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ABSTRACT

If the control system has fixed parameters, then designing a
controller with fixed parameters is sufficient to improve its
performance and response, However, in practical life,
control systems are considered to have uncertain parameters,
so designing controllers with fixed parameters does not meet
the needs of control and regulation

Modern control algorithms that address the issue of
regulation uncertain control systems include:

e Optimal parametric control, which has been
highly successful in improving the performance of
control systems with slowly changing parameters.

e Reference Model Adaptive Control (MRAC).

Vehicle suspension systems under changing dynamic
conditions are considered a very important and complex
system in practical life, involving uncertain parameters.
Therefore, appropriate controllers must be designed to take
these uncertainties into account. This paper studies the
vehicle suspension system under changing dynamic
conditions, controlling its time response, and taking into
account the uncertainty of the control system parameters.
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1. INTRODUCTION

The vehicle suspension system is considered one of the most
important control systems in vehicles in general, especially
buses that transport passengers for very long distances. This
requires ensuring the comfort of passengers, especially since
some passengers are sick, others are children or pregnant
women. As a result of the use of public roads by fast vehicles
of different weights, distortions may occur in the roads,
which leads to the transportation vehicles being exposed to
sudden disturbances that may frighten some passengers or
may lead to harm to some passengers who sleep during the
journey as a result of the sudden disturbance on the buses’
wheels. Therefore, to reduce the impact of these
disturbances, a suspension system is used that includes
springs to mitigate the impact of disturbances resulting from
road distortions or potholes that obstruct it. However, this
system, represented by the suspension system, needs a
controller so that it works to absorb disturbances in a smooth
manner that does not affect the disturbance of the bus or
vehicles in general, while taking into account the
uncertainties of the control system. [1]

2. THE IMPORTANCE OF THE
PAPER AND ITS OBJECTIVES

The importance of the paper is summarized in improving the
performance and efficiency of the vehicle suspension
system under changing dynamic conditions and with
uncertainty of the control system parameters based on
modern control algorithms that take the uncertainty of the
control system into consideration, and knowing the
uncertain parameters and their uncertainty ranges, as the
control system includes the following components:

* Vehicle body with weight (m4).

* The suspension system is a spring with a stiffness factor
ki and a damping factor (b).

* Wheels of vehicle with weight m,.

* A wheel frame which is equivalent to a spring with a
stiffness factor of k.

The control system represented by the vehicle is a control
system with two inputs, which are the control vector u(t) and
the disturbance signal represented by the distortions and
potholes in the road on which the vehicle is moving. The
control system has two outputs, which are y;, the
displacement of the vehicle body, and y,, the displacement
of the vehicle wheels.

The paper also aims to develop a mathematical model of the
vehicle's entire system, simulate it using Matlab/Simulink,
and analyze the responses of the open-loop system.
Practically, as the suspension system continues to operate,
friction and damping factors change due to changes in
temperature and humidity. The spring may lose its elasticity,
thus reducing the efficiency of controllers designed for
nominal values. Therefore, it is necessary to design robust
controllers that take into account the uncertainty of the
control system parameters and apply advanced control
theories to design robust controllers.

3. REFERENCE STUDIES

Several advanced control algorithms have been used to
control vehicle systems. The following papers studies have
been used:

In paper [1], the suspension system, a critical component of
a vehicle, was studied, playing a fundamental role in
steering and comfort characteristics. This paper optimized
the suspension system parameters to reduce vehicle
vibrations. A magneto-rheological damper (MR damper)
was added to a four-degree-of-freedom semi-car model. The
effects of improving the suspension system's efficiency were
studied, as well as the vehicle system modeled. The
suspension system was simulated using
MATLAB/Simulink, and the following algorithm was
applied:
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(PSO=The particle swarm optimization), To optimize the
suspension parameters for vehicle vibration reduction and
passenger comfort, the suspension parameters were
optimized using two inputs:

link-bounded white noise and sine waves. The results
showed that adding a magneto-rheological damper in any
mode reduced vehicle vibration. The maximum reduction in
vehicle vibration was associated with the condition in which
all suspension parameters were optimized, and the objective
function value in that case was improved by about 32%.

In paper [2], electric vehicles (EVs) were studied, which are
considered alternative vehicles in the automotive industry,
providing lower exhaust emissions. This paper developed an
internal-drive switched reluctance motor (SRM) propulsion
system for an electric vehicle. SRM propulsion systems are
cheaper and do not use complex components, unlike
permanent magnet motors (PMMs). However, the internal-
drive SRM system suffers from a disadvantage, which is the
increased mass of the suspension system when compared to
a PMM propulsion system that provides the same equivalent
power. This situation leads to an increase in the mass of the
wheels, and therefore a suspension analysis is required. This
paper discussed the suspension dynamics evaluated using a
simulation of an internal-drive SRM electric vehicle, and
compared it to an internal-combustion engine (ICE) vehicle.
The simulation used design scenarios derived from graded
loads, namely (1) the driver's seat with springs, (2) the
driver's seat without springs. Bode diagram analysis
techniques were also used to determine the ride comfort
range of the developed electric vehicle.

In paper [3], the vehicle's shock absorbers were designed by
identifying the optimal point based on our needs. The system
was analyzed for any disturbances, and then the entire
vehicle was modeled as a two-degree-of-freedom system,
and a modular analysis was performed. The frequency ratio
(r) was carefully chosen. The displacement transmission
can be reduced with a large (r), but at the same time, the
force transmission increases at a large (7). This situation is
very disturbing for the passenger, who will feel the sudden
impact. Suspension design is not limited to simply reducing
mass vibration. Of course, if the wheels begin to separate
from the ground, the vehicle's handling will become poor, as
an overly soft suspension system suffers from poor control.
Therefore, designers must choose between control and
vibration isolation. Similarly, an attempt was made to
maintain the response of the front and rear wheels as similar
as possible to ensure smooth driving. This is evident from
the response of the control system obtained in the typical
analysis. Two vibration modes can be observed: In the first
case, the translational motion is more dominant and tends
more toward a regular sinusoid, while in the second case, the
slope motion plays a greater role, distorting the response and
producing different peaks at different times. The accuracy
of the analysis can be further increased by modeling the
system with higher degrees of freedom. A multi-degree-of-
freedom system can be solved by calculating the translation
function and providing the rule inputs using SIMULINK,
which can yield better and more accurate results.

4. MATHEMATICAL MODELING OF
VEHICLE SUSPENSION SYSTEMS
[11121131[4]15116]

This section will present a dynamic mathematical model of

the vehicle suspension system, where the kinematic and
dynamic equations will be found, taking into account the
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uncertainty of the suspension system parameters. Figure (1)
shows a description of the vehicle suspension system studied

in this paper:
yi
m ] !

br 3ki

2
m2 wIny
k2
r

Figure 1” Structural diagram of vehicle suspension
system
Whereas:

m, Vehicle body weight.
m, Vehicle wheel weight.

ki Spring stiffness factor that represents the suspension
system.

k, Spring stiffness factor equivalent to wheel rim.
b Suspension damping factor.

v, Vehicle body displacement.

vy, Wheel displacement.

r The displacement of the frames relative to the ground
represents the noise signal.

At this stage, the dynamic equations of a vehicle suspension
system will be derived using one of two methods:

The first method: applying the Newton-Euler method.
The second method: applying the Lagrange principle.
This paper will use the Lagrange principle.

The general dynamical Lagrange equation for non-
holonomic WMR systems is given by the following equation
(:

d (OL) 8L+MT A=E
at\3q) " 3q (A =E(pr 1)
Where: L is the Lagrange function and is defined as the
difference between the kinetic energy of the body K and its
potential energy P:

L=K-P ©)
Whereas:
q Motion vector.
T Input vector.
D(q) System inertia matrix.
E(q) Input matrix.
M(q) Matrix in motion.

A Vector Lagrange factorials.
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From equation (1), we obtain the dynamic equation for a
system subject to a kinetic constraint in the following form,
neglecting the limits of the gravitational forces G(q) and
the Coriolis forces V(q, ¢), considering that the suspension
system moves in the XY plane at low speeds:

D(@)q +M"(q)A = E(q)t 3)
Based on Figure (2) which shows the suspension system
with the control vector u(t):

Figure 2 Suspension system with control vector u(t)

Then, by applying Lagrange's principle, we obtain the
dynamic equations of the vehicle suspension system
according to the following formulas (4) and (5):

.. kq b | .
Y1t m_1 r1—y2) + m—l(}’1 —¥2)

)
= —u(®
1
. Kk b . .
Y2 — E r1—y2) — m—z(}ﬁ —¥2)
L K 5
m_Z(YZ -7) %)
_ 1
= —m—zu(t)

4.1 Representation of Vehicle Suspension
System in State Space

According to equations (4) and (5), we assume:
x2(8) = y1(0)
x4(8) = y2(0)

@ =y1®
x3() =y2()
By deriving hypotheses (6), we find:
@) =y, x2(t) = y1(0)
@) =y x4(8) = y2(0)

Using equations (4), (5) and (6) we obtain the equations of
state representing the open-loop vehicle suspension system:

x1(8) = x2(0)
. kq
xp() = — m, (x1(®O)—x3(t))
b
“m (x2(8) — x4(1)) 3

+ ! t
_)

x3(t) = x4(0)
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) kq
x,(0) = m, (x1(B)—x3(t))
b
+ p— (x2(8) — x4(D))
k
N GIORLO)

1
- m_zu(t)

y1(t) = x1 ()
y2(t) = x3(b)
From equation (8) we obtain the radial formula for the
vehicle suspension system:

[xl(t)]
X2(t)
x3(t)
X, (t)
r 0 1 (] 0
kb Kk LA
= ™ m;  m my ||x2(®)
o 0 1 lxs(®
kb kK _LJlx4(t)J
L m, m, m, m, m,
-0
Ll Ig1 ©)
+ "o [u®+ 2w
1 <
", m;
[x1(t)]
yi®]_1 0 o o07|x(®], 0
(0 =lo 0 1 ol (D) +[o]u®
x4(1)
+[g] r(t)

4.2 Vehicle Suspension System Simulation
using
Matlab/Simulink:[3][4][5][6][7][8]]9]

By simulating the vehicle suspension system represented by

equations (4) and (5) using the Matlab/Simulink program,

we obtain the diagram of the open-loop control system

shown in Figure (3):

Suspension sustem
of car
Figure 3 Open loop vehicle suspension system

Figure (4) also shows the detailed diagram of the vehicle
suspension system shown in Figure (3):

bz |
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¥z

2
u
yorz

Figure 4 Detailed diagram of the open-loop vehicle
suspension system
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4.3 Suspension responses in open-loop
vehicles:[7][8][9][10][11][12]

Table (1) shows the vehicle suspension system parameters

used in the simulation:

Table 1 Vehicle suspension system parameters
The
symbol

Description value

Vehicle
m, body 300 (kg)
weight
Vehicle
m, wheel 60 (kg)
weight
Spring
stiffness
factor that
ky represents
the
suspension
system
Spring
stiftness
factor
equivalent
to a wheel
frame
Suspension
b | damping | 1000 (V/m, sec)
factor
In the simulation, we will assume that the vehicle is
traveling on a completely flat road with no distortions, and
thus the noise signal r(t) =0. By implementing the
simulation scheme shown in Figure (3), we obtain the
following responses:

16000 (V/,,)

190000 (V/p)

e Open loop response to vehicle body displacement
Y1

Figure (5) shows the open-loop response to the vehicle body

displacement y; (t):

x 107

© z 4 6 8 10
t (sec)

Figure 5 Open loop response to vehicle body
displacement y4 (t)

e Open loop response to wheel displacement:
Figure (6) shows the open-loop response to the displacement
of the cart wheels y, (t):

ax 10"

2 (meter)
& b M o n

&

z a 6 & 10
t (sec)

Figure 6 The open-loop response to the displacement of
the cart wheels y,(t)

e Open loop response to vehicle body displacement
velocity:

Figure (7) shows the open-loop response to the vehicle body

displacement velocity:
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x 107

V1 (meter/sec)

o 2 4 6 B8 10
t (sec)

Figure 7 Open loop response to vehicle body
displacement velocity

e Open loop response to vehicle wheel displacement
velocity:

Figure (8) shows the open-loop response to the vehicle

wheel displacement velocity:

Lx 107

V2 (meler'sac)
+
¢

o 2 4 & o 10
t (sec)

Figure 8 Open loop response to vehicle wheel
displacement velocity

From the previous responses, especially the vehicle
displacement response y; (t), the response is very bad and
leads to a very large displacement estimated at 60 cm,
which is a displacement that leads to major vehicle
accidents. When there are distortions in the road, the
displacement will get worse, so it is necessary to design
appropriate controllers to reduce these displacements.

5. OPTIMAL PARAMETRIC
CONTROLLER DESIGN
[13][14][15]
We will first learn how to design a linear quadratic optimal
controller based on state variables.

5.1 Quadratic linear optimal controller:
The optimal controller relies on generating a control vector
based on state variables, giving us a wide range of control
over the dynamics of the control system. The mathematical
model of the control system based on state variables is given
by the following formula:

X =Ax + Bu

y=Cx (10)

The diagram plot represented in Figure (9) represents the
equations of the previous case:

w(t)
@ _Cﬁ/ @) =Ax@) x(0)
| K
L~ |
Figure 9 Block diagram of the optimal control problem

The quadratic linear optimal control vector is given by the
following relation:

Uopt (11)
=r() — koptimalx(t)

Then the block diagram of the control set with the optimal
controller becomes as shown in Figure (10):
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r(f)——— —— B —

k

Optimal | ™

Figure 10 Detailed diagram of the optimal control
problem based on state equations

The optimal control gain is given by the following formula:

koptimal = R_IBTP (12)

Where P is a positively defined symmetric matrix and is a
solution to the following Riccati differential equation:

Tp _ -1 —
PA+A"P—PBR™"BP+Q =0 (13)

The performance function to be minimized has the following
formula:

t
] = %fo f(xTQx + Ru?)dt (14)

5.2 Representation of the suspicious
control plant in the form of a direct

connection with é:

The linear quadratic optimal controller offers significant
advantages when designed for a nominal control system, but
it can lose its robustness and performance when the control
system parameters become uncertain. Therefore, the optimal
controller design approach had to be modified. Before
designing the optimal parametric controller, the control
system must be formulated using the direct correlation
formula with §. According to this formula, the uncertain
parameter is represented by a coefficient §, as in the
following formula:

_B1+P1+P1_1_31

Pl_ 2_ ) 2 1
P,+P, B,—P 15
P2=_22 2+ 22_262 ( )

Whereas: §; € [—1, +1]

f the control plant has the following form:

% =Ax+ Bu (16)

Then the control plant can be written in direct relation form
with & as follows:

% = (Ao + T1_y Ai6)x(2) + Bu(t) (17)

5.3 Optimal parametric controller
design:[14][15][16][17]

Theory:

A model of state equations represented by the direct
coupling form with & is Lyapunov stable if there is a
positively defined matrix (L) that satisfies the following
Lyapunov inequality:

LAA®Y + ATAMYLe < —§ + k=12,... | (1)
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This is for the heads of the entire space, which is defined by
the suspicious parameters. If we have three parameters that
form the space shown in Figure (11):

Figure 11 The space vertices specified for three
suspicious parameters.

There must exist (Lc) that satisfies the Lyapunov

inequalities given in equations (/9):
LeA(AD) + AT(AM)L, < =€
LeA(AD) + AT(APD)L, < —¢

(19)
LeAA®) + ATA®) L, < —¢

Whereas:
A(AM) s the matrix (A) at vertex (1) that represents the
values of the parameters:

(20)

A(A®) s the matrix (4)at vertex (8).

To design the optimal parametric controller, we write
the direct correlation formula for & as follows:

l
%= (Ao + ZAj(Sj)x +Bu
=

%= (Ao + LyNF&; + LyNT S, +...... )x

+ Bu
Where L, L,, Ny, N, are perpendicular rays of dimensions
(n x 1) so that they are chosen to achieve:

(21

A1 = LlNir,Az = LzNér, ™ (22)

Then we form the two augmented matrices as follows:

L=][L, L, Ls....]

N=[N, N, Ns..] (23)
Then we replace the previous Riccati equation with the
following modified Riccati algebraic equation:

T 1 T 1 T
ATS + 540 = SIBBT = LLTIS + Qg

+yNNT =0
Where y, p are design parameters, if we assume that:

249

1 1
By=—-BBT —=LLT
P Y

(25)
Co = QO + ]/NNT
The Riccati algebraic equation becomes:
AYS +SAy—SBoS+Cy =0 (26)

This equation is similar to Riccati's algebraic equation:
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ATP +PA—PBP+C =0

(27)

Which can be solved using MATLAB using the instruction:

>>P =are(4,B,C) (28)
That is:
>> S = are(4o, By, Co) 29)

Then the optimal parametric

optimal parametric regulator method in the formula:

control vector is given by the

u=-Gx (30)
where (G) is the gain vector:
1
G=-R'BS (31)
p

In this case, the solution is done under the presence of the
two constraints (y, p), and the solution conditions are the
presence of (S) defined positively. If the assumed values of
(v,p) are not suitable, they can be changed and the

appropriate (S) can be found.

5.4 Representing the

suspension system in

direct correlation form with &
We will assume that the parameters k; ,k,, and b are
uncertain by £20% of their nominal values, according to

Table (2):

Table (2) Uncertainty range of suspension system
parameters used in vehicles

Max value Min value
The .
nominal
symb
value
ol
K 16000 (N/) 19200 12800
1 m N N
N N/m)
%, (t)
EAG)
(1)
EAQ)
1 0 0
—58.6667 —3.6667 58.6667 3.6667
0 1
293.3333 183333 —37767 —18.3333
0 0 0.0000 0
-53333 0 533330 0
0 o 0 o|%
26.6667 0 —26.6667 0
0 0  0.0000 0.0000 (34)
+|0 0 000000 0.0000 |4
0 0 00000 0.0000]°%
0 0 -3166667 0
0 0.0000 0.0000 0.000 X1Ef; 0
0 -03333 0.0000 03333 x,(¢ 00033
*lo o 0o 0 ‘53 oI ]“(t)
0 16667 0 —1.6667 x,(0) —00167
0
+H 5 @
3166.7

Hence we assume:
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228000 152000
ky | 190000 N/l V/m) N/m)
1200 800
b | 1000 (N
( /m.se (N/m.sec) (N/m.sec)

Following the steps of representing the control plant in the
form of a direct connection with &, we find:

k =
1 2

ky + ks,
2

k2=

by + b,
=T °

ky +k
1 1+

ky—k
1 > 1 61
= 17600 + 16006,
fp—k
225, (32)
= 209000 + 190006,

51 _l_)l
S— 63 = 1100 + 1008

We substitute in

x1(8)
X2 (8)
x3(t)
x4(8)

0
0.0033
0

.—0.0167

ol -

Hence, we find

—58.6667 —

[293.3333 + 26.66674;

the state equations (9) and find:

0 1
5.33336; —3.6667 — 0.33336;
0 0
18.3333 + 1.6667453

0
0
0 r(t)
3166.7
[*1 (t)

u(t) + (33)

0 0 1 0 X3 (t)
x4(t)

+ [g] r(t)

the state equations according to the direct

_[1 00 olxz(t)| u(t)

correlation formula with 6:

Ay (35)
0 1 0 01])
_|-58.6667 —3.6667 58.6667 3.6667
0 0 0 1
293.3333 18.3333 —3776.7 —18.333
0 0 0.0000 0
_]-5.3333 0 533330 0]_ T
A = 0 0 0 of =M
| 26.6667 0 —26.6667 0
‘0 0 0.0000 0.0000
0 0 0.00000 0.0000 |_ T
42=10 0 00000 0.0000| LNz
0 0 —316.6667 0
0 0.0000 0.0000 0.000
4. = |0 —03333 0.0000 03333
37 1o 0 0 0
0 1.6667 0 —1.6667
=L3N3T
From it we find:
=[0 23094 0 -11.547] (36)
N{ =[-2.3094 0 23094 0]
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Ly=[0 0 0 —17.7951]
NI =[0 0 17.7851 0]
L5=[0 05773 0 —2.8871]
Nf=[0 -05773 0 0.5773]

From equations (36) we obtain the following two
uncertainty matrices:

0 0 0 37)
L= | 23094 0 0.5773
0 0 0
-11.547 -17.7951 -2.8871
-23094 0 0
v=| 0 0  -05773
23094 17.7851 0
0 0 0.5773

5.5 Vehicle suspension system responses
when using the optimal parametric

controller
By applying the optimal parametric control methodology
described in paragraph (5-3) and for the uncertainty shown
in Table (2), we obtain the following simulation results:

5.5.1 Optimal Parametric Controller Design
Results for Nominal Parameters

For the nominal values of the suspension parameters in
vehicles we obtain the following responses:

¢ Response to vehicle body displacement y,:
Figure (12) shows the response to the vehicle body
displacement y;(t) when using the optimal parametric
controller:

0.1

—r(t) [noise] (meter)
—y1 (meter)

0.05
L -
-0.05

-0.1

r(t) [noise] , y1(t) (meter)

0 2 4 6 8 10
t (sec)

Figure 12 Response to vehicle body displacement y; (t)
when using the optimal parametric controller at the
nominal values of the parameters

¢ Response to displacement of the cart wheels
Ya:

Figure (13) shows the response to the displacement of the

cart wheels y, when using the optimal parametric

controller:

o1 i | _[—r noise) (meter)
—y2 (meter)

1) [noise] , y2 (meter)

01, z 4 . h u 10
Figure 13 Response to vehicle wheel displacement
y2 (t) when using the optimal parametric

controller at the nominal values of the parameters
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5.5.2  Optimal Parametric Controller Design

Results from Parameter Uncertainty
In order to determine the parameters of the suspension
system in vehicles according to Table (2), we obtain the
following responses:

¢ Response to vehicle body displacement y,:
Figure (14) shows the response to the displacement of the
vehicle body y;(t) when using the optimal parametric
controller for the maximum and minimum uncertainty of the
parameters:

{[—r tnoise) (meter
—y1 (max uncertain)
——y1i (min uncertain)

I

r(noise) , y1 (meter)
o
o
&

-1

t (sec)

Figure 14 Response to vehicle body displacement y, (t)
when using the optimal parametric controller for
maximum and minimum uncertainty in the parameters

e Response to displacement of the cart wheels
Y2:

Figure (15) shows the response to the vehicle wheel

displacement y,(t) when using the optimal parametric

controller for maximum and minimum uncertainty in the

parameters:

[—rthinoise] (meten
— y2 (max uncertain)
— y2 (min uncertain)

rit), y2 (meter)

t (sec)
Figure 14 Response to vehicle wheel displacement
y,(t) when using the optimal parametric
controller for maximum and minimum

uncertainty in the parameters
Through the previous responses, especially the vehicle
displacement response y;(t) shown in Figure (12) and
corresponding to the nominal values of the parameters, we
note that the response is very good, as the maximum
displacement of the vehicle body reached about (0.05
meters) for the maximum road deformation (0.1 meters) and
the minimum (-0.1 meters). We note that within a time of
less than (1 sec) the level of the vehicle returned to a
completely straight position. When the vehicle total
parameters are uncertain due to the decline in the flexibility
of the suspension system due to the temperature and
surrounding climatic conditions, and according to Figure
(14), we note that for the maximum uncertainty the
displacement of the vehicle body reached (0.06 meters), and
at the minimum uncertainty the displacement of the vehicle
body reached (0.05 meters). Thus, we conclude the success
of the parametric controller in absorbing the maximum and
minimum road deformations, which leads to good passenger
comfort. The optimal parametric controller also succeeded
in maintaining its strong performance when the suspension
total parameters are uncertain. The vehicle's displacement is
significantly greater than +20%. According to Figures (13)
and (15), which show the vehicle's wheel displacement
response Yy, (t), we note that the maximum displacement is
0.1 meters for the nominal values of the parameters and the
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maximum and minimum uncertainty in the parameters. It is
worth noting that the vehicle's body response is most
important because it contains passengers whose calm and
comfort are to be maintained during travel, even when
exposed to various road deformations.

6. DESIGN OF THE MRAC
REFERENCE MODEL ADAPTIVE
CONTROLLER
[18][19]120][21][22][23]

6.1 General block diagram of MRAC

adaptive controller
The MRAC technique was introduced in 1958 by
Whitacker, and the general block diagram of this method is
shown in Figure (16) below:

Laws
b L
Controller Plant ¥

Figure 16 The basic structure of the MRAC
reference model adaptive control system

»

The primary regulator ¥, is used to achieve the appropriate
closed-loop behavior. This is a non-adaptive loop. Because
the control parameters are unknown or time-varying, a
regulator with fixed parameters cannot be designed.
Therefore, in the MRAC technique, the reference model is
used, as its response is the desired response. The adaptation
mechanism must track the control output signal to the
reference model output signal y,. The adaptation
mechanism continues to operate until the error between the
two outputs becomes zero. Also, the state variables of the
control system x,can track the state variables of the
reference model x,,. The most important advantage of the
MRAC scheme is that it achieves direct adaptation to the
uncertainty of the control parameters without the need to
estimate the parameters.

According to the diagram shown in Figure (16), the MRAC
adaptive control system consists of two feedback loops:

The first loop: an internal feedback loop consisting of the
primary regulator.

The second loop: an external feedback loop consisting of
the adaptive mechanism.

Typically, the inner loop operates faster than the second
loop because the statement parameters change at a slower
rate compared to the change in the control statement states.
According to Figure (16), the reference model is linked to
the branching of the control plant.

6-1 Steps for designing a reference model adaptive
controller (MRAC):

A M.R.A.C system consists of the following basic
components:

e  Control system.
e  Basic controller.

e  Reference model.
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e Deriving adaptive laws.

The reference model defines the desired behavior of the
control system and is usually parameterized so that it can be
implemented on a computer. If the study relies on the state
variables of the control system, the reference model is given
as a complete state vector. The reference model must meet
certain requirements: its relative degree is equal to the
relative degree of the control system. Furthermore, it must
be stable, fully controllable, sensitive, and responsive. The
key to designing a M.R.A.C system is deriving adaptive
laws. The adaptive controller with the reference model will
be designed based on the state equations.

6.2 Steps for designing a reference model
adaptive controller (MRAC):

If the control system is linear, of order n, fully controllable,
and has no zeros, then the control vector that displaces the
closed-loop poles has the following form:

u = kyxp + kor (38)

If the open control plant is described by the following
transfer function:

Wi (s)

by 39
£ )

= n n-1 n-2 1
s+ apps + Apmn-1)S +...+ayst +ay

Then this plant can be described by the equations of state
according to the controllability formula as follows:

X, = Ayx, + Byu
N (40)

Yp =C"xp

The control plant is written according to the controllability

formula, where the control plant is represented in the form

(17) where u(t) is the control vector:

— W,(s)

Figure 17 Open loop control plant

By closing the open system with negative feedback using
the following control vector:

u=kyx,+kyr (1)
Whereas:
kb = [kl kZ kn]lxnlxp
=[x X . x]0 (42)

ko(1x1),r(1x1)

By representing the control vector, the closed control plant
becomes represented in Figure (18):

7 . u X
Tk O )

k, «

Figure 18 Closed loop control system.
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The control ray can be written in the following form:

u=60".w (43)
Whereas:
0" =[k, k].o"=[r x,] @
P
Hence, the state equations for the closed system after

changing the control vector in the state equations become as
follows:

x,=A4,x,+B (k,x, +kr)

. (45)
y,=Cx,
From it we find:
x,=(4,+B,k,)x,+ Bk
. (46)
y,=Cx,
And from it the equations of state for a closed system:
u=kyx,+kyr 47)
Whereas:
A=A +Bk, B =Bk
r . (48)
T =C!
Since the control system parameters

Apns Ap(n—-1) -+ +» Ap2, Ap1, bpn are constant but unknown,
the regulator parameters kj,k, are adjusted using an
adaptive mechanism. The adjustment mechanism is
generated by tracking the control system output signal to the
output signal of a reference model chosen to achieve an
optimal response. If the reference model is given by the
following transfer function:

W, (5) = Do g

n n—-1 n—2 1
s*+a,s +a,,,s " +..tads +a,

The equations of state for the reference model are:

x,=Ax, +B.r 0
_ AT

Ym = C'm X
Then, in order for the closed control system to follow the

reference model, it must be:
Ac_)Am > Bc_)Bm (51)

Therefore, to deduce the adaptation mechanism, we follow
the following steps:

Step 1: Deriving the error equation:
The error vector is given by the state variables in the
following formula:

e=x,-x, (52)

Whereas:
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T . .
Xp = [xpl, Xp2s e xpn] It is a vector of state variables for
the control statement.

Xm = [Xm1s Xmzs -+ Xmn]T It is a vector of state variables
for the reference model.

If the state equations for the closed loop control system are
in the following form:

x,=A4x,+B,r (53)

The equations of state for the reference model are in the
following form:

x,=A4,x,+Br (54)

By deriving the error equation (52):

e=Xx,—X (55)

m
We substitute the error equation and find:

€ =Acxp + B.r — ApXp — By (56)

By adding the two terms A;,x, — Ay X, to equation (56),
and some mathematical procedures, we obtain the error
equation for the adaptive control system in its final form:

e=A,e+Ax,+Br (57)
Whereas:
A=A4-4,,B=B —-B, (58)
We define the parameter error vector as the matrix ¢, which

includes the terms in A,B, and contains the regulator
parameters kg, k1, ko, ..., ky, in the following general form:

bpnkO _bmn W
-a, +b,k+a,

¢= . (59)

-a,, +bpnkn +a,, |

(n+m)x1

Where the signal vector corresponding to the parameter
error vector w(t) has the following formula:

w(t)

— X T
=[r xp *p2 Xpn](nemyx1

(60)

Therefore, the error equation can be written according to the
following formula:

é=An.e+b.¢T.w (61)
Whereas:
b,=[0 0 0 1] ,e(nx1), 4, (nxnpe(nx1)

b, (nx1),4" (1x(n+m)),w(n+m)x1 2
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Step 2: Assuming a Lyapunov function:

In order for the control output signal to follow the reference
model signal, the error vector must end at the zero vector.
To achieve this, we impose a Lyapunov function defined
positively according to the quadratic formula as a function
of the signal error vector e(t) and the parameter error vector
¢T«, i.e. of the following general form:

V(e,p)=e" .Pe+¢"' T ' ¢ (63)

Since I'"! = I > 0is a positively defined symmetric matrix
called the adaptive gain matrix, and P"1 =P >0 is a
positively defined symmetric matrix. For tracking to be
possible, the derivative of the time-dependent Lyapunov
function must be negatively defined. By differentiating the
Lyapunov function, we find:

Vie,p)=¢" .Pe+e Pe+d T p+¢" gf”f‘ &

For V(e, ¢) to be a negative identifier, we assume:
AP+ P.Ap =—Q (65)

By following the mathematical procedures that ensure that
the derivative of the Lyapunov function is defined as
negative, we obtain the adaptation law in its final form:

p=-T.e' .Pb.o (66)

6.3 Vehicle Suspension System Responses

When Using the Adaptive Controller:
By applying the adaptive control methodology described in
paragraph (6-2) and for the uncertainty shown in Table (2),
we obtain the following simulation results:

6.3.1 Adaptive Controller Design Results for

Nominal Parameters
For the nominal values of vehicle suspension system
parameters, we obtain the following responses:

¢ Response to vehicle body displacement y:

Figure (19) shows the response to vehicle body
displacement y 1 (t) when using the adaptive controller with
the reference model:

"[—r (noise] (meten)
—y1 (meter)

N

I

o 2 4 6 8 10
t (sec)

1it), y1 (meter)
o
(=]
=] o
>

Figure 19 Response to vehicle body displacement
y; when using the adaptive controller at the
nominal values of the parameters

¢ Response to the displacement of the cart wheels
y2

Figure (20) shows the response to the displacement of the

cart wheels y, (t) when using the adaptive controller:

International Journal of Computer Applications (0975 — 8887)

Volume 187 — No.68, December 2025

—r(t) [noise]

—y2

0.05 ‘ﬁ

-0.05 \V

(0] 2 4 6 8 10
t (sec)

Figure 20 Response to vehicle wheel displacement
y2(t) when using the adaptive controller at the
nominal values of the parameters

y2 (meter)
o
7

6.3.2  Adaptive Controller Design Results with
Parameter Uncertainty

For uncertainties in vehicle suspension parameters

according to Table (2), we obtain the following responses:

¢ Response to vehicle body displacement y,

Figure (21) shows the response to vehicle body
displacement y; (t) when using the adaptive controller for
maximum and minimum parameter uncertainties:

01 t i H==r(t)[noise)
{|—y1 (max uncertain)
{|==y1 (min uncertain)

(), y1 (meter)

] 2 4 t (se0) E E 10
Figure 21 Response to vehicle body displacement
y1(t) when using the adaptive controller for
maximum and minimum uncertainty of

parameters

¢ Response to vehicle wheel displacement y,:

Figure (22) shows the response to vehicle wheel
displacement y, (t) when using the adaptive controller for
maximum and minimum uncertainty in the parameters:

—r(t) [noise]
——y2 (max uncertain)
y2 (min uncertain)

rlt), y2 (meter)

01 2 c;I 6 t;a 10
t (sec)
Figure 22 Response to vehicle wheel displacement y, (t)
when using the adaptive controller for maximum and

minimum uncertainty of parameters

From the previous responses, especially the wvehicle
displacement response y;(t) shown in Figure (19) and
corresponding to the nominal values of the parameters, we
note that the response is poor, as the maximum displacement
of the vehicle body reached about (0.1 meter) for the
maximum road deformation (0.1 meter) and the minimum (-
0.1 meter). We note that the vibration damping required a
time of about (2 seconds) for the vehicle level to return to a
completely straight position. When the vehicle total
parameters are uncertain due to the decline in the flexibility
of the suspension system due to the temperature and
surrounding climatic conditions, and according to Figure

22



(21), we note that for the maximum uncertainty, the
displacement of the vehicle body reached (0.1 meter), and
for the minimum uncertainty, the displacement of the
vehicle body reached (0.08 meter). Thus, we conclude the
success of the adaptive controller in absorbing the maximum
and minimum road deformations, but with a large
displacement of the vehicle body, which negatively affects
the comfort of passengers.

According to Figures (20) and (22), which show the vehicle
wheel displacement response y,(t), we note that the
maximum displacement is 0.1 meters for the nominal
parameter values and the maximum and minimum
parameter uncertainties. Note that the vehicle body response
is most important because it contains passengers whose
comfort and calm are to be maintained during travel while
exposed to various road deformations.

7. COMPARING THE RESULTS OF
THE OPTIMAL PARAMETRIC
CONTROLLER AND THE
ADAPTIVE CONTROLLER

The responses of the optimal and adaptive parametric
controllers will be compared for the nominal parameter
values and for the maximum and minimum parameter
uncertainties.

7.1 Comparison of the vehicle body
displacement response y; when using
the optimal and adaptive parametric
controllers for the nominal

parameters
Figure (23) shows the response to the vehicle body
displacement y, (t) when using the optimal and adaptive
parametric controllers with the reference model:

01

— parametric optimal controller
——adaptive controller

y1 (meter)

2 4 6 8 10
t(sec)
“Figure 23” Response to vehicle body displacement
y1(t) when using the optimal and adaptive parametric

controller at the nominal values of the parameters

7.2 Adaptive Controller Design Results

with Parameter Uncertainty:
For uncertainties in vehicle suspension parameters
according to Table (2), we obtain the following responses:

¢ Response to vehicle body displacement y, (t) at
maximum parameter uncertainty:

Figure (24) shows the response to vehicle body

displacement y; (t) when using the optimal and adaptive

parametric controller for maximum parameter uncertainty:
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——parametric optimal controller
— adaptive controller

y1 (meter)
o
q

0 2 4 6 8 10
t (sec)

“Figure 24” Response to vehicle body displacement
y1(t) when using the optimal and adaptive
parametric controller for maximum uncertainty in
the parameters

e esponse to vehicle body displacement y; (t)at
minimum uncertainty in parameters:

Figure (25) shows the response to vehicle body

displacement y; (t)when using the optimal and adaptive

parametric controller for minimum uncertainty in

parameters:

0.1

——parametric optimal controller
—adaptive controller

|
. }\AA \A\f
V Y

2 4 6 8 10
t (sec)

Figure 25 Response to vehicle body displacement y; (t)
when using the optimal and adaptive parametric
controller for minimum uncertainty in the parameters

y1 (meter)

70.10

From the previous responses, especially the response of the
displacement of the vehicle y,(t) shown in Figure (23)
corresponding to the nominal values of the parameters, and
Figure (24) corresponding to the maximum uncertainty of
the parameters, and Figure (25) corresponding to the
minimum uncertainty of the parameters, we notice that the
optimal parametric controller always outperforms the
adaptive controller. This is because the design of the optimal
parametric controller takes the uncertainty of the parameters
into account in the design algorithm, while the adaptive
controller needs to calibrate the adaptation gains when the
parameters change, and this makes the matter difficult,
because the adaptation gains are adjusted once.

8. SIMULATION AND RESULTS

From the simulation results of the vehicle suspension
system, we note that both the optimal and adaptive
parametric controllers with the MRAC reference model
achieved stable vehicle body and wheel displacement for the
nominal values of the vehicle suspension system parameters
and when these parameters are uncertain within a range of
+20%. The simulation results demonstrate the superiority
of the optimal parametric controller over the adaptive
controller. For the nominal values of the parameters, when
using the optimal parametric controller, we note that the
range of maximum and minimum vehicle body
displacement is approximately +0.05meter for the
maximum (0.1 meters) and minimum (-0.1 meters) road
deformation. When using the adaptive controller, the range
of vehicle body displacement is approximately +0.1 meter
for the maximum (0.1 meters) and minimum (-0.1 meters)
road deformation. When the control system parameters are
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uncertain, the optimal parametric controller remains the
best. Outperforming the adaptive controller.
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