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ABSTRACT

Human-Computer Interaction (HCI) has emerged as a critical
component of navigating and connecting with the digital world
as technology has advanced. Hand gesture recognition has
received substantial interest as a natural and intuitive
communication interface. This paper describes the design and
implementation of a real-time hand gesture detection system for
supporting HCI, with a special focus on assisting the hearing and
speech challenged. The proposed system captures hand gestures
using a real-time video camera and creates a bespoke dataset that
is robust by accounting for user, posture, and occlusion
variability. A Convolutional Neural Network (CNN) is used to
extract features, with 21 important features identified for each
hand gesture. These features are then classified using a Random
Forest method, which achieves an overall accuracy of 94.58%
over several instances. Recognized gestures are translated into
text and speech, allowing for efficient and convenient
communication. The method allows you to combine various
gestures to make whole sentences, which are often used in
regular interactions. Performance assessment under different
lighting circumstances reveals a PSNR of 3 to 4.27 dB,
suggesting robustness to illumination fluctuations. A graphical
user interface (GUI) with a feedback system allows for seamless
two-way interaction, which improves usability and accessibility.
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1. INTRODUCTION

In today's world, the interaction between humans and computers
has become indispensable due to continuous technological
advancements. This interaction, referred to as Human Computer
Interaction (HCI) encompasses various methods facilitating
communication with and control of computers. From utilizing a
mouse to tapping on a touchscreen, HCI plays a vital role in
navigating the digital realm. Hand gesture recognition has
emerged as a focal point of interest among researchers within
the broader scope of HCI. It provides a natural and intuitive
means of interacting with computers, free from the complexities
associated with traditional input devices. Unlike devices such as
joysticks or remote controls, hand gestures feel instinctive and
user-friendly [1].
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Among the diverse aspects of HCI, hand gesture recognition has
emerged as a prominent area of interest for researchers. It offers
a natural and intuitive means of interacting with computers,
devoid of the complexities associated with traditional input
devices. Unlike requiring training for devices like joysticks or
remote controls, using hand gestures feels instinctive and user-
friendly. Its applications span across numerous domains, from
controlling home appliances to guiding robots and aiding in
medical procedures [2]. However, despite its potential benefits,
hand gesture recognition presents challenges, particularly in
ensuring accurate recognition across varying environmental
conditions. In critical fields such as healthcare, where precision
is paramount, errors in gesture recognition can have serious
consequences. Researchers are actively striving to develop
robust systems that can reliably interpret gestures under diverse
circumstances, but achieving this remains a formidable task.
Leveraging advanced techniques in image processing and
machine learning, these systems interpret sign language
gestures, enabling participation across education, healthcare,
and workplaces, fostering inclusivity and understanding.
Furthermore, these systems reduce reliance on costly human
interpreters, offering a scalable and cost-effective solution for
interpretation services. By ensuring wider accessibility, they
contribute to a more inclusive society, minimizing
communication barriers and enhancing participation for deaf
individuals. Ultimately, the goal is to enhance communication,
accessibility, and inclusion, empowering deaf individuals to lead
fulfilling lives and engage fully in societal activities.

The process of hand gesture recognition involves following
stages - gesture capture, hand position identification, feature
extraction, and gesture classification. Use of technologies like
cameras and sensors, these stages enable the detection and
analysis of both simple and complex gestures. In our paper, we
aim to advance the field of hand gesture recognition by
proposing innovative solutions to address existing challenges.
Additionally, our efforts aim to streamline communication
between humans and computers, facilitating smoother
interactions. Additionally, we seek to contribute to a future
where human-computer interaction is more intuitive and
efficient. By bridging the gap between humans and machines,
we define the below objectives create a more interconnected and
accessible digital world —
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e Create a comprehensive dataset of hand signs by converting
video sequences into frames.

o Identify a suitable feature extraction technique to extract the
significant key points from the hand images that represent the
hand sign effectively.

o Identify and train the machine learning model with the goal of
optimizing the model's accuracy.

e Develop a trained model for text-to-speech application that
can interpret written text and generate corresponding spoken
output.

2. RELATED WORK

Hand Gesture Recognition (HGR) systems have been to make
human-computer interaction more natural, efficient, and real,
especially for persons who only use hand gestures to talk. Even
though computer vision has come a long way, it is still quite hard
to automatically and accurately recognize hand motions.
Mohammed Alonazi and others looked at changes in computer
vision and sensor technology and gave a detailed look at HGR
methods and data modalities from 2014 to 2024. They expressed
the necessity for examination utilizing diverse modalities,
including RGB, Skeleton, Depth, Audio, EMG, EEG, and
Multimodal approaches. They looked at more than 200 research
from reliable databases [1] that focused on collecting data,
establishing data, and showing gestures. Miah et al. put out a
multi-branch attention-based graph and a universal deep-
learning model to address generalization issues through the
detection of hand movements by extracting all potential
skeleton-based characteristics [2]. They proposed a general
neural network channel and two graph-based neural network
channels within a multi-branch architecture. The temporal-
spatial, spatial-temporal, and general characteristics are put
together and delivered to the fully connected layer to make the
final feature vector. To keep track of the node's order and
minimize the system's computing cost, they added position
embedding and mask operation to both the spatial and temporal
attention modules. The MSRA, DHG, and SHREC'17
benchmark datasets were used to test this model, and its
accuracy was 94.12%, 92%, and 97.01%, respectively.

Christine Dewi et al. essentially investigated CNN-based object
identification methods utilizing the Yolov7 and Yolov7x models
with 100 and 200 epochs on the Oxford Hand Dataset.
Performance metrics include GFLOPS, mAP, and detection
time. This study found that Yolov7x with 200 training epochs is
the most reliable method. In training, it had 84.7% precision,
79.9% recall, and 86.1% mAP. Moreover, Yolov7x achieved the
highest average mAP score of 86.3% during testing. While
performance improves with epoch, processing time also
increases dramatically. They recommended federated learning
and hand detection to improve HGR systems [3]. Jungpil Shin
employed the Media pipe method to identify American sign
characters by looking at webcam photos of hand joints. The
calculated joint coordinates produced two classification
features: vector-3D axis angles and distances between joint
points. SVM and LGBM classifiers categorized characters. The
ASL Alphabet, Massey, and Finger spelling A character files
were used to recognize each character. The Massey dataset gave
a score of 99.39%, the ASL Alphabet gave a score of 87.60%,
and the Finger Spelling A gave a score of 98.45%. The automatic
American Sign Language identification architecture has done
better than earlier experiments, is cheap to run, and doesn't need
special sensors or equipment. This technique can also be
employed for aerial writing and sign language recognition [4].
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Real-world human—computer interaction hand gesture
recognition using augmented YOLOVS overcomes latency and
low accuracy with complex backdrops. R Chen et al. suggested
replacing the CSP1 x module in the YOLOvVS5 backbone
network with an efficient layer aggregation network to improve
gradient pathways. This improves network expression, learning,
and recognition. The CBAM attention mechanism filters
channel and spatial gesture features. This makes the network less
susceptible to complex backgrounds and gesture images.
Detailed backdrop gesture datasets EgoHands and TinyHGR
were used. Using 640 X 640 input photos, mAP0.5:0.95
achieved 75.6% and 66.8% identification accuracy and 64 FPS
recognition speed. The suggested method is more accurate and
resilient than YOLOvVSl, YOLOv7, and other algorithms,
enabling fast and accurate movement recognition against
complex backdrops [5]. Shashidhar et al. examined Indian Sign
Language (ISL) for 24 English alphabets excluding J and Z.
Recognition of 4972 static hand signs is achieved. A deep
learning-based application uses the "Google text to speech" API
to translate Indian Sign Language into text, allowing signers and
non-signers to communicate. They used Kaggle's public dataset.
The customized convolutional neural network solution was 99%
accurate [6].

In the past, it was only possible to manually add unique hand
gestures when the application was very limited. Jeong-Seop Han
and others created a versatile and efficient graphical user
interface that lets users specify their own hand movements.
Their method customizes hand movements by creating a
camera-based model that recognizes hand gestures depending on
user data. They used a Multilayer Perceptron architecture based
on contrastive learning to cut down on the amount of data and
training time needed compared to older recognition models that
need huge training datasets. The experimental findings indicate
that the recognition model converges rapidly and precisely [7].
A user study is performed with initial user feedback on the
implemented system.

The recommended procedures in the pertinent articles have a
variety of limitations. Apart from their weak explainability and
generality, none of the papers have offered any real-time
analysis. Furthermore, the majority of the solutions merely
address ASL detection; they don't offer real-time feedback. The
system's accuracy can be increased with real-time feedback.
Furthermore, there is no consideration paid to user, position, or
occlusion fluctuation. Furthermore, the focus on generating
sentences by integrating distinct signs has not yet been
examined. The majority of the gestures are static and obtained
from publically accessible web sources; real-time dynamic
continuous gestures and their generalization to diverse settings
or users are not covered.
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3. DATASET AND PREPROCESSING
3.1 Dataset Collection
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Figure 1 Hand Signs for A, B, C, D, E, F and Z obtained
from 6 different individuals

There are Indian, Korean, and Indonesian sign languages, but
American Sign Language is the most used and standardized.
There are more e-resources for ASL than for other sign
languages. So, we make an HGI system that uses ASL hand
signs. Setting up a directory structure to store photos is the first
step in collecting a dataset. This methodical way of doing things
made sure that everything was stored in an organized way and
could be found easily later on in the project. The system
smoothly switched to real-time webcam image recording when
data gathering for a hand sign lesson began. There are 26 classes
in the dataset that stand for the letters of the ASL alphabet. There
are 2,600 photos in all, with 100 pictures in each class. The JPG
photos are 640x340 pixels and have 96 dots per inch and 24 bits
of bit depth. We took pictures of four people and hand signs in
different lighting situations to make sure the dataset was varied.
We also looked at Indian skin tones to make sure our dataset had
a wide spectrum of differences. Adding more picture data gives
us 5200 photos to help the model work better and generalize.
This technique includes flipping, rotating, and changing the size
of photos. Figure 1 shows different users making hand signs for
A, B,C, D, E, F, and Z. This strategy got the user to be flexible,
occluded, and in a good posture. Different people encode ASL
signals in different ways. A live video camera records these so
that they can capture moving and continuous hand actions in
diverse lighting conditions.

3.2 Feature Extraction

The Media Pipe's hand identification and feature extraction
approach is better than CNN, PCA, and machine learning [15—
17]. The input image is analyzed to find hand landmarks. Media
Pipe's hand tracking model leverages SSD to find single photos.
The SSD architecture is a powerful object detection algorithm
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that looks at the input image at different scales to find hand areas
based on the form, texture, and color of the skin.
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Figure 2 The 21 Key points identified [2]

A base CNN takes feature maps from the input image at different
scales. The SSD network predicts bounding boxes with different
aspect ratios and sizes and hand presence confidence scores for
cach site in these feature maps. Non-maximum suppression gets
rid of predicted bounding boxes that have low confidence ratings
or a lot of overlap with boxes that score higher, leaving only the
boxes that are most likely to contain hands. The module detects
hand landmarks once it finds hand areas. There are 21 markers
in Figure 2. The module gets 42 coordinate values for each input
image, 21 for the x-axis and 21 for the y-axis. These values
include important hand features including the fingertips,
knuckles, palm center, and wrist. Landmark localization uses
CNN layers and regression algorithms. Convolutional layers
process the input image by calculating dot products between the
filter weights and the input values and creating feature maps.
Pooling layers take data from neighboring places and combine
it to make the spatial dimensions smaller. This protects feature
map sampling from tiny translations and distortions. Fully
connected layers use complicated non-linear transformations
and flatten final feature maps to guess where landmarks are. So,
the hand landmarks object has the normalized x and y
coordinates for each landmark. The data preparation function
goes through all the recognized hands and landmarks to get their
normalized x and y coordinates. To keep all values between 0
and 1, the x and y coordinates are kept in separate arrays and
normalized by taking away the lowest value. The collection has
pictures of hands of different sizes and angles, therefore this
normalization is necessary. The data aux array has normalized
single-hand feature coordinates.
Data serialization adds features and labels that have been
extracted to data and label lists. After processing all of the
photographs, the pickle module turns the data and labels lists
into a file called test. pickle. The x and y coordinates of a hand
landmark for one hand instance are shown by each pair of
consecutive elements in the data aux list. If data aux has [x1, y1,
X2, y2,..., x21, y21], the first two items (x1, yl) are the
coordinates of the first landmark, the second two (x2, y2) are the
coordinates of the second landmark, and so on for 21 landmarks.
The data. pickle file has a dictionary with two keys: "data" and
"labels." The "data" key points to a list of data aux lists that show
the features of a single hand instance, while the "labels" key
points to a list of class names for each hand sign. Pickle files are
used to train machine learning models to process, analyze, and
recognize hand signs. Table 1 shows the 21 important points
from Sign—B, C, E, F, and Z.
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Table 1 21 Key point features extracted from Sign — B, C, E, F & Z in form of X and Y Coordinates

X B C E F zZ Y B C E F Z
X0 | 00411 | 00000 | 0.0478 | 0.1296 | 02060 | Y- | 0.1681 | 0.0151 | 0.0000 | 0.1558 | 0.1348
1 | 06074 | 03361 | 03641 | 05792 | 03283 | ¥-! | 0.1020 | 0.1609 | 0.0832 | 0.1691 | 0.0691
X2 | 01124 | 00859 | 01071 | 01928 | 02142 | Y- | 0.0757 | 0.0000 | 0.0711 | 0.0729 | 0.1905
X3 | 05641 | 02736 | 03334 | 05354 | 02891 | Y3 | 0.1036 | 0.2097 | 0.0850 | 0.1737 | 0.0920
X4 | 01531 | 01294 | 01561 | 02526 | 01772 | ¥-* | 0.0000 | 0.0143 | 0.1373 | 0.0000 | 0.2252
X5 | 04320 | 02201 | 02457 | 04700 | 02371 | ¥-5 | 0.0454 | 0.0398 | 0.0390 | 0.1033 | 0.1002
X6 | 01208 | 01683 | 0.1490 | 02980 | 0.1230 | Y- | 03111 | 0.1243 | 0.1236 | 0.2948 | 0.2044
X7 | 03216 | 02031 | 0.1800 | 04177 | 02143 | ¥-7 | 0.0499 | 0.0937 | 0.0350 | 0.0928 | 0.0537
X8 | 00567 | 02155 | 0.0972 | 02900 | 0.0716 | Y-8 | 0.1840 | 0.0330 | 0.0167 | 0.1749 | 0.1869
X9 | 02929 | 01762 | 0.1716 | 03693 | 0.2081 | Y- | 0.0605 | 0.1526 | 0.0455 | 0.0909 | 0.0664
X 10 | 01339 | 0.0546 | 0.1246 | 0.1930 | 0.1457 | ¥-10 | 0.0991 | 0.0136 | 0.0786 | 0.0985 | 0.2372
X 1 93711 | 01008 | 01267 | 03107 | 0.1258 | -1 | 0.0644 | 0.1974 | 0.0521 | 0.0917 | 0.0937
X 12 | 01391 | 0.1010 | 0.1469 | 02424 | 0.0807 | ¥-12 | 0.0308 | 0.0112 | 0.1431 | 0.0286 | 0.2620
X131 91860 | 0.0287 | 00187 | 02438 | 0.0628 | Y-13 | 0.0000 | 0.0473 | 0.0000 | 0.0609 | 0.0887
x 14 1 01378 | 01463 | 01380 | 02664 | 0.0360 | Y-14 | 03349 | 0.1540 | 0.1402 | 03334 | 0.2370
X151 91018 | 00031 | 00674 | 02913 | 0.0293 | Y-15 | 0.0050 | 0.0863 | 0.0023 | 0.0297 | 0.0513
X 16 | 01331 | 01877 | 01226 | 02716 | 0.0000 | ¥-1® | 02347 | 0.0754 | 0.0628 | 02460 | 0.2320
X171 90304 | 00012 | 01309 | 03450 | 0.0000 | Y-17 | 0.0126 | 0.1227 | 0.0138 | 0.0118 | 0.0629
X 18 | 00871 | 00438 | 00780 | 0.1480 | 0.1211 | Y-18 | 0.1635 | 0.0338 | 0.0944 | 0.1867 | 0.2618
X191 93035 | 01057 | 01182 | 02855 | 0.1639 | Y-1? | 0.0175 | 0.1533 | 0.0203 | 0.0000 | 0.0900
x 20 | 00962 | 0.1008 | 0.0824 | 0.1582 | 0.0640 | Y20 | 0.1000 | 0.0072 | 0.1425 | 0.1303 | 0.2779

3.3 Design of Random Forest Classifier

The Random Forest Classifier works by creating multiple
decision trees from randomly selected subsets of the training
data. For each decision tree it randomly selects a subset of
features from the total features when growing the tree [18-19].
Each decision tree grows to its maximum depth without any
pruning. To make a prediction for a new data instance the
Random Forest passes the instance to each of the decision trees.
The key advantages of Random Forest Classifiers include high
accuracy due to combining multiple decision trees robustness to
noise and outliers, ability to handle high dimensional data and
relative simplicity compared to other ensemble methods [12,
13]. Additionally, Random Forests provide feature important
estimates which can help identify the most relevant features in a
dataset. The Random Forest works best on selecting the below
model parameters -

Splitting Criterion: Decision trees split nodes based on
impurity measures. "Gini' is one of the criteria used to measure
node impurity. For this model, the splitting criterion has been set
to 'Gini'.

Maximum Depth: This parameter controls the maximum depth
of the decision trees. For this model, the max depth parameter
has been set to “none”, which allows the trees to expand until all
leaves are pure or contain the minimum number of samples
specified by min_samples_split.

Maximum Features: This parameter determines the number of
features to consider when looking for the best split at each node.
For the model proposed in the paper, the max features
parameter has been set to 'sqrt', which means that the square root
of the total number of features is considered.

Minimum Leaf Nodes: This parameter specifies the minimum
number of leaf nodes that must be present in each decision tree.
For the proposed model, we set the minimum leaf nodes to 1
meaning that each decision tree in the Random Forest must have
at least one leaf node.

Max Leaf Nodes: This parameter specifies the maximum
number of leaf nodes that can be created in each decision tree.
Setting this parameter can help control the size and complexity
of the individual trees in the Random Forest ensemble. We set
Max Leaf Nodes to 2, the ensures each decision tree in the
Random Forest can have a maximum of 2 leaf nodes.

Number of Estimators: This parameter defines the number of
decision trees in the Random Forest ensemble. For this model,
we set it to 100, which means the Random Forest ensemble
consists of 100 decision trees.

For other parameters their default values are used, like
bootstrapping “True” and class weights “balanced”, to promote
model diversity and reduces biases towards dominant classes.
These settings enhance robustness and generalization by
incorporating randomness in tree construction and adjusting
class weights based on frequency. The Random Forest classifier
operates using an ensemble learning technique called Bagging
which is combination of Bootstrap and Aggregating. The
process begins with Bootstrap sampling where multiple decision
trees are trained on different bootstrap samples of the training
data. In bootstrap - sampling data points are randomly selected
with replacement resulting in some points appearing multiple
times while others may not appear at all in a sample. This creates
diversity within the ensemble as each tree is trained on a slightly
different subset of the original data [18].
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Feature selection or feature bagging is another crucial step
where a random subset of features from the input dataset is
selected for each decision tree. This reduces correlation between
trees and helps prevent overfitting. The number of features
considered at each split point is controlled by the max_features
parameter, which can be set to “sqrt”, “log2” or a specific integer
value. In the tree construction phase each decision tree is built
using a bootstrap sample. At each node the algorithm searches
for the best split among the subset of features determined by
max_features. The quality of the split is evaluated using criteria
such as Gini impurity or entropy. Gini impurity measures the
probability of incorrectly classifying a randomly chosen element
if labeled according to the class distribution in the set with lower
values indicating more homogeneous sets. The formula for Gini
impurity represented as I g for a set of data with K classes as
shown in equation (1)

le=1-%i, P? M

P; is the probability of randomly selecting an element of class i
from the set. The sum is taken over all K classes. This formula
calculates the Gini impurity by summing the squared
probabilities of each class and subtracting the result from 1. A
lower Gini impurity indicates a more homogeneous set of
samples with respect to the target variable. Entropy is a measure
of impurity or disorder in a set of data points. It quantifies the
uncertainty associated with a given set of data points. The
formula for Entropy In for a set of data with K classes is given
by below Equation (2)

Iy = — X, P logy(P) 2

Minimizing the entropy of the resulting subsets is equivalently
to maximizing the information gain. Gini impurity is generally
faster to compute than entropy because it does not involve
logarithmic calculations. This makes the tree-building process
quicker. Hence Gini is preferred over entropy. Throughout the
prediction phase each tree in the forest independently predicts
the class of the input sample. For classification tasks the result
(most frequent class) of the predictions from all the trees is taken
as the final prediction. This process is called aggregation. In
other words the class that receives the most votes among all the
trees is selected as the predicted class.

4. HAND SIGN RECOGNITION SYSTEM

A comprehensive workflow for the proposed Hand Sign
Recognition System is shown in the Figure 3. The workflow
begins with importing the necessary dependencies, such as
Media Pipe (version 0.9.0.1), Scikit-learn (version 1.2.0),
OpenCV (version 4.7.0.68), and Pandas (version 2.0.3). These
libraries provide functionalities for hand tracking, machine
learning, image processing, and data manipulation, respectively.
The next step is capturing a custom dataset, which is a crucial
component for training the hand gesture recognition model. The
dataset consists of 26 classes, one for each alphabet of the
American Sign Language (ASL). Pre-processing steps are
applied to the extracted features, including converting the image
color space from BGR to RGB and normalizing the feature
values. Feature extraction is a critical step in the workflow,
where relevant information is extracted from the input images to
represent the hand gestures effectively. The Media Pipe Library
employed include transfer learning models, hand models, and
various backend models like SSD, YOLO, and CNN. These
models facilitate hand detection, landmark localization, and
drawing utilities. The static images are processed to extract 21
key points of the hand, and a total of 42 features are derived from
each hand, representing the x and y coordinates of the
landmarks. Post-processing operations involve data splitting,
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where the dataset is divided into training and testing subsets, and
data serialization, where the features and corresponding labels
are stored in a suitable format for further processing.

Datasets Training Phase

Normalization and Using Palm Detection

B6R to RGB | and Hand Landmark
conwersion Model

Random Forest
Algorithms

Detection Phase

v

‘ p ‘
Classified by .
Image from video asliecty Hand Sign
] classifier y Detected
A\ \ | L )}’.

Figure 3 Methodology for Hand Sign Recognition System

The next stage is training a classifier using the extracted features
and labels. The Random Forest Classifier with an Ensemble
approach is chosen. Specific hyper parameters are provided,
including the train test split ratio (80:20), the impurity measures,
the number of decision trees, the maximum samples for splitting
nodes and max samples leaf, bootstrapping, and the random state
are chosen. Model evaluation is an essential step to assess the
performance of the trained classifier. Metrics such as accuracy,
precision, recall, and Fl-score are computed, and a detailed
classification report is generated. After training and evaluation,
the workflow proceeds to testing, where the trained model is
loaded and initialized using the Media Pipe hands module.
During testing, the model predicts the hand gestures based on
the input images, and the predictions are visualized, allowing for
the display of unknown gestures and their corresponding
probabilities.

5. EVALUATION OF MODEL

The evaluation of the proposed system relies on two
fundamental components: the Stratified K-Fold function and the
GridSearchCV  function, both pivotal for robust model
assessment and hyper parameter tuning. Stratified K-Fold is a
cross-validation technique widely used in machine learning to
ensure fair and unbiased model evaluation, especially with
imbalanced datasets. It divides the dataset into 'k' folds while
maintaining the original class distribution across each fold. This
ensures that each fold has a proportional representation of the
different classes, minimizing biased evaluations. The value for
k=5 the dataset is split into 5 folds, each having a class
distribution similar to the original dataset.

The process begins with shuffling the dataset to eliminate any
potential ordering bias that might exist. Once shuffled, the data
is partitioned into 'k' approximately equal-sized folds. Unlike
standard k-fold cross-validation, where data is partitioned
randomly into folds without considering class distribution,
Stratified K-Fold ensures that each fold contains a balanced
representation of classes. During each iteration of the cross-
validation process, one of the folds is held out as the validation
set, while the remaining folds are used for training the model.
This process is repeated k' times, with each fold being used once
as a validation set. By rotating the roles of training and
validation sets across folds, Stratified K Fold trains and
evaluates the model multiple times on different data subsets. Its
key advantage is providing reliable performance estimates
across various class distributions, crucial for assessing the
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model's generalization to unseen data, especially with
imbalanced classes. Maintaining a representative mix of classes
in each fold helps detect issues like overfitting or under fitting.

GridSearchCV is a technique used for hyper parameter tuning in
machine learning, essential for optimizing model performance
by systematically exploring a predefined grid of hyper
parameters. The process involves exhaustively searching
through all possible combinations of hyper parameters and
evaluating each combination using cross-validation to identify
the set that produces the best results. Firstly a grid of hyper
parameters and their corresponding values given in Table 2, are
defined. For instance, in a decision tree classifier, parameters
like maximum depth, minimum samples split, and criterion are
included in the grid. GridSearchCV then performs cross-
validation by splitting the training data into "k' folds. It trains the
model on 'k-1' folds and evaluates its performance on the
remaining fold, repeating this process 'k' times. During each
iteration, GridSearchCV tests every combination of hyper-
parameters from the defined grid. The model is trained and
evaluated using each combination, and the performance metric
specified (such as accuracy, precision, or F1-score) is computed.
This comprehensive evaluation allows GridSearchCV to
identify the hyper-parameter combination that yields the best
performance across all folds.

Combination 4 in Table 3 represents the best combination,
showcasing a strategic approach to constructing a decision tree
ensemble. Notably, it sets the maximum depth to ‘None'
enabling trees to dynamically adjust their complexity, guarding
against overfitting without arbitrary depth limitations.
Additionally it establishes a minimum leaf size of 1 fostering
refined decision boundaries while maintaining model
interpretability. This combination strikes a balance between
complexity and accuracy, making it the optimal choice for
model performance and generalization. Combination 4
strategically selects the ‘log2’ criterion for feature selection,
balancing randomness and model performance. This criterion
allows the algorithm to explore an optimal number of features
without overwhelming computational resources or risking
overfitting. Employing the ‘gini' criterion prioritizes splits that
minimize impurity, enhancing the model's generalization
capabilities. Furthermore, Combination 4 utilizes 200
estimators, leveraging the power of ensemble learning to
mitigate biases and errors through averaging. This approach
bolsters robustness and generalization without imposing
excessive computational burdens.

Table 2 Hyper Parameters for Random Forest Classifier

Hyper parameters Values
n estimators 50, 100, 200
Max_depth None, 10,20
Min_samples_split 2,5,10
Min_samples leaf 1,24
Max_features Sqrt,log>
Criterion Gini, Entropy, Log loss

The method was effectively implemented to extract 21 key
points from hand images using Media Pipe's hand module which
utilizes machine learning techniques to accurately identify and
extract key points representing hand landmarks in each image.
These extracted key points provide effective features for
representing sign language gestures. The dataset consists of 26
classes, each representing a different sign language gesture, with
200 images per class, resulting in a total of 5,200 images. For
each image, the Media Pipe hand module extracts 21 key points,

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.66, December 2025

with each key point having both x and y coordinates, resulting
in 42 features per image. Consequently, for the entire dataset,
the total number of features extracted is 2, 18,400 (5,200 images
multiplied by 42 features per image). This detailed
representation of hand landmarks, comprising 21 x-coordinates
and 21 y-coordinates for each image, enables precise and
reliable recognition of sign language gestures.

Table 3 GridSearchCV Result

Parameters Combina Combination | Combinatio | Combinatio
tion 1 2 n3 n 4
n_estimators 100 200 50 200
Max_depth 10 20 None None
Max Leaf 5 10 100 2
Min leaf 2 4 1 1
Max_feature sqrt Log2 sqrt Log2
s
Criterion Entropy Gini Entropy Gini

5.1 Performance Metrics

Accuracy is the ratio of correctly predicted instances to the total
instances in the dataset as shown with Equation 3. It is a measure
of the overall correctness of the model across all classes. Our
model attained an accuracy of 95.67% with 200 estimators,
demonstrating its high performance in hand sign recognition.
Precision is the ratio of correctly predicted positive observations
to the total predicted positive observations as shown with
Equation 4. It measures the proportion of correctly identified
positive cases among all cases that were predicted as positive.
Our model attained a Precision of 95.83\% with 200 estimators.

Number of Correct Preditions

Accuracy = 3)

Total Number of Predictions

Precisi True Positives @)
recision =
True Positives + False Positives

Recall also known as Sensitivity or true positive rate, is the ratio
of correctly predicted positive observations to all actual
positives in the dataset as given in Equation 5. With 200
estimators, our model achieved an impressive accuracy of
95.67%. The F1 score is the harmonic mean of precision and
recall as shown with Equation 6. It provides a balance between
precision and recall and is often used as a single metric for
evaluating classification models, especially when there is an
uneven class distribution proposed technique attained a score of
95.74%.

Recall = True Positives 5
el = True Positives + False Negatives ®)

F1S ) Precision X Recall 6
= X  ———
core Precision + Recall (6)

Table 4 presents the overall results of a proposed technique
using different numbers of estimators 50, 100 and 200 in a
machine learning model. As the number of estimators increases
from 50 to 200, we observe an increasing trend across various
evaluation metrics. This indicates a balanced improvement in
the model's ability to correctly classify positive and negative
instances.
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A confusion matrix is a table that is often used to describe the
performance of a classification model on a set of test data for
which the true values are known. It allows visualization of the
performance of an algorithm and helps in understanding how
well the model is performing in terms of classifying different
categories. In the presented confusion matrices, each
corresponding to varying numbers of n-estimators (200, 100 and
50) the performance of the classification models is evaluated
based on their ability to correctly classify samples.
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The x-axis and y-axis of the matrix represent the predicted labels
and true labels respectively. Each row in the matrix corresponds
to an actual label while each column represents a predicted label.
The diagonal elements (from the top-left to the bottom-right) of
the matrix represent the correctly classified samples or true
samples where the predicted label matches the true label. These
values are typically highlighted or colored differently to make
them visually distinct. The off-diagonal

Table 4 Performance Metrics for the proposed Hand Sign Recognition System

Estimators True Samples False Accuracy Precision Recall F1
Samples Score
50 3979 181 0.9404 0.9421 0.9404 0.9387
100 3958 202 0.9483 0.9497 0.9483 0.9489
200 3944 216 0.9767 0.9583 0.9567 0.9574

True label

0 11011 121314151617 1819 2 2021222324253 4 56 7 8 9
Predicted label

Figure 4 Confusion Matrix for Proposed Hand Sign
Recognition System

elements represent the misclassified samples or false samples.
The values in these cells indicate the number of instances that
were incorrectly classified as belonging to a different class. The
confusion matrix for 200 n-estimators is shown in Figure 4.

5.2 Comparative Analysis across Different
Lighting Conditions

In order to make the proposed model robust, we tested it to
operate in different light conditions and with different
individuals. Three different test scenarios aimed at assessing the
detection probability across different lighting conditions like
Light, Dim, Dark are identified. The quality of lighting
conditions were evaluated using different image quality
descriptors like Luminance, Brightness, Contrast, Noise level.

Brightness represents the pixel intensity in range of 0 to 255 for
8-bit color images. The brightness is calculated as the mean
value of all pixels in the image. Contrast measured as the
standard deviation of pixel intensity values. The contrast is
calculated by first computing a histogram of grayscale pixel
values using, and then taking the standard deviation of the
histogram. Theoretically, its range spans from 0 to
approximately 73.74 for 8-bit images, as the standard deviation
can extend to the value of a uniform distribution ranging from 0
to 255. Contrast reflects the extent to which pixel values deviate

from the mean pixel value within the grayscale histogram.
Higher contrast values indicate more pronounced deviations and
greater image contrast. The noise level is estimated by
calculating the standard deviation of the difference between the
grayscale image and a blurred version of the image using a 5x5
Gaussian kernel. This metric estimates the variability in pixel
values attributed to noise. The brightness, contrast, and noise
level considered for 3 cases are tabulated in Table 5.

Case 1

The hand signs are detected in daytime conditions with
sufficient luminance or brightness levels showing a person
displaying three different hand signs labeled as B, C and F
illustrated in Figure 5. The luminance or brightness values range
from 159.29 to 167.54, indicating good overall brightness. The
contrast values show a wide variation from 2020.20 to 402.21
and 464.55. This variation in contrast could indicate differences
in the lighting conditions or scene compositions within this case.
The noise levels ranging from 3.27 to 4.46, which is acceptable
because it can be compensated with high luminance and
brightness. Overall, hand Signs in Case 1 appear to have very
high luminance and brightness compared to other cases, but the
wide variation in contrast values and slightly elevated noise
levels suggest potential challenges in achieving consistent image
quality across this case. Also indicated is a probability value
enclosed in parentheses which represents the model's confidence
in classifying that particular hand sign. Results for hand sign B,
C and F are 0.59, 0.73 and 0.73 respectively.

Case 2

The dim lighting conditions are considered to acquire the images
in Case 2 illustrated in Figure 6. The luminance values range
from 144.08 to 146.05, and the brightness values range from
143.57 to 145.70, which are slightly lower than Case 1 but still
within an acceptable range. However, the contrast values are
exceptionally high, ranging from 1136.97 to 1201.20. Such high
contrast values suggest the presence of very distinct bright and
dark regions within the images, which could potentially lead to
loss of detail in the adequate brightness or darkness areas. The
noise levels are relatively low, ranging from 3.56 to 3.58,
indicating that these images have minimal noise or unwanted
artifacts. However an important factor to note is that this
person's dataset was not included in the training data used to
build the model. This means that the model has not been
explicitly trained on this individual's hand gestures or
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appearances. Figure 5 shows results for B, C and F with
confidence of 0.45, 0.65 and 0.63 respectively.

Case 3

The hand signs in Case 3 represent low-light or dark conditions.
The luminance values range from 75.37 to 79.34, and the
brightness values range from 75.59 to 79.40, which are
significantly lower than the previous two cases, indicating
darker overall conditions. Interestingly, the contrast values for
this case are relatively high, ranging from 1144.59 to 1175.62,
which could be attributed to the presence of both bright and
condition dark regions within the low-light scenes. The noise
levels are the lowest among the three cases, ranging from 3.00
to 3.36, which might be due to the lower overall brightness
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levels in these images. Overall, the images in Case 3 as shown
in Figure 7 exhibit low luminance and brightness levels, as
expected for dark conditions. The high contrast values could
pose challenges in preserving detail in both bright and dark
areas, while the relatively low noise levels are a positive aspect.
The results for B, C and F are show as 0.59, 0.48 and 0.61.

Overall, the analysis revealed that daytime images (Case 1) had
high brightness with variable contrast, dim lighting images
(Case 2) had high contrast and low noise, while dark condition
images (Case 3) exhibited low brightness but relatively high
contrast and low noise. The model's classification confidence
varied with lighting conditions, generally decreasing in dimmer

Table 5 The Lighting Conditions for 3 cases.

Brightness Contrast Noise Level
Case 1 159.29 to 167.54 402.21 - 2020.20 3.27 to 4.46
Case 2 143.57 to 145.70 1136.97 to 1201.20 3.56 to 3.58
Case 3 75.59 to 79.40 1144.59 to 1175.62 3.00 to 3.36

settings. Though, the confidence levels decreased with varying
lighting conditions, the proposed system is successful in
detecting the hand signs.

B (0.59) F (0.73)

l E é.n) l I
(a) (b) (c)

Figure 5 Case 1 Hand Sign detected in Daytime Condition

B (0.45) ¢ (069) F (0.63)
“u (|

Figure 6 Case 2 Hand Sign detected in Moderate light

Figure 7 Case 3 Hand Sign detected in Dark light condition

6. USER INTERFACE TO CONVERT
HAND SIGN TO TEXT AND SPEECH

The primary objective of this paper is to build a user interface to
enable individuals who are unable to speak or hear, to express
themselves effectively using the proposed sign recognition
system. The proposed model is interfaced with a webcam to
acquire hand sign inputs from users in real-time. These are
translated to speech and text in real-time. This innovative

approach not only facilitates communication with others but also
enhances accessibility and inclusivity in various social and
professional settings [16].

The OpenCV library is employed for capturing frames from the

webcam, processing these frames, and displaying them with
overlays such as text annotations. Additionally, OpenCV
facilitates color space conversions and basic image
manipulations. MediaPipe library is utilized for hand landmark
detection. This library offers pre-trained machine learning
models to accurately locate key points on the hand in real-time,
enabling precise tracking of hand gestures and movements.
Typically, this involves training a model on a dataset of hand
gesture images annotated with their corresponding labels (e.g.,
letters or words). The pyttsx3 library is utilized for text-to-
speech conversion. This library provides an interface to the
platform-specific TTS engines installed on the system, allowing
the script to generate spoken output from text strings. The script
interacts with the user through keyboard commands. These
commands check for system readiness, trigger speech synthesis,
add spaces, deselect words and delete characters from the
constructed word.

The proposed user interface is demonstrated for 2 sample
gestures as shown in the Figure 8 Sample gesture (a) and (b).
With the implementation of key strokes like backspace key
likely allows the user to delete the last entered character, the
delete key enables the user to remove the entire detected text.
The “Ready” state displayed in the images suggests the presence
of a key or command that toggles the system's readiness to
capture and interpret hand gestures. When set to “True” the
application actively monitors and translates the user's hand signs
into text. The inclusion of a key or command that triggers the
text-to-speech functionality is designed. This would allow the
detected text to be vocalized, providing an audible output for
improved accessibility.

In the Figure 8(a) the detected text based on the hand gestures
reads “good morning today is a beautiful day". However, the
“Ready” state is set to False indicating that the system is not
actively capturing or interpreting hand signs at that moment.
Figure 8(b) shows a different sentence detected as “wishing you
a fantastic day ahead” again with the “Ready” state set to False.
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Overall, this system integrates computer vision for hand gesture
detection, machine learning for gesture classification, and text-
to-speech technology for spoken output. It offers a practical
framework for real-time translation of hand signs into audible
speech, facilitating communication for individuals with hearing
impairments.

(a) (b)
Figure 8 Sample Gestures identified by the Proposed
System
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7. COMPARISON WITH STATE-OF-
ARTS-TECHNIQUES

Jindi Wang et. al. have built a camera-based hand gesture
recognition model by training the model for a particular user
only. They employed a lightweight Multilayer Perceptron
architecture based on contrastive learning, reducing the size of
the data needed and the training timeframes. Experimental
results demonstrated rapid convergence and 94.25% accuracy of
the recognition model[9]. In 2023, Alonazi et al [2] employed
Deep Belief Nets and Convolutional Neural Networks (CNNs)
on a custom Hand Gesture Dataset, attaining an accuracy of
90.73%.

Table 6 Comparatively Analysis with state-of-art techniques

S.no Year Author Dataset Feature Detection Accuracy
Extraction Technique
1. 2025 Proposed Work Custom  ASL Media Pipe Random Forest | 95.73%
Gesture Dataset
2. 2024 Jindi Wang et. al. [9] | Custom Gesture | Media Pipe Multi-Layer 94.25%
Dataset Perceptron
3. 2023 Mohammed Alonazi | Custom Hand Gesture | CNN Deep  Belief | 90.73%
et. al.[1] Network and
CNN
4. 2023 Christine Dewi et. | Oxford Hand Dataset | Yolo7 Yolo7 86.3%
al. [3]
3. 2023 Jyotishman Bora et. | Assamese Sign | Media Pipe Custom 99%
al. [10] Langauge Feedforward
Network
6. 2023 Chen et. al. [5] EgoHands & Tiny | Yolo5l Yolov5l 75.6% and
HGR datasets 66.8%
7. 2022 Shashidhar R [6] Indian Sign Language | CNN CNN 99%
8. 2021 Shin et. al. [4] ASL Dataset, Massey | Media-pipe APl | SVM and GBM | 87.60%,
Dataset and Finger 87.60%, 98.45%
Spelling A dataset
9. 2022 V Radhika[22] ASL Dataset SVM, KNN, | 97%, 95%,
CNN 98.49%

The field of sign language recognition has seen significant

improved accuracy,

there might be a

trade-off with

advancements in recent years, with the application of image
processing and machine learning techniques. Based on the
results obtained from the implementation of various n-
estimators in the random forest algorithm for hand sign
recognition, it is evident that increasing the number of
estimators generally improves the accuracy of classification.
The highest accuracy of 95.67% was achieved with 200 n-
estimators, showcasing the robustness of the model in
distinguishing between different hand signs. However, it's
important to note that while higher n-estimators may lead to

computational resources and efficiency. Furthermore, the
analysis of confusion matrices revealed consistent trends across
different numbers of n-estimators, with the majority of samples
correctly classified as true positives. This indicates the
effectiveness of the random forest algorithm in accurately
recognizing hand signs.

Jyotishman Bora et. al. implemented a Assamese Sign
recognition model by using Media Pipe hand tracking and
detection API as feature extractor and a custom made Multi-

49



Layer Perceptron Network. They achieved an accuracy 94.25%
[9]. Dewi et al. [3] used Yolov7 and Yolo models on the
American Sign Language (ASL) dataset, yielding a mean
average precision of 86.3% and recall of 79.9%. In 2021, G.
Pala

et al. applied Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Convolutional Neural Networks (CNN)
on the American Sign Language (ASL) Dataset, achieving an
accuracy of 98.49% for CNN, 83% for SVM, and 93% for
KNNJ26]. Chen et al. proposed YOLOVS in 2023, achieving
accuracies of 75.6\% and 66.8\% on EgoHands and TinyHGR
datasets, respectively[5]. Shin et al.[13] employed Support
Vector Machines (SVM) and Gradient Boosting Machine
(GBM) on ASL dataset, Massey dataset, and Finger Spelling A
dataset in 2021, achieving an average accuracy of 96% for
SVM and 93% for GBM. In 2022, A.Pothuri et al. [19]
proposed Random Forest techniques on the Indian Sign
Language (ISL) dataset, achieving accuracies of 96% for ISL.
Sangum et al. [11] used Random Forest on a Custom Hand
Gesture Dataset in 2015, attaining an accuracy of 90% for
160x120 resolution and 94% for 640x480 resolution.

8. CONCLUSION

In conclusion, the project successfully demonstrated the
feasibility and effectiveness of using the random forest
algorithm for hand sign recognition, laying the foundation for
further research and development in this field. The insights
gained from this project contribute to the advancement of
gesture recognition technology, with potential applications in
human-computer interaction, assistive technology, and
accessibility solutions.

Integration of hand sign recognition capabilities into wearable
devices such as smart glasses or wristbands could enable hands-
free interaction and communication for individuals with
disabilities. Additionally incorporating hand sign recognition
into Internet of Things (IoT) devices could enable gesture-
based control of smart home appliances, entertainment systems
and other connected devices [22, 23]. While there is great
potential for hand sign recognition systems in assistive
technology applications, including communication aids for
individuals with disabilities the accessibility and affordability
of such technologies may limit their widespread adoption.

Machine learning-powered educational applications for sign
language learning and training hold promise creating
immersive virtual reality (VR) or augmented reality (AR)
environments with realistic hand sign recognition capabilities
may still be challenging. Developing adaptive learning
platforms that cater to individual learning styles and abilities
also requires sophisticated machine learning algorithms and
user interface design. Although real-time hand sign recognition
systems have potential applications in healthcare and
rehabilitation integrating these systems into clinical practice
may face regulatory hurdles and require rigorous validation and
testing. Additionally ensuring the accuracy, reliability and
safety of machine learning algorithms in critical healthcare
settings remains a significant challenge

While these future scopes represent exciting opportunities for
advancing real-time hand sign recognition systems using
machine learning, addressing the associated challenges will
require collaborative efforts across multiple disciplines,
including computer science, engineering, healthcare, and social
sciences. Continued research innovation and investment in
these areas are essential to realizing the full potential of hand
sign recognition technology in improving accessibility,
communication and quality of life for individuals worldwide.
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