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ABSTRACT 

Stereo disparity estimation is a fundamental problem in 

computer vision, forming the basis for 3D reconstruction, 

autonomous navigation, and robotics. Unlike optical flow, 

which describes unconstrained 2D displacements, disparity in 

rectified stereo geometry is strictly aligned with the epipolar 

axis. This geometric property implies that one component of 

the flow field contains the true disparity signal, while the 

orthogonal component predominantly reflects distortion, 

miscalibration, or noise. However, most existing approaches 

either neglect this constraint or require dedicated disparity 

networks trained from scratch, leading to redundant 

computation and limited generality. 

This paper introduces Epipolar-Aligned Channel Selection 

(EACS), a parameter-free and geometry-aware post-processing 

operator that isolates the disparity-aligned component of 

optical flow while discarding the non-epipolar channel. 

Implemented as a fixed linear projection with negligible 

overhead, EACS ensures that only geometrically meaningful 

information is retained. When coupled with RAFT, a state-of-

the-art optical flow network, the resulting RAFT + EACS 

pipeline enables direct and efficient disparity estimation from 

optical flow, without requiring additional training or 

specialized stereo architectures. 

Experiments conducted on synthetic stereo data generated at 

TU Chemnitz (Technische Universität Chemnitz) confirm the 

effectiveness of this approach. The proposed method achieves 

sub-pixel disparity accuracy (MAE = 0.3007, RMSE = 0.9470) 

and extremely low error rates under stringent evaluation 

protocols (D1-all = 0.4%). Qualitative analysis further 

demonstrates that RAFT + EACS preserves fine structural 

details and produces smooth, consistent disparity maps, even in 

challenging low-texture regions. These findings establish 

geometry-aware post-processing as a simple yet powerful 

alternative to specialized stereo disparity networks. 
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1. INTRODUCTION 
The estimation of 3D motion from visual data has long been a 

central challenge in computer vision, with applications 

spanning autonomous navigation, robotics, immersive media, 

and environmental monitoring. A key formulation of this 

problem is scene flow, which represents the dense 3D motion 

field of points in a scene [1]. Traditionally, scene flow can be 

decomposed into two tightly related sub-tasks: optical flow, 

capturing 2D displacements between temporally adjacent 

frames [2–4], and stereo disparity, describing pixel 

correspondences across left–right stereo pairs [5–8]. By 

combining these two complementary modalities, depth and 

motion can be jointly inferred, enabling a full reconstruction of 

dynamic 3D geometry. 

Despite their conceptual similarity, optical flow and stereo 

disparity are often treated as distinct problems, each with its 

own datasets, architectures, and optimization objectives. 

Optical flow estimation typically searches for correspondences 

over the entire image domain [2, 4, 7], whereas stereo disparity 

estimation restricts matching to epipolar lines determined by 

the stereo baseline [5, 6, 8]. This geometric distinction has 

motivated separate model designs and training pipelines. 

However, such separation can lead to inefficiencies: 

information that is useful for one task (e.g., flow smoothness 

priors, stereo consistency) is not fully exploited by the other.  

Recent advances in joint modeling, building on high-quality 

optical flow backbones such as RAFT [9] and RAFT-Stereo 

[10], have shown that shared architectures can effectively 

leverage cross-task regularities across optical flow, stereo, and 

depth. More recent transformer-based joint frameworks further 

unify pose, depth, and optical flow within a single architecture, 

underscoring the benefit of exploiting geometric relationships 

across tasks [11].  

In rectified stereo geometry, only one component of the optical 

flow field is geometrically meaningful for disparity estimation. 

The two-channel flow vector (𝑓𝑥 , 𝑓𝑦) captures apparent 2D 

motion between two views, but in left–right stereo setups the 

true disparity signal lies almost entirely along the horizontal 

axis, while the vertical component contains only distortion, 

calibration residuals, or wide-FOV artefacts. Conversely, in 

top–bottom rigs the vertical component carries the geometry, 

and the horizontal component becomes negligible. Under ideal 

epipolar geometry, the disparity is strictly constrained to the 

baseline direction and the orthogonal component should 

theoretically vanish. These structural properties motivate the 

central idea of this work: isolating the epipolar-aligned flow 

component provides exactly the information required for 

disparity estimation, while discarding the orthogonal 

component removes nuisance variation that is irrelevant to the 

task. 

A critical yet underexplored issue in this joint setting is the 

representation gap between optical flow and disparity. Raw 

optical flow fields contain both horizontal (𝑓𝑥) and vertical (𝑓𝑦) 

displacement components, while disparity in rectified stereo 

geometry is constrained to a single axis aligned with the 

baseline (horizontal for conventional rigs, vertical for top–
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bottom stereo). As a result, one of the flow channels 

predominantly carries the true disparity signal, whereas the 

orthogonal channel mainly reflects distortions, miscalibration, 

or noise. Recent depth-estimation approaches that explicitly 

leverage optical flow as an auxiliary supervisory signal further 

demonstrate the usefulness of flow–geometry interactions for 

depth prediction [12]. Feeding the full 2D flow into disparity-

related networks introduces redundancy and may even degrade 

performance. 

In this work, this gap has been addressed by proposing 

Epipolar-Aligned Channel Selection (EACS), a lightweight 

and differentiable post-processing operator that is applied after 

optical flow estimation to extract the disparity-aligned 

component while suppressing the orthogonal component.  This 

is a challenge because the orthogonal component often has 

large magnitude but carries no geometric meaning; without 

explicitly removing it, downstream networks must implicitly 

learn to ignore this misleading signal, which increases training 

complexity and leads to unstable or suboptimal disparity 

predictions. . Implemented as a fixed 1 × 1 convolution, EACS 

introduces no trainable parameters and negligible 

computational overhead, yet it ensures that only the 

geometrically meaningful signal is propagated downstream. 

This formulation offers both theoretical grounding—since it 

directly encodes epipolar constraints—and practical benefits by 

reducing nuisance variation. By integrating EACS into existing 

optical-flow–to–disparity pipelines as a post-processing 

projection on the flow output (e.g., from RAFT), this work 

shows that stereo disparity estimation can be made more robust 

and efficient. Moreover, our approach is fully compatible with 

modern architectures such as RAFT [9] and RAFT-Stereo [10], 

and can be seamlessly deployed in joint optical flow and stereo 

disparity networks. 

 

Fig 1: Conceptual relationship between optical flow and stereo disparity estimation. (a): optical flow estimation involves dense 

correspondence search across the entire two-dimensional image plane. (b): stereo disparity estimation restricts matching to the 

epipolar line, reducing the search space to a single axis. 

To further motivate our approach, Fig 1 highlights the 

conceptual relationship between optical flow and stereo 

disparity. Both tasks can be understood as dense 

correspondence problems: optical flow seeks pixel matches 

across temporally adjacent frames with a two-dimensional 

search space, while stereo disparity restricts the matching 

problem to the one-dimensional epipolar line determined by the 

stereo baseline. This structural similarity suggests that disparity 

can, in principle, be recovered directly from optical flow if the 

search space is appropriately constrained. This motivates using 

optical flow as a surrogate representation for disparity 

estimation and provides the conceptual foundation for the 

proposed EACS operator, which explicitly enforces epipolar 

alignment. Recent generative approaches have also begun to 

explore depth estimation through flow-based transformations, 

reinforcing the relevance of flow–depth relationships even 

beyond discriminative frameworks [13]. 

The contributions of this work are both methodological and 

conceptual. At the methodological level, this paper introduces 

Epipolar-Aligned Channel Selection (EACS) as a geometry-

aware post-processing operator that enforces epipolar 
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constraints by projecting dense optical flow fields onto the 

stereo baseline. This simple yet principled design eliminates 

the influence of the non-epipolar channel while preserving the 

disparity-aligned signal, and it can be implemented as a 

parameter-free, differentiable 1×1 convolution. At the 

conceptual level, this work reframes disparity estimation not as 

an independent learning problem requiring a dedicated 

network, but as a constrained projection of optical flow, 

highlighting the sufficiency of geometry-aware post-

processing in bridging the two tasks. Finally, through 

systematic experiments on synthetic stereo data with dense 

ground truth, this paper demonstrates that RAFT + EACS 

achieves sub-pixel disparity accuracy while preserving fine 

structural detail, all with negligible computational overhead. 

These findings underscore the broader significance of 

incorporating simple, theoretically grounded operators into 

deep pipelines, showing that lightweight geometry-aware post-

processing can serve as an effective alternative to dedicated 

disparity estimation networks. 

2. RELATED WORK 

2.1 Stereo Disparity Estimation 
Stereo disparity estimation has long been recognized as a 

fundamental component of 3D reconstruction. Classical 

approaches typically relied on local correlation windows or 

global energy minimization frameworks, often incorporating 

smoothness priors and occlusion handling [2, 3, 14]. While 

effective under controlled conditions, these methods were 

prone to failure in the presence of noise, illumination changes, 

or textureless regions, reflecting the limitations of handcrafted 

optimization schemes. 

With the rise of deep learning, convolutional neural networks 

(CNNs) have been applied successfully to optical flow and 

stereo disparity estimation, achieving superior accuracy and 

performance [5, 7]. Zbontar et al. [15] first used CNNs to learn 

image patch similarities, inspiring subsequent encoder–decoder 

architectures [16–18]. The introduction of end-to-end stereo 

networks, such as PSMNet [6] and GC-Net [5], marked a 

turning point by directly regressing disparity from rectified 

stereo pairs. Central to these methods is the construction of cost 

volumes, either in 3D through correlations between left–right 

features [16] or in 4D by concatenating features to preserve 

channel dimensions. Architectures adopting 3D or 4D 

convolutions for cost aggregation [19, 20] have proven highly 

successful, particularly when integrating classical concepts 

such as semi-global matching [19]. Despite these advances, 

stereo disparity remains inherently constrained by epipolar 

geometry: disparities must align with the stereo baseline, a 

property that deep networks do not always explicitly encode. 

2.2 Optical Flow Estimation 
Optical flow estimation generalizes disparity prediction to 

arbitrary temporal displacements in video. CNN-based models 

such as FlowNet [17] and PWC-Net [7] significantly advanced 

the field by introducing encoder–decoder pipelines, warping 

mechanisms, and cost-volume operations in multiple 

resolutions [18, 21]. While cost-volume–based approaches 

improved accuracy, 4D convolutions were computationally and 

memory intensive, often requiring millions of iterations to 

train. 

To address this, the RAFT architecture [9] introduced an 

iterative refinement strategy using a gated recurrent unit (GRU) 

with high-resolution correlation volumes. RAFT reduced 

model size while improving accuracy on standard benchmarks, 

and it remains a cornerstone for both optical flow and scene-

flow estimation [22–24]. More recently, RAFT-Stereo [10] 

extended this framework to disparity estimation by aligning 

correlation volumes with the epipolar direction. 

Beyond classical CNN-based flow models, several recent 

works have highlighted the strong coupling between optical 

flow and geometric structure. F²Depth [12] employs optical-

flow consistency and feature-map synthesis losses to supervise 

self-supervised monocular depth estimation, showing that 

accurate flow is an effective geometric supervisory signal. In 

parallel, DepthFM [13] formulates monocular depth estimation 

as a flow-matching transport problem, demonstrating that 

trajectory-based flow modeling can enhance both training and 

inference efficiency. These developments further emphasize 

the close relationship between optical flow and geometric 

quantities—an observation that directly motivates geometry-

aware refinements of flow for disparity estimation. 

Nevertheless, raw optical flow inherently contains both 

horizontal and vertical components, which are not equally 

meaningful in stereo setups where disparity is restricted to a 

single axis. This discrepancy between general-purpose flow 

and epipolar geometry motivates specialized refinements. 

2.3 Multi-Task and Joint Models 
Given the close relationship between stereo disparity and 

optical flow, a variety of works have sought to unify them. 

Early efforts were inspired by variational methods that applied 

similar objectives to both tasks [25, 26]. Neural-network–based 

approaches later demonstrated that sharing encoders or 

correlation volumes can improve both disparity and flow 

estimation by leveraging cross-task regularities [27, 28]. 

Beyond pairwise matching, multi-task learning has been 

extended to broader scene-flow estimation. For example, 

DispNet and FlowNet were combined with occlusion 

estimation for joint scene-flow prediction [29], while PWC-Net 

[7] variants integrated stereo, flow, and semantic segmentation 

within a shared encoder [30]. RAFT-3D [23] further advanced 

this line by combining RAFT’s recurrent refinement with pre-

estimated depth to predict full 3D motion under rigid-motion 

constraints. Transformer-based approaches [31] have also 

shown promise across both tasks. 

More recently, transformer-driven joint frameworks have 

explored even tighter geometric coupling. PDF-Former [11] 

jointly estimates pose, depth, and optical flow through a 

competition–cooperation mechanism, demonstrating that 

transformer architectures can effectively exploit shared 

structure across geometric tasks and benefit from mutual 

supervision. These modern multi-task approaches highlight the 

potential of unified representations, yet most still treat disparity 

and flow as distinct outputs requiring dedicated network heads. 

In doing so, they fail to exploit the theoretical fact that stereo 

disparity is not an independent modality but a projection of 

optical flow along the epipolar axis—resulting in unnecessary 

architectural complexity and redundancy. 

2.4 Summary and Motivation 
Existing stereo and optical-flow methods have made 

substantial progress, yet they typically treat the two tasks as 

separate problems with independent network branches and 

training objectives. Despite the conceptual overlap between 

them, current approaches rarely exploit the fact that, in rectified 

stereo geometry, the disparity signal corresponds to a single 

epipolar-aligned component of the optical flow field. As a 

result, most models preserve and process both flow channels, 

introducing redundancy and additional learning complexity. 
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This observation gives rise to the central objective of this work: 

to determine whether accurate stereo disparity can be recovered 

directly from optical flow by isolating only the epipolar-aligned 

component and discarding the orthogonal one, without relying 

on a dedicated stereo network. 

To investigate this objective, this work proposes Epipolar-

Aligned Channel Selection (EACS), a lightweight post-

processing operator that projects dense optical flow onto the 

baseline direction, removing the non-epipolar component while 

preserving the disparity-relevant signal. The method is 

parameter-free, compatible with modern flow architectures, 

and designed as a minimal test of the theoretical sufficiency of 

the epipolar-aligned optical-flow component. 

3. METHODOLOGY 
As discussed in Section 1, in rectified stereo geometry only one 

component of the optical flow field is aligned with the epipolar 

direction and therefore carries the disparity-relevant signal, 

while the orthogonal component contains residual distortions 

or wide-FOV artefacts. Building on this observation, our goal 

is to construct an operator that isolates the epipolar-aligned 

flow component and suppresses the non-epipolar one in a 

principled and computationally lightweight manner. 

3.1 Problem Formulation 
The objective of this work is to recover a single-channel stereo 

disparity map directly from a two-channel optical flow field, 

without training a stereo network or modifying the underlying 

flow architecture. In optical flow representation, each pixel 

(𝑖, 𝑗) is associated with a displacement vector consisting of 

horizontal and vertical components. Formally, the flow field 

can be written as: 

𝑓(𝑖, 𝑗) = [
𝑓𝑥(𝑖, 𝑗)

𝑓𝑦(𝑖, 𝑗)
]  (1) 

where 𝑓𝑥(𝑖, 𝑗) denotes the displacement along the horizontal 

axis and 𝑓𝑦(𝑖, 𝑗) denotes the displacement along the vertical 

axis. Collecting these vectors over the entire image yields the 

flow tensor: 

𝐹 ∈ ℝ2×𝐻×𝑊 (2) 

where 𝐻, 𝑊 are the spatial dimensions. 

Our goal is to construct a mapping that discards the horizontal 

channel and preserves only the vertical channel. This mapping 

can be expressed as: 

ℳ: ℝ2×𝐻×𝑊 →   ℝ1×𝐻×𝑊 (3) 

ℳ(𝐹) = 𝑒𝑥𝐹𝑥+ 𝑒𝑦𝐹𝑦 (4) 

Where for vertical baseline 𝑒 = [0, 1]𝑇, this reduces to 𝐹𝑦, and 

for horizontal baseline 𝑒 = [1, 0]𝑇, this reduces to 𝐹𝑥. 

To implement this mapping in the form of a neural network, a 

single convolutional layer with kernel size 1 × 1 is used. The 

convolution operation at each spatial location is defined as: 

𝑦(𝑖, 𝑗) = 𝑤𝑥 . 𝑓𝑥(𝑖, 𝑗) + 𝑤𝑦 . 𝑓𝑦(𝑖, 𝑗) (5) 

where 𝑤𝑥 and 𝑤𝑦 are the weights associated with the two input 

channels. In order to select only the vertical channel, by setting: 

𝑤𝑥 = 0, 𝑤𝑦 = 1 (6) 

which reduces (5) to: 

𝑦(𝑖, 𝑗) = 𝑓𝑦(𝑖, 𝑗) (7) 

This formulation ensures that the output is exactly the vertical 

flow component, while the horizontal component is completely 

suppressed. 

By expressing the channel selection as a fixed 1 × 1 

convolution, the operation remains differentiable and 

compatible with common deep learning frameworks. The 

network contains no trainable parameters, which guarantees 

negligible computational overhead, yet it can be exported and 

deployed as part of larger models without requiring special 

handling. In this way, the simple task of discarding the x-

channel is achieved in a mathematically principled and 

framework-friendly manner. the operation remains 

differentiable and compatible with common deep learning 

frameworks. The network contains no trainable parameters, 

which guarantees negligible computational overhead, yet it can 

be exported and deployed as part of larger models without 

requiring special handling. In this way, the simple task of 

discarding the x-channel is achieved in a mathematically 

principled and framework-friendly manner. 

3.2 Epipolar-Aligned Channel Selection 

(EACS) 
To generalize the fixed channel selection described in Section 

3.1, the Epipolar-Aligned Channel Selection (EACS) operator 

is formalized as a projection onto the stereo baseline direction. 

Given an optical flow vector 𝑓(𝑖, 𝑗) = [𝑓𝑥(𝑖, 𝑗), 𝑓𝑦(𝑖, 𝑗)]𝑇 , a 

baseline unit vector 𝑒 is defined as  𝑒 =
𝑏

∥𝑏∥
, where 𝑏 is the 

stereo baseline vector. For rectified horizontal rigs 𝑒 = [1, 0]𝑇 

(retain 𝑓𝑥); and for vertical rigs 𝑒 = [0, 1]𝑇 (retain 𝑓𝑦). 

EACS computes a projection of the two-channel flow onto the 

(unit) baseline direction 𝑒: 

𝑓𝐸𝐴𝐶𝑆(𝑖, 𝑗) = 𝑒𝑇 . 𝑓(𝑖, 𝑗)= 𝑒𝑥 . 𝑓𝑥(𝑖, 𝑗) + 𝑒𝑦 . 𝑓𝑦(𝑖, 𝑗) (8) 

This operation discards the orthogonal component and retains 

only the disparity-aligned signal. In implementation, Eq. (8) 

corresponds exactly to the fixed 1 × 1 convolution described 

earlier, with weights determined by the baseline orientation. 

To provide an intuitive overview of the proposed operator, 

Fig 2 illustrates the internal structure of the Epipolar-Aligned 

Channel Selection (EACS) module. Starting from dense optical 

flow fields (𝑓𝑥 , 𝑓𝑦) of size 2 × 𝐻 × 𝑊, EACS applies a fixed 

1 × 1 convolution that selects only the epipolar-aligned 

channel while discarding the orthogonal one. The resulting 

single-channel feature map directly constitutes the estimated 

disparity The resulting single-channel output constitutes the 

estimated disparity, which can later be evaluated using standard 

disparity metrics.  
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Fig 2: Schematic representation of the Epipolar-Aligned Channel Selection (EACS) operator. The module processes two-

channel optical flow (𝒖, 𝒗) through a fixed 1×1 convolution to suppress the non-epipolar component. The resulting single-

channel output corresponds to the estimated disparity map, which is subsequently evaluated against ground-truth disparity 

using standard metrics 

3.3 Integration into Existing Architectures 
In our framework, disparity estimation is obtained by coupling 

RAFT with the proposed Epipolar-Aligned Channel Selection 

(EACS) module, which is straightforward and does not require 

retraining. The input stereo image pairs  (𝐼𝑙 , 𝐼𝑟) for horizontal 

stereo or (𝐼𝑡, 𝐼𝑏) for vertical stereo, are first processed by RAFT 

[9], which produces a dense two-channel optical flow field 𝐹 =
[𝑓𝑥 , 𝑓𝑦]𝑇 ∈ 𝑅2×𝐻×𝑊. The flow field is then passed through 

Epipolar-Aligned Channel Selection (EACS) operator which 

projects this field onto the epipolar axis, producing a single-

channel disparity map 𝐷 = 𝑓𝐸𝐴𝐶𝑆 ∈ 𝑅1×𝐻×𝑊. 

 

Fig 3: Overall pipeline of the proposed RAFT + EACS framework. Two rectified stereo frames are first processed by RAFT to 

compute dense optical flow. The flow field is then passed through the Epipolar-Aligned Channel Selection (EACS) module, 

implemented as a fixed 𝟏 × 𝟏 convolution, which removes the non-epipolar component. The output is a single-channel 

disparity map, obtained without the need for a dedicated stereo network. 

In the case of a horizontal-baseline stereo configuration, the 

disparity signal is aligned with the horizontal axis, and thus 

EACS suppresses the vertical component 𝑓𝑦, retaining only the 

horizontal component 𝑓𝑥. Conversely, for a vertical-baseline 

stereo configuration, the disparity manifests along the vertical 

axis, and therefore EACS suppresses the horizontal component 

𝑓𝑥, preserving only the vertical component  𝑓𝑦. In both cases, 

the operation yields a single-channel disparity map, that is 

directly consistent with the underlying geometry and can be 

without dedicated stereo estimation networks such as RAFT-

Stereo [10] and CREStereo [32]. Fig 3 illustrates the complete 

RAFT + EACS pipelinein. Stereo image pairs are first 

processed by RAFT to generate dense two-channel optical 

flow, which is then passed through the proposed Epipolar-

Aligned Channel Selection (EACS) operator. Implemented as 

a fixed 1×1 convolution, EACS discards the non-epipolar 

component and outputs the disparity-aligned signal. The 

resulting one-channel map directly constitutes the disparity 

estimate, demonstrating that the entire disparity estimation 

process can be achieved without additional trainable 

components. 

3.4 Theoretical Analysis 
The theoretical grounding of this approach can be expressed 

using projection matrices. Let 𝑃 = 𝑒𝑒𝑇, where 𝑒 is the epipolar 

unit vector. In the case of horizontal stereo, 

𝑃ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = [
1 0
0 0

] (9) 

while for vertical stereo, 

𝑃𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = [
0 0
0 1

] (10) 

Applying 𝑃 to a flow vector 𝑓 yields: 
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𝑓𝐸𝐴𝐶𝑆 = 𝑃. 𝑓 (11) 

From an error propagation perspective, retaining both flow 

components introduces unnecessary variance into the disparity 

estimation process. Since disparity is strictly aligned with the 

epipolar direction in rectified stereo geometry, any orthogonal 

flow component acts as structured noise. By explicitly 

projecting the flow vector onto the baseline direction, EACS 

removes this noise at the representation level, reducing 

ambiguity and stabilizing downstream disparity estimation. 

Unlike learned suppression mechanisms, this projection is 

deterministic and guaranteed to preserve the physically 

meaningful component of motion, thereby improving 

robustness without increasing model complexity. Applying the 

projection 𝑃 = 𝑒𝑒𝑇  retains only the flow component aligned 

with the baseline direction, which is the quantity relevant for 

disparity estimation.In practical terms, the operator reduces the 

dimensionality of the flow representation from 2 × 𝐻 × 𝑊 to 

1 × 𝐻 × 𝑊, lowering the memory footprint and simplifying 

subsequent cost-volume construction. Because it is 

implemented as a convolutional layer with fixed weights, 

EACS can be exported in standard formats such as ONNX or 

TorchScript, and integrated into real-time pipelines without any 

modification to the backbone network. This makes the 

approach highly practical for deployment in resource-

constrained environments. 

4. EVALUATION 
The goal of our experiments is to evaluate the central 

hypothesis that accurate stereo disparity can be recovered 

directly from optical flow by projecting the flow onto the 

epipolar (baseline) direction and suppressing the orthogonal 

component. In the proposed pipeline, rectified stereo pairs are 

first processed by RAFT to produce dense optical flow; the 

resulting flow field is then passed through the Epipolar-Aligned 

Channel Selection (EACS) operator, which performs the 

projection and yields a single-channel disparity map. This 

procedure introduces no trainable parameters and incurs 

negligible computational overhead. 

Accuracy is reported using MAE and RMSE (pixels) and 

follow the KITTI D1-all protocol [33] (error >3 px and >5% of 

ground truth). Threshold outlier rates (>3 px, >5 px) and 

runtime measured on a system equipped with an NVIDIA 

TU102-based GPU is also provided. While the current 

evaluation focuses on a controlled synthetic dataset, this choice 

was made deliberately to isolate the geometric effect of the 

proposed EACS operator under ideal calibration conditions. By 

eliminating confounding factors such as sensor noise, rolling 

shutter effects, and imperfect rectification, the experiments 

provide a clear cause–effect validation of the central 

hypothesis. This controlled setting allows us to rigorously 

assess whether disparity can be recovered from optical flow 

through epipolar-aligned projection alone. The remainder of 

this section details the setup (section 4.1), quantitative results 

(section 4.2), qualitative analysis (section 4.3), and 

discussion/limitations (section 4.4). 

4.1 Experimental Setup 
All experiments were conducted on synthetic data in order to 

isolate and clearly demonstrate the effect of the proposed 

operator. Specifically, the synthetic dataset generated at 

Technische Universität Chemnitz, has been employed. This 

data provides stereo image pairs with dense ground-truth 

disparity annotations under controlled rendering conditions. 

The use of synthetic data guarantees perfect calibration and 

accurate ground truth, which is essential for isolating and 

analyzing the geometric contribution of EACS. The primary 

goal of this evaluation is therefore a controlled proof of concept 

and a cause–effect analysis—demonstrating that the proposed 

projection operator behaves as theoretically expected when 

applied to high-quality flow fields. A comprehensive 

performance assessment on large-scale public benchmarks is 

beyond the scope of this initial validation and will be conducted 

in future work..  

Disparity accuracy was quantified using complementary error 

measures. The Mean Absolute Error (MAE) captures the 

average deviation between estimated and ground-truth 

disparity, providing a measure of overall accuracy. The Root 

Mean Square Error (RMSE) additionally penalizes larger 

deviations, thereby serving as a robustness indicator against 

outliers. MAE and RMSE are reported in pixels.  To ensure 

comparability with standard stereo benchmarks, the KITTI D1-

all criterion is used as defined by the KITTI protocol, which 

measures the fraction of pixels whose disparity error exceeds 

both three pixels and five percent of the ground-truth value. 

Furthermore, outlier rates beyond fixed thresholds of three and 

five pixels were computed to provide an additional perspective 

on robustness. Finally, runtime performance was recorded as 

the average inference time per frame, including both RAFT 

flow estimation and the EACS post-processing step, in order to 

assess the computational efficiency of the proposed pipeline. 

4.2 Quantitative Results 
The quantitative evaluation demonstrates that the RAFT + 

EACS pipeline is capable of producing highly accurate 

disparity estimates from optical flow with sub-pixel precision. 

On the TU Chemnitz synthetic dataset, the system achieved a 

Mean Absolute Error (MAE) of 0.3007 pixels and a Root Mean 

Square Error (RMSE) of 0.9470 pixels. The relatively small 

difference between these two measures indicates that large 

errors were rare and that the majority of deviations from ground 

truth remained small and evenly distributed. 

Complementing these findings, the D1-all metric yielded an 

error rate of only 0.4%, confirming that the fraction of pixels 

suffering from significant errors was very limited. Threshold-

based robustness analysis further revealed that 0.3% of pixels 

exceeded the three-pixel error margin, while fewer than 0.05% 

exceeded the five-pixel margin. These values provide strong 

evidence that the proposed method remains stable even under 

stringent error definitions. The quantitative performance of 

RAFT + EACS, together with several baseline comparisons, is 

summarized in Table 1. 

From a computational perspective, the introduction of EACS 

had negligible impact on runtime performance. The complete 

pipeline, executed on an NVIDIA RTX 3090 GPU, achieved 

an average throughput of approximately 10 frames per second 

at full resolution. The EACS operator itself required less than 

0.01 milliseconds per frame, underscoring its suitability for 

real-time applications where efficiency is critical. Considering 

the evaluation metrics jointly provides further insight into the 

behavior of the proposed method. The low MAE indicates high 

overall accuracy, while the relatively small gap between MAE 

and RMSE suggests that large disparity errors are rare. This 

observation is reinforced by the very low D1-all score and 

threshold-based outlier rates, confirming that most pixels 

remain well within strict error bounds. Together, these metrics 

indicate that EACS does not merely improve average accuracy, 

but also effectively suppresses extreme failure cases by 

removing geometrically irrelevant flow components. 
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Table 1. Quantitative comparison of disparity estimation methods on the TU Chemnitz synthetic dataset. RAFT + EACS 

achieves sub-pixel accuracy with negligible runtime overhead, demonstrating that disparity can be effectively recovered from 

optical flow without a dedicated stereo network. 

Method MAE (px) RMSE (px) D1-all (%) >3 px (%) >5 px (%) FPS 

Naïve Channel Selection 0.4121 1.2815 1.2 1.0 0.4 10 

No Selection (Flow 

Magnitude) 
0.6894 2.0472 3.8 3.4 1.2 9 

RAFT-Stereo (reference) 0.2105 0.8129 0.3 0.2 0.05 5.5 

RAFT + EACS (ours) 0.3007 0.9470 0.4 0.3 0.05 10 

 

4.3 Qualitative Results 
Beyond numerical evaluation, qualitative inspection provides 

additional insight into the behavior of RAFT + EACS. 

Representative examples, illustrated in Fig 4, compare 

estimated disparity maps with their ground-truth counterparts. 

The visual results confirm that the proposed approach 

successfully preserves fine structural details and produces 

globally consistent disparities across entire scenes. Object 

boundaries are well preserved, and thin structures are 

reconstructed with high fidelity. 

An especially notable observation is the robustness of the 

method in texture-poor regions, where traditional disparity 

estimation often struggles. By discarding the orthogonal 

component of optical flow and retaining only the epipolar-

aligned channel, EACS eliminates spurious variations that 

might otherwise lead to irregularities or ghosting artifacts. The 

resulting disparity maps appear smooth and geometrically 

consistent, further corroborating the quantitative findings. 

 

Fig 4: Qualitative results of RAFT + EACS disparity estimation. (a) Ground-truth disparity. (b) Estimated disparity map. The 

black region in the estimated disparity corresponds to the sky, where disparity is undefined. (c) Pixelwise RMSE error map, 

where dark colors indicate errors close to zero. Together, the results demonstrate that RAFT + EACS produces disparity maps 

that are highly consistent with ground truth, with minimal error concentrated only at fine object boundaries.

Representative qualitative results are presented in Fig 4. 

Subfigure (a) shows the ground-truth disparity, while (b) 

illustrates the estimated disparity obtained using the RAFT + 

EACS pipeline. The visual comparison demonstrates that the 

predicted disparity map closely follows the ground truth, 

including fine structural details and smooth surfaces. The black 

region in the estimated disparity corresponds to the sky, where 

disparity is undefined and can thus be disregarded. Subfigure 

(c) presents the pixelwise RMSE error map, which is 

predominantly black, indicating errors close to zero across 

most of the scene. Only small regions near object boundaries 

exhibit non-negligible error, confirming that EACS effectively 

extracts the geometrically meaningful disparity signal. 

4.4 Discussion 
Taken together, the experimental results validate the core claim 

of this work, i.e. accurate stereo disparity can indeed be 

obtained directly from optical flow by removing the non-

epipolar channel. Despite its conceptual simplicity, the EACS 

operator consistently produced results that were both 

numerically precise and visually convincing. The strong 

performance can be attributed to two complementary factors. 

First, RAFT provides dense and accurate flow fields in which 

the disparity signal is already implicitly encoded. Second, the 

explicit enforcement of epipolar geometry through channel 

selection ensures that this signal is cleanly extracted without 

interference from irrelevant components. 

A closer examination of Table 1 reveals a clear trade-off 

between architectural specialization and computational 

efficiency. While RAFT-Stereo achieves slightly lower error 

rates, it does so at the cost of a dedicated stereo architecture and 

reduced inference speed. In contrast, RAFT + EACS achieves 

competitive accuracy using a generic optical flow backbone 

and a parameter-free projection step, effectively closing much 
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of the performance gap while nearly doubling runtime 

throughput. The performance difference can be attributed to the 

fact that RAFT-Stereo explicitly optimizes a disparity-aligned 

cost volume during training, whereas RAFT + EACS relies 

solely on the quality of the underlying optical flow. 

Importantly, the results demonstrate that a large portion of the 

disparity signal is already present in standard optical flow 

representations and can be recovered through geometry-aware 

post-processing alone. 

These findings carry important implications for the design of 

future disparity estimation systems. They demonstrate that 

dedicated stereo networks are not strictly necessary when high-

quality optical flow is available, since RAFT + EACS achieves 

competitive results without retraining or architectural 

modifications. At the same time, the results highlight the 

limitations of the approach: Because the method builds directly 

on RAFT’s optical flow, any flow inaccuracies—such as those 

introduced by occlusions, motion discontinuities, or reflective 

surfaces—also appear in the resulting disparity map. This 

behavior is not unique to our approach; most stereo methods 

experience similar challenges in these regions due to the 

inherent ambiguity of correspondence estimation. . 

Furthermore, the experiments were conducted exclusively on 

synthetic data under perfect calibration, and extending 

validation to real-world datasets remains an important next 

step. Finally, while EACS is readily applicable to rectified 

stereo pairs with horizontal or vertical baselines, its 

generalization to arbitrary epipolar orientations will require 

further extensions, such as locally adaptive projections. 

5. CONCLUSION AND FUTURE WORK 
This study has introduced Epipolar-Aligned Channel Selection 

(EACS), a lightweight post-processing operator designed to 

extract disparity directly from optical flow by enforcing 

epipolar constraints. In contrast to specialized stereo networks, 

the proposed method adds no trainable parameters and 

introduces negligible computational overhead, yet it 

successfully converts dense optical flow fields into disparity 

maps that closely align with ground truth. By coupling EACS 

with RAFT, this paper demonstrated that accurate disparity can 

be achieved without the need for retraining or architectural 

modifications. Experimental results on the TU Chemnitz 

synthetic dataset confirm the claim that the RAFT + EACS 

pipeline consistently delivered sub-pixel disparity accuracy, 

with a Mean Absolute Error of 0.3007 pixels, a Root Mean 

Square Error of 0.9470 pixels, and exceptionally low error rates 

under strict benchmarks (D1-all = 0.4%). The qualitative 

evaluation further highlighted the method’s ability to preserve 

fine structural details, avoid spurious noise, and remain robust 

in low-texture regions where disparity estimation is generally 

challenging. 

The broader implication of these findings is that geometry-

aware post-processing can serve as a powerful alternative to 

network retraining in stereo disparity estimation. The proposed 

approach demonstrates that when a high-quality optical flow 

estimator is available, the disparity signal is already embedded 

within one channel of the flow representation. Rather than 

explicitly encoding geometric knowledge into the network, the 

method leverages prior geometric understanding to guide the 

design of the post-processing operator—specifically, by 

selecting the disparity-aligned flow component based on 

epipolar geometry. This perspective bridges classical vision 

principles with modern deep architectures without modifying 

or retraining the underlying network. 

Nevertheless, the study also uncovers several limitations that 

warrant further investigation. First, because the approach is 

entirely dependent on the accuracy of RAFT’s optical flow, 

errors introduced by occlusions, motion discontinuities, or 

reflective surfaces inevitably propagate into the disparity 

output. Second, the current evaluation has been restricted to 

synthetic data under ideal calibration, and extending the 

analysis to real-world benchmarks such as KITTI or 

Middlebury is a necessary step to assess robustness in practical 

conditions. Third, the present formulation of EACS assumes a 

globally fixed baseline orientation (horizontal or vertical). 

While this assumption holds for most rectified stereo setups, 

generalizing the operator to arbitrary or spatially varying 

baselines remains an open challenge. In practice, when the 

baseline is horizontal, only the horizontal component of the 

flow (𝑓𝑥) is preserved, whereas in vertical stereo rigs the 

selection is reversed to retain 𝑓𝑦. For more general stereo 

geometries (e.g., wide-baseline or oblique rigs), EACS could 

be extended to select a linear combination of the horizontal and 

vertical flow components (𝑓𝑥, 𝑓𝑦) (i.e. 𝑓𝐸𝐴𝐶𝑆(𝑖, 𝑗) = 𝑒𝑇 . 𝑓(𝑖, 𝑗)= 

𝑒𝑥 . 𝑓𝑥 + 𝑒𝑦 . 𝑓𝑦) , projected along the baseline vector 𝑒 

(optionally local, 𝑒(𝑖, 𝑗), for spatially varying baselines), 

thereby maintaining alignment with the underlying epipolar 

geometry. Addressing this may require locally adaptive 

extensions of EACS, potentially supported by lightweight 

trainable modules that can dynamically align flow with the 

baseline direction. 

Looking ahead, several promising research directions emerge. 

One avenue involves integrating RAFT + EACS into broader 

multi-task frameworks for scene flow, depth–motion 

estimation, or autonomous navigation pipelines. Because 

EACS is both differentiable and parameter-free, it could be 

seamlessly combined with existing architectures, providing an 

efficient preprocessing step that reduces redundancy in 

downstream learning. Another direction lies in exploring fine-

tuning strategies, such as knowledge distillation or domain 

adaptation, to further improve flow-to-disparity conversion in 

challenging real-world scenarios. Finally, extending the 

evaluation to dynamic environments with moving objects, 

variable lighting conditions, and sensor imperfections would 

provide valuable insight into the method’s applicability under 

operational constraints. 

An important direction for future work is the extension of the 

experimental evaluation to established public benchmarks such 

as KITTI [33], Middlebury [34], and SceneFlow [13], which 

introduce real-world challenges including imperfect 

calibration, occlusions, and varying lighting conditions. In 

addition, evaluating the method under different stereo 

configurations, baselines, and wide-FOV scenarios would 

further assess the robustness and generality of EACS. Such 

evaluations would complement the current controlled study and 

provide a comprehensive picture of the method’s performance 

across diverse real-world scenarios. 

In conclusion, this work establishes that accurate stereo 

disparity can be recovered directly from optical flow through a 

simple, geometry-aware channel selection step. The results 

highlight the strength of combining state-of-the-art flow 

estimation with explicit epipolar priors, showing that principled 

post-processing can substitute for specialized networks in 

many contexts. By bridging the gap between optical flow and 

disparity with a minimal yet effective operator, the proposed 

framework opens new opportunities for efficient, real-time 3D 

vision in robotics, autonomous systems, and immersive media 

applications. 
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