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ABSTRACT 

Speech emotion recognition (SER) plays an important role in 

human–computer interaction, healthcare, and customer service. 

Yet SER models often degrade when applied across genders or 

to external corpora, limiting their reliability in real-world 

deployments. This study investigates the robustness of classical 

classifiers- Logistic Regression, Random Forests, and 

XGBoost, under gender and domain shifts, with a focus on 

confidence-based routing as a mitigation strategy. In-domain 

experiments demonstrated strong performance for tree-based 

ensembles, with Random Forests achieving up to 0.879 

accuracy and XGBoost 0.914 on gender-specific training, 

while Logistic Regression performed poorly (0.478). Cross-

domain evaluation on the RAVDESS corpus revealed sharp 

declines: Random Forest accuracy dropped to 0.466, and 

XGBoost models failed in cross-gender transfer (0.266–0.311). 

High-arousal emotions generalized more reliably than low-

arousal categories, which exhibited widespread 

misclassification. 

A confidence-filtering mechanism was introduced to improve 

reliability. With a threshold of ≥0.60, Random Forest accuracy 

recovered to 0.811 (macro-F1 = 0.602) on a small subset of 7% 

of predictions. While limited in coverage, this serves as a proof-

of-concept that selective prediction can recover trustworthy 

outputs under distribution shift. These findings highlight the 

limitations of current SER models under distribution shift but 

also suggest a practical path forward. For both emotion 

recognition and future stress detection, incorporating 

confidence-aware routing may be as important as improving 

raw accuracy, enabling selective and trustworthy predictions in 

sensitive applications. 
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1. INTRODUCTION 
Speech is not only a vehicle for linguistic content but also a 

primary channel for conveying affective information. 

Automatic speech emotion recognition (SER) has therefore 

become central to applications in human–computer interaction, 

customer service analytics, and healthcare monitoring (Lee et 

al., 2023; Wani et al., 2021). Despite steady advances, building 

systems that generalize across speakers and datasets remains a 

persistent challenge. 

A recurring obstacle is distribution shift: models trained on one 

group of speakers or one corpus often degrade when applied to 

another. Gender is a particularly salient factor, as acoustic 

correlates of emotion, such as pitch range, formant structure, 

and prosodic patterns, differ systematically between male and 

female speakers (Fucci et al., 2023; Lee et al., 2023). Similarly, 

cross-corpus evaluations have highlighted how dataset-specific 

feature extraction and recording conditions undermine 

transferability (Kim et al., 2017). 

 Much of the existing literature has focused on deep learning 

methods, including convolutional and recurrent neural 

networks, or on classical classifiers such as support vector 

machines (Wani et al., 2021). While these approaches report 

strong in-domain results, they often assume homogeneous 

training and test conditions. There is comparatively little 

systematic work examining how simple tree-based models 

behave under gender or corpus mismatch, or how confidence-

aware filtering might mitigate these effects. 

This study addresses these gaps by: 

1. Training gender-specific Random Forest classifiers to 

stabilize in-domain accuracy. 

2. Evaluating the impact of cross-domain mismatch when 

transferring to the RAVDESS corpus, which differs both in 

recording conditions and feature dimensionality. 

3. Investigating confidence-based filtering as a mechanism for 

selective prediction, allowing the system to abstain on 

unreliable cases while preserving high accuracy on a trusted 

subset. 

2. METHODOLOGY 

2.1 Datasets and Feature Representation 
This study used two established emotional speech corpora to 

assess both in-domain performance and the effects of 

distribution shift. The primary dataset, CREMA-D, contains 

7,442 short audio clips produced by 91 actors across eight 

emotional categories. All recordings were used at their original 

sampling rate, and their durations typically ranged from one to 

three seconds. Emotional labels and speaker gender 

information were taken directly from the corpus metadata, 

allowing the study to examine the impact of gender-specific 

modelling. For cross-domain evaluation, the RAVDESS corpus 

was employed. Instead of extracting new features, a publicly 

available version of RAVDESS already processed into 20 

MFCC features per clip was used. This ensured that any cross-

dataset degradation could be attributed to genuine 

distributional differences rather than inconsistencies in 

preprocessing or feature extraction. 

For CREMA-D, each audio file was converted into a 58-

dimensional acoustic feature representation. This included 

MFCCs, spectral contrast values, chroma features, and several 

prosodic descriptors that capture pitch and energy variations 

known to correlate with emotional expression. Features were 

computed using a 25 ms Hamming window and a 10 ms hop 
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length to retain fine-grained temporal detail. The resulting 

vectors were standardized through speaker-wise z-

normalization, which reduces the influence of baseline 

differences in voice pitch or intensity. The feature sets of 

CREMA-D and RAVDESS differ in dimensionality, and no 

attempt was made to harmonize them artificially. Keeping 

these differences intact created a realistic setting for evaluating 

how models trained on one feature distribution behave when 

exposed to another. 

2.2 Preprocessing and Model Architectures 
All features were standardized using speaker-wise z-

normalization to reduce speaker-specific biometric variability, 

ensuring the model focused on relative acoustic patterns. Class 

labels were harmonized across both datasets to align the eight 

shared emotion categories. Three classifier families were 

implemented to examine robustness. First, a Logistic 

Regression model with L2 regularization was used as a linear 

baseline to evaluate the feasibility of low-complexity decision 

boundaries for this task. Second, two independent Random 

Forest classifiers were trained to leverage gender-specific 

acoustic patterns: one exclusively on samples from male 

speakers (RF-Male) and another on samples from female 

speakers (RF-Female). Both models were ensembles of 400 

decision trees, with a maximum depth of 30 nodes and balanced 

class weights. A router mechanism was designed for inference: 

for in-domain testing with known gender, samples were 

directed to their gender-matched model; for cross-domain 

testing where gender was unknown, predictions from both RF 

models were generated, and the final prediction was selected 

based on the highest maximum softmax probability (i.e., model 

confidence). 

2.3 Hyperparameter Tuning and 

Evaluation Protocol 
Model hyperparameters were optimized via 5-fold cross-

validation on the CREMA-D training set using GridSearchCV. 

For the Random Forest models, we tuned the number of 

estimators [200, 300, 400, 500], maximum depth [10, 20, 30, 

40], and minimum samples split [2, 5, 10]. For Logistic 

Regression, the regularization strength C [0.001, 0.01, 0.1, 1.0, 

10.0] was optimized. The configuration yielding the highest 

mean cross-validation accuracy was selected for final training. 

Performance was evaluated under two conditions: in-domain 

on a held-out 20% test split of CREMA-D, and cross-domain 

by applying the trained models directly to the entire RAVDESS 

dataset without fine-tuning. Primary metrics were Accuracy 

and Macro-Averaged F1-Score. To analyze prediction 

reliability, we examined the relationship between model 

confidence (maximum softmax probability) and observed 

accuracy. A confidence-based filtering mechanism was 

implemented, whereby predictions were only considered 

reliable if the confidence exceeded a threshold of ≥ 0.60, 

allowing analysis of the trade-off between accuracy and 

coverage. 

 

 

Figure 1. Overview of the experimental pipeline. Speech recordings were transformed into MFCC and prosodic features, normalized, 

and labeled. Three model families were trained: Logistic Regression (baseline), XGBoost (male, female, pooled), and Random Forest 

classifiers separated by gender. Predictions from the male and female Random Forests were combined through a router, which routed 

samples by gender in the in-domain setting and by maximum confidence in the cross-domain setting. Final evaluation was conducted 

both in-domain and on the RAVDESS corpus, with an additional confidence-filtering stage (≥0.60) to examine the trade-off between 

accuracy and coverage. 
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2.4 Evaluation 
Evaluation was conducted under two conditions: in-domain on 

a held-out subset of CREMA-D, and cross-domain by applying 

the CREMA-D-trained models directly to RAVDESS without 

further adjustment. Overall accuracy and macro-averaged F1 

scores were used as primary metrics, and confusion matrices 

were examined to understand which emotional classes 

contributed most to degradation. To analyse prediction 

reliability, confidence values were derived from the softmax-

normalized probability estimates of each model. A confidence-

based filtering approach was then applied, where only 

predictions exceeding a confidence threshold of 0.60 were 

retained. This allowed the study to investigate whether 

selective prediction could recover trustworthy outputs when 

full-coverage accuracy was compromised by domain shift, and 

how much of the dataset remained usable under such 

constraints. 

In addition to overall accuracy and macro-averaged F1, the 

evaluation also considered class-level behaviour through 

precision and recall. These metrics provided a clearer view of 

how each model handled both high-arousal and low-arousal 

emotions. In the in-domain setting, the gender-specific 

Random Forests produced uniformly strong precision and 

recall values, with most classes exceeding 0.85, reflecting 

stable behaviour across anger, fear, surprise, and other 

expressive categories. The confusion matrices confirmed this 

pattern, showing that misclassifications were relatively rare and 

typically occurred between acoustically similar emotions, such 

as calm and neutral. The cross-domain results, however, 

revealed a markedly different pattern. Precision for low-arousal 

emotions fell sharply, and recall for calm, neutral, and sad 

diminished almost entirely, indicating that these categories 

were effectively collapsed by the shift in dataset characteristics. 

The confusion matrix for RAVDESS further illustrated this 

issue, with a large concentration of predictions gravitating 

toward a few high-arousal classes, particularly angry and 

happy, which retained clearer acoustic signatures across 

corpora. These patterns highlight not only the presence of 

domain mismatch but also the uneven effect it has on different 

emotional categories, a point that aligns with earlier 

observations about class imbalance and the inherently higher 

variability of low-arousal expressions. Considering these 

metrics together makes it evident that distribution shift affects 

both the separability and the stability of emotional boundaries, 

reinforcing the need for mechanisms such as confidence 

filtering when deploying models outside their training 

conditions. 

2.5 Additional Evaluation Considerations 
Beyond the reported metrics, several aspects of the evaluation 

highlight how the models might behave under alternative 

scenarios. Deep learning architectures such as CNNs or LSTM-

based models were not included in this study, but their capacity 

to learn hierarchical feature representations suggests that they 

might better tolerate shifts in recording style or speaker 

variation. At the same time, the difference in MFCC 

dimensionality between CREMA-D and RAVDESS illustrates 

how sensitive classical models can be to inconsistencies in 

feature extraction pipelines; even small variations in how 

MFCCs are computed can reshape the acoustic space and 

disrupt learned decision boundaries. The use of gender-specific 

models and the accompanying router was also informative, as 

it showed that separating male and female speech can stabilize 

performance in-domain but does not eliminate the challenges 

introduced by cross-corpus variability. These observations 

point toward limitations that future work should address, such 

as harmonizing feature extraction across datasets, 

incorporating calibration or domain-adaptation techniques, and 

extending the evaluation to a broader set of emotional corpora. 

Considering these factors provides a more complete view of 

how the system might perform under settings not explicitly 

tested in this study. 

3. RESULT 

3.1 Logistic Regression baseline 
Logistic Regression provided a linear baseline. Performance 

was weak, with overall accuracy of 0.478 and macro-F1 of 

0.48. Certain classes such as calm reached very high recall 

(0.94) but with extremely low precision (0.29), while happy 

and fear were particularly unstable (F1 ≈ 0.36–0.38). This 

imbalance highlights the limitations of linear decision 

boundaries in capturing emotional variability. 
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3.2 Random Forest classifiers 
Random Forests produced much stronger in-domain 

performance. The male-specific model achieved an accuracy of 

0.879 (macro-F1 = 0.89), while the female-specific model 

reached 0.86. Class-level F1 scores were consistently above 

0.85, with the surprise class peaking at 0.96. These results 

demonstrate that gender-partitioned ensembles provide stable 

recognition when training and test conditions match. 
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3.3 XGBoost classifiers 
XGBoost showed competitive results in-domain but degraded 

severely under gender transfer. Pooled training reached 0.867 

accuracy. Gender-specific training yielded 0.850 (male-only) 

and 0.914 (female-only), but cross-gender transfer collapsed to 

0.266 (male→female) and 0.311 (female→male). Boosted 

trees therefore captured detailed patterns but overfit to gender-

specific distributions. 

3.4 Cross-domain evaluation (RAVDESS) 
When applied to RAVDESS (20 shared MFCC features), 

Random Forests experienced substantial performance loss. 

Accuracy fell to 0.466 with macro-F1 = 0.461. As shown in 

Figure 2, low-arousal categories (calm, neutral, sad) collapsed 

almost entirely, while high-arousal classes retained partial 

generalization (angry F1 = 0.64, happy = 0.55, fear = 0.48). 

The confidence–accuracy curve illustrates the difficulty of 

maintaining reliability at full coverage. 

 

Figure 2. Cross-domain performance on RAVDESS using 20 shared features. Confusion matrix (top left), per-emotion F1 

scores (top right), and confidence–accuracy trade-off (bottom) demonstrate severe degradation in low-arousal categories. 

Overall accuracy = 0.466; macro-F1 = 0.461. 

3.5 Confidence-based filtering 
Confidence-based filtering restored reliability on a trusted 

subset. At threshold ≥0.60, accuracy improved to 0.811 with 

macro-F1 = 0.602, though coverage was reduced to 7%. As 

shown in Figure 3, retained predictions were concentrated in 

high-confidence classes such as angry, fear, and surprise, 

while ambiguous low-arousal categories were rejected. 
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Figure 3. Cross-domain performance on RAVDESS with a confidence threshold ≥0.60. Confusion matrix (top left), per-

emotion F1 scores (top right), and coverage–accuracy trade-off (bottom) illustrate that reliable predictions can be obtained 

when uncertain cases are filtered out. Accuracy = 0.811, macro-F1 = 0.602, coverage = 7%. 

3.6 Summary of results 
A consolidated overview of all setups is provided in Table 1. 

Table 1. Performance summary across models and setups. 

Setup Accuracy Macro-

F1 

Coverage 

Logistic Regression 

(in-domain) 

0.478 0.48 100% 

Random Forest 

(male) 

0.879 0.89 100% 

Random Forest 

(female) 

0.860 – 100% 

XGBoost (pooled) 0.867 – 100% 

XGBoost (male-

only) 

0.850 – 100% 

XGBoost (female-

only) 

0.914 – 100% 

XGBoost 

(male→female) 

0.266 – 100% 

XGBoost 

(female→male) 

0.311 – 100% 

Cross-domain 

(RAVDESS) 

0.466 0.461 100% 

Cross-domain, conf 

≥0.60 

0.811 0.602 7% 
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4. DISCUSSION 
This study examined the performance of multiple classifier 

families under gender and corpus shift in speech emotion 

recognition. Several insights emerge from the results. 

Linear baselines. Logistic Regression, despite its simplicity, 

provided a valuable reference point. Its low accuracy (0.478) 

and class imbalances highlighted the inadequacy of linear 

decision boundaries for SER, especially given the complex 

acoustic and prosodic cues underlying emotional expression. 

The model’s tendency to overpredict certain high-recall classes 

such as calm confirms earlier findings that linear models overfit 

to easily separable but non-generalizable acoustic features 

(Trupti Dilip Kalokhe and Prof. Rashmi Kulkarni, 2024). 

Tree ensembles. Random Forests demonstrated robust in-

domain performance, achieving balanced F1 scores above 0.85 

across all classes. This supports the suitability of non-

parametric ensemble methods for heterogeneous emotional 

features. However, the same models degraded to 0.466 

accuracy on RAVDESS, indicating that domain mismatch-

particularly differences in feature dimensionality (58 vs. 20 

MFCCs)-remains a major barrier. XGBoost provided even 

higher in-domain performance, especially in female-only 

training (0.914), but cross-gender transfer collapsed to near-

chance levels. This sensitivity suggests that boosted ensembles, 

while powerful in-domain, can overfit to distributional quirks 

such as gender-specific pitch and prosodic patterns. 

Cross-domain collapse. The sharp drop on RAVDESS echoes 

prior cross-corpus studies [ref], confirming that even strong 

classical models fail under distribution shift. Notably, high-

arousal emotions (angry, fear, happy) generalized better than 

low-arousal categories (calm, neutral, sad). This asymmetry is 

consistent with acoustic theory, as high-arousal emotions 

involve more distinctive pitch and energy contours, whereas 

low-arousal states are more acoustically ambiguous. 

Confidence-based filtering. The most practical contribution 

lies in the selective prediction framework. By applying a 

confidence threshold (≥0.60), the Random Forest router 

improved cross-domain accuracy to 0.811, though this was 

limited to 7% of samples. Rather than a deployable solution, 

this should be viewed as a proof-of-concept: it shows that 

abstention mechanisms can successfully recover reliability 

when distribution shifts occur. In practice, future work must 

focus on expanding this high-confidence subset, for example, 

through improved calibration, multimodal cues, or domain 

adaptation techniques. This trade-off between reliability and 

coverage reflects a broader trend in trustworthy machine 

learning: models should not only provide predictions but also 

indicate when they are uncertain. For SER applications in 

healthcare or human–computer interaction, exposing 

confidence could reduce the risk of misclassification-driven 

harm while maintaining trust in the system. 

Implications for stress detection. Stress is often expressed 

through subtle acoustic cues that overlap with emotional states 

such as fear, sadness, or neutral tension. The findings here 

suggest that stress-detection systems face the same 

vulnerabilities as SER: strong in-domain accuracy, but severe 

performance degradation under distribution shift (e.g., across 

gender, language, or recording environment). Confidence-

based filtering offers a practical safeguard, enabling stress-

monitoring applications to report only high-confidence 

detections, while abstaining in uncertain cases. This could be 

particularly valuable in clinical or occupational settings, where 

false positives may cause unnecessary concern and false 

negatives may delay support. Furthermore, the demonstrated 

value of gender-specific modeling highlights that stress 

detectors may need to adapt to demographic or individual 

baselines to remain reliable. 

This study is limited by reliance on pre-extracted MFCC 

features, differences in dimensionality across corpora, and the 

absence of deep learning baselines for comparison. Future 

work should harmonize feature extraction pipelines across 

datasets, expand evaluations to additional corpora (e.g., 

IEMOCAP, EmoDB), and integrate calibration methods such 

as temperature scaling or conformal prediction. Extending the 

router concept to neural architectures and multimodal stress 

markers (e.g., heart rate, facial signals) may further enhance 

robustness. 

These results show that while classical models like Random 

Forests achieve strong in-domain recognition, they fail under 

distribution shift. Confidence filtering provides a practical way 

to expose this vulnerability and recover reliability on a trusted 

subset. For both SER and stress detection, incorporating 

confidence-aware routing may be as important as improving 

raw accuracy, especially for deployment in real-world, 

heterogeneous environments. 

5. CONCLUSION 
This study demonstrates that classical models such as Random 

Forests and XGBoost achieve strong in-domain speech 

emotion recognition performance but degrade sharply under 

gender and corpus shift. Confidence-based filtering provides a 

practical way to recover reliable predictions on a restricted 

subset, highlighting the role of selective prediction in real-

world systems where full-coverage accuracy cannot be 

guaranteed. At the same time, the results make clear that 

improvements in robustness will require more than stronger 

classifiers alone. 

Future work could explore the integration of domain-

adaptation techniques, including feature alignment and 

adversarial training, to reduce the impact of mismatched 

recording conditions and feature dimensions. Calibration 

methods such as temperature scaling or conformal prediction 

may also offer a systematic way to quantify uncertainty and 

extend the usefulness of confidence-based filtering. Deep 

learning architectures, particularly models that combine 

convolutional layers with temporal processing, are likely to 

capture richer acoustic cues and may generalize better across 

demographic and corpus differences. Extending the evaluation 

to multimodal datasets—incorporating facial expressions, text 

transcripts, or physiological indicators—would further support 

applications such as stress detection, where emotional cues are 

subtle and context-dependent. Together, these directions point 

toward more resilient and trustworthy affective-computing 

systems capable of operating reliably under diverse and shifting 

real-world conditions. 
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