
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

41

Towards Adaptive Real-Time Hand Sign Language

Interfaces Addressing User Independence, Pose and

Occlusion Variability with Machine Learning

Leena Chandrashekar
Dept of ECE

RNS Institute of Technology
Bangalore, India

Sanjay S.B.
Dept of ECE

RNS Institute of Technology
Bangalore, India

Raghavendra M. Hegde
Dept of ECE

RNS Institute of Technology
Bangalore, India

Samarth Shinnur
Dept of ECE

RNS Institute of Technology
Bangalore, India

Samrudh B.R.
Dept of ECE

RNS Institute of Technology,
Bangalore, India

ABSTRACT

Human-Computer Interaction (HCI) has emerged as a critical

component of navigating and connecting with the digital world

as technology has advanced. Hand gesture recognition has

received substantial interest as a natural and intuitive

communication interface. This paper describes the design and

implementation of a real-time hand gesture detection system for

supporting HCI, with a special focus on assisting the hearing and

speech challenged. The proposed system captures hand gestures

using a real-time video camera and creates a bespoke dataset that

is robust by accounting for user, posture, and occlusion

variability. A Convolutional Neural Network (CNN) is used to

extract features, with 21 important features identified for each

hand gesture. These features are then classified using a Random

Forest method, which achieves an overall accuracy of 94.58%

over several instances. Recognized gestures are translated into

text and speech, allowing for efficient and convenient

communication. The method allows you to combine various

gestures to make whole sentences, which are often used in

regular interactions. Performance assessment under different

lighting circumstances reveals a PSNR of 3 to 4.27 dB,

suggesting robustness to illumination fluctuations. A graphical

user interface (GUI) with a feedback system allows for seamless

two-way interaction, which improves usability and accessibility.

Keywords

Human Computer Interaction, Sign Language, Hand Gesture

Recognition, User and Pose Independence, Occlusion

Variability

1. INTRODUCTION
In today's world, the interaction between humans and computers

has become indispensable due to continuous technological

advancements. This interaction, referred to as Human Computer

Interaction (HCI) encompasses various methods facilitating

communication with and control of computers. From utilizing a

mouse to tapping on a touchscreen, HCI plays a vital role in

navigating the digital realm. Hand gesture recognition has

emerged as a focal point of interest among researchers within

the broader scope of HCI. It provides a natural and intuitive

means of interacting with computers, free from the complexities

associated with traditional input devices. Unlike devices such as

joysticks or remote controls, hand gestures feel instinctive and

user-friendly [1].

Among the diverse aspects of HCI, hand gesture recognition has

emerged as a prominent area of interest for researchers. It offers

a natural and intuitive means of interacting with computers,

devoid of the complexities associated with traditional input

devices. Unlike requiring training for devices like joysticks or

remote controls, using hand gestures feels instinctive and user-

friendly. Its applications span across numerous domains, from

controlling home appliances to guiding robots and aiding in

medical procedures [2]. However, despite its potential benefits,

hand gesture recognition presents challenges, particularly in

ensuring accurate recognition across varying environmental

conditions. In critical fields such as healthcare, where precision

is paramount, errors in gesture recognition can have serious

consequences. Researchers are actively striving to develop

robust systems that can reliably interpret gestures under diverse

circumstances, but achieving this remains a formidable task.

Leveraging advanced techniques in image processing and

machine learning, these systems interpret sign language

gestures, enabling participation across education, healthcare,

and workplaces, fostering inclusivity and understanding.

Furthermore, these systems reduce reliance on costly human

interpreters, offering a scalable and cost-effective solution for

interpretation services. By ensuring wider accessibility, they

contribute to a more inclusive society, minimizing

communication barriers and enhancing participation for deaf

individuals. Ultimately, the goal is to enhance communication,

accessibility, and inclusion, empowering deaf individuals to lead

fulfilling lives and engage fully in societal activities.

The process of hand gesture recognition involves following

stages - gesture capture, hand position identification, feature

extraction, and gesture classification. Use of technologies like

cameras and sensors, these stages enable the detection and

analysis of both simple and complex gestures. In our paper, we

aim to advance the field of hand gesture recognition by

proposing innovative solutions to address existing challenges.

Additionally, our efforts aim to streamline communication

between humans and computers, facilitating smoother

interactions. Additionally, we seek to contribute to a future

where human-computer interaction is more intuitive and

efficient. By bridging the gap between humans and machines,

we define the below objectives create a more interconnected and

accessible digital world –

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

42

• Create a comprehensive dataset of hand signs by converting

video sequences into frames.

• Identify a suitable feature extraction technique to extract the

significant key points from the hand images that represent the

hand sign effectively.

• Identify and train the machine learning model with the goal of

optimizing the model's accuracy.

• Develop a trained model for text-to-speech application that

can interpret written text and generate corresponding spoken

output.

2. RELATED WORK
Hand Gesture Recognition (HGR) systems have been to make

human-computer interaction more natural, efficient, and real,

especially for persons who only use hand gestures to talk. Even

though computer vision has come a long way, it is still quite hard

to automatically and accurately recognize hand motions.

Mohammed Alonazi and others looked at changes in computer

vision and sensor technology and gave a detailed look at HGR

methods and data modalities from 2014 to 2024. They expressed

the necessity for examination utilizing diverse modalities,

including RGB, Skeleton, Depth, Audio, EMG, EEG, and

Multimodal approaches. They looked at more than 200 research

from reliable databases [1] that focused on collecting data,

establishing data, and showing gestures. Miah et al. put out a

multi-branch attention-based graph and a universal deep-

learning model to address generalization issues through the

detection of hand movements by extracting all potential

skeleton-based characteristics [2]. They proposed a general

neural network channel and two graph-based neural network

channels within a multi-branch architecture. The temporal-

spatial, spatial-temporal, and general characteristics are put

together and delivered to the fully connected layer to make the

final feature vector. To keep track of the node's order and

minimize the system's computing cost, they added position

embedding and mask operation to both the spatial and temporal

attention modules. The MSRA, DHG, and SHREC'17

benchmark datasets were used to test this model, and its

accuracy was 94.12%, 92%, and 97.01%, respectively.

Christine Dewi et al. essentially investigated CNN-based object

identification methods utilizing the Yolov7 and Yolov7x models

with 100 and 200 epochs on the Oxford Hand Dataset.

Performance metrics include GFLOPS, mAP, and detection

time. This study found that Yolov7x with 200 training epochs is

the most reliable method. In training, it had 84.7% precision,

79.9% recall, and 86.1% mAP. Moreover, Yolov7x achieved the

highest average mAP score of 86.3% during testing. While

performance improves with epoch, processing time also

increases dramatically. They recommended federated learning

and hand detection to improve HGR systems [3]. Jungpil Shin

employed the Media pipe method to identify American sign

characters by looking at webcam photos of hand joints. The

calculated joint coordinates produced two classification

features: vector-3D axis angles and distances between joint

points. SVM and LGBM classifiers categorized characters. The

ASL Alphabet, Massey, and Finger spelling A character files

were used to recognize each character. The Massey dataset gave

a score of 99.39%, the ASL Alphabet gave a score of 87.60%,

and the Finger Spelling A gave a score of 98.45%. The automatic

American Sign Language identification architecture has done

better than earlier experiments, is cheap to run, and doesn't need

special sensors or equipment. This technique can also be

employed for aerial writing and sign language recognition [4].

Real-world human–computer interaction hand gesture

recognition using augmented YOLOv5 overcomes latency and

low accuracy with complex backdrops. R Chen et al. suggested

replacing the CSP1_x module in the YOLOv5 backbone

network with an efficient layer aggregation network to improve

gradient pathways. This improves network expression, learning,

and recognition. The CBAM attention mechanism filters

channel and spatial gesture features. This makes the network less

susceptible to complex backgrounds and gesture images.

Detailed backdrop gesture datasets EgoHands and TinyHGR

were used. Using 640 × 640 input photos, mAP0.5:0.95

achieved 75.6% and 66.8% identification accuracy and 64 FPS

recognition speed. The suggested method is more accurate and

resilient than YOLOv5l, YOLOv7, and other algorithms,

enabling fast and accurate movement recognition against

complex backdrops [5]. Shashidhar et al. examined Indian Sign

Language (ISL) for 24 English alphabets excluding J and Z.

Recognition of 4972 static hand signs is achieved. A deep

learning-based application uses the "Google text to speech" API

to translate Indian Sign Language into text, allowing signers and

non-signers to communicate. They used Kaggle's public dataset.

The customized convolutional neural network solution was 99%

accurate [6].

In the past, it was only possible to manually add unique hand

gestures when the application was very limited. Jeong-Seop Han

and others created a versatile and efficient graphical user

interface that lets users specify their own hand movements.

Their method customizes hand movements by creating a

camera-based model that recognizes hand gestures depending on

user data. They used a Multilayer Perceptron architecture based

on contrastive learning to cut down on the amount of data and

training time needed compared to older recognition models that

need huge training datasets. The experimental findings indicate

that the recognition model converges rapidly and precisely [7].

A user study is performed with initial user feedback on the

implemented system.

The recommended procedures in the pertinent articles have a

variety of limitations. Apart from their weak explainability and

generality, none of the papers have offered any real-time

analysis. Furthermore, the majority of the solutions merely

address ASL detection; they don't offer real-time feedback. The

system's accuracy can be increased with real-time feedback.

Furthermore, there is no consideration paid to user, position, or

occlusion fluctuation. Furthermore, the focus on generating

sentences by integrating distinct signs has not yet been

examined. The majority of the gestures are static and obtained

from publically accessible web sources; real-time dynamic

continuous gestures and their generalization to diverse settings

or users are not covered.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

43

3. DATASET AND PREPROCESSING

3.1 Dataset Collection

Figure 1 Hand Signs for A, B, C, D, E, F and Z obtained

from 6 different individuals

There are Indian, Korean, and Indonesian sign languages, but

American Sign Language is the most used and standardized.

There are more e-resources for ASL than for other sign

languages. So, we make an HGI system that uses ASL hand

signs. Setting up a directory structure to store photos is the first

step in collecting a dataset. This methodical way of doing things

made sure that everything was stored in an organized way and

could be found easily later on in the project. The system

smoothly switched to real-time webcam image recording when

data gathering for a hand sign lesson began. There are 26 classes

in the dataset that stand for the letters of the ASL alphabet. There

are 2,600 photos in all, with 100 pictures in each class. The JPG

photos are 640x340 pixels and have 96 dots per inch and 24 bits

of bit depth. We took pictures of four people and hand signs in

different lighting situations to make sure the dataset was varied.

We also looked at Indian skin tones to make sure our dataset had

a wide spectrum of differences. Adding more picture data gives

us 5200 photos to help the model work better and generalize.

This technique includes flipping, rotating, and changing the size

of photos. Figure 1 shows different users making hand signs for

A, B, C, D, E, F, and Z. This strategy got the user to be flexible,

occluded, and in a good posture. Different people encode ASL

signals in different ways. A live video camera records these so

that they can capture moving and continuous hand actions in

diverse lighting conditions.

3.2 Feature Extraction
The Media Pipe's hand identification and feature extraction

approach is better than CNN, PCA, and machine learning [15–

17]. The input image is analyzed to find hand landmarks. Media

Pipe's hand tracking model leverages SSD to find single photos.

The SSD architecture is a powerful object detection algorithm

that looks at the input image at different scales to find hand areas

based on the form, texture, and color of the skin.

Figure 2 The 21 Key points identified [2]

A base CNN takes feature maps from the input image at different

scales. The SSD network predicts bounding boxes with different

aspect ratios and sizes and hand presence confidence scores for

each site in these feature maps. Non-maximum suppression gets

rid of predicted bounding boxes that have low confidence ratings

or a lot of overlap with boxes that score higher, leaving only the

boxes that are most likely to contain hands. The module detects

hand landmarks once it finds hand areas. There are 21 markers

in Figure 2. The module gets 42 coordinate values for each input

image, 21 for the x-axis and 21 for the y-axis. These values

include important hand features including the fingertips,

knuckles, palm center, and wrist. Landmark localization uses

CNN layers and regression algorithms. Convolutional layers

process the input image by calculating dot products between the

filter weights and the input values and creating feature maps.

Pooling layers take data from neighboring places and combine

it to make the spatial dimensions smaller. This protects feature

map sampling from tiny translations and distortions. Fully

connected layers use complicated non-linear transformations

and flatten final feature maps to guess where landmarks are. So,

the hand landmarks object has the normalized x and y

coordinates for each landmark. The data preparation function

goes through all the recognized hands and landmarks to get their

normalized x and y coordinates. To keep all values between 0

and 1, the x and y coordinates are kept in separate arrays and

normalized by taking away the lowest value. The collection has

pictures of hands of different sizes and angles, therefore this

normalization is necessary. The data aux array has normalized

single-hand feature coordinates.

Data serialization adds features and labels that have been

extracted to data and label lists. After processing all of the

photographs, the pickle module turns the data and labels lists

into a file called test. pickle. The x and y coordinates of a hand

landmark for one hand instance are shown by each pair of

consecutive elements in the data aux list. If data aux has [x1, y1,

x2, y2,..., x21, y21], the first two items (x1, y1) are the

coordinates of the first landmark, the second two (x2, y2) are the

coordinates of the second landmark, and so on for 21 landmarks.

The data. pickle file has a dictionary with two keys: "data" and

"labels." The "data" key points to a list of data aux lists that show

the features of a single hand instance, while the "labels" key

points to a list of class names for each hand sign. Pickle files are

used to train machine learning models to process, analyze, and

recognize hand signs. Table 1 shows the 21 important points

from Sign—B, C, E, F, and Z.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

44

Table 1 21 Key point features extracted from Sign – B, C, E, F & Z in form of X and Y Coordinates

X B C E F Z Y B C E F Z

x_0
0.0411 0.0000 0.0478 0.1296 0.2060

y_0
0.1681 0.0151 0.0000 0.1558 0.1348

x_1
0.6074 0.3361 0.3641 0.5792 0.3283

y_1
0.1020 0.1609 0.0832 0.1691 0.0691

x_2
0.1124 0.0859 0.1071 0.1928 0.2142

y_2
0.0757 0.0000 0.0711 0.0729 0.1905

x_3
0.5641 0.2736 0.3334 0.5354 0.2891

y_3
0.1036 0.2097 0.0850 0.1737 0.0920

x_4
0.1531 0.1294 0.1561 0.2526 0.1772

y_4
0.0000 0.0143 0.1373 0.0000 0.2252

x_5
0.4320 0.2201 0.2457 0.4700 0.2371

y_5
0.0454 0.0398 0.0390 0.1033 0.1002

x_6
0.1208 0.1683 0.1490 0.2980 0.1230

y_6
0.3111 0.1243 0.1236 0.2948 0.2044

x_7
0.3216 0.2031 0.1800 0.4177 0.2143

y_7
0.0499 0.0937 0.0350 0.0928 0.0537

x_8
0.0567 0.2155 0.0972 0.2900 0.0716

y_8
0.1840 0.0330 0.0167 0.1749 0.1869

x_9
0.2929 0.1762 0.1716 0.3693 0.2081

y_9
0.0605 0.1526 0.0455 0.0909 0.0664

x_10
0.1339 0.0546 0.1246 0.1930 0.1457

y_10
0.0991 0.0136 0.0786 0.0985 0.2372

x_11
0.3211 0.1008 0.1267 0.3107 0.1258

y_11
0.0644 0.1974 0.0521 0.0917 0.0937

x_12
0.1391 0.1010 0.1469 0.2424 0.0807

y_12
0.0308 0.0112 0.1431 0.0286 0.2620

x_13
0.1860 0.0287 0.0187 0.2438 0.0628

y_13
0.0000 0.0473 0.0000 0.0609 0.0887

x_14
0.1378 0.1463 0.1380 0.2664 0.0360

y_14
0.3349 0.1540 0.1402 0.3334 0.2370

x_15
0.1018 0.0031 0.0674 0.2913 0.0293

y_15
0.0050 0.0863 0.0023 0.0297 0.0513

x_16
0.1331 0.1877 0.1226 0.2716 0.0000

y_16
0.2347 0.0754 0.0628 0.2460 0.2320

x_17
0.0304 0.0012 0.1309 0.3450 0.0000

y_17
0.0126 0.1227 0.0138 0.0118 0.0629

x_18
0.0871 0.0438 0.0789 0.1480 0.1211

y_18
0.1635 0.0338 0.0944 0.1867 0.2618

x_19
0.3035 0.1057 0.1182 0.2855 0.1639

y_19
0.0175 0.1533 0.0203 0.0000 0.0900

x_20
0.0962 0.1008 0.0824 0.1582 0.0640

y_20
0.1000 0.0072 0.1425 0.1303 0.2779

3.3 Design of Random Forest Classifier
The Random Forest Classifier works by creating multiple

decision trees from randomly selected subsets of the training

data. For each decision tree it randomly selects a subset of

features from the total features when growing the tree [18-19].

Each decision tree grows to its maximum depth without any

pruning. To make a prediction for a new data instance the

Random Forest passes the instance to each of the decision trees.

The key advantages of Random Forest Classifiers include high

accuracy due to combining multiple decision trees robustness to

noise and outliers, ability to handle high dimensional data and

relative simplicity compared to other ensemble methods [12,

13]. Additionally, Random Forests provide feature important

estimates which can help identify the most relevant features in a

dataset. The Random Forest works best on selecting the below

model parameters -

Splitting Criterion: Decision trees split nodes based on

impurity measures. `Gini' is one of the criteria used to measure

node impurity. For this model, the splitting criterion has been set

to `Gini'.

Maximum Depth: This parameter controls the maximum depth

of the decision trees. For this model, the max depth parameter

has been set to “none”, which allows the trees to expand until all

leaves are pure or contain the minimum number of samples

specified by min_samples_split.

Maximum Features: This parameter determines the number of

features to consider when looking for the best split at each node.

For the model proposed in the paper, the max_features

parameter has been set to ̀ sqrt', which means that the square root

of the total number of features is considered.

Minimum Leaf Nodes: This parameter specifies the minimum

number of leaf nodes that must be present in each decision tree.

For the proposed model, we set the minimum leaf nodes to 1

meaning that each decision tree in the Random Forest must have

at least one leaf node.

Max Leaf Nodes: This parameter specifies the maximum

number of leaf nodes that can be created in each decision tree.

Setting this parameter can help control the size and complexity

of the individual trees in the Random Forest ensemble. We set

Max Leaf Nodes to 2, the ensures each decision tree in the

Random Forest can have a maximum of 2 leaf nodes.

Number of Estimators: This parameter defines the number of

decision trees in the Random Forest ensemble. For this model,

we set it to 100, which means the Random Forest ensemble

consists of 100 decision trees.

For other parameters their default values are used, like

bootstrapping “True” and class weights “balanced”, to promote

model diversity and reduces biases towards dominant classes.

These settings enhance robustness and generalization by

incorporating randomness in tree construction and adjusting

class weights based on frequency. The Random Forest classifier

operates using an ensemble learning technique called Bagging

which is combination of Bootstrap and Aggregating. The

process begins with Bootstrap sampling where multiple decision

trees are trained on different bootstrap samples of the training

data. In bootstrap - sampling data points are randomly selected

with replacement resulting in some points appearing multiple

times while others may not appear at all in a sample. This creates

diversity within the ensemble as each tree is trained on a slightly

different subset of the original data [18].

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

45

Feature selection or feature bagging is another crucial step

where a random subset of features from the input dataset is

selected for each decision tree. This reduces correlation between

trees and helps prevent overfitting. The number of features

considered at each split point is controlled by the max_features

parameter, which can be set to “sqrt”, “log2” or a specific integer

value. In the tree construction phase each decision tree is built

using a bootstrap sample. At each node the algorithm searches

for the best split among the subset of features determined by

max_features. The quality of the split is evaluated using criteria

such as Gini impurity or entropy. Gini impurity measures the

probability of incorrectly classifying a randomly chosen element

if labeled according to the class distribution in the set with lower

values indicating more homogeneous sets. The formula for Gini

impurity represented as I_g for a set of data with K classes as

shown in equation (1)

 Ig = 1 - ∑ 𝑃𝑖
 2 𝐾

𝑖=1 (1)

𝑃𝑖 is the probability of randomly selecting an element of class i

from the set. The sum is taken over all K classes. This formula

calculates the Gini impurity by summing the squared

probabilities of each class and subtracting the result from 1. A

lower Gini impurity indicates a more homogeneous set of

samples with respect to the target variable. Entropy is a measure

of impurity or disorder in a set of data points. It quantifies the

uncertainty associated with a given set of data points. The

formula for Entropy Ih for a set of data with K classes is given

by below Equation (2)

𝐼ℎ = − ∑ 𝑃𝑖 log2(𝑃𝑖)𝐾
𝑖=1 (2)

 Minimizing the entropy of the resulting subsets is equivalently

to maximizing the information gain. Gini impurity is generally

faster to compute than entropy because it does not involve

logarithmic calculations. This makes the tree-building process

quicker. Hence Gini is preferred over entropy. Throughout the

prediction phase each tree in the forest independently predicts

the class of the input sample. For classification tasks the result

(most frequent class) of the predictions from all the trees is taken

as the final prediction. This process is called aggregation. In

other words the class that receives the most votes among all the

trees is selected as the predicted class.

4. HAND SIGN RECOGNITION SYSTEM
A comprehensive workflow for the proposed Hand Sign

Recognition System is shown in the Figure 3. The workflow

begins with importing the necessary dependencies, such as

Media Pipe (version 0.9.0.1), Scikit-learn (version 1.2.0),

OpenCV (version 4.7.0.68), and Pandas (version 2.0.3). These

libraries provide functionalities for hand tracking, machine

learning, image processing, and data manipulation, respectively.

The next step is capturing a custom dataset, which is a crucial

component for training the hand gesture recognition model. The

dataset consists of 26 classes, one for each alphabet of the

American Sign Language (ASL). Pre-processing steps are

applied to the extracted features, including converting the image

color space from BGR to RGB and normalizing the feature

values. Feature extraction is a critical step in the workflow,

where relevant information is extracted from the input images to

represent the hand gestures effectively. The Media Pipe Library

employed include transfer learning models, hand models, and

various backend models like SSD, YOLO, and CNN. These

models facilitate hand detection, landmark localization, and

drawing utilities. The static images are processed to extract 21

key points of the hand, and a total of 42 features are derived from

each hand, representing the x and y coordinates of the

landmarks. Post-processing operations involve data splitting,

where the dataset is divided into training and testing subsets, and

data serialization, where the features and corresponding labels

are stored in a suitable format for further processing.

Figure 3 Methodology for Hand Sign Recognition System

The next stage is training a classifier using the extracted features

and labels. The Random Forest Classifier with an Ensemble

approach is chosen. Specific hyper parameters are provided,

including the train test split ratio (80:20), the impurity measures,

the number of decision trees, the maximum samples for splitting

nodes and max samples leaf, bootstrapping, and the random state

are chosen. Model evaluation is an essential step to assess the

performance of the trained classifier. Metrics such as accuracy,

precision, recall, and F1-score are computed, and a detailed

classification report is generated. After training and evaluation,

the workflow proceeds to testing, where the trained model is

loaded and initialized using the Media Pipe hands module.

During testing, the model predicts the hand gestures based on

the input images, and the predictions are visualized, allowing for

the display of unknown gestures and their corresponding

probabilities.

5. EVALUATION OF MODEL
The evaluation of the proposed system relies on two

fundamental components: the Stratified K-Fold function and the

GridSearchCV function, both pivotal for robust model

assessment and hyper parameter tuning. Stratified K-Fold is a

cross-validation technique widely used in machine learning to

ensure fair and unbiased model evaluation, especially with

imbalanced datasets. It divides the dataset into `k' folds while

maintaining the original class distribution across each fold. This

ensures that each fold has a proportional representation of the

different classes, minimizing biased evaluations. The value for

k=5 the dataset is split into 5 folds, each having a class

distribution similar to the original dataset.

The process begins with shuffling the dataset to eliminate any

potential ordering bias that might exist. Once shuffled, the data

is partitioned into `k' approximately equal-sized folds. Unlike

standard k-fold cross-validation, where data is partitioned

randomly into folds without considering class distribution,

Stratified K-Fold ensures that each fold contains a balanced

representation of classes. During each iteration of the cross-

validation process, one of the folds is held out as the validation

set, while the remaining folds are used for training the model.

This process is repeated ̀ k' times, with each fold being used once

as a validation set. By rotating the roles of training and

validation sets across folds, Stratified K Fold trains and

evaluates the model multiple times on different data subsets. Its

key advantage is providing reliable performance estimates

across various class distributions, crucial for assessing the

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

46

model's generalization to unseen data, especially with

imbalanced classes. Maintaining a representative mix of classes

in each fold helps detect issues like overfitting or under fitting.

GridSearchCV is a technique used for hyper parameter tuning in

machine learning, essential for optimizing model performance

by systematically exploring a predefined grid of hyper

parameters. The process involves exhaustively searching

through all possible combinations of hyper parameters and

evaluating each combination using cross-validation to identify

the set that produces the best results. Firstly a grid of hyper

parameters and their corresponding values given in Table 2, are

defined. For instance, in a decision tree classifier, parameters

like maximum depth, minimum samples split, and criterion are

included in the grid. GridSearchCV then performs cross-

validation by splitting the training data into `k' folds. It trains the

model on `k-1' folds and evaluates its performance on the

remaining fold, repeating this process `k' times. During each

iteration, GridSearchCV tests every combination of hyper-

parameters from the defined grid. The model is trained and

evaluated using each combination, and the performance metric

specified (such as accuracy, precision, or F1-score) is computed.

This comprehensive evaluation allows GridSearchCV to

identify the hyper-parameter combination that yields the best

performance across all folds.

Combination 4 in Table 3 represents the best combination,

showcasing a strategic approach to constructing a decision tree

ensemble. Notably, it sets the maximum depth to `None'

enabling trees to dynamically adjust their complexity, guarding

against overfitting without arbitrary depth limitations.

Additionally it establishes a minimum leaf size of 1 fostering

refined decision boundaries while maintaining model

interpretability. This combination strikes a balance between

complexity and accuracy, making it the optimal choice for

model performance and generalization. Combination 4

strategically selects the ‘log2’ criterion for feature selection,

balancing randomness and model performance. This criterion

allows the algorithm to explore an optimal number of features

without overwhelming computational resources or risking

overfitting. Employing the `gini' criterion prioritizes splits that

minimize impurity, enhancing the model's generalization

capabilities. Furthermore, Combination 4 utilizes 200

estimators, leveraging the power of ensemble learning to

mitigate biases and errors through averaging. This approach

bolsters robustness and generalization without imposing

excessive computational burdens.

Table 2 Hyper Parameters for Random Forest Classifier

Hyper parameters Values

n_estimators 50, 100, 200

Max_depth None,10,20

Min_samples_split 2,5,10

Min_samples_leaf 1,2,4

Max_features Sqrt,log2

Criterion Gini, Entropy, Log loss

The method was effectively implemented to extract 21 key

points from hand images using Media Pipe's hand module which

utilizes machine learning techniques to accurately identify and

extract key points representing hand landmarks in each image.

These extracted key points provide effective features for

representing sign language gestures. The dataset consists of 26

classes, each representing a different sign language gesture, with

200 images per class, resulting in a total of 5,200 images. For

each image, the Media Pipe hand module extracts 21 key points,

with each key point having both x and y coordinates, resulting

in 42 features per image. Consequently, for the entire dataset,

the total number of features extracted is 2, 18,400 (5,200 images

multiplied by 42 features per image). This detailed

representation of hand landmarks, comprising 21 x-coordinates

and 21 y-coordinates for each image, enables precise and

reliable recognition of sign language gestures.

Table 3 GridSearchCV Result

Parameters Combina

tion 1

Combination

2

Combinatio

n 3

Combinatio

n 4

n_estimators 100 200 50 200

Max_depth 10 20 None None

Max Leaf 5 10 100 2

Min leaf 2 4 1 1

Max_feature

s

sqrt Log2 sqrt Log2

Criterion Entropy Gini Entropy Gini

5.1 Performance Metrics
Accuracy is the ratio of correctly predicted instances to the total

instances in the dataset as shown with Equation 3. It is a measure

of the overall correctness of the model across all classes. Our

model attained an accuracy of 95.67% with 200 estimators,

demonstrating its high performance in hand sign recognition.

Precision is the ratio of correctly predicted positive observations

to the total predicted positive observations as shown with

Equation 4. It measures the proportion of correctly identified

positive cases among all cases that were predicted as positive.

Our model attained a Precision of 95.83\% with 200 estimators.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correct Preditions

Total Number of Predictions
 (3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives + False Positives
 (4)

Recall also known as Sensitivity or true positive rate, is the ratio

of correctly predicted positive observations to all actual

positives in the dataset as given in Equation 5. With 200

estimators, our model achieved an impressive accuracy of

95.67%. The F1 score is the harmonic mean of precision and

recall as shown with Equation 6. It provides a balance between

precision and recall and is often used as a single metric for

evaluating classification models, especially when there is an

uneven class distribution proposed technique attained a score of

95.74%.

Recall =
True Positives

True Positives + False Negatives
 (5)

F1 Score = 2 ×
Precision × Recall

Precision + Recall
 (6)

Table 4 presents the overall results of a proposed technique

using different numbers of estimators 50, 100 and 200 in a

machine learning model. As the number of estimators increases

from 50 to 200, we observe an increasing trend across various

evaluation metrics. This indicates a balanced improvement in

the model's ability to correctly classify positive and negative

instances.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

47

A confusion matrix is a table that is often used to describe the

performance of a classification model on a set of test data for

which the true values are known. It allows visualization of the

performance of an algorithm and helps in understanding how

well the model is performing in terms of classifying different

categories. In the presented confusion matrices, each

corresponding to varying numbers of n-estimators (200, 100 and

50) the performance of the classification models is evaluated

based on their ability to correctly classify samples.

The x-axis and y-axis of the matrix represent the predicted labels

and true labels respectively. Each row in the matrix corresponds

to an actual label while each column represents a predicted label.

The diagonal elements (from the top-left to the bottom-right) of

the matrix represent the correctly classified samples or true

samples where the predicted label matches the true label. These

values are typically highlighted or colored differently to make

them visually distinct. The off-diagonal

Table 4 Performance Metrics for the proposed Hand Sign Recognition System

Estimators True Samples False

Samples

Accuracy Precision Recall F1

Score

50 3979 181 0.9404 0.9421 0.9404 0.9387

100 3958 202 0.9483 0.9497 0.9483 0.9489

200 3944 216 0.9767 0.9583 0.9567 0.9574

Figure 4 Confusion Matrix for Proposed Hand Sign

Recognition System

elements represent the misclassified samples or false samples.

The values in these cells indicate the number of instances that

were incorrectly classified as belonging to a different class. The

confusion matrix for 200 n-estimators is shown in Figure 4.

5.2 Comparative Analysis across Different

Lighting Conditions
In order to make the proposed model robust, we tested it to

operate in different light conditions and with different

individuals. Three different test scenarios aimed at assessing the

detection probability across different lighting conditions like

Light, Dim, Dark are identified. The quality of lighting

conditions were evaluated using different image quality

descriptors like Luminance, Brightness, Contrast, Noise level.

Brightness represents the pixel intensity in range of 0 to 255 for

8-bit color images. The brightness is calculated as the mean

value of all pixels in the image. Contrast measured as the

standard deviation of pixel intensity values. The contrast is

calculated by first computing a histogram of grayscale pixel

values using, and then taking the standard deviation of the

histogram. Theoretically, its range spans from 0 to

approximately 73.74 for 8-bit images, as the standard deviation

can extend to the value of a uniform distribution ranging from 0

to 255. Contrast reflects the extent to which pixel values deviate

from the mean pixel value within the grayscale histogram.

Higher contrast values indicate more pronounced deviations and

greater image contrast. The noise level is estimated by

calculating the standard deviation of the difference between the

grayscale image and a blurred version of the image using a 5x5

Gaussian kernel. This metric estimates the variability in pixel

values attributed to noise. The brightness, contrast, and noise

level considered for 3 cases are tabulated in Table 5.

Case 1

The hand signs are detected in daytime conditions with

sufficient luminance or brightness levels showing a person

displaying three different hand signs labeled as B, C and F

illustrated in Figure 5. The luminance or brightness values range

from 159.29 to 167.54, indicating good overall brightness. The

contrast values show a wide variation from 2020.20 to 402.21

and 464.55. This variation in contrast could indicate differences

in the lighting conditions or scene compositions within this case.

The noise levels ranging from 3.27 to 4.46, which is acceptable

because it can be compensated with high luminance and

brightness. Overall, hand Signs in Case 1 appear to have very

high luminance and brightness compared to other cases, but the

wide variation in contrast values and slightly elevated noise

levels suggest potential challenges in achieving consistent image

quality across this case. Also indicated is a probability value

enclosed in parentheses which represents the model's confidence

in classifying that particular hand sign. Results for hand sign B,

C and F are 0.59, 0.73 and 0.73 respectively.

Case 2

The dim lighting conditions are considered to acquire the images

in Case 2 illustrated in Figure 6. The luminance values range

from 144.08 to 146.05, and the brightness values range from

143.57 to 145.70, which are slightly lower than Case 1 but still

within an acceptable range. However, the contrast values are

exceptionally high, ranging from 1136.97 to 1201.20. Such high

contrast values suggest the presence of very distinct bright and

dark regions within the images, which could potentially lead to

loss of detail in the adequate brightness or darkness areas. The

noise levels are relatively low, ranging from 3.56 to 3.58,

indicating that these images have minimal noise or unwanted

artifacts. However an important factor to note is that this

person's dataset was not included in the training data used to

build the model. This means that the model has not been

explicitly trained on this individual's hand gestures or

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

48

appearances. Figure 5 shows results for B, C and F with

confidence of 0.45, 0.65 and 0.63 respectively.

Case 3

The hand signs in Case 3 represent low-light or dark conditions.

The luminance values range from 75.37 to 79.34, and the

brightness values range from 75.59 to 79.40, which are

significantly lower than the previous two cases, indicating

darker overall conditions. Interestingly, the contrast values for

this case are relatively high, ranging from 1144.59 to 1175.62,

which could be attributed to the presence of both bright and

condition dark regions within the low-light scenes. The noise

levels are the lowest among the three cases, ranging from 3.00

to 3.36, which might be due to the lower overall brightness

levels in these images. Overall, the images in Case 3 as shown

in Figure 7 exhibit low luminance and brightness levels, as

expected for dark conditions. The high contrast values could

pose challenges in preserving detail in both bright and dark

areas, while the relatively low noise levels are a positive aspect.

The results for B, C and F are show as 0.59, 0.48 and 0.61.

Overall, the analysis revealed that daytime images (Case 1) had

high brightness with variable contrast, dim lighting images

(Case 2) had high contrast and low noise, while dark condition

images (Case 3) exhibited low brightness but relatively high

contrast and low noise. The model's classification confidence

varied with lighting conditions, generally decreasing in dimmer

Table 5 The Lighting Conditions for 3 cases.

 Brightness Contrast Noise Level

Case 1 159.29 to 167.54 402.21 - 2020.20 3.27 to 4.46

Case 2 143.57 to 145.70 1136.97 to 1201.20 3.56 to 3.58

Case 3 75.59 to 79.40 1144.59 to 1175.62 3.00 to 3.36

settings. Though, the confidence levels decreased with varying

lighting conditions, the proposed system is successful in

detecting the hand signs.

Figure 5 Case 1 Hand Sign detected in Daytime Condition

Figure 6 Case 2 Hand Sign detected in Moderate light

Figure 7 Case 3 Hand Sign detected in Dark light condition

6. USER INTERFACE TO CONVERT

HAND SIGN TO TEXT AND SPEECH
The primary objective of this paper is to build a user interface to

enable individuals who are unable to speak or hear, to express

themselves effectively using the proposed sign recognition

system. The proposed model is interfaced with a webcam to

acquire hand sign inputs from users in real-time. These are

translated to speech and text in real-time. This innovative

approach not only facilitates communication with others but also

enhances accessibility and inclusivity in various social and

professional settings [16].

 The OpenCV library is employed for capturing frames from the

webcam, processing these frames, and displaying them with

overlays such as text annotations. Additionally, OpenCV

facilitates color space conversions and basic image

manipulations. MediaPipe library is utilized for hand landmark

detection. This library offers pre-trained machine learning

models to accurately locate key points on the hand in real-time,

enabling precise tracking of hand gestures and movements.

Typically, this involves training a model on a dataset of hand

gesture images annotated with their corresponding labels (e.g.,

letters or words). The pyttsx3 library is utilized for text-to-

speech conversion. This library provides an interface to the

platform-specific TTS engines installed on the system, allowing

the script to generate spoken output from text strings. The script

interacts with the user through keyboard commands. These

commands check for system readiness, trigger speech synthesis,

add spaces, deselect words and delete characters from the

constructed word.

The proposed user interface is demonstrated for 2 sample

gestures as shown in the Figure 8 Sample gesture (a) and (b).

With the implementation of key strokes like backspace key

likely allows the user to delete the last entered character, the

delete key enables the user to remove the entire detected text.

The “Ready” state displayed in the images suggests the presence

of a key or command that toggles the system's readiness to

capture and interpret hand gestures. When set to “True” the

application actively monitors and translates the user's hand signs

into text. The inclusion of a key or command that triggers the

text-to-speech functionality is designed. This would allow the

detected text to be vocalized, providing an audible output for

improved accessibility.

In the Figure 8(a) the detected text based on the hand gestures

reads “good morning today is a beautiful day". However, the

“Ready” state is set to False indicating that the system is not

actively capturing or interpreting hand signs at that moment.

Figure 8(b) shows a different sentence detected as “wishing you

a fantastic day ahead” again with the “Ready” state set to False.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

49

Overall, this system integrates computer vision for hand gesture

detection, machine learning for gesture classification, and text-

to-speech technology for spoken output. It offers a practical

framework for real-time translation of hand signs into audible

speech, facilitating communication for individuals with hearing

impairments.

(a) (b)

Figure 8 Sample Gestures identified by the Proposed

System

7. COMPARISON WITH STATE-OF-

ARTS-TECHNIQUES
Jindi Wang et. al. have built a camera-based hand gesture

recognition model by training the model for a particular user

only. They employed a lightweight Multilayer Perceptron

architecture based on contrastive learning, reducing the size of

the data needed and the training timeframes. Experimental

results demonstrated rapid convergence and 94.25% accuracy of

the recognition model[9]. In 2023, Alonazi et al [2] employed

Deep Belief Nets and Convolutional Neural Networks (CNNs)

on a custom Hand Gesture Dataset, attaining an accuracy of

90.73%.

Table 6 Comparatively Analysis with state-of-art techniques

S.no Year Author Dataset Feature

Extraction

Detection

Technique

Accuracy

1. 2025 Proposed Work Custom ASL &

Gesture Dataset

Media Pipe Random Forest 95.73%

2. 2024 Jindi Wang et. al. [9] Custom Gesture

Dataset

Media Pipe Multi-Layer

Perceptron

94.25%

3. 2023 Mohammed Alonazi

et. al.[1]

Custom Hand Gesture CNN Deep Belief

Network and

CNN

90.73%

4. 2023 Christine Dewi et.

al. [3]

Oxford Hand Dataset Yolo7 Yolo7 86.3%

5. 2023 Jyotishman Bora et.

al. [10]

Assamese Sign

Langauge

Media Pipe Custom

Feedforward

Network

99%

6. 2023 Chen et. al. [5] EgoHands & Tiny

HGR datasets

Yolo5l Yolov5l 75.6% and

66.8%

7. 2022 Shashidhar R [6] Indian Sign Language CNN CNN 99%

8. 2021 Shin et. al. [4] ASL Dataset, Massey

Dataset and Finger

Spelling A dataset

Media-pipe API SVM and GBM 87.60%,

87.60%, 98.45%

9. 2022 V Radhika[22] ASL Dataset SVM, KNN,

CNN

97%, 95%,

98.49%

The field of sign language recognition has seen significant

advancements in recent years, with the application of image

processing and machine learning techniques. Based on the

results obtained from the implementation of various n-

estimators in the random forest algorithm for hand sign

recognition, it is evident that increasing the number of

estimators generally improves the accuracy of classification.

The highest accuracy of 95.67% was achieved with 200 n-

estimators, showcasing the robustness of the model in

distinguishing between different hand signs. However, it's

important to note that while higher n-estimators may lead to

improved accuracy, there might be a trade-off with

computational resources and efficiency. Furthermore, the

analysis of confusion matrices revealed consistent trends across

different numbers of n-estimators, with the majority of samples

correctly classified as true positives. This indicates the

effectiveness of the random forest algorithm in accurately

recognizing hand signs.

Jyotishman Bora et. al. implemented a Assamese Sign

recognition model by using Media Pipe hand tracking and

detection API as feature extractor and a custom made Multi-

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

50

Layer Perceptron Network. They achieved an accuracy 94.25%

[9]. Dewi et al. [3] used Yolov7 and Yolo models on the

American Sign Language (ASL) dataset, yielding a mean

average precision of 86.3% and recall of 79.9%. In 2021, G.

Pala

et al. applied Support Vector Machines (SVM), K-Nearest

Neighbors (KNN), and Convolutional Neural Networks (CNN)

on the American Sign Language (ASL) Dataset, achieving an

accuracy of 98.49% for CNN, 83% for SVM, and 93% for

KNN[26]. Chen et al. proposed YOLOv5 in 2023, achieving

accuracies of 75.6\% and 66.8\% on EgoHands and TinyHGR

datasets, respectively[5]. Shin et al.[13] employed Support

Vector Machines (SVM) and Gradient Boosting Machine

(GBM) on ASL dataset, Massey dataset, and Finger Spelling A

dataset in 2021, achieving an average accuracy of 96% for

SVM and 93% for GBM. In 2022, A.Pothuri et al. [19]

proposed Random Forest techniques on the Indian Sign

Language (ISL) dataset, achieving accuracies of 96% for ISL.

Sangum et al. [11] used Random Forest on a Custom Hand

Gesture Dataset in 2015, attaining an accuracy of 90% for

160x120 resolution and 94% for 640x480 resolution.

8. CONCLUSION
In conclusion, the project successfully demonstrated the

feasibility and effectiveness of using the random forest

algorithm for hand sign recognition, laying the foundation for

further research and development in this field. The insights

gained from this project contribute to the advancement of

gesture recognition technology, with potential applications in

human-computer interaction, assistive technology, and

accessibility solutions.

Integration of hand sign recognition capabilities into wearable

devices such as smart glasses or wristbands could enable hands-

free interaction and communication for individuals with

disabilities. Additionally incorporating hand sign recognition

into Internet of Things (IoT) devices could enable gesture-

based control of smart home appliances, entertainment systems

and other connected devices [22, 23]. While there is great

potential for hand sign recognition systems in assistive

technology applications, including communication aids for

individuals with disabilities the accessibility and affordability

of such technologies may limit their widespread adoption.

Machine learning-powered educational applications for sign

language learning and training hold promise creating

immersive virtual reality (VR) or augmented reality (AR)

environments with realistic hand sign recognition capabilities

may still be challenging. Developing adaptive learning

platforms that cater to individual learning styles and abilities

also requires sophisticated machine learning algorithms and

user interface design. Although real-time hand sign recognition

systems have potential applications in healthcare and

rehabilitation integrating these systems into clinical practice

may face regulatory hurdles and require rigorous validation and

testing. Additionally ensuring the accuracy, reliability and

safety of machine learning algorithms in critical healthcare

settings remains a significant challenge

While these future scopes represent exciting opportunities for

advancing real-time hand sign recognition systems using

machine learning, addressing the associated challenges will

require collaborative efforts across multiple disciplines,

including computer science, engineering, healthcare, and social

sciences. Continued research innovation and investment in

these areas are essential to realizing the full potential of hand

sign recognition technology in improving accessibility,

communication and quality of life for individuals worldwide.

9. DECLARATION
All authors declare that they have no conflicts of interest.

10. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template.

11. REFERENCES
[1] Alonazi, Mohammed, Hira Ansar, Naif Al Mudawi, Saud

S. Alotaibi, Nouf Abdullah Almujally, Abdulwahab

Alazeb, Ahmad Jalal, Jaekwang Kim and Moohong Min.

“Smart Healthcare Hand Gesture Recognition Using

CNN-Based Detector and Deep Belief Network.” IEEE

Access 11 (2023): 84922-84933

[2] Abu Salem Musa Miah, Md. Al Mehedi Hasan and J.

Shin, "Dynamic Hand Gesture Recognition Using Multi-

Branch Attention Based Graph and General Deep

Learning Model," in IEEE Access, vol. 11, pp. 4703-4716,

2023, doi: 10.1109/ACCESS.2023.3235368.

[3] Dewi, Christine, Abbott Po Shun Chen, and Henoch Juli

Christanto, "Deep Learning for Highly Accurate Hand

Recognition Based on Yolov7 Model" Big Data and

Cognitive Computing 2023, 7(1):53.

https://doi.org/10.3390/bdcc7010053.

[4] Shin J, Matsuoka A, Hasan MAM, Srizon AY. American

Sign Language Alphabet Recognition by Extracting

Feature from Hand Pose Estimation. Sensors. 2021;

21(17):5856. https://doi.org/10.3390/s21175856.

[5] Chen, Renxiang, and Xia Tian, "Gesture Detection and

Recognition Based on Object Detection in Complex

Background," 2023 Applied Sciences 13, no. 7: 4480.

https://doi.org/10.3390/app13074480.

[6] Shashidhar R, A. S. Manjunath and B. N. Arunakumari,

"Indian Sign Language to Speech Conversion Using

Convolutional Neural Network," 2022 IEEE 2nd Mysore

Sub Section International Conference (MysuruCon),

Mysuru, India, 2022, pp. 1-5, doi:

10.1109/MysuruCon55714.2022.9972574.

[7] Han, Jeong-Seop, et al. "A study on real-time hand gesture

recognition technology by machine learning-based

mediapipe." Journal of System and Management

Sciences 12.2 (2022): 462-476.

[8] Sung, George, et al. "On-device real-time hand gesture

recognition." arXiv preprint arXiv:2111.00038 (2021).

[9] Wang, J., Ivrissimtzis, I., Li, Z. et al., “Hand gesture

recognition for user-defined textual inputs and

gestures. Univ Access Inf Soc ., 2024.

https://doi.org/10.1007/s10209-024-01139-6.

[10] Jyotishman Bora & Dehingia, Saine & Boruah, Abhijit &

Chetia, Anuraag & Gogoi, Dikhit, “Real-time Assamese

Sign Language Recognition using MediaPipe and Deep

Learning,” 2023 Procedia Computer Science. 218. 1384-

1393. 10.1016/j.procs.2023.01.117.

[11] Sangjun, O. & Mallipeddi, Rammohan & Lee, Minho,

“Real Time Hand Gesture Recognition Using Random

Forest and Linear Discriminant Analysis”, In Proceedings

of the 3rd International Conference on Human-Agent

Interaction (HAI '15). Association for Computing

Machinery, New York, NY, USA, 279–282.

https://doi.org/10.1145/2814940.2814997.

https://doi.org/10.3390/bdcc7010053
https://doi.org/10.3390/s21175856
https://doi.org/10.3390/app13074480
https://doi.org/10.1007/s10209-024-01139-6
https://doi.org/10.1145/2814940.2814997

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.66, December 2025

51

[12] Bhushan, Shashi, Mohammed Alshehri, Ismail Keshta,

Ashish Kumar Chakraverti, Jitendra Rajpurohit, and Ahed

Abugabah. 2022. "An Experimental Analysis of Various

Machine Learning Algorithms for Hand Gesture

Recognition" Electronics 11, no. 6: 968.

https://doi.org/10.3390/electronics11060968.

[13] Shin, Jungpil & Miah, Abu Saleh Musa & Akiba, Yuto &

Hirooka, Koki & Hassan, Najmul & Hwang, Yong.

(2024). Korean Sign Language Alphabet Recognition

through the Integration of Handcrafted and Deep

Learning-Based Two-Stream Feature Extraction

Approach. IEEE Access. PP. 1-1.

10.1109/ACCESS.2024.3399839.

[14] Mohammadi, Zahra, Alireza Akhavanpour, Razieh

Rastgoo, and Mohammad Sabokrou. "Diverse hand

gesture recognition dataset." Multimedia Tools and

Applications 83, no. 17 (2024): 50245-50267.

[15] Suharjito, Suharjito & Wiryana, Fanny & Zahra, Amalia.

(2018). Feature Extraction Methods in Sign Language

Recognition System: A Literature Review. 11-15.

10.1109/INAPR.2018.8626857.

[16] S. Adhikary, A. K. Talukdar and K. Kumar Sarma, "A

Vision-based System for Recognition of Words used in

Indian Sign Language Using MediaPipe," 2021 Sixth

International Conference on Image Information

Processing (ICIIP), Shimla, India, 2021, pp. 390-394, doi:

10.1109/ICIIP53038.2021.9702551.

[17] Antonio Guadalupe Cruz Bautista, Jose-Joel Gonzalez-

Barbosa, Juan Bautista, Hurtado-Ramos, Francisco-Javier

Ornelas-Rodriguez, Erick-Alejandro Gonzalez-Barbosa,

"Hand Features Extractor Using Hand Contour - A Case

Study", Automatika - Journal for Control, Measurement,

Electronics, Computing and Communications, Vol. 61,

No. 1, pp. 99-108, 2020.

[18] Ribó, Alba & Warchoł, Dawid & Oszust, Mariusz, “An

Approach to Gesture Recognition with Skeletal Data

Using Dynamic Time Warping and Nearest Neighbor

Classifier,” Journal of Intelligent Learning Systems and

Applications, 2016, Vol. 8. pp. 1-8.

10.5815/ijisa.2016.06.01.

[19] A. S, A. Potluri, S. M. George, G. R and A. S, "Indian Sign

Language Recognition Using Random Forest

Classifier," 2021 IEEE International Conference on

Electronics, Computing and Communication

Technologies (CONECCT), Bangalore, India, 2021, pp. 1-

6, doi: 10.1109/CONECCT52877.2021.9622672.

[20] Joshi, Harita & Golhar, Vaibhav & Gundawar, Janhavi &

Gangurde, Akash & Yenkikar, Anuradha & Sable, Nilesh.

(2024). Real-Time Sign Language Recognition and

Sentence Generation. SSRN Electronic Journal.

10.2139/ssrn.4992818.

[21] V. Bansal, S. Sinha, R. Astya, A. K. Sagar and K. Sahu,

"A Hybrid Approach to Sign Language Recognition Using

MediaPipe and Machine Learning," 2025 IEEE

International Students' Conference on Electrical,

Electronics and Computer Science (SCEECS), Bhopal,

India, 2025, pp. 1-6, doi:

10.1109/SCEECS64059.2025.10940312.

[22] V. Radhika, C. R. Prasad and A. Chakradhar,

"Smartphone-Based Human Activities Recognition

System using Random Forest Algorithm," 2022

International Conference for Advancement in Technology

(ICONAT), Goa, India, 2022, pp. 1-4, doi:

10.1109/ICONAT53423.2022.9726006.

[23] B. Ben Atitallah et al., "Hand Sign Recognition System

Based on EIT Imaging and Robust CNN Classification,"

in IEEE Sensors Journal, Vol. 22, no. 2, pp. 1729-1737,

15 Jan.15, 2022, doi: 10.1109/JSEN.2021.3130982.

[24] Mohit Patil, Pranay Pathole, Hrishikesh Patil, Ashutosh

Raut, Prof. S S Jadhav. “Indian Sign Language

Recognition,” International Journal of Scientific Research

Engineering Trends, Volume 6, Issue 4, July-Aug-2020,

ISSN (Online): 2395-566X.

[25] Mohammadi, Zahra, Alireza Akhavanpour, Razieh

Rastgoo, and Mohammad Sabokrou. "Diverse hand

gesture recognition dataset." Multimedia Tools and

Applications 83, no. 17 (2024): 50245-50267.

[26] Pala, Greeshma, et al. "Machine learning-based hand sign

recognition." 2021 International Conference on Artificial

Intelligence and Smart Systems (ICAIS). IEEE, 2021.

IJCATM : www.ijcaonline.org

https://doi.org/10.3390/electronics11060968

