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ABSTRACT

Flying Ad-hoc Networks (FANETSs), formed by Unmanned
Aerial Vehicles (UAVs), represent an emerging and promising
communication paradigm. These networks face unique
challenges due to UAVs high mobility, limited energy
resources, and dynamic topology. In this work, we propose a
novel multi-hop clustering algorithm aimed at creating stable,
energy-efficient clusters in FANET environments. The
proposed  solution enhances cluster longevity and
communication efficiency through mobility-aware clustering,
energy-centric cluster head (CH) selection, and a ground
station(GS)-assisted  cluster ~maintenance management
mechanism. First, steady multi-hop clusters are constructed,
having CHs with not only high stability and high energy but
also with steady and high-energy neighboring areas, and then a
proper GS-assisted cluster maintenance mechanism is applied.
Experimental results, based on extended simulations,
demonstrate that our approach outperforms existing schemes
significantly, in terms of cluster stability, communication
overhead, and security resilience.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVs), following the evolution of
wireless technologies, are increasingly advancing towards
clustering, networking, and broad intelligent operation [1,2].
Ensuring reliable and stable communication among UAVs is
nowadays essential for coordinated swarm activities and
continues to be a central area of research. In this context, the
concept of the Flying Ad Hoc Network (FANET) [3,4] has
emerged. In a FANET, the UAVs function as independent
communication nodes, which allows them to autonomously
establish a decentralized wireless network through mutual
information exchange. Moreover, equipped with wireless
communication modules and basic onboard sensors, UAVs can
function collaboratively as a cohesive, networked group.
FANETs are becoming increasingly prevalent and offer
services that reduce the need for human involvement,
especially in hazardous or hard to reach and practically
inaccessible environments, thus minimizing potential risks to
human life [5-9]. As a result, FANETS are attracting growing
interest in the research community during the last decade [10].

Their adaptability, robustness, cost-efficiency, and ease of
deployment make FANETSs suitable for a wide range of

Marios Perlitis
Democritus University of Thrace,
University Campus, 69100, Komotini, Greece

applications — both civilian and military [11,12]. The concept
of multi-UAV cooperation is central to FANETSs and opens up
possibilities in numerous fields, including high-precision
geolocation [13], search and rescue operations [14], intelligent
transportation systems [15], target recognition [12], disaster
response and monitoring [17], volcano observation [18], and
delivery of medical supplies to hard-to-reach areas [19]. They
are also used in border surveillance [20], forest fire prevention
and management [21], brain-controlled UAV operations [22],
and as relay nodes for Internet distribution [23]. FANETS have
become increasingly important in military operations as well.
For instance, the U.S. Navy's LOCUST project employs
swarms of autonomous drones to execute coordinated missions
[25]. Beyond these established use cases, ongoing research and
development in both academia and industry are exploring
additional applications, such as surveying and mapping
[26,27]). Through swarm coordination, UAVs can carry
different sensors and operate in the same area concurrently,
allowing for faster data collection and more efficient mission
execution [28]. This collaborative behavior envisions a future
where UAVs are seamlessly integrated into daily life,
contributing to improved quality of life [29,30]. Despite these
promising prospects, several technological challenges remain.
These include rapidly changing network topologies, high node
mobility, limited energy resources, reliable communication and
coordination among UAVs, maintaining stable links between
UAVs and ground stations, managing variations in
transmission range and node density, and addressing critical
security concerns in FANETS.

In this work, we propose a multi-hop clustering algorithm
tailored to the aerial dynamics of UAVs. It aims to create steady
clusters using mobility and energy similarity metrics while
integrating ground station (GS)-assisted cluster maintenance
mechanisms to enhance robustness and security. The proposed
cluster formation algorithm initially constructs multi-hop
clusters in which both the cluster heads (CHs) and the cluster
members (CMs) located in proximity to the CHs exhibit high
stability and substantial residual energy. Subsequently, an
appropriate ground station (GS)-assisted maintenance
mechanism is implemented to further enhance the stability and
robustness of the established clusters. The remainder of the
paper is structured as follows. Section 2 provides the necessary
background, highlighting the recent advancements in FANET
clustering. Section 3 presents a detailed description of the
proposed clustering approach. In Section 4, our extended
simulation experiments are introduced and a comprehensive
discussion of the results is provided. Finally, Section 5
concludes the paper.

2. CLUSTERING IN FANETS
FANETSs are characterized by high node mobility, rapidly
changing topologies, and limited energy resources [3,31]. As
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the number of UAVs in a network grows, coordination and data
exchange become more complex, increasing system instability.
These challenges make designing stable and efficient FANET
solutions difficult [32]. As illustrated in Fig. 1, a widely
adopted approach is to divide the network into multiple subnets
using clustering strategies. This hierarchical management
mitigates the effects of local topology changes and enhances
overall network performance in terms of stability, energy
efficiency, and packet reception rate.

Clustering algorithms aim to form and maintain stable clusters
at minimal computational and communication cost. The
selection of cluster heads (CHs) is critical to the stability of the
cluster structure. Over the years, numerous algorithms have
been proposed, including the Highest Degree (HD) algorithm
[33], the Lowest-ID (LID) algorithm [34], the Weighted
Clustering Algorithm (WCA) [35], and the Mobility-Based
Clustering (MOBIC) [36]. While the other three rely on single
factors and struggle to adapt to dynamic environments, WCA
incorporates multiple parameters—such as node position,
mobility, and energy consumption—allowing it to adapt better
to various application scenarios. As a result, many modern
clustering algorithms (even among the latest) are enhancements
of WCA.

Depending on their design goals, existing -clustering
approaches can be categorized into four types: mobility-based,
trust-based, energy-based, and task-oriented. Mobility-based
algorithms focus on adapting to dynamic topologies by tracking
node movement [37]. Trust-based algorithms improve network
security by identifying and isolating malicious or
uncooperative nodes [38]. Energy-based methods aim to reduce
energy consumption and extend network lifespan [39]. Task-
oriented clustering is tailored to specific functional
requirements or missions [40].

The effectiveness of clustering in FANETS largely depends on
the mechanisms for selecting and switching cluster heads
(CHs). Several strategies have been introduced. For instance,
Zang et al. [37] proposed a link expiration time-based
algorithm that uses location and mobility data. Shu et al [41]
designed a mobility prediction-based routing algorithm for
high-speed nodes, selecting CHs based on link stability with
one-hop neighbors. Wang et al. [42] introduced a neural
network approach based on gray wavelets and adaptive node
degree. Singh et al. [38] introduced a trust-based CH selection
method using fuzzy inference and a reward-punishment
mechanism to enhance secure communication.

To improve cluster stability, researchers have also explored CH
switching and backup mechanisms. Pathak et al. [43] reduced
CH changes and overhead by incorporating backup nodes
prioritized by node degree and remaining energy. Mei et al.
[44] and Wang et al. [45] proposed dynamic weight assignment
methods to increase algorithm adaptability. Aissa et al. [46]
introduced safety distance considerations to select both CHs
and backups, enhancing stability and energy efficiency. Also,
Bhandari et al. [32] proposed a periodic maintenance
mechanism based on node mobility, while Guo et al. [47]
developed a low-latency maintenance scheme to mitigate
delays caused by unexpected CH failures.

Beyond traditional methods, bio-inspired algorithms—drawn
from natural swarm behaviors—have shown promise due to
their distributed, adaptive, and resilient characteristics. Yu et
al. [48] developed a clustering algorithm inspired by slime
mold foraging behavior, leveraging UAV mobility patterns. Li
et al. [49] combined an improved IK-means algorithm with an
artificial bee colony approach for fast CH selection in dynamic
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environments. Aftab et al. [50] proposed a hybrid scheme using
either firefly or dragonfly algorithms for effective cluster
management. Liu et al. [51] proposed an adaptive algorithm
(hummingbird-based meta-heuristic) that optimizes network
topology with varying channels.

Other efforts have utilized metaheuristics like moth flame
optimization [52,53] for cluster maintenance and construction.
To overcome stability problems caused by high mobility and
limited energy, Khan et al. [54] proposed a firefly-shrimp
swarm hybrid clustering method. Zhang et al. [40] applied a
gray wolf-based approach, integrating energy detection for CH
selection. Arafat and Moh [55] used a 3D PSO-based algorithm
to improve CH selection efficiency. Finally, Yan et al. [39]
calculated the optimal number of clusters using bandwidth and
coverage constraints, and then applied a binary whale
optimization method for CH selection, with the aim, among
other goals, of reducing energy consumption.
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Fig 1. Cluster-based organization and routing in FANETSs

3. THE PROPOSED MULTI-HOP
CLUSTERING APPROACH

As described earlier, the proposed solution is built upon a
clustering framework in which certain nodes — elected as
cluster heads (CHs) — serve as leader UAVs for data
communication and coordination tasks. These CHs either
collect and forward data received from other UAVs within the
cluster (members, CMs) or disseminate information to them.
Data exchange occurs in a multi-hop fashion for both inter-
cluster and intra-cluster communication. Thus, to efficiently
manage overall cluster stability while maintaining balanced
communication overhead, we employ a novel multi-hop
clustering strategy. The proposed algorithm prioritizes cluster
formation based on two key criteria: the overall stability and
the spatial centrality of each UAV within its neighborhood.
This design results in stable clusters with extended lifetimes
and improved reliability. The proposed approach (named SEFC
— Steady Energy Efficient Clustering) is developed under the
following foundational assumptions.

3.1 Network Assumptions
= Each UAV has a unique ID, GPS, inertial navigation
system (INS), and onboard processing.

=  UAVs are equipped with 3D mobility tracking
modules and limited energy resources.

= A ground station (GS), analogous to the RSU in
VANETSs, may be intermittently available and can
assist in clusters maintenance.
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= Aerial communication relies on IEEE 802.11s or
similar mesh protocols.

3.2 Cluster Formation Steps
The basic steps of the proposed protocol for the formation of
the clusters directly follow:

i. UAV Advertisement:

Each UAV broadcasts a beacon message containing its ID,
position in the space (X, y, z), velocity vector, acceleration, and
residual energy.

ii. Mobility & Energy Similarity Evaluation:

Each UAV i calculates a Mobility-Energy Difference (MED)
with its one-hop neighbors. Specifically, the above (MED)
value is computed with respect to each neighbor node/UAV j
based on the differences between the two UAVs in speed,
acceleration and energy, which are the most important factors
giving a notion of the actual similarity in the mobility and
resource behavior of both UAVs. More concretely, the
corresponding differences between the two UAVs (SD(i;)
AD(ij) and ED(i,j) respectively) are computed (and then also
normalized appropriately) as follows; where S(i), S(j), A(i),
A(@j), E(i), E(j) denote the speed, the acceleration and the
residual energy of each UAV, and SDmax(i), ADmax(i), EDmax(i)
are the maximum speed, acceleration and residual energy
differences among i and all its neighbors:
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Note also here that with respect to SD(i,j) and AD(ij) it’s
sufficient to take in account the absolute values of the
corresponding differences, whereas with respect to ED(i,j) we
have to take in account the actual difference (in residual
energy) of the nodes j having only greater residual energy than
i. The final MED value for each neighbor UAV j with respect
to 7 is computed by the following formula, where ¢/ and c2 are
(appropriately selected) constant coefficients, with ¢/ + ¢2 +
c3=1.

MED(i,j) = ¢;-SD(i,j) + ¢ -AD(i,j) + c3-(1
—ED(.)))

Only neighbors below a MED threshold and flying in similar
direction are retained as candidates for cluster membership.
Note also here that, actually, the complement of ED(i,j) (I-
ED(ij)) is taken in account in the above formula since we are
interested to keep in the list the neighbors with sufficiently
larger residual energy.

iii. Overall Stability Factor (OSF) Calculation:

Next, each UAV computes its Overall Stability Factor (OSF)
based (a) on its total/average mobility (speed, acceleration) and
residual energy differences with all the eligible (according to
the computed above MED value) neighbors, as well as (b) on
the degree (# of neighbors / node density) of the UAV node and
its total/average distance form all its eligible neighbors. More
concretely, the OSF value of each UAV i is computed as
follows.

OSF()) = a-SDgy(i) + B+ ADgp() + ¥ - ED gy (D)
+ 8 Doy + £-d(D)
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With respect to the above calculation, a, f, y, 6 and ¢ are
(suitably selected) constant coefficients, with o + f +y + J +
¢ = 1, d(i) stands as the degree of UAV node i, and SDav(i),
ADuv(i), EDuv(i), Dav(i) represent the justified measurements
with regard to the average speed difference, the average
acceleration difference, the average residual energy difference
and the average relative distance, respectively, between UAV i
and all its neighbor UAVs (let’s name it set N;). The SDav(i),
ADav(i), EDav(i) and Day(i) measures are more specifically
calculated as follows.
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where:

D(,j)) = \/(xi - xj)z +(yi — )’j)z +(z - Zj)Z

Note that Dmax(i) is the maximum distance of UAV i from all
its neighbors. Note also that all except EDqyv(i) are taken in
account with suitable reverse normalization, in order to choose
the maximum as the best.

Moreover, Dav(i) — which represents the average distance value
for each UAV — is computed as the cumulative mean square
distance of the UAV to its direct neighbors, divided by its
degree as shown above (considering that x;y:,z; and x;,y;,z; are
the location coordinates of UAVs i and j respectively).

iv. UAV Stability (OSF) Broadcast:

Each UAYV broadcasts its OSF and ID.

v. Parent Selection & Cluster Head (CH) Election:

Each UAYV selects the neighbor from its similarity set with the
highest OSF (greater than its own) as its parent. If no suitable
parent exists, it elects itself as a Cluster Head (CH).

vi. Backup Cluster Head (BKCH):

The one-hop neighbors of the current CHs with the next-highest
OSF value are designated as backup CHs (BKCHs — utilized
later in cluster maintenance phase).

3.3 Cluster Maintenance Management
When the CH/CMs fall within the range of a Ground Station
(GS), the following steps are executed:

i. Local Stability Re-evaluation:

The GS recalculates the OSF values based only on current
cluster members, focusing on relative aerial movement and
remaining energy.

ii. CH Handover:

If another node (e.g., the BKCH) has a significantly higher
OSF, the CH role is reassigned accordingly.

iii. Re-clustering Trigger:

If the average OSF values fall below a threshold, the GS issues
a re-clustering command and notifies accordingly the in-range
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CHs and CMs.

4. SIMULATION EXPERIMENTS AND
PERFORMANCE ANALYSIS

In this section, we present in details the extended simulation
experiments conducted to demonstrate the efficiency and
scalability of the proposed approach. Specifically, we perform
a comparative performance analysis between the proposed
SEFC algorithm and two existing clustering algorithms — PICA
[1] and OSCA [43] — using the OMNeT++ network simulator
under identical simulation conditions.

The PICA algorithm was constructed to overcome issues
related to the delay and stability of the network, considering
UAV scenarios with high mobility. By considering UAV
movement and residual energy, and using improved mobility
and distance security metrics, PICA keeps drones at safe
distances, maintains stable links and ensures longer network
lifetime. Furthermore, it strengthens cluster maintenance
through a backup CH selection mechanism and incorporates
damage detection and cluster merging strategies to improve
cluster robustness and stability.

Conversely, the OSCA algorithm focuses on enhancing
network stability by minimizing cluster head changes and
reducing clustering overhead. It introduces a backup node that
takes over as the new cluster head when the current one fails or
leaves the cluster, subsequently selecting a new backup node.
This mechanism maintains network availability and limits
interference. Additionally, OSCA determines the priorities of
CHs and backup cluster-head nodes, based on node degree and
residual battery life, thereby selecting the most suitable nodes
for these roles.

The reader may easily notice that all the above three algorithms
— PICA, OSCA, and the proposed SEFC algorithm — share the
common goal of improving clustering stability and maintaining
network availability through the backup cluster head concept.
Apparently, this shared characteristic makes them suitable
candidates for both technical comparison and reliable
experimental evaluation.

Moreover, in the overall experimental design presented
throughout this section, we’ve appropriately varied the number
of nodes and the maximum node mobility speed to assess each
algorithm’s performance and robustness across different
network scales and mobility conditions. Specifically, adjusting
the number of nodes evaluates scalability and the load on
cluster head nodes, while varying mobility speed and
acceleration simulates realistic network dynamics, allowing
analysis of communication delay and connection stability
under different movement rates.

Finally, to reliably evaluate the clustering performance of the
involved algorithms, we used four key metrics: average end-to-
end delay, energy consumption, average cluster head duration,
and the number of inter-cluster member (CM) switches. These
metrics collectively assess communication performance,
energy efficiency, and clustering stability, providing a
comprehensive performance evaluation. This validation
framework enables optimization and refinement of the
clustering algorithm, enhancing its adaptability and reliability
in real-world applications. The specific simulation parameters
and their corresponding values are consistent with those used
in [1], ensuring the reliability and comparability of the
experimental results and conclusions.

4.1 Average end-to-end delay

The average end-to-end delay represents the mean time

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.63, December 2025

required for data packets to travel from source nodes to
destination nodes. This metric is directly influenced by the
number of UAVs in the network, as higher node density and
mobility can lead to network congestion, packet loss, and
consequently longer transmission times. When a clustering
algorithm establishes a more stable network topology,
communication between nodes becomes faster and more
reliable, thereby reducing the overall end-to-end delay.

Figure 2 presents a comparative experimental analysis of the
average end-to-end delay achieved by the proposed SEFC
algorithm and the PICA and OSCA algorithms. The simulated
experiments were performed by varying the number of UAVs
from 40 to 140, with a maximum flight speed of 60m/s.

Among all simulation scenarios, we can notice that the SEFC
algorithm steadily achieves the lowest average end-to-end
delay, showing reductions of 11.6% and 24.3% compared to
PICA and OSCA, respectively. As we can easily realize, this
improvement is mainly based on the fact that SEFC enhances
link stability via the weighted evaluation of multiple
complementary criteria during CH selection. Moreover, by
minimizing packet retransmissions, SEFC effectively reduces
the overall delay. In contrast, PICA and OSCA primarily rely
on a limited set of parameters, such as inter-node distance and
relative mobility; a weaker approach that may lead to unstable
transmission paths, higher number of packet retransmissions
and (as a result) increased average end-to-end delay.
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Fig 2. Average end-to-end delay time for varying # of
UAVs

4.2 Average energy consumption

The energy consumption of UAVs serves as a crucial metric for
evaluating the energy efficiency of clustering algorithms. As a
consequence, an effective clustering approach should be
capable of forming clusters that enable UAVs to communicate
while minimizing energy expenditure. More concretely, lower
levels of energy consumption show that the algorithm utilizes
node resources efficiently during execution, thus prolonging
the lifetime of the node and enhancing the stability of the
system. Furthermore, reduced levels in energy consumption,
also usually imply less communication overhead, which leads
to reduced delays in data transmission, less bandwidth usage
and increased network robustness. As a result, the lifetime of
the network is prolonged, leading to more viable underlying
applications. Figure 3 shows the results obtained with regard to
energy consumption for varying numbers of UAVs.
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Fig 3. Average energy consumption for varying # of UAVs

As we can see in the above figure, SEFC (which employs a
multi-criteria and multi-hop clustering approach) exhibits a
slightly higher control overhead than PICA and OSCA when
the number of UAVs is relatively small. This leads to a
marginal increase in energy consumption of approximately
0.55% compared to OSCA. However, as the number of nodes
grows, the multi-criteria basis of SEFC enhances network
stability, resulting in energy consumption reductions of 2.45%
and 3.65% relative to PICA and OSCA, respectively.

4.3 Average CH duration

Cluster head duration refers to the period during which a UAV
maintains its role as a cluster head before transitioning to a non-
cluster head state. Figure 4 presents a comparison of the SEFC,
PICA, and OSCA algorithms in terms of average cluster head
duration for a network of 100 UAVs operating at different
maximum flight speeds. As UAV speed increases, the average
cluster head retention time decreases because higher mobility
accelerates topology changes, leading to more frequent
disconnections between nodes. A longer average CH duration
indicates that the clustering algorithm forms more stable cluster
partitions capable of maintaining structural consistency even
under dynamic network conditions. As we can easily realize,
this leads to increased adaptability and potential to retain stable
cluster structures. UAVs that keep the CH role for extended
periods can provide more reliable communication and routing
services, thus improving the overall network stability and
performance.

Based on Figure 4, we can notice that the SEFC algorithm
achieves (compared to PICA and OSCA) significantly longer
cluster head retention times, with improvements of 22.18% and
83.27%, respectively. This superior performance results from
SEFC’s multi-criteria clustering mechanism, which combines
multiple mobility-related factors during cluster head selection,
thus enhancing cluster stability. In contrast, PICA and OSCA
rely on less effective selection strategies, which cause frequent
CH changes in highly dynamic environments due to constant
node switching between clusters.
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Fig 4. Average CH duration for varying maximum velocity
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4.4 Average number of CM switches

The node cluster switching count measures cluster stability
from the perspective of cluster members (CMs). A lower
switching count indicates greater cluster stability. As shown in
Figure 5, increasing node speed increases the potential for
network topology changes, thus leading to higher switching
counts across all the three involved algorithms.

A smaller average number of inter-cluster switches indicates
that the algorithm effectively maintains sufficiently stable
cluster structures despite the node mobility and network
fluctuations, thus minimizing frequent cluster reassignments.
This demonstrates the algorithm’s adaptability and its ability to
preserve consistent clustering results even under intense
dynamic conditions. Additionally, fewer inter-cluster switches
help reduce overall network overhead and communication
delay, improving system efficiency.

Observing Figure 5, we can notice that SEFC achieves
(compared to PICA and OSCA) reductions in the number of
CM switches of 7.37% and 14.29%, respectively. This is
mainly based on SEFC’s multi-criteria clustering mechanism
combined with its multi-hop organization structure, which
together minimize frequent CM disconnections. In contrast,
PICA and OSCA employ less effective clustering strategies,
resulting in more frequent disconnections in highly dynamic
environments. As a result, disconnected nodes must rejoin new
clusters, incurring additional switching overhead.
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Fig 5. Average # of CM switches for varying maximum
velocity

As a genelal conclusion, the proposed solution (SEFC
alhorithm), provides significant improvements over PICA and
OSCA (two typical representatives of the existing clustering
approaches, and suitable candidates for reliable experimental
evaluation), mainly based on the efficient combination of (a)
multiple-objective criteria during the cluster formation phase,
and (b) a carefully designed backup-CH based maintenance
mechamism. Due to the above combined features, the overall
cluster stability is enhanced, the communication overhead is
minimized, and the overall delay is reduced. Corresponding
improvements have been noticed in all the relevant measures,
like the average CH duration time, the average number of CM
switches, the energy consumption, the communication
overhead and the end-to-end delay. In the opposite, PICA and
OSCA follow less complicated cluster formation schemes,
which lead to less effective overall solutions, because they
easily cause frequent CH changes in dynamic environments
due to constant node switching between clusters. The control
overhead is slightly increased in case of the SEFC algorithm,
which is a relative disadvantage especially for small clusters,
however the significant overall gains provided in stability,
energy consumption and end-to-end delay validate it’s clear
superiority especially for dynamic environments.
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5. CONCLUSION

Throughout the present work, a novel multi-hop clustering
algorithm tailored to the aerial dynamics of UAVs is presented
and evaluated via simulated experiments. It aims to create
steady clusters using multi-objective criteria, such as mobility
and energy similarity metrics etc., while integrating ground
station (GS)-assisted cluster maintenance mechanisms to
enhance robustness and stability. The proposed -cluster
formation algorithm initially establishes multi-hop clusters in
which both the cluster heads (CHs) and the cluster members
(CMs) located near the CHs possess high stability and
substantial residual energy. Subsequently, an appropriate GS-
assisted maintenance mechanism is employed to further
enhance the stability and longevity of the formed clusters.
Simulation results demonstrate that the proposed approach
outperforms existing schemes in terms of cluster stability (i.e.
by measuring the average CH duration time and the average
number of CM switches in many cases), energy consumption,
communication overhead, and end-to-end delay.

The extension and optimization of the proposed algorithm
(SEFC) for even more dynamic environments with real-time
processing and re-action requirements, as well as for efficient
involvement in modern edge computing scenarios for task
offloading procedures, is of high priority in our future work.
Also, the involvement of a trust factor in the cluster formation
criteria, as well as the incorporation of a security (trust-based)
maintenance mechanism, are considered as highly necessary
extensions in order the proposed scheme cope with the
requirements of the modern FANETSs environments.
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