modules that can dynamically align flow with the
baseline direction.

Looking ahead, several promising research directions emerge.
One avenue involves integrating RAFT + EACS into broader
multi-task frameworks for scene flow, depth-motion
estimation, or autonomous navigation pipelines. Because
EACS is both differentiable and parameter-free, it could be
seamlessly combined with existing architectures, providing an
efficient preprocessing step that reduces redundancy in
downstream learning. Another direction lies in exploring fine-
tuning strategies, such as knowledge distillation or domain
adaptation, to further improve flow-to-disparity conversion in
challenging real-world scenarios. Finally, extending the
evaluation to dynamic environments with moving objects,
variable lighting conditions, and sensor imperfections would
provide valuable insight into the method’s applicability under
operational constraints.

An important direction for future work is the extension of the
experimental evaluation to established public benchmarks such
as KITTI [33], Middlebury [34], and SceneFlow [13], which
introduce real-world challenges including imperfect
calibration, occlusions, and varying lighting conditions. In
addition, evaluating the method under different stereo
configurations, baselines, and wide-FOV scenarios would
further assess the robustness and generality of EACS. Such
evaluations would complement the current controlled study and
provide a comprehensive picture of the method’s performance
across diverse real-world scenarios.

In conclusion, this work establishes that accurate stereo
disparity can be recovered directly from optical flow through a
simple, geometry-aware channel selection step. The results
highlight the strength of combining state-of-the-art flow
estimation with explicit epipolar priors, showing that principled
post-processing can substitute for specialized networks in
many contexts. By bridging the gap between optical flow and
disparity with a minimal yet effective operator, the proposed
framework opens new opportunities for efficient, real-time 3D
vision in robotics, autonomous systems, and immersive media
applications.
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