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ABSTRACT 
If the control system has fixed parameters, then designing a 

controller with fixed parameters is sufficient to improve its 

performance and response, However, in practical life, 

control systems are considered to have uncertain parameters, 

so designing controllers with fixed parameters does not meet 

the needs of control and regulation 

Modern control algorithms that address the issue of 

regulation uncertain control systems include: 

• Optimal parametric control, which has been 

highly successful in improving the performance of 

control systems with slowly changing parameters. 

• Reference Model Adaptive Control (MRAC). 

Vehicle suspension systems under changing dynamic 

conditions are considered a very important and complex 

system in practical life, involving uncertain parameters. 

Therefore, appropriate controllers must be designed to take 

these uncertainties into account. This paper studies the 

vehicle suspension system under changing dynamic 

conditions, controlling its time response, and taking into 

account the uncertainty of the control system parameters. 

Keywords 
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1. INTRODUCTION 
The vehicle suspension system is considered one of the most 

important control systems in vehicles in general, especially 

buses that transport passengers for very long distances. This 

requires ensuring the comfort of passengers, especially since 

some passengers are sick, others are children or pregnant 

women. As a result of the use of public roads by fast vehicles 

of different weights, distortions may occur in the roads, 

which leads to the transportation vehicles being exposed to 

sudden disturbances that may frighten some passengers or 

may lead to harm to some passengers who sleep during the 

journey as a result of the sudden disturbance on the buses’ 

wheels. Therefore, to reduce the impact of these 

disturbances, a suspension system is used that includes 

springs to mitigate the impact of disturbances resulting from 

road distortions or potholes that obstruct it. However, this 

system, represented by the suspension system, needs a 

controller so that it works to absorb disturbances in a smooth 

manner that does not affect the disturbance of the bus or 

vehicles in general, while taking into account the 

uncertainties of the control system. [1] 

2. THE IMPORTANCE OF THE 

PAPER AND ITS OBJECTIVES 
The importance of the paper is summarized in improving the 

performance and efficiency of the vehicle suspension 

system under changing dynamic conditions and with 

uncertainty of the control system parameters based on 

modern control algorithms that take the uncertainty of the 

control system into consideration, and knowing the 

uncertain parameters and their uncertainty ranges, as the 

control system includes the following components: 

 * Vehicle body with weight (𝑚1). 

* The suspension system is a spring with a stiffness factor 

𝑘1 and     a damping factor (b). 

* Wheels of vehicle with weight 𝑚2. 

* A wheel frame which is equivalent to a spring with a 

stiffness factor of 𝑘2. 

The control system represented by the vehicle is a control 

system with two inputs, which are the control vector u(t) and 

the disturbance signal represented by the distortions and 

potholes in the road on which the vehicle is moving. The 

control system has two outputs, which are 𝑦1, the 

displacement of the vehicle body, and 𝑦2, the displacement 

of the vehicle wheels. 

The paper also aims to develop a mathematical model of the 

vehicle's entire system, simulate it using Matlab/Simulink, 

and analyze the responses of the open-loop system. 

Practically, as the suspension system continues to operate, 

friction and damping factors change due to changes in 

temperature and humidity. The spring may lose its elasticity, 

thus reducing the efficiency of controllers designed for 

nominal values. Therefore, it is necessary to design robust 

controllers that take into account the uncertainty of the 

control system parameters and apply advanced control 

theories to design robust controllers. 

3. REFERENCE STUDIES 
Several advanced control algorithms have been used to 

control vehicle systems. The following papers studies have 

been used: 

In paper [1], the suspension system, a critical component of 

a vehicle, was studied, playing a fundamental role in 

steering and comfort characteristics. This paper optimized 

the suspension system parameters to reduce vehicle 

vibrations. A magneto-rheological damper (MR damper) 

was added to a four-degree-of-freedom semi-car model. The 

effects of improving the suspension system's efficiency were 

studied, as well as the vehicle system modeled. The 

suspension system was simulated using 

MATLAB/Simulink, and the following algorithm was 

applied: 
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(PSO=The particle swarm optimization), To optimize the 

suspension parameters for vehicle vibration reduction and 

passenger comfort, the suspension parameters were 

optimized using two inputs:  

link-bounded white noise and sine waves. The results 

showed that adding a magneto-rheological damper in any 

mode reduced vehicle vibration. The maximum reduction in 

vehicle vibration was associated with the condition in which 

all suspension parameters were optimized, and the objective 

function value in that case was improved by about 32%. 

In paper [2], electric vehicles (EVs) were studied, which are 

considered alternative vehicles in the automotive industry, 

providing lower exhaust emissions. This paper developed an 

internal-drive switched reluctance motor (SRM) propulsion 

system for an electric vehicle. SRM propulsion systems are 

cheaper and do not use complex components, unlike 

permanent magnet motors (PMMs). However, the internal-

drive SRM system suffers from a disadvantage, which is the 

increased mass of the suspension system when compared to 

a PMM propulsion system that provides the same equivalent 

power. This situation leads to an increase in the mass of the 

wheels, and therefore a suspension analysis is required. This 

paper discussed the suspension dynamics evaluated using a 

simulation of an internal-drive SRM electric vehicle, and 

compared it to an internal-combustion engine (ICE) vehicle. 

The simulation used design scenarios derived from graded 

loads, namely (1) the driver's seat with springs, (2) the 

driver's seat without springs. Bode diagram analysis 

techniques were also used to determine the ride comfort 

range of the developed electric vehicle. 

In paper [3], the vehicle's shock absorbers were designed by 

identifying the optimal point based on our needs. The system 

was analyzed for any disturbances, and then the entire 

vehicle was modeled as a two-degree-of-freedom system, 

and a modular analysis was performed. The frequency ratio 

(𝑟) was carefully chosen. The displacement transmission 

can be reduced with a large (𝑟), but at the same time, the 

force transmission increases at a large (𝑟). This situation is 

very disturbing for the passenger, who will feel the sudden 

impact. Suspension design is not limited to simply reducing 

mass vibration. Of course, if the wheels begin to separate 

from the ground, the vehicle's handling will become poor, as 

an overly soft suspension system suffers from poor control. 

Therefore, designers must choose between control and 

vibration isolation. Similarly, an attempt was made to 

maintain the response of the front and rear wheels as similar 

as possible to ensure smooth driving. This is evident from 

the response of the control system obtained in the typical 

analysis. Two vibration modes can be observed: In the first 

case, the translational motion is more dominant and tends 

more toward a regular sinusoid, while in the second case, the 

slope motion plays a greater role, distorting the response and 

producing different peaks at different times. The accuracy 

of the analysis can be further increased by modeling the 

system with higher degrees of freedom. A multi-degree-of-

freedom system can be solved by calculating the translation 

function and providing the rule inputs using SIMULINK, 

which can yield better and more accurate results. 

4. MATHEMATICAL MODELING OF 

VEHICLE SUSPENSION SYSTEMS 

[1][2][3][4][5][6] 
This section will present a dynamic mathematical model of 

the vehicle suspension system, where the kinematic and 

dynamic equations will be found, taking into account the 

uncertainty of the suspension system parameters. Figure (1) 

shows a description of the vehicle suspension system studied 

in this paper: 

 

 

Figure 1” Structural diagram of vehicle suspension 

system 

Whereas: 

𝑚1 Vehicle body weight. 

𝑚2 Vehicle wheel weight. 

𝑘1  Spring stiffness factor that represents the suspension 

system. 

𝑘2 Spring stiffness factor equivalent to wheel rim. 

𝑏  Suspension damping factor. 

𝑦1 Vehicle body displacement. 

𝑦2 Wheel displacement. 

𝑟  The displacement of the frames relative to the ground 

represents the noise signal. 

At this stage, the dynamic equations of a vehicle suspension 

system will be derived using one of two methods: 

The first method: applying the Newton-Euler method. 

The second method: applying the Lagrange principle. 

This paper will use the Lagrange principle. 

The general dynamical Lagrange equation for non-

holonomic WMR systems is given by the following equation 

(1): 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝒒̇
) −

𝜕𝐿

𝜕𝒒
+ 𝑴𝑇(𝑞)𝝀 = 𝑬(𝑞)𝝉 (1) 

Where: L is the Lagrange function and is defined as the 

difference between the kinetic energy of the body K and its 

potential energy P: 

𝐿 = 𝐾 − 𝑃 (2) 

Whereas: 

𝒒 Motion vector. 

𝝉 Input vector. 

𝑫(𝒒) System inertia matrix. 

𝑬(𝒒) Input matrix. 

𝑴(𝒒) Matrix in motion. 

𝝀 Vector Lagrange factorials. 
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From equation (1), we obtain the dynamic equation for a 

system subject to a kinetic constraint in the following form, 

neglecting the limits of the gravitational forces 𝑮(𝒒)   and 

the Coriolis forces 𝑽(𝒒, 𝒒̇), considering that the suspension 

system moves in the XY plane at low speeds: 

𝑫(𝑞)𝒒̈ + 𝑴𝑇(𝑞)𝝀 = 𝑬(𝑞)𝝉 (3) 

Based on Figure (2) which shows the suspension system 

with the control vector u(t): 

 
Figure 2 Suspension system with control vector u(t) 

Then, by applying Lagrange's principle, we obtain the 

dynamic equations of the vehicle suspension system 

according to the following formulas (4) and (5): 

𝒚̈𝟏 +
𝒌𝟏

𝒎𝟏

(𝒚𝟏−𝒚𝟐) +
𝒃

𝒎𝟏

(𝒚̇𝟏 − 𝒚̇𝟐)

=
𝟏

𝒎𝟏

𝒖(𝒕) 
(4) 

𝒚̈𝟐 −
𝒌𝟏

𝒎𝟐

(𝒚𝟏−𝒚𝟐) −
𝒃

𝒎𝟐

(𝒚̇𝟏 − 𝒚̇𝟐)

+
𝒌𝟐

𝒎𝟐

(𝒚𝟐 − 𝒓)

= −
𝟏

𝒎𝟐

𝒖(𝒕) 

(5) 

4.1 Representation of Vehicle Suspension 

System in State Space 
According to equations (4) and (5), we assume: 

𝒙𝟏(𝒕) = 𝒚𝟏(𝒕)        ,          𝒙𝟐(𝒕) = 𝒚̇𝟏(𝒕)  

𝒙𝟑(𝒕) = 𝒚𝟐(𝒕)        ,          𝒙𝟒(𝒕) = 𝒚̇𝟐(𝒕) 
(6) 

By deriving hypotheses (6), we find: 

𝒙̇𝟏(𝒕) = 𝒚̇𝟏(𝒕)        ,          𝒙̇𝟐(𝒕) = 𝒚̈𝟏(𝒕)  
𝒙̇𝟑(𝒕) = 𝒚̇𝟐(𝒕)        ,          𝒙̇𝟒(𝒕) = 𝒚̈𝟐(𝒕) 

(7) 

Using equations (4), (5) and (6) we obtain the equations of 

state representing the open-loop vehicle suspension system: 

𝒙̇𝟏(𝒕) = 𝒙𝟐(𝒕) 

 𝒙̇𝟐(𝒕) = −
𝒌𝟏

𝒎𝟏

(𝒙𝟏(𝒕)−𝒙𝟑(𝒕))

−
𝒃

𝒎𝟏

(𝒙𝟐(𝒕) − 𝒙𝟒(𝒕))

+
𝟏

𝒎𝟏
𝒖(𝒕)  

𝒙̇𝟑(𝒕) = 𝒙𝟒(𝒕) 

(8) 

𝒙̇𝟒(𝒕) =
𝒌𝟏

𝒎𝟐

(𝒙𝟏(𝒕)−𝒙𝟑(𝒕))

+
𝒃

𝒎𝟐

(𝒙𝟐(𝒕) − 𝒙𝟒(𝒕))

−
𝒌𝟐

𝒎𝟐

(𝒙𝟑(𝒕) − 𝒓(𝒕))

−
𝟏

𝒎𝟐
𝒖(𝒕) 

𝒚𝟏(𝒕) = 𝒙𝟏(𝒕) 

𝒚𝟐(𝒕) = 𝒙𝟑(𝒕) 

From equation (8) we obtain the radial formula for the 

vehicle suspension system: 

[
 
 
 
𝒙̇𝟏(𝒕)

𝒙̇𝟐(𝒕)

𝒙̇𝟑(𝒕)

𝒙̇𝟒(𝒕)]
 
 
 

=

[
 
 
 
 
 

𝟎 𝟏 𝟎                    𝟎

−
𝒌𝟏

𝒎𝟏

−
𝒃

𝒎𝟏

𝒌𝟏

𝒎𝟏

                
𝒃

𝒎𝟏

𝟎
𝒌𝟏

𝒎𝟐

𝟎
𝒃

𝒎𝟐

𝟎      

−
𝒌𝟏

𝒎𝟐

−
𝒌𝟐

𝒎𝟐

𝟏

−
𝒃

𝒎𝟐]
 
 
 
 
 

[
 
 
 
𝒙𝟏(𝒕)

𝒙𝟐(𝒕)

𝒙𝟑(𝒕)

𝒙𝟒(𝒕)]
 
 
 

+

[
 
 
 
 
 

𝟎
𝟏

𝒎𝟏

𝟎

−
𝟏

𝒎𝟐]
 
 
 
 
 

𝒖(𝒕) +

[
 
 
 
 

𝟎
𝟎
𝟎
𝒌𝟐

𝒎𝟐]
 
 
 
 

𝒓(𝒕) 

[
𝒚𝟏(𝒕)
𝒚𝟐(𝒕)

] = [
𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎

]

[
 
 
 
𝒙𝟏(𝒕)

𝒙𝟐(𝒕)

𝒙𝟑(𝒕)

𝒙𝟒(𝒕)]
 
 
 
+ [

𝟎
𝟎
]𝒖(𝒕)

+ [
𝟎
𝟎
] 𝒓(𝒕) 

(9) 

4.2 Vehicle Suspension System Simulation 

using 

Matlab/Simulink:[3][4][5][6][7][8][9] 
By simulating the vehicle suspension system represented by 

equations (4) and (5) using the Matlab/Simulink program, 

we obtain the diagram of the open-loop control system 

shown in Figure (3): 

 
Figure 3 Open loop vehicle suspension system 

Figure (4) also shows the detailed diagram of the vehicle 

suspension system shown in Figure (3): 

 
Figure 4 Detailed diagram of the open-loop vehicle 

suspension system 
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4.3 Suspension responses in open-loop 

vehicles:[7][8][9][10][11][12] 
Table (1) shows the vehicle suspension system parameters 

used in the simulation: 

Table 1 Vehicle suspension system parameters 

value Description 
The 

symbol 

300 (𝑘𝑔) 

Vehicle 

body 

weight 

𝑚1 

60 (𝑘𝑔) 

Vehicle 

wheel 

weight 

𝑚2 

16000 (𝑁 𝑚⁄ ) 

Spring 

stiffness 

factor that 

represents 

the 

suspension 

system 

𝑘1 

190000 (𝑁 𝑚⁄ ) 

Spring 

stiffness 

factor 

equivalent 

to a wheel 

frame 

𝑘2 

1000 (𝑁 𝑚. 𝑠𝑒𝑐⁄ ) 

Suspension 

damping 

factor 

𝑏 

In the simulation, we will assume that the vehicle is 

traveling on a completely flat road with no distortions, and 

thus the noise signal 𝑟(𝑡) = 0. By implementing the 

simulation scheme shown in Figure (3), we obtain the 

following responses: 

• Open loop response to vehicle body displacement 

𝒚𝟏: 
Figure (5) shows the open-loop response to the vehicle body 

displacement 𝑦1(𝑡): 

 
Figure 5 Open loop response to vehicle body 

displacement 𝒚𝟏(𝒕) 

• Open loop response to wheel displacement: 

Figure (6) shows the open-loop response to the displacement 

of the cart wheels 𝑦2(𝑡): 

 
Figure 6 The open-loop response to the displacement of 

the cart wheels 𝒚𝟐(𝒕) 

• Open loop response to vehicle body displacement 

velocity: 

Figure (7) shows the open-loop response to the vehicle body 

displacement velocity: 

 
Figure 7 Open loop response to vehicle body 

displacement velocity 

• Open loop response to vehicle wheel displacement 

velocity: 
Figure (8) shows the open-loop response to the vehicle 

wheel displacement velocity: 

 
Figure 8 Open loop response to vehicle wheel 

displacement velocity 

From the previous responses, especially the vehicle 

displacement response 𝑦1(𝑡), the response is very bad and 

leads to a very large displacement estimated at 60 𝑐𝑚, 

which is a displacement that leads to major vehicle 

accidents. When there are distortions in the road, the 

displacement will get worse, so it is necessary to design 

appropriate controllers to reduce these displacements. 

5. OPTIMAL PARAMETRIC 

CONTROLLER DESIGN 

[13][14][15] 
We will first learn how to design a linear quadratic optimal 

controller based on state variables. 

5.1 Quadratic linear optimal controller: 
The optimal controller relies on generating a control vector 

based on state variables, giving us a wide range of control 

over the dynamics of the control system. The mathematical 

model of the control system based on state variables is given 

by the following formula: 

(10) 
𝑥̇ = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶𝑥 

The diagram plot represented in Figure (9) represents the 

equations of the previous case: 

( ) . ( )x t A x t= ( )x t( )r t

k

( )u t

−

 
Figure 9 Block diagram of the optimal control problem 

The quadratic linear optimal control vector is given by the 

following relation: 

(11) 𝑢𝑜𝑝𝑡

= r(t) − 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑥(𝑡) 
Then the block diagram of the control set with the optimal 

controller becomes as shown in Figure (10):   
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Figure 10 Detailed diagram of the optimal control 

problem based on state equations 

The optimal control gain is given by the following formula: 

(12) 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑅−1𝐵𝑇𝑃
 

Where 𝑃 is a positively defined symmetric matrix and is a 

solution to the following Riccati differential equation: 

 

(13) 
𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑃 + 𝑄 = 0 

The performance function to be minimized has the following 

formula: 

(14) 𝐽 =
1

2
∫ (𝑥𝑇𝑄𝑥 + 𝑅𝑢2)𝑑𝑡

𝑡𝑓

0

 

5.2 Representation of the suspicious 

control plant in the form of a direct 

connection with 𝜹: 
The linear quadratic optimal controller offers significant 

advantages when designed for a nominal control system, but 

it can lose its robustness and performance when the control 

system parameters become uncertain. Therefore, the optimal 

controller design approach had to be modified. Before 

designing the optimal parametric controller, the control 

system must be formulated using the direct correlation 

formula with 𝛿. According to this formula, the uncertain 

parameter is represented by a coefficient 𝛿, as in the 

following formula: 

(15) 

𝑃1 =
𝑃̱1 + 𝑃̄1

2
+

𝑃̄1 − 𝑃̱1

2
𝛿1 

𝑃2 =
𝑃̱2 + 𝑃̄2

2
+

𝑃̄2 − 𝑃̱2

2
𝛿2

⋅⋅⋅⋅⋅⋅⋅ 
Whereas: 𝛿𝑖 ∈ [−1,+1] 

f the control plant has the following form:   

(16) 𝑥̇ = 𝐴̃𝑥 + 𝐵𝑢 
Then the control plant can be written in direct relation form 

with 𝜹 as follows: 

(17) 𝑥̇ = (𝐴0 + ∑ 𝐴𝑖𝛿𝑖
𝑙
𝑖=1 )𝑥(𝑡) + 𝐵𝑢(𝑡)  

5.3 Optimal parametric controller 

design:[14][15][16][17] 

Theory: 

A model of state equations represented by the direct 

coupling form with 𝜹 is Lyapunov stable if there is a 

positively defined matrix (𝐿𝐶) that satisfies the following 

Lyapunov inequality: 

(18) 𝐿𝐶𝐴(𝛥(𝑘)) + 𝐴𝑇(𝛥(𝐾))𝐿𝐶 < −𝜉 :        𝑘 = 1,2, . . . 

This is for the heads of the entire space, which is defined by 

the suspicious parameters. If we have three parameters that 

form the space shown in Figure (11): 

3

1

2

1
2

3 4

7

8
6

5

 
Figure 11 The space vertices specified for three 

suspicious parameters. 

There must exist (𝐿𝐶) that satisfies the Lyapunov 

inequalities given in equations (19): 

(19) 

𝐿𝐶𝐴(𝛥(1)) + 𝐴𝑇(𝛥(1))𝐿𝐶 < −𝜉 
𝐿𝐶𝐴(𝛥(2)) + 𝐴𝑇(𝛥(2))𝐿𝐶 < −𝜉 
… . . 

𝐿𝐶𝐴(𝛥(8)) + 𝐴𝑇(𝛥(8))𝐿𝐶 < −𝜉 

 
Whereas: 

𝐴(𝛥(1))   is the matrix (𝐴̃)   at vertex (1) that represents the 

values of the parameters: 

(20) 
𝛿1 = 𝛿̄1, 𝛿2 = 𝛿̄2, 𝛿3 = 𝛿̄3 

𝐴(𝛥(8))   is the matrix (𝐴̃)at vertex (8). 

To design the optimal parametric controller, we write 
the direct correlation formula for 𝜹 as follows: 

(21) 
𝑥̇ = (𝐴0 + ∑𝐴𝑗𝛿𝑗

𝑙

𝑗=1

)𝑥 + 𝐵𝑢 

𝑥̇ = (𝐴0 + 𝐿1𝑁1
𝑇𝛿1 + 𝐿2𝑁2

𝑇𝛿2+. . . . . . )𝑥
+ 𝐵𝑢 

Where 𝐿1, 𝐿2, 𝑁1, 𝑁2    are perpendicular rays of dimensions 

(𝑛 × 1)  so that they are chosen to achieve: 

(22) 
𝐴1 = 𝐿1𝑁1

𝑇 , 𝐴2 = 𝐿2𝑁2
𝑇 , … 

Then we form the two augmented matrices as follows: 

(23) 
𝐿 = [𝐿1 𝐿2 𝐿3 … . ] 
𝑁 = [𝑁1 𝑁2 𝑁3. . . . ] 

Then we replace the previous Riccati equation with the 

following modified Riccati algebraic equation: 

(24) 
𝐴0

𝑇𝑆 + 𝑆𝐴0 − 𝑆[
1

𝜌
𝐵𝐵𝑇 −

1

𝛾
𝐿𝐿𝑇]𝑆 + 𝑄0

+ 𝛾𝑁𝑁𝑇 = 0 
Where 𝛾, 𝜌 are design parameters, if we assume that: 

(25) 
𝐵0 =

1

𝜌
𝐵𝐵𝑇 −

1

𝛾
𝐿𝐿𝑇 

𝐶0 = 𝑄0 + 𝛾𝑁𝑁𝑇 
The Riccati algebraic equation becomes: 

(26) 
𝐴0

𝑇𝑆 + 𝑆𝐴0 − 𝑆𝐵0𝑆 + 𝐶0 = 0 

This equation is similar to Riccati's algebraic equation: 
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(27) 
𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑃 + 𝐶 = 0 

Which can be solved using MATLAB using the instruction: 

(28) 
>> 𝑃 = 𝑎𝑟𝑒(𝐴, 𝐵, 𝐶) 

That is: 

(29) 
>> 𝑆 = 𝑎𝑟𝑒(𝐴0, 𝐵0, 𝐶0) 

Then the optimal parametric control vector is given by the 

optimal parametric regulator method in the formula: 

(30) 
𝑢 = −𝐺𝑥 

where (G) is the gain vector: 

(31) 𝐺 =
1

𝜌
𝑅−1𝐵𝑇𝑆 

In this case, the solution is done under the presence of the 

two constraints (𝛾, 𝜌), and the solution conditions are the 

presence of (S) defined positively. If the assumed values of 

(𝛾, 𝜌) are not suitable, they can be changed and the 

appropriate (S) can be found. 

5.4 Representing the suspension system in 

direct correlation form with 𝜹 
We will assume that the parameters 𝑘1 , 𝑘2 , and b are 

uncertain by ±20% of their nominal values, according to 

Table (2): 

Table (2) Uncertainty range of suspension system 

parameters used in vehicles 

Min value Max value 

nominal 
value 

The 
symb
ol 

12800

(𝑁 𝑚⁄ ) 

19200

(𝑁 𝑚⁄ ) 
16000 (𝑁 𝑚⁄ ) 𝑘1 

152000

(𝑁 𝑚⁄ ) 

228000

(𝑁 𝑚⁄ ) 190000 (𝑁 𝑚⁄ ) 𝑘2 

800

(𝑁 𝑚. 𝑠𝑒𝑐⁄ ) 

1200

(𝑁 𝑚. 𝑠𝑒𝑐⁄ ) 
1000 (𝑁 𝑚. 𝑠𝑒𝑐⁄ ) 𝑏 

Following the steps of representing the control plant in the 

form of a direct connection with 𝛿, we find: 

(32) 

𝑘1 =
𝑘̱1 + 𝑘̄1

2
+

𝑘̄1 − 𝑘̱1

2
𝛿1

= 17600 + 1600𝛿1 

𝑘2 =
𝑘̱2 + 𝑘̄2

2
+

𝑘̄2 − 𝑘̱2

2
𝛿2

= 209000 + 19000𝛿2 

𝑏 =
𝑏̱1 + 𝑏̄1

2
+

𝑏̄1 − 𝑏̱1

2
𝛿3 = 1100 + 100𝛿3 

We substitute in the state equations (9) and find: 

[
 
 
 
𝒙̇𝟏(𝒕)

𝒙̇𝟐(𝒕)

𝒙̇𝟑(𝒕)

𝒙̇𝟒(𝒕)]
 
 
 

= [

𝟎 𝟏 𝟎                    𝟎
−58.6667 − 5.3333𝛿1 −3.6667 − 0.3333𝛿3 58.6667 + 5.3333𝛿1 3.6667 + 0.3333𝛿3

𝟎
293.3333 + 26.6667𝛿1

𝟎
18.3333 + 1.6667𝛿3

𝟎      
−𝟑𝟕𝟕𝟔. 𝟕 − 26.6667𝛿1 − 316.6667𝛿2

𝟏
−18.3333 − 1.6667𝛿3

]

[
 
 
 
𝒙𝟏(𝒕)

𝒙𝟐(𝒕)

𝒙𝟑(𝒕)

𝒙𝟒(𝒕)]
 
 
 

+ [

𝟎
𝟎. 𝟎𝟎𝟑𝟑

𝟎
−𝟎. 𝟎𝟏𝟔𝟕

]𝒖(𝒕) + [

𝟎
𝟎
𝟎

𝟑𝟏𝟔𝟔. 𝟕

] 𝒓(𝒕)            (𝟑𝟑) 

[
𝒚𝟏(𝒕)
𝒚𝟐(𝒕)

] = [
𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎

]

[
 
 
 
𝒙𝟏(𝒕)

𝒙𝟐(𝒕)

𝒙𝟑(𝒕)

𝒙𝟒(𝒕)]
 
 
 

+ [
𝟎
𝟎
] 𝒖(𝒕)

+ [
𝟎
𝟎
] 𝒓(𝒕) 

 

Hence, we find the state equations according to the direct 

correlation formula with δ:

 

[
 
 
 
𝑥̇1(𝑡)

𝑥̇2(𝑡)

𝑥̇3(𝑡)

𝑥̇4(𝑡)]
 
 
 

= {[

0 1 0                    0
−58.6667 −3.6667 58.6667 3.6667

0
293.3333

0
18.3333

0      
−3776.7

1
−18.3333

]

+ [

0 0 0.0000 0
−5.3333 0 5.33330 0

0
26.6667

0
0

0
−26.6667

0
0

] 𝛿1

+ [

0 0 0.0000 0. 0000
0 0 0.00000 0.0000
0
0

0
0

0.0000
−316.6667

0.0000
0

]𝛿2

+ [

0 0.0000 0.0000 0. 000
0 −0.3333 0.0000 0.3333
0
0

0
1.6667

0
0

0
−1.6667

]𝛿3}

[
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)]
 
 
 

+ [

0
0.0033

0
−0.0167

]𝑢(𝑡)

+ [

0
0
0

3166.7

] 𝑟(𝑡) 

(34) 

Hence we assume: 

𝐴0

= [

0 1 0                    0
−58.6667 −3.6667 58.6667 3.6667

0
293.3333

0
18.3333

0      
−3776.7

1
−18.3333

] 

𝐴1 = [

0 0 0.0000 0
−5.3333 0 5.33330 0

0
26.6667

0
0

0
−26.6667

0
0

] = 𝐿1𝑁1
𝑇 

𝐴2 = [

0 0 0.0000 0. 0000
0 0 0.00000 0.0000
0
0

0
0

0.0000
−316.6667

0.0000
0

] = 𝐿2𝑁2
𝑇 

𝐴3 = [

0 0.0000 0.0000 0. 000
0 −0.3333 0.0000 0.3333
0
0

0
1.6667

0
0

0
−1.6667

]

= 𝐿3𝑁3
𝑇 

(35)
) 

From it we find: 

𝐿1
𝑇 = [0 2.3094 0 −11.547] 

𝑁1
𝑇 = [−2.3094 0 2.3094 0] 

(36) 
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𝐿2
𝑇 = [0 0 0 −17.7951] 

𝑁2
𝑇 = [0 0 17.7851 0] 

𝐿3
𝑇 = [0 0.5773 0 −2.8871] 

𝑁3
𝑇 = [0 −0.5773 0 0.5773] 

From equations (36) we obtain the following two 

uncertainty matrices: 

𝐿 = [

0 0 0
2.3094 0 0.5773

0
−11.547

0
−17.7951

0
−2.8871

] 

𝑁 = [

−2.3094 0 0
0 0 −0.5773

2.3094
0

17.7851
0

0
0.5773

] 

(37) 

5.5 Vehicle suspension system responses 

when using the optimal parametric 

controller 
By applying the optimal parametric control methodology 

described in paragraph (5-3) and for the uncertainty shown 

in Table (2), we obtain the following simulation results: 

5.5.1 Optimal Parametric Controller Design 

Results for Nominal Parameters 
For the nominal values of the suspension parameters in 

vehicles we obtain the following responses: 

• Response to vehicle body displacement 𝒚𝟏: 
Figure (12) shows the response to the vehicle body 

displacement 𝑦1(𝑡) when using the optimal parametric 

controller: 

 
Figure 12 Response to vehicle body displacement 𝐲𝟏(𝐭) 

when using the optimal parametric controller at the 
nominal values of the parameters 

• Response to displacement of the cart wheels 

𝒚𝟐: 
Figure (13) shows the response to the displacement of the 

cart wheels 𝒚𝟐 when using the optimal parametric 

controller: 

 
Figure 13 Response to vehicle wheel displacement 

𝐲𝟐(𝐭) when using the optimal parametric 

controller at the nominal values of the parameters 

 

5.5.2 Optimal Parametric Controller Design 

Results from Parameter Uncertainty 
In order to determine the parameters of the suspension 

system in vehicles according to Table (2), we obtain the 

following responses: 

• Response to vehicle body displacement 𝒚𝟏: 
Figure (14) shows the response to the displacement of the 

vehicle body y1(t) when using the optimal parametric 

controller for the maximum and minimum uncertainty of the 

parameters: 

 

Figure 14 Response to vehicle body displacement 𝐲𝟏(𝐭) 

when using the optimal parametric controller for 

maximum and minimum uncertainty in the parameters 
• Response to displacement of the cart wheels 

𝒚𝟐: 
Figure (15) shows the response to the vehicle wheel 

displacement y2(t) when using the optimal parametric 

controller for maximum and minimum uncertainty in the 

parameters: 

 
Figure 14 Response to vehicle wheel displacement 

𝒚𝟐(𝒕)  when using the optimal parametric 

controller for maximum and minimum 

uncertainty in the parameters 
Through the previous responses, especially the vehicle 

displacement response 𝑦1(𝑡) shown in Figure (12) and 

corresponding to the nominal values of the parameters, we 

note that the response is very good, as the maximum 

displacement of the vehicle body reached about (0.05 

meters) for the maximum road deformation (0.1 meters) and 

the minimum (-0.1 meters). We note that within a time of 

less than (1 sec) the level of the vehicle returned to a 

completely straight position. When the vehicle total 

parameters are uncertain due to the decline in the flexibility 

of the suspension system due to the temperature and 

surrounding climatic conditions, and according to Figure 

(14), we note that for the maximum uncertainty the 

displacement of the vehicle body reached (0.06 meters), and 

at the minimum uncertainty the displacement of the vehicle 

body reached (0.05 meters). Thus, we conclude the success 

of the parametric controller in absorbing the maximum and 

minimum road deformations, which leads to good passenger 

comfort. The optimal parametric controller also succeeded 

in maintaining its strong performance when the suspension 

total parameters are uncertain. The vehicle's displacement is 

significantly greater than ±20%. According to Figures (13) 

and (15), which show the vehicle's wheel displacement 

response 𝑦2(𝑡), we note that the maximum displacement is 

0.1 meters for the nominal values of the parameters and the 
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maximum and minimum uncertainty in the parameters. It is 

worth noting that the vehicle's body response is most 

important because it contains passengers whose calm and 

comfort are to be maintained during travel, even when 

exposed to various road deformations. 

6. DESIGN OF THE MRAC 

REFERENCE MODEL ADAPTIVE 

CONTROLLER 

[18][19][20][21][22][23] 

6.1 General block diagram of MRAC 

adaptive controller 
The MRAC technique was introduced in 1958 by 

Whitacker, and the general block diagram of this method is 

shown in Figure (16) below:   

Controller

Reference 
model

Plant
u

Adaptive 
Laws

r

py

my

Parameters

 

Figure 16 The basic structure of the MRAC 

reference model adaptive control system 

The primary regulator 𝑦𝑝 is used to achieve the appropriate 

closed-loop behavior. This is a non-adaptive loop. Because 

the control parameters are unknown or time-varying, a 

regulator with fixed parameters cannot be designed. 

Therefore, in the MRAC technique, the reference model is 

used, as its response is the desired response. The adaptation 

mechanism must track the control output signal to the 

reference model output signal 𝑦𝑚. The adaptation 

mechanism continues to operate until the error between the 

two outputs becomes zero. Also, the state variables of the 

control system  𝑥𝑝can track the state variables of the 

reference model 𝑥𝑚. The most important advantage of the 

MRAC scheme is that it achieves direct adaptation to the 

uncertainty of the control parameters without the need to 

estimate the parameters. 

According to the diagram shown in Figure (16), the MRAC 

adaptive control system consists of two feedback loops: 

 The first loop: an internal feedback loop consisting of the 

primary regulator. 

 The second loop: an external feedback loop consisting of 

the adaptive mechanism. 

Typically, the inner loop operates faster than the second 

loop because the statement parameters change at a slower 

rate compared to the change in the control statement states. 

According to Figure (16), the reference model is linked to 

the branching of the control plant. 

6-1 Steps for designing a reference model adaptive 

controller (MRAC): 

A M.R.A.C system consists of the following basic 

components: 

• Control system. 

• Basic controller.  

• Reference model. 

• Deriving adaptive laws. 

 The reference model defines the desired behavior of the 

control system and is usually parameterized so that it can be 

implemented on a computer. If the study relies on the state 

variables of the control system, the reference model is given 

as a complete state vector. The reference model must meet 

certain requirements: its relative degree is equal to the 

relative degree of the control system. Furthermore, it must 

be stable, fully controllable, sensitive, and responsive. The 

key to designing a M.R.A.C system is deriving adaptive 

laws. The adaptive controller with the reference model will 

be designed based on the state equations. 

6.2 Steps for designing a reference model 

adaptive controller (MRAC): 
If the control system is linear, of order n, fully controllable, 

and has no zeros, then the control vector that displaces the 

closed-loop poles has the following form: 

(38) 𝑢 = 𝑘𝑏𝑥𝑝 + 𝑘0𝑟 

If the open control plant is described by the following 

transfer function: 

(39
) 

𝑊𝑝(𝑠)

=
𝑏𝑝𝑛

𝑠𝑛 + 𝑎𝑝𝑛𝑠𝑛−1 + 𝑎𝑝(𝑛−1)𝑠
𝑛−2+. . . +𝑎𝑝2𝑠

1 + 𝑎𝑝1
 

Then this plant can be described by the equations of state 

according to the controllability formula as follows: 

(40) 
𝑥̇𝑝 = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢 

𝑦𝑝 = 𝐶𝑇𝑥𝑝 

The control plant is written according to the controllability 

formula, where the control plant is represented in the form 

(17) where u(t) is the control vector: 

pyu
( )pW s

 

Figure 17 Open loop control plant 

By closing the open system with negative feedback using 

the following control vector: 

(41) 0b pu k x k r= +
 

Whereas: 

(42) 
𝑘𝑏 = [𝑘1 𝑘2 . . . 𝑘𝑛]1×𝑛, 𝑥𝑝

= [𝑥1 𝑥2 . . . 𝑥𝑛]𝑛×1
𝑇  

𝑘0(1 × 1), 𝑟(1 × 1) 

By representing the control vector, the closed control plant 

becomes represented in Figure (18): 

pxr u
0k ( )pW s

bk
 

Figure 18 Closed loop control system. 
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The control ray can be written in the following form: 

(43) .Tu  =  

Whereas: 

(44)  0 ,
T

T T

b pk k r x   = =    

Hence, the state equations for the closed system after 

changing the control vector in the state equations become as 

follows: 

(45) 
0( )p p p p b p

T

p p

x A x B k x k r

y C x

= + +

=



 

From it we find: 

(46) 
0( )p p p b p p

T

p p

x A B k x B k r

y C x

= + +

=



 

And from it the equations of state for a closed system: 

(47) 0b pu k x k r= +
 

Whereas: 

(48) 
0,c p p b c p

T T

c

A A B k B B k

C C

= + =

=
 

Since the control system parameters 

𝑎𝑝𝑛, 𝑎𝑝(𝑛−1), . . . , 𝑎𝑝2, 𝑎𝑝1, 𝑏𝑝𝑛 are constant but unknown, 

the regulator parameters 𝑘𝑏 , 𝑘0 are adjusted using an 

adaptive mechanism. The adjustment mechanism is 

generated by tracking the control system output signal to the 

output signal of a reference model chosen to achieve an 

optimal response. If the reference model is given by the 

following transfer function: 

(4

9) 
1 2 1

( 1) 2 1

( )
...

mn
m n n n

mn m n m m

b
W s

s a s a s a s a− −

−

=
+ + + + +  

The equations of state for the reference model are: 

(50) 
m m m m

T

m m m

x A x B r

y C x

= +

=



 

Then, in order for the closed control system to follow the 

reference model, it must be: 

(51) ,c m c mA A B B→ →
 

Therefore, to deduce the adaptation mechanism, we follow 

the following steps: 

Step 1: Deriving the error equation: 
The error vector is given by the state variables in the 

following formula: 

(52) p me x x= −
 

Whereas: 

𝑥𝑝 = [𝑥𝑝1, 𝑥𝑝2, … , 𝑥𝑝𝑛]
𝑇

 It is a vector of state variables for 

the control statement. 

𝑥𝑚 = [𝑥𝑚1, 𝑥𝑚2, . . . , 𝑥𝑚𝑛]𝑇 It is a vector of state variables 

for the reference model. 

If the state equations for the closed loop control system are 

in the following form: 

(53) p c p cx A x B r= +
 

The equations of state for the reference model are in the 

following form: 

(54) m m m mx A x B r= +
 

By deriving the error equation (52): 

(55) p me x x= −
 

We substitute the error equation and find: 

(56) 𝑒̇ = 𝐴𝑐𝑥𝑝 + 𝐵𝑐𝑟 − 𝐴𝑚𝑥𝑚 − 𝐵𝑚𝑟
 

By adding the two terms 𝐴𝑚𝑥𝑝 − 𝐴𝑚𝑥𝑝 to equation (56), 

and some mathematical procedures, we obtain the error 

equation for the adaptive control system in its final form: 

(57) . . .m pe A e A x B r= + +
 

Whereas: 

(58) ,c m c mA A A B B B= − = −
 

We define the parameter error vector as the matrix 𝜙, which 

includes the terms in 𝐴, 𝐵, and contains the regulator 

parameters 𝑘0, 𝑘1 , 𝑘2, . . . , 𝑘𝑛, in the following general form: 

(59) 

0

1 1 1

( ) 1

.

.

.

pn mn

p pn m

pn pn n mn n m

b k b

a b k a

a b k a



+ 

− 
 
− + +

 
 

=  
 
 
 
− + +  

 

Where the signal vector corresponding to the parameter 

error vector 𝜔(𝑡) has the following formula: 

(60) 
𝜔(𝑡)

= [𝑟 𝑥𝑝1
𝑥𝑝2 . . . 𝑥𝑝𝑛](𝑛+𝑚)×1

𝑇
 

Therefore, the error equation can be written according to the 

following formula: 

(61) 𝑒̇ = 𝐴𝑚. 𝑒 + 𝑏𝐼 . 𝜙
𝑇 . 𝜔 

Whereas: 

(6
2) 

 
.

0 0 ... 0 1 , ( 1), ( ), ( 1)

( 1), (1 ( )), ( ) 1

T

I m

T

I

b e n A n n e n

b n n m n m 

=   

  + + 
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Step 2: Assuming a Lyapunov function: 
In order for the control output signal to follow the reference 

model signal, the error vector must end at the zero vector. 

To achieve this, we impose a Lyapunov function defined 

positively according to the quadratic formula as a function 

of the signal error vector 𝑒(𝑡) and the parameter error vector 

𝜙𝑇،, i.e. of the following general form: 

(63) 
1( , ) . . . .T TV e e P e  −= + 

 

Since 𝛤−1 = 𝛤 > 0 is a positively defined symmetric matrix 

called the adaptive gain matrix, and 𝑃−1 = 𝑃 > 0 is a 

positively defined symmetric matrix. For tracking to be 

possible, the derivative of the time-dependent Lyapunov 

function must be negatively defined. By differentiating the 

Lyapunov function, we find: 

(64

) 

1 1( , ) . . . . . . . .T T T TV e e P e e P e    − −= + +  +  
 

For 𝑉̇(𝑒, 𝜙)  to be a negative identifier, we assume: 

(65) 𝐴𝑚
𝑇 . 𝑃 + 𝑃. 𝐴𝑚 = −𝑄 

By following the mathematical procedures that ensure that 

the derivative of the Lyapunov function is defined as 

negative, we obtain the adaptation law in its final form: 

(66) . . . .T

Ie P b = −
 

6.3 Vehicle Suspension System Responses 

When Using the Adaptive Controller: 
 By applying the adaptive control methodology described in 

paragraph (6-2) and for the uncertainty shown in Table (2), 

we obtain the following simulation results: 

6.3.1 Adaptive Controller Design Results for 

Nominal Parameters 
 For the nominal values of vehicle suspension system 

parameters, we obtain the following responses: 

• Response to vehicle body displacement 𝒚𝟏: 

 Figure (19) shows the response to vehicle body 

displacement y_1 (t) when using the adaptive controller with 

the reference model: 

 
Figure 19 Response to vehicle body displacement 

𝐲𝟏 when using the adaptive controller at the 

nominal values of the parameters 

• Response to the displacement of the cart wheels 

𝐲𝟐 

Figure (20) shows the response to the displacement of the 

cart wheels y2(t) when using the adaptive controller: 

 
Figure 20 Response to vehicle wheel displacement 

𝐲𝟐(𝐭) when using the adaptive controller at the 

nominal values of the parameters 
 

6.3.2 Adaptive Controller Design Results with 

Parameter Uncertainty 
For uncertainties in vehicle suspension parameters 

according to Table (2), we obtain the following responses:  

• Response to vehicle body displacement 𝒚𝟏 
Figure (21) shows the response to vehicle body 

displacement 𝑦1(𝑡)  when using the adaptive controller for 

maximum and minimum parameter uncertainties: 

 
Figure 21 Response to vehicle body displacement 

𝐲𝟏(𝐭) when using the adaptive controller for 

maximum and minimum uncertainty of 

parameters 

• Response to vehicle wheel displacement 𝒚𝟐:  

Figure (22) shows the response to vehicle wheel 

displacement y2(t) when using the adaptive controller for 

maximum and minimum uncertainty in the parameters: 

 

Figure 22 Response to vehicle wheel displacement 𝐲𝟐(𝐭) 

when using the adaptive controller for maximum and 

minimum uncertainty of parameters 

From the previous responses, especially the vehicle 

displacement response 𝑦1(𝑡) shown in Figure (19) and 

corresponding to the nominal values of the parameters, we 

note that the response is poor, as the maximum displacement 

of the vehicle body reached about (0.1 meter) for the 

maximum road deformation (0.1 meter) and the minimum (-

0.1 meter). We note that the vibration damping required a 

time of about (2 seconds) for the vehicle level to return to a 

completely straight position. When the vehicle total 

parameters are uncertain due to the decline in the flexibility 

of the suspension system due to the temperature and 

surrounding climatic conditions, and according to Figure 
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(21), we note that for the maximum uncertainty, the 

displacement of the vehicle body reached (0.1 meter), and 

for the minimum uncertainty, the displacement of the 

vehicle body reached (0.08 meter). Thus, we conclude the 

success of the adaptive controller in absorbing the maximum 

and minimum road deformations, but with a large 

displacement of the vehicle body, which negatively affects 

the comfort of passengers. 

According to Figures (20) and (22), which show the vehicle 

wheel displacement response 𝑦2(𝑡), we note that the 

maximum displacement is 0.1 meters for the nominal 

parameter values and the maximum and minimum 

parameter uncertainties. Note that the vehicle body response 

is most important because it contains passengers whose 

comfort and calm are to be maintained during travel while 

exposed to various road deformations. 

7. COMPARING THE RESULTS OF 

THE OPTIMAL PARAMETRIC 

CONTROLLER AND THE 

ADAPTIVE CONTROLLER 
 The responses of the optimal and adaptive parametric 

controllers will be compared for the nominal parameter 

values and for the maximum and minimum parameter 

uncertainties. 

7.1  Comparison of the vehicle body 

displacement response 𝒚𝟏  when using 

the optimal and adaptive parametric 

controllers for the nominal 

parameters 
Figure (23) shows the response to the vehicle body 

displacement y1(t) when using the optimal and adaptive 

parametric controllers with the reference model: 

 
“Figure 23” Response to vehicle body displacement 

𝐲𝟏(𝐭) when using the optimal and adaptive parametric 

controller at the nominal values of the parameters 

7.2 Adaptive Controller Design Results 

with Parameter Uncertainty: 
For uncertainties in vehicle suspension parameters 

according to Table (2), we obtain the following responses: 

• Response to vehicle body displacement 𝑦1(𝑡) at 

maximum parameter uncertainty: 

 Figure (24) shows the response to vehicle body 

displacement 𝑦1(𝑡)  when using the optimal and adaptive 

parametric controller for maximum parameter uncertainty: 

 

 
“Figure 24” Response to vehicle body displacement 

𝐲𝟏(𝐭) when using the optimal and adaptive 
parametric controller for maximum uncertainty in 

the parameters 
• esponse to vehicle body displacement 𝑦1(𝑡)at 

minimum uncertainty in parameters: 

 Figure (25) shows the response to vehicle body 

displacement 𝑦1(𝑡)when using the optimal and adaptive 

parametric controller for minimum uncertainty in 

parameters: 

 
Figure 25 Response to vehicle body displacement 𝐲𝟏(𝐭) 

when using the optimal and adaptive parametric 

controller for minimum uncertainty in the parameters 

From the previous responses, especially the response of the 

displacement of the vehicle 𝑦1(𝑡) shown in Figure (23) 

corresponding to the nominal values of the parameters, and 

Figure (24) corresponding to the maximum uncertainty of 

the parameters, and Figure (25) corresponding to the 

minimum uncertainty of the parameters, we notice that the 

optimal parametric controller always outperforms the 

adaptive controller. This is because the design of the optimal 

parametric controller takes the uncertainty of the parameters 

into account in the design algorithm, while the adaptive 

controller needs to calibrate the adaptation gains when the 

parameters change, and this makes the matter difficult, 

because the adaptation gains are adjusted once. 

8. SIMULATION AND RESULTS 
From the simulation results of the vehicle suspension 

system, we note that both the optimal and adaptive 

parametric controllers with the MRAC reference model 

achieved stable vehicle body and wheel displacement for the 

nominal values of the vehicle suspension system parameters 

and when these parameters are uncertain within a range of 

±20%. The simulation results demonstrate the superiority 

of the optimal parametric controller over the adaptive 

controller. For the nominal values of the parameters, when 

using the optimal parametric controller, we note that the 

range of maximum and minimum vehicle body 

displacement is approximately ±0.05 𝑚𝑒𝑡𝑒𝑟 for the 

maximum (0.1 meters) and minimum (-0.1 meters) road 

deformation. When using the adaptive controller, the range 

of vehicle body displacement is approximately ±0.1 𝑚𝑒𝑡𝑒𝑟 

for the maximum (0.1 meters) and minimum (-0.1 meters) 

road deformation. When the control system parameters are 
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uncertain, the optimal parametric controller remains the 

best. Outperforming the adaptive controller. 
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