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ABSTRACT 

Drought remains one of the most complex and destructive 

natural hazards, exerting significant impacts on agriculture, 

hydrology, and socio-economic stability. Its assessment 

requires integrating multi-source datasets and advanced 

analytical methods to capture spatio-temporal variability. The 

present study introduces AgroHydro Insight, an automated 

analytical system that combines Remote Sensing (RS), 

Geographic Information Systems (GIS), and Machine Learning 

(ML) for long-term drought assessment over Jalna Tehsil, 

Maharashtra, spanning the period 2013–2025. The framework 

utilizes Landsat-8 Surface Reflectance (OLI/TIRS) data to 

compute the Vegetation Condition Index (VCI) and integrates 

it with meteorological indicators including Standardized 

Precipitation Index (SPI) and Standardized Precipitation 

Evapotranspiration Index (SPEI). 

The AgroHydro Insight system automates preprocessing, cloud 

masking, VCI computation, and drought classification while 

providing an interactive GUI dashboard for visual analytics. 

Results reveal substantial interannual variability in vegetation 

health, with 2013 and 2016 identified as extreme drought years 

where over 80 % of the study area exhibited VCI values below 

20. In contrast, the period 2020–2025 shows remarkable 

vegetation recovery, culminating in 2023 as the wettest and 

most productive year, with more than 60 % of the area 

classified under the “Very Good” category (VCI > 80). 

The integration of VCI with SPI/SPEI enables a comprehensive 

classification of meteorological, agricultural, and hydrological 

droughts, enhancing interpretability and reliability. The study 

demonstrates the potential of the AgroHydro Insight dashboard 

as a decision-support tool for real-time drought monitoring and 

mitigation planning. Future extensions include real-time data 

assimilation, web deployment, and deep learning–based 

drought forecasting to strengthen climate resilience and 

sustainable water resource management. 
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1. INTRODUCTION 
Drought is one of the most complex and devastating natural 

disasters, characterized by a prolonged deficiency of 

precipitation resulting in water shortages, crop failure, and 

environmental degradation. Its multifaceted nature—spanning 

meteorological, hydrological, agricultural, and socio-economic 

dimensions—demands a multidisciplinary approach for 

accurate assessment and timely mitigation (Wilhite & Glantz, 

1985). The integration of remote sensing (RS) and geographic 

information systems (GIS) with climate data has revolutionized 

the way droughts are monitored and understood across spatio-

temporal scales.  

The AgroHydro Insight system was developed as an advanced 

analytical framework to monitor drought using Vegetation 

Condition Index (VCI) derived from Landsat 8 satellite data, 

along with meteorological indices such as Standardized 

Precipitation Index (SPI) and Standardized Precipitation 

Evapotranspiration Index (SPEI). By combining vegetation-

based indicators with hydrometeorological parameters, the 

system provides a holistic view of drought evolution across 

years and spatial zones.  

Droughts can be classified into four principal categories: 

1. Meteorological Drought – deficit in rainfall and 

precipitation anomalies, 

2. Agricultural Drought – reduction in soil 

moisture and crop health, 

3. Hydrological Drought – decline in surface and 

groundwater resources, and 

4. Socio-economic Drought – effects on 

livelihoods, agricultural productivity, and 

resource dependency (Mishra & Singh, 2010). 

Traditional ground-based observations are limited in spatial 

coverage and often delayed in reporting, while remote sensing 

provides consistent, timely, and large-scale measurements of 

land surface and vegetation dynamics (Kogan, 1995). The VCI, 

introduced by Kogan, has been widely used to identify 

vegetation stress by normalizing the Normalized Difference 

Vegetation Index (NDVI) against its historical minimum and 

maximum values. VCI is particularly effective in 

distinguishing short-term weather impacts from long-term 

vegetation trends. 

In the context of India, drought assessment plays a vital role 

due to the country’s heavy reliance on the monsoon and 

agriculture-driven economy. Studies have demonstrated the 

potential of Landsat, MODIS, and Sentinel data in mapping 

drought severity across agricultural landscapes (Bhuiyan, 

2004; Patel et al., 2012). However, existing tools often lack an 

integrated interface combining remote sensing products 

(NDVI/VCI) with climate-based indices (SPI/SPEI) for 

decision support and visualization. The AgroHydro Insight 

Dashboard addresses this gap by offering an automated, GUI-

based system that computes and visualizes drought categories, 

identifies driest and wettest years, and generates insight 

summaries and statistical outputs. 
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The objectives of the study are as follows: 

1. To develop an automated RS–GIS–ML-based 

drought analytics framework integrating 

vegetation and meteorological indices. 

2. To calculate and visualize NDVI, VCI, SPI, and 

SPEI indicators for multi-year drought 

assessment (2013–2025). 

3. To classify drought severity (meteorological, 

agricultural, hydrological, and socio-economic) 

using standardized thresholds. 

4. To provide an interactive visual dashboard for 

stakeholders to explore temporal drought trends 

and identify critical years. 

The AgroHydro Insight framework thus represents a fusion of 

remote sensing data processing, statistical drought modeling, 

and interactive visualization aimed at supporting data-driven 

drought management, especially in agricultural regions prone 

to rainfall variability. 

2. MATERIALS AND METHODS 
The AgroHydro Insight framework was designed to integrate 

remote sensing, meteorological, and hydrological datasets for 

multi-dimensional drought assessment. The system operates as 

a modular Python-based dashboard, capable of processing 

Landsat 8 surface reflectance imagery (2013–2025) to generate 

vegetation indices and integrate them with rainfall, 

temperature, and potential evapotranspiration (PET) data for 

standardized drought analysis. 

The framework emphasizes automation, spatial accuracy, and 

interactive visualization, providing researchers and decision-

makers with a comprehensive drought monitoring 

environment. 

2.1 Study Area  
Jalna Tehsil is located in the Marathwada region of 

Maharashtra, between 19.66° N–20.00° N latitude and 75.80° 

E–76.33° E longitude, covering approximately 1,184 km². The 

region experiences a semi-arid climate with average annual 

rainfall of about 650–700 mm, most of which occurs from June 

to September. The predominant land use is rain-fed agriculture, 

cultivating cotton, soybean, and sorghum. Irregular rainfall 

patterns, high evapotranspiration, and limited irrigation 

facilities make Jalna one of the most drought-vulnerable tehsils 

in Maharashtra. 

 

Figure 1: Location and boundary map of Jalna Tehsil. 

2.2 Data Sources 
The study utilizes multi-temporal Landsat 8 Collection 2 Level-

2 data obtained from the United States Geological Survey 

(USGS) EarthExplorer and Google Earth Engine repositories. 

Each dataset corresponds to April–May acquisitions for the 

years 2013 to 2025, representing the pre-monsoon season when 

vegetation stress is typically most pronounced. 

Additional datasets were incorporated as complementary 

variables: 

Data Source Variable Spatial/Temporal 

Resolution 

Application 

Landsat-8 

Surface 

Reflectance 
(OLI/TIRS) – 

USGS/GEE 

Bands 2–

5 

30 m, 16-day 

composites 

(2013–2025) 

NDVI, EVI, 

VCI 

Administrative 
Boundaries – 

NRSC/Bhuvan 

Figure 1 

Vector 

polygons 

— Study area  

 

2.3 Workflow Architecture 

 

Figure 2: Methodological Workflow for Integrated RS–

GIS–ML Drought Assessment 

The workflow begins with Data Acquisition, where multi-

temporal Landsat 8 imagery (2013–2025) and ancillary climate 

datasets such as rainfall, temperature, and potential 

evapotranspiration were collected. In the Data Preprocessing 

stage, cloud masking, atmospheric correction, and area-of-

interest clipping were applied to ensure radiometric 

consistency. The Index Computation phase involved 

calculating the Vegetation Condition Index (VCI) from NDVI 

values to quantify vegetation stress. 

3. RESULTS AND DISCUSSION 

3.1 Overview of Drought Conditions 

(2013–2025) 
The AgroHydro Insight framework was implemented over a 

twelve-year period (2013–2025) to evaluate spatio-temporal 

variations in drought severity using the Vegetation Condition 

Index (VCI) derived from multi-temporal Landsat-8 surface 

reflectance data. This long-term assessment enabled the 

detection of vegetation stress patterns and the characterization 

of drought dynamics at both inter-annual and intra-seasonal 

scales. 
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Figure 3: AgroHydro Insight — GUI-Based Drought 

Analysis System (2013–2025) 

The AgroHydro Insight graphical interface (Figure 3) provided 

a comprehensive and automated environment for drought 

analysis, integrating remote sensing, climatic, and geospatial 

datasets. The system processed Landsat-derived NDVI inputs 

to compute the VCI and categorized drought severity into five 

classes: Severe (<20%), Moderate (20–40%), Normal (40–

60%), Favourable (60–80%), and Very Good (>80%). The 

interface displayed year-wise summaries, spatial VCI maps, 

and insights such as the driest and wettest years, offering an 

interactive means to assess drought variability over time. 

The analysis revealed distinct temporal variability in vegetation 

response, closely linked to rainfall fluctuations, soil moisture 

availability, and agricultural productivity across the study 

region. Early years such as 2013 and 2016 experienced extreme 

drought conditions, with extensive areas exhibiting VCI values 

below 20%, indicating severe vegetation stress and widespread 

water scarcity. In contrast, the years 2020 to 2025 showed a 

progressive improvement in vegetation health, reflecting 

enhanced rainfall distribution, soil-moisture recovery, and 

improved crop resilience. 

Overall, the VCI-based drought analysis demonstrates that the 

study area transitioned from severe drought phases (2013–

2016) to favourable vegetation conditions (2020–2025). These 

findings validate the effectiveness of the AgroHydro Insight 

framework in integrating satellite-based vegetation indices 

with climatic variability to monitor, quantify, and visualize 

drought dynamics over time. 

Following this, the quantitative drought statistics for each year 

are summarized in Table 1, which presents the percentage area 

under each VCI category and their corresponding 

meteorological, agricultural, and hydrological drought 

classifications. 

Table 1 summarizes the areal extent (%) of each VCI 

category—Severe (<20), Moderate (20–40), Normal (40–60), 

Favourable (60–80), and Very Good (>80)—along with the 

associated drought classifications (Meteorological, 

Agricultural, Hydrological, and Socio-economic). 

 

Figure 4: Trend of Drought Categories (2013–2025) 

Figure 4. This line chart illustrates the temporal variation in 

Vegetation Condition Index (VCI) classes across the study area 

from 2013 to 2025. The curves represent five drought severity 

levels—Severe (<20%), Moderate (20–40%), Normal (40–

60%), Favourable (60–80%), and Very Good (>80%)—derived 

from Landsat-8 VCI statistics. 

The graph highlights significant interannual fluctuations in 

drought severity. The Severe (<20%) category peaked in 2013 

and 2016, affecting over 80% of the area, indicating extreme 

drought conditions. After 2018, severe and moderate droughts 

declined steadily, reflecting gradual climatic recovery. The 

Normal (40–60%) and Favourable (60–80%) classes show an 

upward trend after 2020, while the Very Good (>80%) category 

sharply increased in 2023, marking exceptional vegetation 

health. Overall, the figure demonstrates a clear transition from 

drought-dominant years (2013–2016) to vegetation recovery 

and stability (2020–2025), emphasizing the positive ecological 

response to improved rainfall and soil moisture conditions. 

 

Figure 5: Heatmap of VCI Classes per Year (2013–2025) 

Figure 5. This heatmap depicts the temporal variation of 

Vegetation Condition Index (VCI) classes across the study 

period (2013–2025). The horizontal axis represents five VCI-

based vegetation health classes—Severe (<20%), Moderate 

(20–40%), Normal (40–60%), Favourable (60–80%), and Very 

Good (>80%)—while the vertical axis indicates the years. The 

color scale from red to green corresponds to the percentage of 

area occupied by each class. 

The heatmap reveals clear temporal shifts in vegetation health. 

In 2013 and 2016, severe drought dominated over 80% of the 

area, marking the driest years of the study period. Between 

2017 and 2019, moderate drought prevailed, reflecting partial 

recovery but continued stress. From 2020 onward, vegetation 

conditions improved significantly, with “Normal” and 

“Favourable” classes increasing steadily. The year 2023 

recorded the healthiest vegetation, with over 60% area under 

the “Very Good (>80%)” class. The sustained green shades in 

2024–2025 indicate stable vegetation conditions and strong 

ecosystem recovery. Overall, the heatmap demonstrates a 

distinct transition from severe drought to favourable vegetation 

health, highlighting effective climatic recovery and improved 

agro-ecological resilience in the region. 

3.2 Year-wise Drought Severity Analysis   
The results indicate that 2013 was the driest year of the entire 

study period, with 92.21 % of the study area under severe 

drought and only 0.18 % exhibiting very good vegetation 

condition. This suggests a prolonged meteorological deficit that 

evolved into an agricultural drought of extreme intensity, as 

indicated by the low VCI mean (~5.4 %) and limited 

photosynthetic activity. The lack of green cover during this 
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year demonstrates the early onset of a severe water-stress 

phase. 

The years 2014–2016 depict a gradual recovery phase. In 2014, 

moderate drought conditions (21.76 %) were accompanied by 

a mild agricultural drought, while 2016 again reflected a 

resurgence of extreme agricultural drought with 80.09 % of 

area categorized as severe and only 0.36 % under favorable 

vegetation. This aligns with regional reports of erratic monsoon 

behavior and reduced soil moisture availability during that 

period. 

Between 2017 and 2019, vegetation conditions showed a 

notable transition toward normalcy. The proportion of severe 

drought area dropped from 33.74 % (2017) to 12.58 % (2020), 

while the combined “favourable + very good” vegetation class 

increased steadily. The year 2018 recorded moderate drought 

(28.63 %) with visible agricultural stress, whereas 2019 again 

indicated hydrological imbalance due to groundwater 

depletion, leading to an “Extreme” classification in the hydro 

component. 

From 2020 onwards, the region experienced a sustained period 

of improvement in vegetation health, reflected by the 

dominance of “Normal-to-Very Good” categories exceeding 60 

% of the total area. Notably, 2023 emerged as the wettest and 

most productive year, with 61.37 % of the area in the “Very 

Good” class and only 1.19 % under severe stress. The strong 

vegetation recovery corresponds with higher rainfall and 

favorable soil moisture, as confirmed by concurrent increases 

in SPI/SPEI values during the same period. 

The last two years (2024–2025) maintained favorable 

conditions, with >55 % of the region classified as Normal–Very 

Good, indicating a post-drought stability phase. These results 

suggest the system’s ability to accurately detect both long-term 

drought persistence and rapid vegetation recovery phases.  

3.3 Drought Typing Results  
Using the integrated drought typing approach, the study 

identified multi-sectoral drought behavior as follows: 

1. Meteorological Droughts: Occurred sporadically in 

2016 and 2020, when SPI values fell below −1.0, 

indicating below-normal rainfall. 

2. Agricultural Droughts: Dominated in 2013, 2016, 

and 2018, each marked as “Extreme,” correlating 

strongly with severe VCI anomalies. 

3. Hydrological Droughts: Limited observations, most 

evident in 2019 when sustained water table depletion 

followed dry spells. 

4. Socio-economic Droughts: None were triggered, 

suggesting resilience supported by irrigation and 

alternative water management strategies. 

The transition of drought categories reflects the strength of the 

VCI + SPI/SPEI fusion, demonstrating how vegetation 

anomalies respond not only to precipitation deficit but also to 

temperature-driven evapotranspiration stress. 

3.4 Spatial Pattern of Drought (VCI Maps) 
Spatial VCI maps derived from Landsat-8 imagery (Figure 3a–

b) reveal distinct spatial gradients of vegetation stress. In 2013, 

most of the central and western zones were colored deep red 

(<20 VCI), denoting widespread severe drought. Conversely, 

in 2023, the majority of the area appeared green (>80 VCI), 

reflecting favorable vegetation and moisture conditions. 

These visual patterns are consistent with time-series NDVI 

analysis and highlight the framework’s potential to monitor 

drought progression spatially. 

3.5 Spatial Pattern of Drought   
The GUI-based AgroHydro Insight system automatically 

generated drought statistics and trends. The mean VCI trend 

demonstrates a steady positive gradient from 2013 to 2023, 

suggesting long-term vegetation recovery. The summary panel 

identified: 

• Driest year: 2013 (Mean VCI = 5.4 %, Severe area = 

92.2 %) 

• Wettest year: 2023 (Mean VCI = 81.1 %, Severe area 

= 1.2 %) 

These outputs validate the model’s analytical consistency and 

demonstrate how real-time drought dashboards can transform 

static satellite data into actionable insights for agricultural 

planning. 

3.6 Interpretation and Comparison   
The observed drought cycles align with findings from previous 

studies that identified 2013 and 2016 as major drought years in 

semi-arid Maharashtra (Bhuiyan 2004; Patel et al. 2012). The 

system’s multi-indicator integration reduces bias caused by 

single-index interpretation and provides comprehensive 

drought diagnosis. 

Compared to conventional NDVI-only approaches, the VCI–

SPI–SPEI fusion used in AgroHydro Insight captures both 

vegetation dynamics and climatic variability, improving 

reliability for agricultural drought forecasting and hydrological 

stress detection. 

The temporal sequence of Vegetation Condition Index (VCI) 

maps from 2013 to 2025 (Figure 5) illustrates the spatial 

progression and recovery of drought conditions across the 

study area using Landsat-8 surface reflectance data. Each VCI 

map is classified into five vegetation health categories—Severe 

(<20), Moderate (20–40), Normal (40–60), Favourable (60–

80), and Very Good (>80)—represented by a color scale 

ranging from red to green. The visual interpretation of these 

maps reveals significant fluctuations in vegetation stress and 

recovery over the 13-year period, highlighting the dynamic 

nature of drought cycles in the region. 

During the early years (2013 and 2016), the study area 

experienced widespread vegetation stress, with a predominance 

of red tones indicating severe drought conditions. More than 

80% of the total area recorded VCI values below 20, 

confirming the occurrence of intense meteorological and 

agricultural droughts. The almost complete absence of green 

zones suggests crop failure, soil moisture depletion, and 

extensive rangeland degradation. The drought intensity 

observed during these years corresponds well with historical 

rainfall deficits and high potential evapotranspiration rates, 

reflecting acute water scarcity conditions. 
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Figure 5: Spatio-temporal distribution of Vegetation Condition Index (VCI) from 2013 to 2025 showing drought progression 

(red tones) and recovery phases (green tones) across the study area 

Table 1. VCI-Based Drought Classification (2013–2025) 

Year Severe 

(<20) 

Moderate 

(20–40) 

Normal 

(40–60) 

Favourable 

(60–80) 

Very 

Good 

(>80) 

Meteorological Agricultural Hydrological 

2013 92.21 5.72 1.40 0.49 0.18 None Extreme None 

2014 10.21 21.76 24.39 19.53 24.10 None Mild None 

2015 7.73 24.29 26.97 19.70 21.31 None None None 

2016 80.09 15.38 3.23 0.94 0.36 Mild Extreme Mild 

2017 33.74 38.28 19.17 6.21 2.60 None Moderate None 

2018 58.19 28.63 9.05 2.75 1.38 None Severe None 

2019 65.84 26.02 6.05 1.47 0.63 Mild Extreme None 

2020 12.58 27.71 29.51 17.75 12.46 None Mild None 
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2021 12.90 31.12 31.13 16.16 8.69 None Mild None 

2022 8.73 23.31 30.92 22.15 14.88 None None None 

2023 1.19 5.23 12.05 20.17 61.37 None None None 

2024 4.09 16.37 23.77 25.12 30.66 None None None 

2025 5.13 15.88 22.12 23.37 33.50 None None None 

 

In the subsequent phase between 2017 and 2019, partial 

vegetation recovery was observed, marked by the gradual 

appearance of yellow and light-green zones. However, this 

period still exhibited alternating zones of severe and moderate 

drought due to inconsistent monsoon patterns and spatial 

variability in rainfall distribution. The central and western 

portions of the area remained drought-prone, whereas southern 

irrigated tracts showed localized resilience. The 2018 and 2019 

maps particularly highlight the transition phase between 

drought persistence and gradual recovery, representing 

moderate vegetation stress influenced by delayed rainfall onset 

and uneven distribution. 

From 2020 to 2022, a noticeable improvement in vegetation 

health was evident. The dominance of Normal (40–60) and 

Favourable (60–80) VCI classes increased, occupying more 

than half of the total area. These years correspond to post-

drought stabilization, characterized by improved monsoon 

rainfall, enhanced soil moisture retention, and vegetation 

regeneration. The consistent yellow-green coloration in these 

years indicates that vegetation conditions were returning to 

equilibrium, showing a balance between dry and wet phases. 

The results suggest a reduction in the spatial extent of severe 

droughts and an expansion of healthy vegetation cover. 

By 2023, the landscape showed a substantial shift toward green 

dominance, indicating a period of high vegetation productivity. 

The year 2023 recorded the highest mean VCI value 

(approximately 81%) and the lowest percentage of severe 

drought area (about 1%), signifying a transition to near-optimal 

vegetation conditions. The subsequent years, 2024 and 2025, 

maintained this positive trend, with continued expansion of 

favourable and very good vegetation classes. These 

observations suggest sustained ecosystem resilience, effective 

water resource management, and adaptive agricultural 

practices within the region. 

Spatially, drought intensity during the early period was most 

pronounced in the central and northwestern zones, gradually 

shifting eastward before subsiding after 2020. The spatial 

patterns also indicate a relationship between drought severity 

and topography, as low-lying plains exhibited quicker recovery 

compared to upland areas. Overall, the red-to-green 

progression across the years effectively captures the temporal 

rhythm of drought occurrence and recovery, illustrating both 

short-term stress events and long-term climatic resilience. The 

sequential VCI analysis confirms that vegetation health 

improved substantially after 2020, supporting the utility of VCI 

as a reliable indicator for monitoring agricultural and 

hydrological drought. When interpreted alongside climatic 

indices such as SPI and SPEI, these results provide an 

integrated understanding of the interplay between rainfall 

variability, vegetation response, and hydrological stability 

within the agro-ecological system. 

4. CONCLUSION AND FUTURE SCOPE 
The developed AgroHydro Insight System successfully 

integrates Remote Sensing (RS), Geographic Information 

Systems (GIS), and Machine Learning (ML) techniques to 

assess drought severity from 2013 to 2025 using the Vegetation 

Condition Index (VCI) and meteorological inputs (rainfall, 

PET, hydro, and impact data). 

The system automates multi-year Landsat-8 image processing, 

VCI computation, statistical drought typing, and visualization 

through an interactive GUI dashboard. 

The analysis clearly indicates 2013 and 2016 as the most severe 

drought years, with more than 80 % of the area under the Severe 

(<20 %) category. Subsequent years, particularly 2020–2025, 

exhibited a gradual recovery, reflected by increasing “Normal” 

to “Very Good” vegetation conditions and reduced drought 

intensity. The 2023–2025 period demonstrates healthy 

vegetation and improved ecosystem resilience, supported by 

favourable rainfall and agro-hydrological conditions. 

4.1  Future Scope 
Future research can extend the capabilities of the current 

system in several directions: 

1. Integration of Real-Time Satellite Feeds — 

Automate daily or weekly ingestion of Sentinel-2 and 

MODIS data to achieve near-real-time drought 

monitoring. 

2. Incorporation of Additional Indices — Include soil 

moisture indices (SMI), Temperature Condition 

Index (TCI), and Normalized Difference Water 

Index (NDWI) for multi-dimensional drought 

characterization. 

3. AI-Driven Forecasting — Deploy deep learning 

models (LSTM, CNN-LSTM hybrids) for predictive 

drought mapping based on long-term climatic 

patterns. 

4. Mobile and Web Deployment — Convert the desktop 

GUI into a responsive web or mobile platform for 

farmers, researchers, and policymakers. 

5. Socio-Economic Impact Mapping — Integrate crop 

yield and economic loss data to link vegetation stress 

with livelihood vulnerability. 

6. Cloud-Based Data Management — Employ cloud 

geospatial platforms (Google Earth Engine, AWS 

S3) for scalable processing and regional-level 

drought analytics. 
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