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ABSTRACT 

Flying Ad-hoc Networks (FANETs), formed by Unmanned 

Aerial Vehicles (UAVs), represent an emerging and promising 

communication paradigm. These networks face unique 

challenges due to UAVs high mobility, limited energy 

resources, and dynamic topology. In this work, we propose a 

novel multi-hop clustering algorithm aimed at creating stable, 

energy-efficient clusters in FANET environments. The 

proposed solution enhances cluster longevity and 

communication efficiency through mobility-aware clustering, 

energy-centric cluster head (CH) selection, and a ground 

station(GS)-assisted cluster maintenance management 

mechanism. First, steady multi-hop clusters are constructed, 

having CHs with not only high stability and high energy but 

also with steady and high-energy neighboring areas, and then a 

proper GS-assisted cluster maintenance mechanism is applied. 

Experimental results, based on extended simulations, 

demonstrate that our approach outperforms existing schemes 

significantly, in terms of cluster stability, communication 

overhead, and security resilience. 
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1. INTRODUCTION 
Unmanned aerial vehicles (UAVs), following the evolution of 

wireless technologies, are increasingly advancing towards 

clustering, networking, and broad intelligent operation [1,2]. 

Ensuring reliable and stable communication among UAVs is 

nowadays essential for coordinated swarm activities and 

continues to be a central area of research. In this context, the 

concept of the Flying Ad Hoc Network (FANET) [3,4] has 

emerged. In a FANET, the UAVs function as independent 

communication nodes, which allows them to autonomously 

establish a decentralized wireless network through mutual 

information exchange. Moreover, equipped with wireless 

communication modules and basic onboard sensors, UAVs can 

function collaboratively as a cohesive, networked group. 

FANETs are becoming increasingly prevalent and offer 

services that reduce the need for human involvement, 

especially in hazardous or hard to reach and practically 

inaccessible environments, thus minimizing potential risks to 

human life [5–9]. As a result, FANETs are attracting growing 

interest in the research community during the last decade [10]. 

Their adaptability, robustness, cost-efficiency, and ease of 

deployment make FANETs suitable for a wide range of 

applications – both civilian and military [11,12]. The concept 

of multi-UAV cooperation is central to FANETs and opens up 

possibilities in numerous fields, including high-precision 

geolocation [13], search and rescue operations [14], intelligent 

transportation systems [15], target recognition [12], disaster 

response and monitoring [17], volcano observation [18], and 

delivery of medical supplies to hard-to-reach areas [19]. They 

are also used in border surveillance [20], forest fire prevention 

and management [21], brain-controlled UAV operations [22], 

and as relay nodes for Internet distribution [23]. FANETs have 

become increasingly important in military operations as well. 

For instance, the U.S. Navy's LOCUST project employs 

swarms of autonomous drones to execute coordinated missions 

[25]. Beyond these established use cases, ongoing research and 

development in both academia and industry are exploring 

additional applications, such as surveying and mapping 

[26,27]. Through swarm coordination, UAVs can carry 

different sensors and operate in the same area concurrently, 

allowing for faster data collection and more efficient mission 

execution [28]. This collaborative behavior envisions a future 

where UAVs are seamlessly integrated into daily life, 

contributing to improved quality of life [29,30]. Despite these 

promising prospects, several technological challenges remain. 

These include rapidly changing network topologies, high node 

mobility, limited energy resources, reliable communication and 

coordination among UAVs, maintaining stable links between 

UAVs and ground stations, managing variations in 

transmission range and node density, and addressing critical 

security concerns in FANETs. 

In this work, we propose a multi-hop clustering algorithm 

tailored to the aerial dynamics of UAVs. It aims to create steady 

clusters using mobility and energy similarity metrics while 

integrating ground station (GS)-assisted cluster maintenance 

mechanisms to enhance robustness and security. The proposed 

cluster formation algorithm initially constructs multi-hop 

clusters in which both the cluster heads (CHs) and the cluster 

members (CMs) located in proximity to the CHs exhibit high 

stability and substantial residual energy. Subsequently, an 

appropriate ground station (GS)-assisted maintenance 

mechanism is implemented to further enhance the stability and 

robustness of the established clusters. The remainder of the 

paper is structured as follows. Section 2 provides the necessary 

background, highlighting the recent advancements in FANET 

clustering. Section 3 presents a detailed description of the 

proposed clustering approach. In Section 4, our extended 

simulation experiments are introduced and a comprehensive 

discussion of the results is provided. Finally, Section 5 

concludes the paper.   

2. CLUSTERING IN FANETs 
FANETs are characterized by high node mobility, rapidly 

changing topologies, and limited energy resources [3,31]. As 
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the number of UAVs in a network grows, coordination and data 

exchange become more complex, increasing system instability. 

These challenges make designing stable and efficient FANET 

solutions difficult [32]. As illustrated in Fig. 1, a widely 

adopted approach is to divide the network into multiple subnets 

using clustering strategies. This hierarchical management 

mitigates the effects of local topology changes and enhances 

overall network performance in terms of stability, energy 

efficiency, and packet reception rate. 

Clustering algorithms aim to form and maintain stable clusters 

at minimal computational and communication cost. The 

selection of cluster heads (CHs) is critical to the stability of the 

cluster structure. Over the years, numerous algorithms have 

been proposed, including the Highest Degree (HD) algorithm 

[33], the Lowest-ID (LID) algorithm [34], the Weighted 

Clustering Algorithm (WCA) [35], and the Mobility-Based 

Clustering (MOBIC) [36]. While the other three rely on single 

factors and struggle to adapt to dynamic environments, WCA 

incorporates multiple parameters—such as node position, 

mobility, and energy consumption—allowing it to adapt better 

to various application scenarios. As a result, many modern 

clustering algorithms (even among the latest) are enhancements 

of WCA. 

Depending on their design goals, existing clustering 

approaches can be categorized into four types: mobility-based, 

trust-based, energy-based, and task-oriented. Mobility-based 

algorithms focus on adapting to dynamic topologies by tracking 

node movement [37]. Trust-based algorithms improve network 

security by identifying and isolating malicious or 

uncooperative nodes [38]. Energy-based methods aim to reduce 

energy consumption and extend network lifespan [39]. Task-

oriented clustering is tailored to specific functional 

requirements or missions [40]. 

The effectiveness of clustering in FANETs largely depends on 

the mechanisms for selecting and switching cluster heads 

(CHs). Several strategies have been introduced. For instance, 

Zang et al. [37] proposed a link expiration time-based 

algorithm that uses location and mobility data. Shu et al [41] 

designed a mobility prediction-based routing algorithm for 

high-speed nodes, selecting CHs based on link stability with 

one-hop neighbors. Wang et al. [42] introduced a neural 

network approach based on gray wavelets and adaptive node 

degree. Singh et al. [38] introduced a trust-based CH selection 

method using fuzzy inference and a reward-punishment 

mechanism to enhance secure communication. 

To improve cluster stability, researchers have also explored CH 

switching and backup mechanisms. Pathak et al. [43] reduced 

CH changes and overhead by incorporating backup nodes 

prioritized by node degree and remaining energy. Mei et al. 

[44] and Wang et al. [45] proposed dynamic weight assignment 

methods to increase algorithm adaptability. Aissa et al. [46] 

introduced safety distance considerations to select both CHs 

and backups, enhancing stability and energy efficiency. Also, 

Bhandari et al. [32] proposed a periodic maintenance 

mechanism based on node mobility, while Guo et al. [47] 

developed a low-latency maintenance scheme to mitigate 

delays caused by unexpected CH failures. 

Beyond traditional methods, bio-inspired algorithms—drawn 

from natural swarm behaviors—have shown promise due to 

their distributed, adaptive, and resilient characteristics. Yu et 

al. [48] developed a clustering algorithm inspired by slime 

mold foraging behavior, leveraging UAV mobility patterns. Li 

et al. [49] combined an improved IK-means algorithm with an 

artificial bee colony approach for fast CH selection in dynamic 

environments. Aftab et al. [50] proposed a hybrid scheme using 

either firefly or dragonfly algorithms for effective cluster 

management. Liu et al. [51] proposed an adaptive algorithm 

(hummingbird-based meta-heuristic) that optimizes network 

topology with varying channels. 

Other efforts have utilized metaheuristics like moth flame 

optimization [52,53] for cluster maintenance and construction. 

To overcome stability problems caused by high mobility and 

limited energy, Khan et al. [54] proposed a firefly-shrimp 

swarm hybrid clustering method. Zhang et al. [40] applied a 

gray wolf-based approach, integrating energy detection for CH 

selection. Arafat and Moh [55] used a 3D PSO-based algorithm 

to improve CH selection efficiency. Finally, Yan et al. [39] 

calculated the optimal number of clusters using bandwidth and 

coverage constraints, and then applied a binary whale 

optimization method for CH selection, with the aim, among 

other goals, of reducing energy consumption. 

 

Fig 1. Cluster-based organization and routing in FANETs 

3. THE PROPOSED MULTI-HOP 

CLUSTERING APPROACH 
As described earlier, the proposed solution is built upon a 

clustering framework in which certain nodes – elected as 

cluster heads (CHs) – serve as leader UAVs for data 

communication and coordination tasks. These CHs either 

collect and forward data received from other UAVs within the 

cluster (members, CMs) or disseminate information to them. 

Data exchange occurs in a multi-hop fashion for both inter-

cluster and intra-cluster communication. Thus, to efficiently 

manage overall cluster stability while maintaining balanced 

communication overhead, we employ a novel multi-hop 

clustering strategy. The proposed algorithm prioritizes cluster 

formation based on two key criteria: the overall stability and 

the spatial centrality of each UAV within its neighborhood. 

This design results in stable clusters with extended lifetimes 

and improved reliability. The proposed approach (named SEFC 

– Steady Energy Efficient Clustering) is developed under the 

following foundational assumptions. 

3.1 Network Assumptions 
▪ Each UAV has a unique ID, GPS, inertial navigation 

system (INS), and onboard processing. 

▪ UAVs are equipped with 3D mobility tracking 

modules and limited energy resources. 

▪ A ground station (GS), analogous to the RSU in 

VANETs, may be intermittently available and can 

assist in clusters maintenance. 
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▪ Aerial communication relies on IEEE 802.11s or 

similar mesh protocols. 

3.2 Cluster Formation Steps 
The basic steps of the proposed protocol for the formation of 

the clusters directly follow: 

i. UAV Advertisement: 
 

Each UAV broadcasts a beacon message containing its ID, 

position in the space (x, y, z), velocity vector, acceleration, and 

residual energy. 

ii. Mobility & Energy Similarity Evaluation: 
 

Each UAV i calculates a Mobility-Energy Difference (MED) 

with its one-hop neighbors. Specifically, the above (MED) 

value is computed with respect to each neighbor node/UAV j 

based on the differences between the two UAVs in speed, 

acceleration and energy, which are the most important factors 

giving a notion of the actual similarity in the mobility and 

resource behavior of both UAVs. More concretely, the 

corresponding differences between the two UAVs (SD(i,j) 

AD(i,j) and ED(i,j) respectively) are computed (and then also 

normalized appropriately) as follows; where S(i), S(j), A(i), 

A(j), E(i), E(j) denote the speed, the acceleration and the 

residual energy of each UAV, and SDmax(i), ADmax(i), EDmax(i) 

are the maximum speed, acceleration and residual energy 

differences among i and all its neighbors: 

𝑆𝐷(𝑖, 𝑗) =
|𝑆(𝑖) − 𝑆(𝑗)|

𝑆𝐷𝑚𝑎𝑥(𝑖)
 

𝐴𝐷(𝑖, 𝑗) =
|𝐴(𝑖) − 𝐴(𝑗)|

𝐴𝐷𝑚𝑎𝑥(𝑖)
 

𝛦𝐷(𝑖, 𝑗) =
𝛦(𝑗) − 𝛦(𝑖)

𝛦𝐷𝑚𝑎𝑥(𝑖)
 

 

Note also here that with respect to SD(i,j) and AD(i,j) it’s 

sufficient to take in account the absolute values of the 

corresponding differences, whereas with respect to ED(i,j) we 

have to take in account the actual difference (in residual 

energy) of the nodes j having only greater residual energy than 

i. The final MED value for each neighbor UAV j with respect 

to i is computed by the following formula, where c1 and c2 are 

(appropriately selected) constant coefficients, with c1 + c2 + 

c3 = 1.  

𝑀𝐸𝐷(𝑖, 𝑗) =  𝑐1 ⋅ 𝑆𝐷(𝑖, 𝑗)  +  𝑐2 ⋅ 𝐴𝐷(𝑖, 𝑗)  +  𝑐3 ⋅ (1

− 𝛦𝐷(𝑖, 𝑗)) 

Only neighbors below a MED threshold and flying in similar 

direction are retained as candidates for cluster membership. 

Note also here that, actually, the complement of ED(i,j) (1-

ED(i,j)) is taken in account in the above formula since we are 

interested to keep in the list the neighbors with sufficiently 

larger residual energy. 

iii. Overall Stability Factor (OSF) Calculation: 
 

Next, each UAV computes its Overall Stability Factor (OSF) 

based (a) on its total/average mobility (speed, acceleration) and 

residual energy differences with all the eligible (according to 

the computed above MED value) neighbors, as well as (b) on 

the degree (# of neighbors / node density) of the UAV node and 

its total/average distance form all its eligible neighbors. More 

concretely, the OSF value of each UAV i is computed as 

follows. 

𝑂𝑆𝐹(𝑖) =  𝛼 ⋅ 𝑆𝐷𝑎𝑣(𝑖) +  𝛽 ⋅ 𝐴𝐷𝑎𝑣(𝑖) +  𝛾 ⋅ 𝛦𝐷𝑎𝑣(𝑖)

+  𝛿 ⋅ 𝐷𝑎𝑣(𝑖) +  𝜀 ⋅ 𝑑(𝑖) 

With respect to the above calculation, α, β, γ, δ and ε are 

(suitably selected) constant coefficients, with α + β + γ + δ + 

ε = 1, d(i) stands as the degree of UAV node i, and SDav(i), 

ADav(i), EDav(i), Dav(i) represent the justified measurements 

with regard to the average speed difference, the average 

acceleration difference, the average residual energy difference 

and the average relative distance, respectively, between UAV i 

and all its neighbor UAVs (let’s name it set Ni). The SDav(i), 

ADav(i), EDav(i) and Dav(i) measures are more specifically 

calculated as follows. 

𝑆𝐷𝑎𝑣(𝑖) =
∑ (1 − 𝑆𝐷(𝑖, 𝑗))𝑗∊𝑁𝑖

𝑑(𝑖)
 

𝐴𝐷𝑎𝑣(𝑖) =
∑ (1 − 𝐴𝐷(𝑖, 𝑗))𝑗∊𝑁𝑖

𝑑(𝑖)
 

𝐸𝐷𝑎𝑣(𝑖) =
∑ 𝐸𝐷(𝑖, 𝑗)𝑗∊𝑁𝑖

𝑑(𝑖)
 

𝐷𝑎𝑣(𝑖) =
1

𝑑(𝑖)
⋅ ∑(1 −

𝐷(𝑖, 𝑗)

𝐷max(𝑖)
𝑗∊𝑁𝑖

) 

where: 

𝐷(𝑖, 𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

 + (𝑧𝑖 − 𝑧𝑗)
2
 

Note that Dmax(i) is the maximum distance of UAV i from all 

its neighbors. Note also that all except EDav(i) are taken in 

account with suitable reverse normalization, in order to choose 

the maximum as the best.  

Moreover, Dav(i) – which represents the average distance value 

for each UAV – is computed as the cumulative mean square 

distance of the UAV to its direct neighbors, divided by its 

degree as shown above (considering that xi,yi,zi and xj,yj,zj are 

the location coordinates of UAVs i and j respectively). 

iv. UAV Stability (OSF) Broadcast:  

Each UAV broadcasts its OSF and ID. 

v. Parent Selection & Cluster Head (CH) Election: 

Each UAV selects the neighbor from its similarity set with the 

highest OSF (greater than its own) as its parent. If no suitable 

parent exists, it elects itself as a Cluster Head (CH). 

vi. Backup Cluster Head (BKCH): 

The one-hop neighbors of the current CHs with the next-highest 

OSF value are designated as backup CHs (BKCHs – utilized 

later in cluster maintenance phase). 

3.3 Cluster Maintenance Management 
When the CH/CMs fall within the range of a Ground Station 

(GS), the following steps are executed: 

i. Local Stability Re-evaluation: 

The GS recalculates the OSF values based only on current 

cluster members, focusing on relative aerial movement and 

remaining energy. 

ii. CH Handover: 

If another node (e.g., the BKCH) has a significantly higher 

OSF, the CH role is reassigned accordingly. 

iii. Re-clustering Trigger: 

If the average OSF values fall below a threshold, the GS issues 

a re-clustering command and notifies accordingly the in-range 
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CHs and CMs.  

4. SIMULATION EXPERIMENTS AND 

PERFORMANCE ANALYSIS 
In this section, we present in details the extended simulation 

experiments conducted to demonstrate the efficiency and 

scalability of the proposed approach. Specifically, we perform 

a comparative performance analysis between the proposed 

SEFC algorithm and two existing clustering algorithms – PICA 

[1] and OSCA [43] – using the OMNeT++ network simulator 

under identical simulation conditions. 

The PICA algorithm was constructed to overcome issues 

related to the delay and stability of the network, considering 

UAV scenarios with high mobility. By considering UAV 

movement and residual energy, and using improved mobility 

and distance security metrics, PICA keeps drones at safe 

distances, maintains stable links and ensures longer network 

lifetime. Furthermore, it strengthens cluster maintenance 

through a backup CH selection mechanism and incorporates 

damage detection and cluster merging strategies to improve 

cluster robustness and stability. 

Conversely, the OSCA algorithm focuses on enhancing 

network stability by minimizing cluster head changes and 

reducing clustering overhead. It introduces a backup node that 

takes over as the new cluster head when the current one fails or 

leaves the cluster, subsequently selecting a new backup node. 

This mechanism maintains network availability and limits 

interference. Additionally, OSCA determines the priorities of 

CHs and backup cluster-head nodes, based on node degree and 

residual battery life, thereby selecting the most suitable nodes 

for these roles. 

The reader may easily notice that all the above three algorithms 

– PICA, OSCA, and the proposed SEFC algorithm – share the 

common goal of improving clustering stability and maintaining 

network availability through the backup cluster head concept. 

Apparently, this shared characteristic makes them suitable 

candidates for both technical comparison and reliable 

experimental evaluation. 

Moreover, in the overall experimental design presented 

throughout this section, we’ve appropriately varied the number 

of nodes and the maximum node mobility speed to assess each 

algorithm’s performance and robustness across different 

network scales and mobility conditions. Specifically, adjusting 

the number of nodes evaluates scalability and the load on 

cluster head nodes, while varying mobility speed and 

acceleration simulates realistic network dynamics, allowing 

analysis of communication delay and connection stability 

under different movement rates. 

Finally, to reliably evaluate the clustering performance of the 

involved algorithms, we used four key metrics: average end-to-

end delay, energy consumption, average cluster head duration, 

and the number of inter-cluster member (CM) switches. These 

metrics collectively assess communication performance, 

energy efficiency, and clustering stability, providing a 

comprehensive performance evaluation. This validation 

framework enables optimization and refinement of the 

clustering algorithm, enhancing its adaptability and reliability 

in real-world applications. The specific simulation parameters 

and their corresponding values are consistent with those used 

in [1], ensuring the reliability and comparability of the 

experimental results and conclusions. 

4.1 Average end-to-end delay  
The average end-to-end delay represents the mean time 

required for data packets to travel from source nodes to 

destination nodes. This metric is directly influenced by the 

number of UAVs in the network, as higher node density and 

mobility can lead to network congestion, packet loss, and 

consequently longer transmission times. When a clustering 

algorithm establishes a more stable network topology, 

communication between nodes becomes faster and more 

reliable, thereby reducing the overall end-to-end delay.  

Figure 2 presents a comparative experimental analysis of the 

average end-to-end delay achieved by the proposed SEFC 

algorithm and the PICA and OSCA algorithms. The simulated 

experiments were performed by varying the number of UAVs 

from 40 to 140, with a maximum flight speed of 60m/s. 

Among all simulation scenarios, we can notice that the SEFC 

algorithm steadily achieves the lowest average end-to-end 

delay, showing reductions of 11.6% and 24.3% compared to 

PICA and OSCA, respectively. As we can easily realize, this 

improvement is mainly based on the fact that SEFC enhances 

link stability via the weighted evaluation of multiple 

complementary criteria during CH selection. Moreover, by 

minimizing packet retransmissions, SEFC effectively reduces 

the overall delay. In contrast, PICA and OSCA primarily rely 

on a limited set of parameters, such as inter-node distance and 

relative mobility; a weaker approach that may lead to unstable 

transmission paths, higher number of packet retransmissions 

and (as a result) increased average end-to-end delay. 

 

Fig 2. Average end-to-end delay time for varying # of 

UAVs 

4.2 Average energy consumption  
The energy consumption of UAVs serves as a crucial metric for 

evaluating the energy efficiency of clustering algorithms. As a 

consequence, an effective clustering approach should be 

capable of forming clusters that enable UAVs to communicate 

while minimizing energy expenditure. More concretely, lower 

levels of energy consumption show that the algorithm utilizes 

node resources efficiently during execution, thus prolonging 

the lifetime of the node and enhancing the stability of the 

system. Furthermore, reduced levels in energy consumption, 

also usually imply less communication overhead, which leads 

to reduced delays in data transmission, less bandwidth usage 

and increased network robustness. As a result, the lifetime of 

the network is prolonged, leading to more viable underlying 

applications. Figure 3 shows the results obtained with regard to 

energy consumption for varying numbers of UAVs. 



International Journal of Computer Applications (0975 – 8887)  

Volume 187 – No.63, December 2025 

16 

 
Fig 3. Average energy consumption for varying # of UAVs 

As we can see in the above figure, SEFC (which employs a 

multi-criteria and multi-hop clustering approach) exhibits a 

slightly higher control overhead than PICA and OSCA when 

the number of UAVs is relatively small. This leads to a 

marginal increase in energy consumption of approximately 

0.55% compared to OSCA. However, as the number of nodes 

grows, the multi-criteria basis of SEFC enhances network 

stability, resulting in energy consumption reductions of 2.45% 

and 3.65% relative to PICA and OSCA, respectively. 

4.3 Average CH duration  
Cluster head duration refers to the period during which a UAV 

maintains its role as a cluster head before transitioning to a non-

cluster head state. Figure 4 presents a comparison of the SEFC, 

PICA, and OSCA algorithms in terms of average cluster head 

duration for a network of 100 UAVs operating at different 

maximum flight speeds. As UAV speed increases, the average 

cluster head retention time decreases because higher mobility 

accelerates topology changes, leading to more frequent 

disconnections between nodes. A longer average CH duration 

indicates that the clustering algorithm forms more stable cluster 

partitions capable of maintaining structural consistency even 

under dynamic network conditions. As we can easily realize, 

this leads to increased adaptability and potential to retain stable 

cluster structures. UAVs that keep the CH role for extended 

periods can provide more reliable communication and routing 

services, thus improving the overall network stability and 

performance.  

Based on Figure 4, we can notice that the SEFC algorithm 

achieves (compared to PICA and OSCA) significantly longer 

cluster head retention times, with improvements of 22.18% and 

83.27%, respectively. This superior performance results from 

SEFC’s multi-criteria clustering mechanism, which combines 

multiple mobility-related factors during cluster head selection, 

thus enhancing cluster stability. In contrast, PICA and OSCA 

rely on less effective selection strategies, which cause frequent 

CH changes in highly dynamic environments due to constant 

node switching between clusters. 

 

Fig 4. Average CH duration for varying maximum velocity 

4.4 Average number of CM switches  
The node cluster switching count measures cluster stability 

from the perspective of cluster members (CMs). A lower 

switching count indicates greater cluster stability. As shown in 

Figure 5, increasing node speed increases the potential for 

network topology changes, thus leading to higher switching 

counts across all the three involved algorithms. 

A smaller average number of inter-cluster switches indicates 

that the algorithm effectively maintains sufficiently stable 

cluster structures despite the node mobility and network 

fluctuations, thus minimizing frequent cluster reassignments. 

This demonstrates the algorithm’s adaptability and its ability to 

preserve consistent clustering results even under intense 

dynamic conditions. Additionally, fewer inter-cluster switches 

help reduce overall network overhead and communication 

delay, improving system efficiency. 

Observing Figure 5, we can notice that SEFC achieves 

(compared to PICA and OSCA) reductions in the number of 

CM switches of 7.37% and 14.29%, respectively. This is 

mainly based on SEFC’s multi-criteria clustering mechanism 

combined with its multi-hop organization structure, which 

together minimize frequent CM disconnections. In contrast, 

PICA and OSCA employ less effective clustering strategies, 

resulting in more frequent disconnections in highly dynamic 

environments. As a result, disconnected nodes must rejoin new 

clusters, incurring additional switching overhead. 

 

Fig 5. Average # of CM switches for varying maximum 

velocity 

As a genelal conclusion, the proposed solution (SEFC 

alhorithm), provides significant improvements over PICA and 

OSCA (two typical representatives of the existing clustering 

approaches, and suitable candidates for reliable experimental 

evaluation), mainly based on the efficient combination of (a) 

multiple-objective criteria during the cluster formation phase, 

and (b) a carefully designed backup-CH based maintenance 

mechamism. Due to the above combined features, the overall 

cluster stability is enhanced, the communication overhead is 

minimized, and the overall delay is reduced. Corresponding 

improvements have been noticed in all the relevant measures, 

like the average CH duration time,  the average number of CM 

switches, the energy consumption, the communication 

overhead and the end-to-end delay. In the opposite, PICA and 

OSCA follow less complicated cluster formation schemes, 

which lead to less effective overall solutions, because they 

easily cause frequent CH changes in dynamic environments 

due to constant node switching between clusters. The control 

overhead is slightly increased in case of the SEFC algorithm, 

which is a relative disadvantage especially for small clusters, 

however the significant overall gains provided in stability, 

energy consumption and end-to-end delay validate it’s clear 

superiority especially for dynamic environments.  
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5. CONCLUSION 
Throughout the present work, a novel multi-hop clustering 

algorithm tailored to the aerial dynamics of UAVs is presented 

and evaluated via simulated experiments. It aims to create 

steady clusters using multi-objective criteria, such as mobility 

and energy similarity metrics etc., while integrating ground 

station (GS)-assisted cluster maintenance mechanisms to 

enhance robustness and stability. The proposed cluster 

formation algorithm initially establishes multi-hop clusters in 

which both the cluster heads (CHs) and the cluster members 

(CMs) located near the CHs possess high stability and 

substantial residual energy. Subsequently, an appropriate GS-

assisted maintenance mechanism is employed to further 

enhance the stability and longevity of the formed clusters. 

Simulation results demonstrate that the proposed approach 

outperforms existing schemes in terms of cluster stability (i.e. 

by measuring the average CH duration time and the average 

number of CM switches in many cases), energy consumption, 

communication overhead, and end-to-end delay.  

The extension and optimization of the proposed algorithm 

(SEFC) for even more dynamic environments with real-time 

processing and re-action requirements, as well as for efficient 

involvement in modern edge computing scenarios for task 

offloading procedures, is of high priority in our future work. 

Also, the involvement of a trust factor in the cluster formation 

criteria, as well as the incorporation of a security (trust-based) 

maintenance mechanism, are considered as highly necessary 

extensions in order the proposed scheme cope with the 

requirements of the modern FANETs environments.  
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