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ABSTRACT

Speech emotion recognition (SER) plays an important role in
human—computer interaction, healthcare, and customer service.
Yet SER models often degrade when applied across genders or
to external corpora, limiting their reliability in real-world
deployments. This study investigates the robustness of classical
classifiers- Logistic Regression, Random Forests, and
XGBoost, under gender and domain shifts, with a focus on
confidence-based routing as a mitigation strategy. In-domain
experiments demonstrated strong performance for tree-based
ensembles, with Random Forests achieving up to 0.879
accuracy and XGBoost 0.914 on gender-specific training,
while Logistic Regression performed poorly (0.478). Cross-
domain evaluation on the RAVDESS corpus revealed sharp
declines: Random Forest accuracy dropped to 0.466, and
XGBoost models failed in cross-gender transfer (0.266—0.311).
High-arousal emotions generalized more reliably than low-
arousal categories, which exhibited widespread
misclassification.

A confidence-filtering mechanism was introduced to improve
reliability. With a threshold of >0.60, Random Forest accuracy
recovered to 0.811 (macro-F1 = 0.602) on a small subset of 7%
of predictions. While limited in coverage, this serves as a proof-
of-concept that selective prediction can recover trustworthy
outputs under distribution shift. These findings highlight the
limitations of current SER models under distribution shift but
also suggest a practical path forward. For both emotion
recognition and future stress detection, incorporating
confidence-aware routing may be as important as improving
raw accuracy, enabling selective and trustworthy predictions in
sensitive applications.
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1. INTRODUCTION

Speech is not only a vehicle for linguistic content but also a
primary channel for conveying affective information.
Automatic speech emotion recognition (SER) has therefore
become central to applications in human—computer interaction,
customer service analytics, and healthcare monitoring (Lee et
al., 2023; Wani et al., 2021). Despite steady advances, building
systems that generalize across speakers and datasets remains a
persistent challenge.

A recurring obstacle is distribution shift: models trained on one
group of speakers or one corpus often degrade when applied to
another. Gender is a particularly salient factor, as acoustic
correlates of emotion, such as pitch range, formant structure,
and prosodic patterns, differ systematically between male and

female speakers (Fucci et al., 2023; Lee et al., 2023). Similarly,
cross-corpus evaluations have highlighted how dataset-specific
feature extraction and recording conditions undermine
transferability (Kim et al., 2017).

Much of the existing literature has focused on deep learning
methods, including convolutional and recurrent neural
networks, or on classical classifiers such as support vector
machines (Wani et al., 2021). While these approaches report
strong in-domain results, they often assume homogeneous
training and test conditions. There is comparatively little
systematic work examining how simple tree-based models
behave under gender or corpus mismatch, or how confidence-
aware filtering might mitigate these effects.

This study addresses these gaps by:

1. Training gender-specific Random Forest classifiers to
stabilize in-domain accuracy.

2. Evaluating the impact of cross-domain mismatch when
transferring to the RAVDESS corpus, which differs both in
recording conditions and feature dimensionality.

3. Investigating confidence-based filtering as a mechanism for
selective prediction, allowing the system to abstain on
unreliable cases while preserving high accuracy on a trusted
subset.

2. METHODOLOGY

2.1 Datasets and Feature Representation
This study used two established emotional speech corpora to
assess both in-domain performance and the effects of
distribution shift. The primary dataset, CREMA-D, contains
7,442 short audio clips produced by 91 actors across eight
emotional categories. All recordings were used at their original
sampling rate, and their durations typically ranged from one to
three seconds. Emotional labels and speaker gender
information were taken directly from the corpus metadata,
allowing the study to examine the impact of gender-specific
modelling. For cross-domain evaluation, the RAVDESS corpus
was employed. Instead of extracting new features, a publicly
available version of RAVDESS already processed into 20
MFCC features per clip was used. This ensured that any cross-
dataset degradation could be attributed to genuine
distributional differences rather than inconsistencies in
preprocessing or feature extraction.

For CREMA-D, each audio file was converted into a 58-
dimensional acoustic feature representation. This included
MFCCs, spectral contrast values, chroma features, and several
prosodic descriptors that capture pitch and energy variations
known to correlate with emotional expression. Features were
computed using a 25 ms Hamming window and a 10 ms hop
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length to retain fine-grained temporal detail. The resulting
vectors were standardized through speaker-wise z-
normalization, which reduces the influence of baseline
differences in voice pitch or intensity. The feature sets of
CREMA-D and RAVDESS differ in dimensionality, and no
attempt was made to harmonize them artificially. Keeping
these differences intact created a realistic setting for evaluating
how models trained on one feature distribution behave when
exposed to another.

2.2 Preprocessing and Model Architectures
All features were standardized using speaker-wise z-
normalization to reduce speaker-specific biometric variability,
ensuring the model focused on relative acoustic patterns. Class
labels were harmonized across both datasets to align the eight
shared emotion categories. Three classifier families were
implemented to examine robustness. First, a Logistic
Regression model with L2 regularization was used as a linear
baseline to evaluate the feasibility of low-complexity decision
boundaries for this task. Second, two independent Random
Forest classifiers were trained to leverage gender-specific
acoustic patterns: one exclusively on samples from male
speakers (RF-Male) and another on samples from female
speakers (RF-Female). Both models were ensembles of 400
decision trees, with a maximum depth of 30 nodes and balanced
class weights. A router mechanism was designed for inference:
for in-domain testing with known gender, samples were
directed to their gender-matched model; for cross-domain
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testing where gender was unknown, predictions from both RF
models were generated, and the final prediction was selected
based on the highest maximum softmax probability (i.e., model
confidence).

2.3 Hyperparameter Tuning and

Evaluation Protocol

Model hyperparameters were optimized via 5-fold cross-
validation on the CREMA-D training set using GridSearchCV.
For the Random Forest models, we tuned the number of
estimators [200, 300, 400, 500], maximum depth [10, 20, 30,
40], and minimum samples split [2, 5, 10]. For Logistic
Regression, the regularization strength C [0.001, 0.01, 0.1, 1.0,
10.0] was optimized. The configuration yielding the highest
mean cross-validation accuracy was selected for final training.
Performance was evaluated under two conditions: in-domain
on a held-out 20% test split of CREMA-D, and cross-domain
by applying the trained models directly to the entire RAVDESS
dataset without fine-tuning. Primary metrics were Accuracy
and Macro-Averaged F1-Score. To analyze prediction
reliability, we examined the relationship between model
confidence (maximum softmax probability) and observed
accuracy. A confidence-based filtering mechanism was
implemented, whereby predictions were only considered
reliable if the confidence exceeded a threshold of > 0.60,
allowing analysis of the trade-off between accuracy and
coverage.

Figure 1. Overview of the Experimental Pipeline
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Figure 1. Overview of the experimental pipeline. Speech recordings were transformed into MFCC and prosodic features, normalized,
and labeled. Three model families were trained: Logistic Regression (baseline), XGBoost (male, female, pooled), and Random Forest
classifiers separated by gender. Predictions from the male and female Random Forests were combined through a router, which routed
samples by gender in the in-domain setting and by maximum confidence in the cross-domain setting. Final evaluation was conducted
both in-domain and on the RAVDESS corpus, with an additional confidence-filtering stage (=0.60) to examine the trade-off between

accuracy and coverage.
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2.4 Evaluation

Evaluation was conducted under two conditions: in-domain on
a held-out subset of CREMA-D, and cross-domain by applying
the CREMA-D-trained models directly to RAVDESS without
further adjustment. Overall accuracy and macro-averaged F1
scores were used as primary metrics, and confusion matrices
were examined to understand which emotional classes
contributed most to degradation. To analyse prediction
reliability, confidence values were derived from the softmax-
normalized probability estimates of each model. A confidence-
based filtering approach was then applied, where only
predictions exceeding a confidence threshold of 0.60 were
retained. This allowed the study to investigate whether
selective prediction could recover trustworthy outputs when
full-coverage accuracy was compromised by domain shift, and
how much of the dataset remained usable under such
constraints.

In addition to overall accuracy and macro-averaged F1, the
evaluation also considered class-level behaviour through
precision and recall. These metrics provided a clearer view of
how each model handled both high-arousal and low-arousal
emotions. In the in-domain setting, the gender-specific
Random Forests produced uniformly strong precision and
recall values, with most classes exceeding 0.85, reflecting
stable behaviour across anger, fear, surprise, and other
expressive categories. The confusion matrices confirmed this
pattern, showing that misclassifications were relatively rare and
typically occurred between acoustically similar emotions, such
as calm and neutral. The cross-domain results, however,
revealed a markedly different pattern. Precision for low-arousal
emotions fell sharply, and recall for calm, neutral, and sad
diminished almost entirely, indicating that these categories
were effectively collapsed by the shift in dataset characteristics.
The confusion matrix for RAVDESS further illustrated this
issue, with a large concentration of predictions gravitating
toward a few high-arousal classes, particularly angry and
happy, which retained clearer acoustic signatures across
corpora. These patterns highlight not only the presence of
domain mismatch but also the uneven effect it has on different
emotional categories, a point that aligns with earlier
observations about class imbalance and the inherently higher
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variability of low-arousal expressions. Considering these
metrics together makes it evident that distribution shift affects
both the separability and the stability of emotional boundaries,
reinforcing the need for mechanisms such as confidence
filtering when deploying models outside their training
conditions.

2.5 Additional Evaluation Considerations
Beyond the reported metrics, several aspects of the evaluation
highlight how the models might behave under alternative
scenarios. Deep learning architectures such as CNNs or LSTM-
based models were not included in this study, but their capacity
to learn hierarchical feature representations suggests that they
might better tolerate shifts in recording style or speaker
variation. At the same time, the difference in MFCC
dimensionality between CREMA-D and RAVDESS illustrates
how sensitive classical models can be to inconsistencies in
feature extraction pipelines; even small variations in how
MFCCs are computed can reshape the acoustic space and
disrupt learned decision boundaries. The use of gender-specific
models and the accompanying router was also informative, as
it showed that separating male and female speech can stabilize
performance in-domain but does not eliminate the challenges
introduced by cross-corpus variability. These observations
point toward limitations that future work should address, such
as harmonizing feature extraction across datasets,
incorporating calibration or domain-adaptation techniques, and
extending the evaluation to a broader set of emotional corpora.
Considering these factors provides a more complete view of
how the system might perform under settings not explicitly
tested in this study.

3. RESULT

3.1 Logistic Regression baseline

Logistic Regression provided a linear baseline. Performance
was weak, with overall accuracy of 0.478 and macro-F1 of
0.48. Certain classes such as calm reached very high recall
(0.94) but with extremely low precision (0.29), while happy
and fear were particularly unstable (F1 = 0.36-0.38). This
imbalance highlights the limitations of linear decision
boundaries in capturing emotional variability.
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www Logistic Regression ===
Accuracy: 0.4785340929112586

precision recall fl-score support

angry 9.59 9.61 0.60 2692

calm 0.29 Q.94 0.44 269

disgust 0.45 0.36 0.40 2692

fear 0.43 0.34 0.38 2692

happy 0.43 9.31 0.36 2693

neutral 0.49 0.50 0.49 2384

sad 0.52 0.58 .55 2692

surprise 0.45 0.80 0.58 913

accuracy 0.48 17027

macro avg 0.46 0.56 0.48 17027

weighted avg 0.48 0.48 Q.47 17027
3.2 Random Forest classifiers reached 0.86. Class-level F1 scores were consistently above

Random Forests produced much stronger in-domain 0.85, with the surprise class peaking at 0.96. These results
performance. The male-specific model achieved an accuracy of demongt_rate that gen_d«;r-partitioned enggmbles provide stable
0.879 (macro-F1 = 0.89), while the female-specific model recognition when training and test conditions match.

=== Random Forest ===
Accuracy: 0.8789569507253187

precision recall fl-score support

angry 0.87 0.94 0.90 2692
calm 9.90 0.91 0.91 269
disgust 0.88 ©.83 0.85 2692
fear 0-94 0.82 Q.88 2692
happy 0.88 ©.86 0.87 2693
neutral 0.86 ©.89 0.87 2384
sad 0.83 ©.91 Q.87 2692
surprise 0.97 0.96 ©.96 913
accuracy 0.88 17027
macro avg 2.89 0.89 @.89 17027
weighted avg 0.88 ©.88 0.88 17027
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3.3 XGBoost classifiers

XGBoost showed competitive results in-domain but degraded
severely under gender transfer. Pooled training reached 0.867
accuracy. Gender-specific training yielded 0.850 (male-only)
and 0.914 (female-only), but cross-gender transfer collapsed to
0.266 (male—female) and 0.311 (female—male). Boosted
trees therefore captured detailed patterns but overfit to gender-
specific distributions.
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3.4 Cross-domain evaluation (RAVDESS)
When applied to RAVDESS (20 shared MFCC features),
Random Forests experienced substantial performance loss.
Accuracy fell to 0.466 with macro-F1 = 0.461. As shown in
Figure 2, low-arousal categories (calm, neutral, sad) collapsed
almost entirely, while high-arousal classes retained partial
generalization (angry F1 = 0.64, happy = 0.55, fear = 0.48).
The confidence—accuracy curve illustrates the difficulty of
maintaining reliability at full coverage.

SER cross-corpus analysis dashboard

Confusion matrix (RAVDESS, 20 features)
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RAVDESS (20 shared features)

Overall accuracy: 0.466
Macro F1: 0.461
Samples: 4320

At threshold T=0.60:

Coverage kept: 0.069
Acc on kept: 0.811
Class support:
angry 1576
calm 576
disqgust : 576
fear 576
happy : 576
neutral : 288
sad : 576
surprise : 576

Figure 2. Cross-domain performance on RAVDESS using 20 shared features. Confusion matrix (top left), per-emotion F1
scores (top right), and confidence—accuracy trade-off (bottom) demonstrate severe degradation in low-arousal categories.
Overall accuracy = 0.466; macro-F1 = 0.461.

3.5 Confidence-based filtering
Confidence-based filtering restored reliability on a trusted
subset. At threshold >0.60, accuracy improved to 0.811 with

macro-F1 = 0.602, though coverage was reduced to 7%. As
shown in Figure 3, retained predictions were concentrated in
high-confidence classes such as angry, fear, and surprise,
while ambiguous low-arousal categories were rejected.
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SER cross-corpus analysis dashboard — RAVDESS (conf = 0.60)

Confusion matrix RAVDESS (conf 2 0.60) 16 Per-emotion F1
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Figure 3. Cross-domain performance on RAVDESS with a confidence threshold >0.60. Confusion matrix (top left), per-
emotion F1 scores (top right), and coverage—accuracy trade-off (bottom) illustrate that reliable predictions can be obtained
when uncertain cases are filtered out. Accuracy = 0.811, macro-F1 = 0.602, coverage = 7%.

3.6 Summary of results XGBoost (female- | 0.914 - 100%
A consolidated overview of all setups is provided in Table 1. only)
Table 1. Performance summary across models and setups. XGBoost 0266 - 100%
(male—female)
Setup Accuracy | Macro- | Coverage
F1 XGBoost 0.311 - 100%
(female—male)
Logistic Regression | 0.478 0.48 100%
(in-domain) Cross-domain 0.466 0.461 100%
(RAVDESS)
Random Forest | 0.879 0.89 100%
(male) Cross-domain, conf | 0.811 0.602 7%
>0.60
Random Forest | 0.860 - 100%
(female)
XGBoost (pooled) 0.867 - 100%
XGBoost (male- | 0.850 - 100%
only)
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4. DISCUSSION

This study examined the performance of multiple classifier
families under gender and corpus shift in speech emotion
recognition. Several insights emerge from the results.

Linear baselines. Logistic Regression, despite its simplicity,
provided a valuable reference point. Its low accuracy (0.478)
and class imbalances highlighted the inadequacy of linear
decision boundaries for SER, especially given the complex
acoustic and prosodic cues underlying emotional expression.
The model’s tendency to overpredict certain high-recall classes
such as calm confirms earlier findings that linear models overfit
to easily separable but non-generalizable acoustic features
(Trupti Dilip Kalokhe and Prof. Rashmi Kulkarni, 2024).

Tree ensembles. Random Forests demonstrated robust in-
domain performance, achieving balanced F1 scores above 0.85
across all classes. This supports the suitability of non-
parametric ensemble methods for heterogeneous emotional
features. However, the same models degraded to 0.466
accuracy on RAVDESS, indicating that domain mismatch-
particularly differences in feature dimensionality (58 vs. 20
MFCCs)-remains a major barrier. XGBoost provided even
higher in-domain performance, especially in female-only
training (0.914), but cross-gender transfer collapsed to near-
chance levels. This sensitivity suggests that boosted ensembles,
while powerful in-domain, can overfit to distributional quirks
such as gender-specific pitch and prosodic patterns.

Cross-domain collapse. The sharp drop on RAVDESS echoes
prior cross-corpus studies [ref], confirming that even strong
classical models fail under distribution shift. Notably, high-
arousal emotions (angry, fear, happy) generalized better than
low-arousal categories (calm, neutral, sad). This asymmetry is
consistent with acoustic theory, as high-arousal emotions
involve more distinctive pitch and energy contours, whereas
low-arousal states are more acoustically ambiguous.

Confidence-based filtering. The most practical contribution
lies in the selective prediction framework. By applying a
confidence threshold (>0.60), the Random Forest router
improved cross-domain accuracy to 0.811, though this was
limited to 7% of samples. Rather than a deployable solution,
this should be viewed as a proof-of-concept: it shows that
abstention mechanisms can successfully recover reliability
when distribution shifts occur. In practice, future work must
focus on expanding this high-confidence subset, for example,
through improved calibration, multimodal cues, or domain
adaptation techniques. This trade-off between reliability and
coverage reflects a broader trend in trustworthy machine
learning: models should not only provide predictions but also
indicate when they are uncertain. For SER applications in
healthcare or human—computer interaction, exposing
confidence could reduce the risk of misclassification-driven
harm while maintaining trust in the system.

Implications for stress detection. Stress is often expressed
through subtle acoustic cues that overlap with emotional states
such as fear, sadness, or neutral tension. The findings here
suggest that stress-detection systems face the same
vulnerabilities as SER: strong in-domain accuracy, but severe
performance degradation under distribution shift (e.g., across
gender, language, or recording environment). Confidence-
based filtering offers a practical safeguard, enabling stress-
monitoring applications to report only high-confidence
detections, while abstaining in uncertain cases. This could be
particularly valuable in clinical or occupational settings, where
false positives may cause unnecessary concern and false
negatives may delay support. Furthermore, the demonstrated
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value of gender-specific modeling highlights that stress
detectors may need to adapt to demographic or individual
baselines to remain reliable.

This study is limited by reliance on pre-extracted MFCC
features, differences in dimensionality across corpora, and the
absence of deep learning baselines for comparison. Future
work should harmonize feature extraction pipelines across
datasets, expand evaluations to additional corpora (e.g.,
IEMOCAP, EmoDB), and integrate calibration methods such
as temperature scaling or conformal prediction. Extending the
router concept to neural architectures and multimodal stress
markers (e.g., heart rate, facial signals) may further enhance
robustness.

These results show that while classical models like Random
Forests achieve strong in-domain recognition, they fail under
distribution shift. Confidence filtering provides a practical way
to expose this vulnerability and recover reliability on a trusted
subset. For both SER and stress detection, incorporating
confidence-aware routing may be as important as improving
raw accuracy, especially for deployment in real-world,
heterogeneous environments.

5. CONCLUSION

This study demonstrates that classical models such as Random
Forests and XGBoost achieve strong in-domain speech
emotion recognition performance but degrade sharply under
gender and corpus shift. Confidence-based filtering provides a
practical way to recover reliable predictions on a restricted
subset, highlighting the role of selective prediction in real-
world systems where full-coverage accuracy cannot be
guaranteed. At the same time, the results make clear that
improvements in robustness will require more than stronger
classifiers alone.

Future work could explore the integration of domain-
adaptation techniques, including feature alignment and
adversarial training, to reduce the impact of mismatched
recording conditions and feature dimensions. Calibration
methods such as temperature scaling or conformal prediction
may also offer a systematic way to quantify uncertainty and
extend the usefulness of confidence-based filtering. Deep
learning architectures, particularly models that combine
convolutional layers with temporal processing, are likely to
capture richer acoustic cues and may generalize better across
demographic and corpus differences. Extending the evaluation
to multimodal datasets—incorporating facial expressions, text
transcripts, or physiological indicators—would further support
applications such as stress detection, where emotional cues are
subtle and context-dependent. Together, these directions point
toward more resilient and trustworthy affective-computing
systems capable of operating reliably under diverse and shifting
real-world conditions.
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* CREMA-D (Crowd-sourced Emotional Multimodal Actors
Dataset) can be accessed at
https://github.com/CheyneyComputerScience/ CREMA-D
(Cao et al., 2014).

* RAVDESS (Ryerson Audio-Visual Database of Emotional
Speech and Song) is available via Zenodo at
https://zenodo.org/record/1188976 (Livingstone & Russo,
2018).

Both datasets are distributed under their respective licenses for
research purposes. The preprocessed feature files and analysis
code supporting the findings of this study are available in the
project’s GitHub repository:
https://github.com/Y ourUserName/SER-domain-shift.
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