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ABSTRACT 

Human-Computer Interaction (HCI) has emerged as a critical 

component of navigating and connecting with the digital world 

as technology has advanced. Hand gesture recognition has 

received substantial interest as a natural and intuitive 

communication interface. This paper describes the design and 

implementation of a real-time hand gesture detection system for 

supporting HCI, with a special focus on assisting the hearing and 

speech challenged. The proposed system captures hand gestures 

using a real-time video camera and creates a bespoke dataset that 

is robust by accounting for user, posture, and occlusion 

variability. A Convolutional Neural Network (CNN) is used to 

extract features, with 21 important features identified for each 

hand gesture. These features are then classified using a Random 

Forest method, which achieves an overall accuracy of 94.58% 

over several instances. Recognized gestures are translated into 

text and speech, allowing for efficient and convenient 

communication. The method allows you to combine various 

gestures to make whole sentences, which are often used in 

regular interactions. Performance assessment under different 

lighting circumstances reveals a PSNR of 3 to 4.27 dB, 

suggesting robustness to illumination fluctuations. A graphical 

user interface (GUI) with a feedback system allows for seamless 

two-way interaction, which improves usability and accessibility. 
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1. INTRODUCTION 
In today's world, the interaction between humans and computers 

has become indispensable due to continuous technological 

advancements. This interaction, referred to as Human Computer 

Interaction (HCI) encompasses various methods facilitating 

communication with and control of computers. From utilizing a 

mouse to tapping on a touchscreen, HCI plays a vital role in 

navigating the digital realm. Hand gesture recognition has 

emerged as a focal point of interest among researchers within 

the broader scope of HCI. It provides a natural and intuitive 

means of interacting with computers, free from the complexities 

associated with traditional input devices. Unlike devices such as 

joysticks or remote controls, hand gestures feel instinctive and 

user-friendly [1].  

Among the diverse aspects of HCI, hand gesture recognition has 

emerged as a prominent area of interest for researchers. It offers 

a natural and intuitive means of interacting with computers, 

devoid of the complexities associated with traditional input 

devices. Unlike requiring training for devices like joysticks or 

remote controls, using hand gestures feels instinctive and user-

friendly. Its applications span across numerous domains, from 

controlling home appliances to guiding robots and aiding in 

medical procedures [2]. However, despite its potential benefits, 

hand gesture recognition presents challenges, particularly in 

ensuring accurate recognition across varying environmental 

conditions. In critical fields such as healthcare, where precision 

is paramount, errors in gesture recognition can have serious 

consequences. Researchers are actively striving to develop 

robust systems that can reliably interpret gestures under diverse 

circumstances, but achieving this remains a formidable task. 

Leveraging advanced techniques in image processing and 

machine learning, these systems interpret sign language 

gestures, enabling participation across education, healthcare, 

and workplaces, fostering inclusivity and understanding. 

Furthermore, these systems reduce reliance on costly human 

interpreters, offering a scalable and cost-effective solution for 

interpretation services. By ensuring wider accessibility, they 

contribute to a more inclusive society, minimizing 

communication barriers and enhancing participation for deaf 

individuals. Ultimately, the goal is to enhance communication, 

accessibility, and inclusion, empowering deaf individuals to lead 

fulfilling lives and engage fully in societal activities. 

The process of hand gesture recognition involves following 

stages - gesture capture, hand position identification, feature 

extraction, and gesture classification. Use of technologies like 

cameras and sensors, these stages enable the detection and 

analysis of both simple and complex gestures. In our paper, we 

aim to advance the field of hand gesture recognition by 

proposing innovative solutions to address existing challenges. 

Additionally, our efforts aim to streamline communication 

between humans and computers, facilitating smoother 

interactions. Additionally, we seek to contribute to a future 

where human-computer interaction is more intuitive and 

efficient. By bridging the gap between humans and machines, 

we define the below objectives create a more interconnected and 

accessible digital world – 
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• Create a comprehensive dataset of hand signs by converting 

video sequences into frames. 

• Identify a suitable feature extraction technique to extract the 

significant key points from the hand images that represent the 

hand sign effectively.  

• Identify and train the machine learning model with the goal of 

optimizing the model's accuracy. 

• Develop a trained model for text-to-speech application that 

can interpret written text and generate corresponding spoken 

output.  

2. RELATED WORK  
Hand Gesture Recognition (HGR) systems have been to make 

human-computer interaction more natural, efficient, and real, 

especially for persons who only use hand gestures to talk. Even 

though computer vision has come a long way, it is still quite hard 

to automatically and accurately recognize hand motions. 

Mohammed Alonazi and others looked at changes in computer 

vision and sensor technology and gave a detailed look at HGR 

methods and data modalities from 2014 to 2024. They expressed 

the necessity for examination utilizing diverse modalities, 

including RGB, Skeleton, Depth, Audio, EMG, EEG, and 

Multimodal approaches. They looked at more than 200 research 

from reliable databases [1] that focused on collecting data, 

establishing data, and showing gestures.  Miah et al. put out a 

multi-branch attention-based graph and a universal deep-

learning model to address generalization issues through the 

detection of hand movements by extracting all potential 

skeleton-based characteristics [2]. They proposed a general 

neural network channel and two graph-based neural network 

channels within a multi-branch architecture. The temporal-

spatial, spatial-temporal, and general characteristics are put 

together and delivered to the fully connected layer to make the 

final feature vector. To keep track of the node's order and 

minimize the system's computing cost, they added position 

embedding and mask operation to both the spatial and temporal 

attention modules. The MSRA, DHG, and SHREC'17 

benchmark datasets were used to test this model, and its 

accuracy was 94.12%, 92%, and 97.01%, respectively. 

Christine Dewi et al. essentially investigated CNN-based object 

identification methods utilizing the Yolov7 and Yolov7x models 

with 100 and 200 epochs on the Oxford Hand Dataset. 

Performance metrics include GFLOPS, mAP, and detection 

time. This study found that Yolov7x with 200 training epochs is 

the most reliable method. In training, it had 84.7% precision, 

79.9% recall, and 86.1% mAP. Moreover, Yolov7x achieved the 

highest average mAP score of 86.3% during testing. While 

performance improves with epoch, processing time also 

increases dramatically. They recommended federated learning 

and hand detection to improve HGR systems [3]. Jungpil Shin 

employed the Media pipe method to identify American sign 

characters by looking at webcam photos of hand joints. The 

calculated joint coordinates produced two classification 

features: vector-3D axis angles and distances between joint 

points. SVM and LGBM classifiers categorized characters. The 

ASL Alphabet, Massey, and Finger spelling A character files 

were used to recognize each character. The Massey dataset gave 

a score of 99.39%, the ASL Alphabet gave a score of 87.60%, 

and the Finger Spelling A gave a score of 98.45%. The automatic 

American Sign Language identification architecture has done 

better than earlier experiments, is cheap to run, and doesn't need 

special sensors or equipment. This technique can also be 

employed for aerial writing and sign language recognition [4].  

 

Real-world human–computer interaction hand gesture 

recognition using augmented YOLOv5 overcomes latency and 

low accuracy with complex backdrops. R Chen et al. suggested 

replacing the CSP1_x module in the YOLOv5 backbone 

network with an efficient layer aggregation network to improve 

gradient pathways. This improves network expression, learning, 

and recognition. The CBAM attention mechanism filters 

channel and spatial gesture features. This makes the network less 

susceptible to complex backgrounds and gesture images. 

Detailed backdrop gesture datasets EgoHands and TinyHGR 

were used. Using 640 × 640 input photos, mAP0.5:0.95 

achieved 75.6% and 66.8% identification accuracy and 64 FPS 

recognition speed. The suggested method is more accurate and 

resilient than YOLOv5l, YOLOv7, and other algorithms, 

enabling fast and accurate movement recognition against 

complex backdrops [5]. Shashidhar et al. examined Indian Sign 

Language (ISL) for 24 English alphabets excluding J and Z. 

Recognition of 4972 static hand signs is achieved. A deep 

learning-based application uses the "Google text to speech" API 

to translate Indian Sign Language into text, allowing signers and 

non-signers to communicate. They used Kaggle's public dataset. 

The customized convolutional neural network solution was 99% 

accurate [6].  

In the past, it was only possible to manually add unique hand 

gestures when the application was very limited. Jeong-Seop Han 

and others created a versatile and efficient graphical user 

interface that lets users specify their own hand movements. 

Their method customizes hand movements by creating a 

camera-based model that recognizes hand gestures depending on 

user data. They used a Multilayer Perceptron architecture based 

on contrastive learning to cut down on the amount of data and 

training time needed compared to older recognition models that 

need huge training datasets. The experimental findings indicate 

that the recognition model converges rapidly and precisely [7]. 

A user study is performed with initial user feedback on the 

implemented system. 

The recommended procedures in the pertinent articles have a 

variety of limitations. Apart from their weak explainability and 

generality, none of the papers have offered any real-time 

analysis. Furthermore, the majority of the solutions merely 

address ASL detection; they don't offer real-time feedback. The 

system's accuracy can be increased with real-time feedback. 

Furthermore, there is no consideration paid to user, position, or 

occlusion fluctuation. Furthermore, the focus on generating 

sentences by integrating distinct signs has not yet been 

examined. The majority of the gestures are static and obtained 

from publically accessible web sources; real-time dynamic 

continuous gestures and their generalization to diverse settings 

or users are not covered. 
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3. DATASET AND PREPROCESSING  

3.1 Dataset Collection  

 
Figure 1 Hand Signs for A, B, C, D, E, F and Z obtained 

from 6 different individuals  

There are Indian, Korean, and Indonesian sign languages, but 

American Sign Language is the most used and standardized. 

There are more e-resources for ASL than for other sign 

languages. So, we make an HGI system that uses ASL hand 

signs. Setting up a directory structure to store photos is the first 

step in collecting a dataset. This methodical way of doing things 

made sure that everything was stored in an organized way and 

could be found easily later on in the project. The system 

smoothly switched to real-time webcam image recording when 

data gathering for a hand sign lesson began. There are 26 classes 

in the dataset that stand for the letters of the ASL alphabet. There 

are 2,600 photos in all, with 100 pictures in each class. The JPG 

photos are 640x340 pixels and have 96 dots per inch and 24 bits 

of bit depth. We took pictures of four people and hand signs in 

different lighting situations to make sure the dataset was varied. 

We also looked at Indian skin tones to make sure our dataset had 

a wide spectrum of differences. Adding more picture data gives 

us 5200 photos to help the model work better and generalize. 

This technique includes flipping, rotating, and changing the size 

of photos. Figure 1 shows different users making hand signs for 

A, B, C, D, E, F, and Z. This strategy got the user to be flexible, 

occluded, and in a good posture. Different people encode ASL 

signals in different ways. A live video camera records these so 

that they can capture moving and continuous hand actions in 

diverse lighting conditions. 

3.2 Feature Extraction  
The Media Pipe's hand identification and feature extraction 

approach is better than CNN, PCA, and machine learning [15–

17]. The input image is analyzed to find hand landmarks. Media 

Pipe's hand tracking model leverages SSD to find single photos. 

The SSD architecture is a powerful object detection algorithm 

that looks at the input image at different scales to find hand areas 

based on the form, texture, and color of the skin.  

 

Figure 2 The 21 Key points identified [2]  

A base CNN takes feature maps from the input image at different 

scales. The SSD network predicts bounding boxes with different 

aspect ratios and sizes and hand presence confidence scores for 

each site in these feature maps. Non-maximum suppression gets 

rid of predicted bounding boxes that have low confidence ratings 

or a lot of overlap with boxes that score higher, leaving only the 

boxes that are most likely to contain hands. The module detects 

hand landmarks once it finds hand areas. There are 21 markers 

in Figure 2. The module gets 42 coordinate values for each input 

image, 21 for the x-axis and 21 for the y-axis. These values 

include important hand features including the fingertips, 

knuckles, palm center, and wrist. Landmark localization uses 

CNN layers and regression algorithms. Convolutional layers 

process the input image by calculating dot products between the 

filter weights and the input values and creating feature maps. 

Pooling layers take data from neighboring places and combine 

it to make the spatial dimensions smaller. This protects feature 

map sampling from tiny translations and distortions. Fully 

connected layers use complicated non-linear transformations 

and flatten final feature maps to guess where landmarks are. So, 

the hand landmarks object has the normalized x and y 

coordinates for each landmark. The data preparation function 

goes through all the recognized hands and landmarks to get their 

normalized x and y coordinates. To keep all values between 0 

and 1, the x and y coordinates are kept in separate arrays and 

normalized by taking away the lowest value. The collection has 

pictures of hands of different sizes and angles, therefore this 

normalization is necessary. The data aux array has normalized 

single-hand feature coordinates. 

Data serialization adds features and labels that have been 

extracted to data and label lists. After processing all of the 

photographs, the pickle module turns the data and labels lists 

into a file called test. pickle. The x and y coordinates of a hand 

landmark for one hand instance are shown by each pair of 

consecutive elements in the data aux list. If data aux has [x1, y1, 

x2, y2,..., x21, y21], the first two items (x1, y1) are the 

coordinates of the first landmark, the second two (x2, y2) are the 

coordinates of the second landmark, and so on for 21 landmarks. 

The data. pickle file has a dictionary with two keys: "data" and 

"labels." The "data" key points to a list of data aux lists that show 

the features of a single hand instance, while the "labels" key 

points to a list of class names for each hand sign. Pickle files are 

used to train machine learning models to process, analyze, and 

recognize hand signs. Table 1 shows the 21 important points 

from Sign—B, C, E, F, and Z. 
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Table 1 21 Key point features extracted from Sign – B, C, E, F & Z in form of X and Y Coordinates 

X B C E F Z Y B C E F Z 

x_0 
0.0411 0.0000 0.0478 0.1296 0.2060 

y_0 
0.1681 0.0151 0.0000 0.1558 0.1348 

x_1 
0.6074 0.3361 0.3641 0.5792 0.3283 

y_1 
0.1020 0.1609 0.0832 0.1691 0.0691 

x_2 
0.1124 0.0859 0.1071 0.1928 0.2142 

y_2 
0.0757 0.0000 0.0711 0.0729 0.1905 

x_3 
0.5641 0.2736 0.3334 0.5354 0.2891 

y_3 
0.1036 0.2097 0.0850 0.1737 0.0920 

x_4 
0.1531 0.1294 0.1561 0.2526 0.1772 

y_4 
0.0000 0.0143 0.1373 0.0000 0.2252 

x_5 
0.4320 0.2201 0.2457 0.4700 0.2371 

y_5 
0.0454 0.0398 0.0390 0.1033 0.1002 

x_6 
0.1208 0.1683 0.1490 0.2980 0.1230 

y_6 
0.3111 0.1243 0.1236 0.2948 0.2044 

x_7 
0.3216 0.2031 0.1800 0.4177 0.2143 

y_7 
0.0499 0.0937 0.0350 0.0928 0.0537 

x_8 
0.0567 0.2155 0.0972 0.2900 0.0716 

y_8 
0.1840 0.0330 0.0167 0.1749 0.1869 

x_9 
0.2929 0.1762 0.1716 0.3693 0.2081 

y_9 
0.0605 0.1526 0.0455 0.0909 0.0664 

x_10 
0.1339 0.0546 0.1246 0.1930 0.1457 

y_10 
0.0991 0.0136 0.0786 0.0985 0.2372 

x_11 
0.3211 0.1008 0.1267 0.3107 0.1258 

y_11 
0.0644 0.1974 0.0521 0.0917 0.0937 

x_12 
0.1391 0.1010 0.1469 0.2424 0.0807 

y_12 
0.0308 0.0112 0.1431 0.0286 0.2620 

x_13 
0.1860 0.0287 0.0187 0.2438 0.0628 

y_13 
0.0000 0.0473 0.0000 0.0609 0.0887 

x_14 
0.1378 0.1463 0.1380 0.2664 0.0360 

y_14 
0.3349 0.1540 0.1402 0.3334 0.2370 

x_15 
0.1018 0.0031 0.0674 0.2913 0.0293 

y_15 
0.0050 0.0863 0.0023 0.0297 0.0513 

x_16 
0.1331 0.1877 0.1226 0.2716 0.0000 

y_16 
0.2347 0.0754 0.0628 0.2460 0.2320 

x_17 
0.0304 0.0012 0.1309 0.3450 0.0000 

y_17 
0.0126 0.1227 0.0138 0.0118 0.0629 

x_18 
0.0871 0.0438 0.0789 0.1480 0.1211 

y_18 
0.1635 0.0338 0.0944 0.1867 0.2618 

x_19 
0.3035 0.1057 0.1182 0.2855 0.1639 

y_19 
0.0175 0.1533 0.0203 0.0000 0.0900 

x_20 
0.0962 0.1008 0.0824 0.1582 0.0640 

y_20 
0.1000 0.0072 0.1425 0.1303 0.2779 

3.3 Design of Random Forest Classifier 
The Random Forest Classifier works by creating multiple 

decision trees from randomly selected subsets of the training 

data. For each decision tree it randomly selects a subset of 

features from the total features when growing the tree [18-19]. 

Each decision tree grows to its maximum depth without any 

pruning. To make a prediction for a new data instance the 

Random Forest passes the instance to each of the decision trees. 

The key advantages of Random Forest Classifiers include high 

accuracy due to combining multiple decision trees robustness to 

noise and outliers, ability to handle high dimensional data and 

relative simplicity compared to other ensemble methods [12, 

13]. Additionally, Random Forests provide feature important 

estimates which can help identify the most relevant features in a 

dataset. The Random Forest works best on selecting the below 

model parameters -  

Splitting Criterion: Decision trees split nodes based on 

impurity measures. `Gini' is one of the criteria used to measure 

node impurity. For this model, the splitting criterion has been set 

to `Gini'. 

Maximum Depth: This parameter controls the maximum depth 

of the decision trees. For this model, the max depth parameter 

has been set to “none”, which allows the trees to expand until all 

leaves are pure or contain the minimum number of samples 

specified by min_samples_split. 

Maximum Features: This parameter determines the number of 

features to consider when looking for the best split at each node. 

For the model proposed in the paper, the max_features 

parameter has been set to ̀ sqrt', which means that the square root 

of the total number of features is considered. 

Minimum Leaf Nodes: This parameter specifies the minimum 

number of leaf nodes that must be present in each decision tree. 

For the proposed model, we set the minimum leaf nodes to 1 

meaning that each decision tree in the Random Forest must have 

at least one leaf node. 

Max Leaf Nodes: This parameter specifies the maximum 

number of leaf nodes that can be created in each decision tree. 

Setting this parameter can help control the size and complexity 

of the individual trees in the Random Forest ensemble. We set 

Max Leaf Nodes to 2, the ensures each decision tree in the 

Random Forest can have a maximum of 2 leaf nodes. 

Number of Estimators: This parameter defines the number of 

decision trees in the Random Forest ensemble. For this model, 

we set it to 100, which means the Random Forest ensemble 

consists of 100 decision trees. 

For other parameters their default values are used, like 

bootstrapping “True” and class weights “balanced”, to promote 

model diversity and reduces biases towards dominant classes. 

These settings enhance robustness and generalization by 

incorporating randomness in tree construction and adjusting 

class weights based on frequency. The Random Forest classifier 

operates using an ensemble learning technique called Bagging 

which is combination of Bootstrap and Aggregating. The 

process begins with Bootstrap sampling where multiple decision 

trees are trained on different bootstrap samples of the training 

data. In bootstrap - sampling data points are randomly selected 

with replacement resulting in some points appearing multiple 

times while others may not appear at all in a sample. This creates 

diversity within the ensemble as each tree is trained on a slightly 

different subset of the original data [18]. 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.66, December 2025 

45 

Feature selection or feature bagging is another crucial step 

where a random subset of features from the input dataset is 

selected for each decision tree. This reduces correlation between 

trees and helps prevent overfitting. The number of features 

considered at each split point is controlled by the max_features 

parameter, which can be set to “sqrt”, “log2” or a specific integer 

value. In the tree construction phase each decision tree is built 

using a bootstrap sample. At each node the algorithm searches 

for the best split among the subset of features determined by 

max_features. The quality of the split is evaluated using criteria 

such as Gini impurity or entropy. Gini impurity measures the 

probability of incorrectly classifying a randomly chosen element 

if labeled according to the class distribution in the set with lower 

values indicating more homogeneous sets. The formula for Gini 

impurity represented as I_g for a set of data with K classes as 

shown in equation (1) 

                        Ig = 1 - ∑ 𝑃𝑖
 2   𝐾

𝑖=1                                       (1)                                      

𝑃𝑖  is the probability of randomly selecting an element of class i 

from the set. The sum is taken over all K classes. This formula 

calculates the Gini impurity by summing the squared 

probabilities of each class and subtracting the result from 1. A 

lower Gini impurity indicates a more homogeneous set of 

samples with respect to the target variable. Entropy is a measure 

of impurity or disorder in a set of data points. It quantifies the 

uncertainty associated with a given set of data points. The 

formula for Entropy Ih for a set of data with K classes is given 

by below Equation (2) 

𝐼ℎ =  − ∑ 𝑃𝑖 log2(𝑃𝑖)𝐾
𝑖=1                              (2)                                                       

 Minimizing the entropy of the resulting subsets is equivalently 

to maximizing the information gain. Gini impurity is generally 

faster to compute than entropy because it does not involve 

logarithmic calculations. This makes the tree-building process 

quicker. Hence Gini is preferred over entropy. Throughout the 

prediction phase each tree in the forest independently predicts 

the class of the input sample. For classification tasks the result 

(most frequent class) of the predictions from all the trees is taken 

as the final prediction. This process is called aggregation. In 

other words the class that receives the most votes among all the 

trees is selected as the predicted class. 

4. HAND SIGN RECOGNITION SYSTEM  
A comprehensive workflow for the proposed Hand Sign 

Recognition System is shown in the Figure 3. The workflow 

begins with importing the necessary dependencies, such as 

Media Pipe (version 0.9.0.1), Scikit-learn (version 1.2.0), 

OpenCV (version 4.7.0.68), and Pandas (version 2.0.3). These 

libraries provide functionalities for hand tracking, machine 

learning, image processing, and data manipulation, respectively. 

The next step is capturing a custom dataset, which is a crucial 

component for training the hand gesture recognition model. The 

dataset consists of 26 classes, one for each alphabet of the 

American Sign Language (ASL). Pre-processing steps are 

applied to the extracted features, including converting the image 

color space from BGR to RGB and normalizing the feature 

values. Feature extraction is a critical step in the workflow, 

where relevant information is extracted from the input images to 

represent the hand gestures effectively. The Media Pipe Library 

employed include transfer learning models, hand models, and 

various backend models like SSD, YOLO, and CNN. These 

models facilitate hand detection, landmark localization, and 

drawing utilities. The static images are processed to extract 21 

key points of the hand, and a total of 42 features are derived from 

each hand, representing the x and y coordinates of the 

landmarks. Post-processing operations involve data splitting, 

where the dataset is divided into training and testing subsets, and 

data serialization, where the features and corresponding labels 

are stored in a suitable format for further processing.  

 
Figure 3 Methodology for Hand Sign Recognition System  

The next stage is training a classifier using the extracted features 

and labels. The Random Forest Classifier with an Ensemble 

approach is chosen. Specific hyper parameters are provided, 

including the train test split ratio (80:20), the impurity measures, 

the number of decision trees, the maximum samples for splitting 

nodes and max samples leaf, bootstrapping, and the random state 

are chosen. Model evaluation is an essential step to assess the 

performance of the trained classifier. Metrics such as accuracy, 

precision, recall, and F1-score are computed, and a detailed 

classification report is generated. After training and evaluation, 

the workflow proceeds to testing, where the trained model is 

loaded and initialized using the Media Pipe hands module. 

During testing, the model predicts the hand gestures based on 

the input images, and the predictions are visualized, allowing for 

the display of unknown gestures and their corresponding 

probabilities.  

5. EVALUATION OF MODEL 
The evaluation of the proposed system relies on two 

fundamental components: the Stratified K-Fold function and the 

GridSearchCV function, both pivotal for robust model 

assessment and hyper parameter tuning. Stratified K-Fold is a 

cross-validation technique widely used in machine learning to 

ensure fair and unbiased model evaluation, especially with 

imbalanced datasets. It divides the dataset into `k' folds while 

maintaining the original class distribution across each fold. This 

ensures that each fold has a proportional representation of the 

different classes, minimizing biased evaluations. The value for 

k=5 the dataset is split into 5 folds, each having a class 

distribution similar to the original dataset. 

The process begins with shuffling the dataset to eliminate any 

potential ordering bias that might exist. Once shuffled, the data 

is partitioned into `k' approximately equal-sized folds. Unlike 

standard k-fold cross-validation, where data is partitioned 

randomly into folds without considering class distribution, 

Stratified K-Fold ensures that each fold contains a balanced 

representation of classes. During each iteration of the cross-

validation process, one of the folds is held out as the validation 

set, while the remaining folds are used for training the model. 

This process is repeated ̀ k' times, with each fold being used once 

as a validation set.  By rotating the roles of training and 

validation sets across folds, Stratified K Fold trains and 

evaluates the model multiple times on different data subsets. Its 

key advantage is providing reliable performance estimates 

across various class distributions, crucial for assessing the 
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model's generalization to unseen data, especially with 

imbalanced classes. Maintaining a representative mix of classes 

in each fold helps detect issues like overfitting or under fitting. 

GridSearchCV is a technique used for hyper parameter tuning in 

machine learning, essential for optimizing model performance 

by systematically exploring a predefined grid of hyper 

parameters. The process involves exhaustively searching 

through all possible combinations of hyper parameters and 

evaluating each combination using cross-validation to identify 

the set that produces the best results. Firstly a grid of hyper 

parameters and their corresponding values given in Table 2, are 

defined. For instance, in a decision tree classifier, parameters 

like maximum depth, minimum samples split, and criterion are 

included in the grid. GridSearchCV then performs cross-

validation by splitting the training data into `k' folds. It trains the 

model on `k-1' folds and evaluates its performance on the 

remaining fold, repeating this process `k' times. During each 

iteration, GridSearchCV tests every combination of hyper-

parameters from the defined grid. The model is trained and 

evaluated using each combination, and the performance metric 

specified (such as accuracy, precision, or F1-score) is computed. 

This comprehensive evaluation allows GridSearchCV to 

identify the hyper-parameter combination that yields the best 

performance across all folds. 

Combination 4 in Table 3 represents the best combination, 

showcasing a strategic approach to constructing a decision tree 

ensemble. Notably, it sets the maximum depth to `None' 

enabling trees to dynamically adjust their complexity, guarding 

against overfitting without arbitrary depth limitations. 

Additionally it establishes a minimum leaf size of 1 fostering 

refined decision boundaries while maintaining model 

interpretability. This combination strikes a balance between 

complexity and accuracy, making it the optimal choice for 

model performance and generalization. Combination 4 

strategically selects the ‘log2’ criterion for feature selection, 

balancing randomness and model performance. This criterion 

allows the algorithm to explore an optimal number of features 

without overwhelming computational resources or risking 

overfitting. Employing the `gini' criterion prioritizes splits that 

minimize impurity, enhancing the model's generalization 

capabilities. Furthermore, Combination 4 utilizes 200 

estimators, leveraging the power of ensemble learning to 

mitigate biases and errors through averaging. This approach 

bolsters robustness and generalization without imposing 

excessive computational burdens. 

Table 2 Hyper Parameters for Random Forest Classifier 

Hyper parameters Values 

n_estimators 50, 100, 200 

Max_depth None,10,20 

Min_samples_split 2,5,10 

Min_samples_leaf 1,2,4 

Max_features Sqrt,log2 

Criterion  Gini, Entropy, Log loss 

 

The method was effectively implemented to extract 21 key 

points from hand images using Media Pipe's hand module which 

utilizes machine learning techniques to accurately identify and 

extract key points representing hand landmarks in each image. 

These extracted key points provide effective features for 

representing sign language gestures. The dataset consists of 26 

classes, each representing a different sign language gesture, with 

200 images per class, resulting in a total of 5,200 images. For 

each image, the Media Pipe hand module extracts 21 key points, 

with each key point having both x and y coordinates, resulting 

in 42 features per image. Consequently, for the entire dataset, 

the total number of features extracted is 2, 18,400 (5,200 images 

multiplied by 42 features per image). This detailed 

representation of hand landmarks, comprising 21 x-coordinates 

and 21 y-coordinates for each image, enables precise and 

reliable recognition of sign language gestures.  

Table 3 GridSearchCV Result 

Parameters Combina

tion 1 

Combination 

2 

Combinatio

n 3 

Combinatio

n  4 

n_estimators 100 200 50 200 

Max_depth 10 20 None None 

Max Leaf 5 10 100 2 

Min leaf 2 4 1 1 

Max_feature

s 

sqrt Log2 sqrt Log2 

Criterion Entropy Gini Entropy Gini 

 

5.1 Performance Metrics 
Accuracy is the ratio of correctly predicted instances to the total 

instances in the dataset as shown with Equation 3. It is a measure 

of the overall correctness of the model across all classes. Our 

model attained an accuracy of 95.67% with 200 estimators, 

demonstrating its high performance in hand sign recognition. 

Precision is the ratio of correctly predicted positive observations 

to the total predicted positive observations as shown with 

Equation 4. It measures the proportion of correctly identified 

positive cases among all cases that were predicted as positive. 

Our model attained a Precision of 95.83\% with 200 estimators. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correct Preditions 

Total Number of Predictions 
                     (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
True Positives

True Positives + False Positives 
      (4) 

Recall also known as Sensitivity or true positive rate, is the ratio 

of correctly predicted positive observations to all actual 

positives in the dataset as given in Equation 5. With 200 

estimators, our model achieved an impressive accuracy of 

95.67%. The F1 score is the harmonic mean of precision and 

recall as shown with Equation 6. It provides a balance between 

precision and recall and is often used as a single metric for 

evaluating classification models, especially when there is an 

uneven class distribution proposed technique attained a score of 

95.74%. 

Recall =  
True Positives

True Positives + False Negatives 
        (5) 

F1 Score = 2 × 
Precision × Recall

Precision + Recall
                         (6) 

Table 4 presents the overall results of a proposed technique 

using different numbers of estimators 50, 100 and 200 in a 

machine learning model. As the number of estimators increases 

from 50 to 200, we observe an increasing trend across various 

evaluation metrics. This indicates a balanced improvement in 

the model's ability to correctly classify positive and negative 

instances. 
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A confusion matrix is a table that is often used to describe the 

performance of a classification model on a set of test data for 

which the true values are known. It allows visualization of the 

performance of an algorithm and helps in understanding how 

well the model is performing in terms of classifying different 

categories. In the presented confusion matrices, each 

corresponding to varying numbers of n-estimators (200, 100 and 

50) the performance of the classification models is evaluated 

based on their ability to correctly classify samples.  

The x-axis and y-axis of the matrix represent the predicted labels 

and true labels respectively. Each row in the matrix corresponds 

to an actual label while each column represents a predicted label. 

The diagonal elements (from the top-left to the bottom-right) of 

the matrix represent the correctly classified samples or true 

samples where the predicted label matches the true label. These 

values are typically highlighted or colored differently to make 

them visually distinct. The off-diagonal

Table 4 Performance Metrics for the proposed Hand Sign Recognition System 

Estimators True Samples  False 

Samples  

Accuracy Precision Recall F1 

Score 

50 3979 181 0.9404 0.9421 0.9404 0.9387 

100 3958 202 0.9483 0.9497 0.9483 0.9489 

200 3944 216 0.9767 0.9583 0.9567 0.9574 

 
Figure 4 Confusion Matrix for Proposed Hand Sign 

Recognition System 

elements represent the misclassified samples or false samples. 

The values in these cells indicate the number of instances that 

were incorrectly classified as belonging to a different class. The 

confusion matrix for 200 n-estimators is shown in Figure 4.  

5.2 Comparative Analysis across Different 

Lighting Conditions 
In order to make the proposed model robust, we tested it to 

operate in different light conditions and with different 

individuals. Three different test scenarios aimed at assessing the 

detection probability across different lighting conditions like 

Light, Dim, Dark are identified. The quality of lighting 

conditions were evaluated using different image quality 

descriptors like Luminance, Brightness, Contrast, Noise level.  

Brightness represents the pixel intensity in range of 0 to 255 for 

8-bit color images. The brightness is calculated as the mean 

value of all pixels in the image. Contrast measured as the 

standard deviation of pixel intensity values. The contrast is 

calculated by first computing a histogram of grayscale pixel 

values using, and then taking the standard deviation of the 

histogram. Theoretically, its range spans from 0 to 

approximately 73.74 for 8-bit images, as the standard deviation 

can extend to the value of a uniform distribution ranging from 0 

to 255. Contrast reflects the extent to which pixel values deviate 

from the mean pixel value within the grayscale histogram. 

Higher contrast values indicate more pronounced deviations and 

greater image contrast. The noise level is estimated by 

calculating the standard deviation of the difference between the 

grayscale image and a blurred version of the image using a 5x5 

Gaussian kernel. This metric estimates the variability in pixel 

values attributed to noise. The brightness, contrast, and noise 

level considered for 3 cases are tabulated in Table 5.  

Case 1  

The hand signs are detected in daytime conditions with 

sufficient luminance or brightness levels showing a person 

displaying three different hand signs labeled as B, C and F 

illustrated in Figure 5. The luminance or brightness values range 

from 159.29 to 167.54, indicating good overall brightness. The 

contrast values show a wide variation from 2020.20 to 402.21 

and 464.55. This variation in contrast could indicate differences 

in the lighting conditions or scene compositions within this case. 

The noise levels ranging from 3.27 to 4.46, which is acceptable 

because it can be compensated with high luminance and 

brightness. Overall, hand Signs in Case 1 appear to have very 

high luminance and brightness compared to other cases, but the 

wide variation in contrast values and slightly elevated noise 

levels suggest potential challenges in achieving consistent image 

quality across this case. Also indicated is a probability value 

enclosed in parentheses which represents the model's confidence 

in classifying that particular hand sign. Results for hand sign B, 

C and F are 0.59, 0.73 and 0.73 respectively.  

 

Case 2 

The dim lighting conditions are considered to acquire the images 

in Case 2 illustrated in Figure 6. The luminance values range 

from 144.08 to 146.05, and the brightness values range from 

143.57 to 145.70, which are slightly lower than Case 1 but still 

within an acceptable range. However, the contrast values are 

exceptionally high, ranging from 1136.97 to 1201.20. Such high 

contrast values suggest the presence of very distinct bright and 

dark regions within the images, which could potentially lead to 

loss of detail in the adequate brightness or darkness areas. The 

noise levels are relatively low, ranging from 3.56 to 3.58, 

indicating that these images have minimal noise or unwanted 

artifacts. However an important factor to note is that this 

person's dataset was not included in the training data used to 

build the model. This means that the model has not been 

explicitly trained on this individual's hand gestures or 
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appearances. Figure 5 shows results for B, C and F with 

confidence of 0.45, 0.65 and 0.63 respectively.   

Case 3 

The hand signs in Case 3 represent low-light or dark conditions. 

The luminance values range from 75.37 to 79.34, and the 

brightness values range from 75.59 to 79.40, which are 

significantly lower than the previous two cases, indicating 

darker overall conditions. Interestingly, the contrast values for 

this case are relatively high, ranging from 1144.59 to 1175.62, 

which could be attributed to the presence of both bright and 

condition dark regions within the low-light scenes. The noise 

levels are the lowest among the three cases, ranging from 3.00 

to 3.36, which might be due to the lower overall brightness 

levels in these images. Overall, the images in Case 3 as shown 

in Figure 7 exhibit low luminance and brightness levels, as 

expected for dark conditions. The high contrast values could 

pose challenges in preserving detail in both bright and dark 

areas, while the relatively low noise levels are a positive aspect. 

The results for B, C and F are show as 0.59, 0.48 and 0.61.  

Overall, the analysis revealed that daytime images (Case 1) had 

high brightness with variable contrast, dim lighting images 

(Case 2) had high contrast and low noise, while dark condition 

images (Case 3) exhibited low brightness but relatively high 

contrast and low noise. The model's classification confidence 

varied with lighting conditions, generally decreasing in dimmer  

 

Table 5 The Lighting Conditions for 3 cases. 

 Brightness Contrast Noise Level  

Case 1 159.29 to 167.54 402.21 - 2020.20   3.27 to 4.46 

Case 2 143.57 to 145.70 1136.97 to 1201.20 3.56 to 3.58 

Case 3 75.59 to 79.40 1144.59 to 1175.62 3.00 to 3.36 

settings. Though, the confidence levels decreased with varying 

lighting conditions, the proposed system is successful in 

detecting the hand signs.  

 

Figure 5 Case 1 Hand Sign detected in Daytime Condition  

 
Figure 6 Case 2 Hand Sign detected in Moderate light  

 
Figure 7 Case 3 Hand Sign detected in Dark light condition  

6. USER INTERFACE TO CONVERT 

HAND SIGN TO TEXT AND SPEECH  
The primary objective of this paper is to build a user interface to 

enable individuals who are unable to speak or hear, to express 

themselves effectively using the proposed sign recognition 

system. The proposed model is interfaced with a webcam to 

acquire hand sign inputs from users in real-time. These are 

translated to speech and text in real-time. This innovative 

approach not only facilitates communication with others but also 

enhances accessibility and inclusivity in various social and 

professional settings [16].  

 The OpenCV library is employed for capturing frames from the 

webcam, processing these frames, and displaying them with 

overlays such as text annotations. Additionally, OpenCV 

facilitates color space conversions and basic image 

manipulations. MediaPipe library is utilized for hand landmark 

detection. This library offers pre-trained machine learning 

models to accurately locate key points on the hand in real-time, 

enabling precise tracking of hand gestures and movements. 

Typically, this involves training a model on a dataset of hand 

gesture images annotated with their corresponding labels (e.g., 

letters or words). The pyttsx3 library is utilized for text-to-

speech conversion. This library provides an interface to the 

platform-specific TTS engines installed on the system, allowing 

the script to generate spoken output from text strings. The script 

interacts with the user through keyboard commands. These 

commands check for system readiness, trigger speech synthesis, 

add spaces, deselect words and delete characters from the 

constructed word. 

The proposed user interface is demonstrated for 2 sample 

gestures as shown in the Figure 8 Sample gesture (a) and (b). 

With the implementation of key strokes like backspace key 

likely allows the user to delete the last entered character, the 

delete key enables the user to remove the entire detected text. 

The “Ready” state displayed in the images suggests the presence 

of a key or command that toggles the system's readiness to 

capture and interpret hand gestures. When set to “True” the 

application actively monitors and translates the user's hand signs 

into text. The inclusion of a key or command that triggers the 

text-to-speech functionality is designed. This would allow the 

detected text to be vocalized, providing an audible output for 

improved accessibility. 

In the Figure 8(a) the detected text based on the hand gestures 

reads “good morning today is a beautiful day". However, the 

“Ready” state is set to False indicating that the system is not 

actively capturing or interpreting hand signs at that moment. 

Figure 8(b) shows a different sentence detected as “wishing you 

a fantastic day ahead” again with the “Ready” state set to False. 
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Overall, this system integrates computer vision for hand gesture 

detection, machine learning for gesture classification, and text-

to-speech technology for spoken output. It offers a practical 

framework for real-time translation of hand signs into audible 

speech, facilitating communication for individuals with hearing 

impairments. 

 
 

(a) (b)   

Figure 8 Sample Gestures identified by the Proposed 

System 

7. COMPARISON WITH STATE-OF-

ARTS-TECHNIQUES 
Jindi Wang et. al. have built a camera-based hand gesture 

recognition model by training the model for a particular user 

only. They employed a lightweight Multilayer Perceptron 

architecture based on contrastive learning, reducing the size of 

the data needed and the training timeframes. Experimental 

results demonstrated rapid convergence and 94.25% accuracy of 

the recognition model[9]. In 2023, Alonazi et al [2] employed 

Deep Belief Nets and Convolutional Neural Networks (CNNs) 

on a custom Hand Gesture Dataset, attaining an accuracy of 

90.73%.  

 

 

 

Table 6 Comparatively Analysis with state-of-art techniques 

S.no Year Author Dataset Feature 

Extraction  

Detection 

Technique 

Accuracy  

1. 2025 Proposed Work Custom ASL & 

Gesture  Dataset 

Media Pipe  Random Forest  95.73% 

2. 2024 Jindi Wang et. al. [9] Custom Gesture 

Dataset  

Media Pipe  Multi-Layer 

Perceptron  

94.25% 

3. 2023 Mohammed Alonazi 

et. al.[1]  

Custom Hand Gesture  CNN Deep Belief 

Network and 

CNN 

90.73% 

4. 2023 Christine Dewi et. 

al. [3]  

Oxford Hand Dataset Yolo7 Yolo7 86.3% 

5. 2023  Jyotishman Bora et. 

al. [10]  

 

Assamese Sign 

Langauge  

Media Pipe  Custom 

Feedforward 

Network  

99%  

6. 2023 Chen et. al. [5] EgoHands & Tiny 

HGR datasets 

Yolo5l Yolov5l 75.6% and 

66.8% 

7. 2022 Shashidhar R [6] Indian Sign Language  CNN CNN 99% 

8. 2021 Shin et. al. [4] ASL Dataset, Massey 

Dataset and Finger 

Spelling A dataset 

Media-pipe API  SVM and GBM  87.60%, 

87.60%, 98.45% 

9. 2022 V Radhika[22] ASL Dataset  SVM, KNN, 

CNN 

97%, 95%, 

98.49% 

The field of sign language recognition has seen significant 

advancements in recent years, with the application of image 

processing and machine learning techniques. Based on the 

results obtained from the implementation of various n-

estimators in the random forest algorithm for hand sign 

recognition, it is evident that increasing the number of 

estimators generally improves the accuracy of classification. 

The highest accuracy of 95.67% was achieved with 200 n-

estimators, showcasing the robustness of the model in 

distinguishing between different hand signs. However, it's 

important to note that while higher n-estimators may lead to 

improved accuracy, there might be a trade-off with 

computational resources and efficiency. Furthermore, the 

analysis of confusion matrices revealed consistent trends across 

different numbers of n-estimators, with the majority of samples 

correctly classified as true positives. This indicates the 

effectiveness of the random forest algorithm in accurately 

recognizing hand signs. 

Jyotishman Bora et. al. implemented a Assamese Sign 

recognition model by using Media Pipe hand tracking and 

detection API as feature extractor and a custom made Multi-
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Layer Perceptron Network. They achieved an accuracy 94.25% 

[9]. Dewi et al. [3] used Yolov7 and Yolo models on the 

American Sign Language (ASL) dataset, yielding a mean 

average precision of 86.3% and recall of 79.9%. In 2021, G. 

Pala  

et al. applied Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), and Convolutional Neural Networks (CNN) 

on the American Sign Language (ASL) Dataset, achieving an 

accuracy of 98.49% for CNN, 83% for SVM, and 93% for 

KNN[26]. Chen et al. proposed YOLOv5 in 2023, achieving 

accuracies of 75.6\% and 66.8\% on EgoHands and TinyHGR 

datasets, respectively[5]. Shin et al.[13] employed Support 

Vector Machines (SVM) and Gradient Boosting Machine 

(GBM) on ASL dataset, Massey dataset, and Finger Spelling A 

dataset in 2021, achieving an average accuracy of 96% for 

SVM and 93% for GBM. In 2022, A.Pothuri et al. [19] 

proposed Random Forest techniques on the Indian Sign 

Language (ISL) dataset, achieving accuracies of 96% for ISL. 

Sangum et al. [11] used Random Forest on a Custom Hand 

Gesture Dataset in 2015, attaining an accuracy of 90% for 

160x120 resolution and 94% for 640x480 resolution. 

8. CONCLUSION  
In conclusion, the project successfully demonstrated the 

feasibility and effectiveness of using the random forest 

algorithm for hand sign recognition, laying the foundation for 

further research and development in this field. The insights 

gained from this project contribute to the advancement of 

gesture recognition technology, with potential applications in 

human-computer interaction, assistive technology, and 

accessibility solutions. 

Integration of hand sign recognition capabilities into wearable 

devices such as smart glasses or wristbands could enable hands-

free interaction and communication for individuals with 

disabilities. Additionally incorporating hand sign recognition 

into Internet of Things (IoT) devices could enable gesture-

based control of smart home appliances, entertainment systems 

and other connected devices [22, 23]. While there is great 

potential for hand sign recognition systems in assistive 

technology applications, including communication aids for 

individuals with disabilities the accessibility and affordability 

of such technologies may limit their widespread adoption. 

Machine learning-powered educational applications for sign 

language learning and training hold promise creating 

immersive virtual reality (VR) or augmented reality (AR) 

environments with realistic hand sign recognition capabilities 

may still be challenging. Developing adaptive learning 

platforms that cater to individual learning styles and abilities 

also requires sophisticated machine learning algorithms and 

user interface design. Although real-time hand sign recognition 

systems have potential applications in healthcare and 

rehabilitation integrating these systems into clinical practice 

may face regulatory hurdles and require rigorous validation and 

testing. Additionally ensuring the accuracy, reliability and 

safety of machine learning algorithms in critical healthcare 

settings remains a significant challenge 

While these future scopes represent exciting opportunities for 

advancing real-time hand sign recognition systems using 

machine learning, addressing the associated challenges will 

require collaborative efforts across multiple disciplines, 

including computer science, engineering, healthcare, and social 

sciences. Continued research innovation and investment in 

these areas are essential to realizing the full potential of hand 

sign recognition technology in improving accessibility, 

communication and quality of life for individuals worldwide. 
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