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ABSTRACT

Drought remains one of the most complex and destructive
natural hazards, exerting significant impacts on agriculture,
hydrology, and socio-economic stability. Its assessment
requires integrating multi-source datasets and advanced
analytical methods to capture spatio-temporal variability. The
present study introduces AgroHydro Insight, an automated
analytical system that combines Remote Sensing (RS),
Geographic Information Systems (GIS), and Machine Learning
(ML) for long-term drought assessment over Jalna Tehsil,
Mabharashtra, spanning the period 2013-2025. The framework
utilizes Landsat-8 Surface Reflectance (OLI/TIRS) data to
compute the Vegetation Condition Index (VCI) and integrates
it with meteorological indicators including Standardized
Precipitation Index (SPI) and Standardized Precipitation
Evapotranspiration Index (SPEI).

The AgroHydro Insight system automates preprocessing, cloud
masking, VCI computation, and drought classification while
providing an interactive GUI dashboard for visual analytics.
Results reveal substantial interannual variability in vegetation
health, with 2013 and 2016 identified as extreme drought years
where over 80 % of the study area exhibited VCI values below
20. In contrast, the period 2020-2025 shows remarkable
vegetation recovery, culminating in 2023 as the wettest and
most productive year, with more than 60 % of the area
classified under the “Very Good” category (VCI > 80).

The integration of VCI with SPI/SPEI enables a comprehensive
classification of meteorological, agricultural, and hydrological
droughts, enhancing interpretability and reliability. The study
demonstrates the potential of the AgroHydro Insight dashboard
as a decision-support tool for real-time drought monitoring and
mitigation planning. Future extensions include real-time data
assimilation, web deployment, and deep learning—based
drought forecasting to strengthen climate resilience and
sustainable water resource management.
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1. INTRODUCTION

Drought is one of the most complex and devastating natural
disasters, characterized by a prolonged deficiency of
precipitation resulting in water shortages, crop failure, and
environmental degradation. Its multifaceted nature—spanning
meteorological, hydrological, agricultural, and socio-economic
dimensions—demands a multidisciplinary approach for
accurate assessment and timely mitigation (Wilhite & Glantz,
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1985). The integration of remote sensing (RS) and geographic
information systems (GIS) with climate data has revolutionized
the way droughts are monitored and understood across spatio-
temporal scales.

The AgroHydro Insight system was developed as an advanced
analytical framework to monitor drought using Vegetation
Condition Index (VCI) derived from Landsat 8 satellite data,
along with meteorological indices such as Standardized
Precipitation Index (SPI) and Standardized Precipitation
Evapotranspiration Index (SPEI). By combining vegetation-
based indicators with hydrometeorological parameters, the
system provides a holistic view of drought evolution across
years and spatial zones.

Droughts can be classified into four principal categories:

1. Meteorological Drought — deficit in rainfall and
precipitation anomalies,

2. Agricultural Drought — reduction in soil
moisture and crop health,

3. Hydrological Drought — decline in surface and
groundwater resources, and

4. Socio-economic  Drought effects on

livelihoods, agricultural productivity, and
resource dependency (Mishra & Singh, 2010).

Traditional ground-based observations are limited in spatial
coverage and often delayed in reporting, while remote sensing
provides consistent, timely, and large-scale measurements of
land surface and vegetation dynamics (Kogan, 1995). The VCI,
introduced by Kogan, has been widely used to identify
vegetation stress by normalizing the Normalized Difference
Vegetation Index (NDVI) against its historical minimum and
maximum values. VCI is particularly effective in
distinguishing short-term weather impacts from long-term
vegetation trends.

In the context of India, drought assessment plays a vital role
due to the country’s heavy reliance on the monsoon and
agriculture-driven economy. Studies have demonstrated the
potential of Landsat, MODIS, and Sentinel data in mapping
drought severity across agricultural landscapes (Bhuiyan,
2004; Patel et al., 2012). However, existing tools often lack an
integrated interface combining remote sensing products
(NDVI/VCI) with climate-based indices (SPI/SPEI) for
decision support and visualization. The AgroHydro Insight
Dashboard addresses this gap by offering an automated, GUI-
based system that computes and visualizes drought categories,
identifies driest and wettest years, and generates insight
summaries and statistical outputs.
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The objectives of the study are as follows:

1. To develop an automated RS—GIS-ML-based
drought analytics framework integrating
vegetation and meteorological indices.

2. To calculate and visualize NDVI, VCI, SPI, and
SPEI indicators for multi-year drought
assessment (2013-2025).

3. To classify drought severity (meteorological,
agricultural, hydrological, and socio-economic)
using standardized thresholds.

4. To provide an interactive visual dashboard for
stakeholders to explore temporal drought trends
and identify critical years.

The AgroHydro Insight framework thus represents a fusion of
remote sensing data processing, statistical drought modeling,
and interactive visualization aimed at supporting data-driven
drought management, especially in agricultural regions prone
to rainfall variability.

2. MATERIALS AND METHODS

The AgroHydro Insight framework was designed to integrate
remote sensing, meteorological, and hydrological datasets for
multi-dimensional drought assessment. The system operates as
a modular Python-based dashboard, capable of processing
Landsat 8 surface reflectance imagery (2013-2025) to generate
vegetation indices and integrate them with rainfall,
temperature, and potential evapotranspiration (PET) data for
standardized drought analysis.

The framework emphasizes automation, spatial accuracy, and
interactive visualization, providing researchers and decision-
makers with a comprehensive drought monitoring
environment.

2.1 Study Area

Jalna Tehsil is located in the Marathwada region of
Mabharashtra, between 19.66° N—20.00° N latitude and 75.80°
E—-76.33° E longitude, covering approximately 1,184 km?2. The
region experiences a semi-arid climate with average annual
rainfall of about 650—700 mm, most of which occurs from June
to September. The predominant land use is rain-fed agriculture,
cultivating cotton, soybean, and sorghum. Irregular rainfall
patterns, high evapotranspiration, and limited irrigation
facilities make Jalna one of the most drought-vulnerable tehsils
in Maharashtra.
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Figure 1: Location and boundary map of Jalna Tehsil.

2.2 Data Sources

The study utilizes multi-temporal Landsat 8 Collection 2 Level-
2 data obtained from the United States Geological Survey
(USGS) EarthExplorer and Google Earth Engine repositories.
Each dataset corresponds to April-May acquisitions for the
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years 2013 to 2025, representing the pre-monsoon season when
vegetation stress is typically most pronounced.

Additional datasets were incorporated as complementary
variables:

Data Source Variable | Spatial/Temporal | Application
Resolution

Landsat-8 Bands 2- | 30 m, 16-day | NDVI, EVI,

Surface 5 composites VCI

Reflectance (2013-2025)

(OLVTIRS) —

USGS/GEE

Administrative | Vector — Study area

Boundaries — | polygons

NRSC/Bhuvan

Figure 1

2.3 Workflow Architecture

Data Acquisition
Data Preprocessing

VCI 2025 (0-100)

Index Computation
Data Integration & GIS H Statistical Analysis H Machine Leaming ( ML ) |

Figure 2: Methodological Workflow for Integrated RS—
GIS-ML Drought Assessment

The workflow begins with Data Acquisition, where multi-
temporal Landsat 8 imagery (2013-2025) and ancillary climate
datasets such as rainfall, temperature, and potential
evapotranspiration were collected. In the Data Preprocessing
stage, cloud masking, atmospheric correction, and area-of-
interest clipping were applied to ensure radiometric
consistency. The Index Computation phase involved
calculating the Vegetation Condition Index (VCI) from NDVI
values to quantify vegetation stress.

3. RESULTS AND DISCUSSION

3.1 Overview of Drought Conditions
(2013-2025)

The AgroHydro Insight framework was implemented over a
twelve-year period (2013-2025) to evaluate spatio-temporal
variations in drought severity using the Vegetation Condition
Index (VCI) derived from multi-temporal Landsat-8 surface
reflectance data. This long-term assessment enabled the
detection of vegetation stress patterns and the characterization
of drought dynamics at both inter-annual and intra-seasonal
scales.
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Figure 3: AgroHydro Insight — GUI-Based Drought
Analysis System (2013-2025)

The AgroHydro Insight graphical interface (Figure 3) provided
a comprehensive and automated environment for drought
analysis, integrating remote sensing, climatic, and geospatial
datasets. The system processed Landsat-derived NDVI inputs
to compute the VCI and categorized drought severity into five
classes: Severe (<20%), Moderate (20—40%), Normal (40—
60%), Favourable (60-80%), and Very Good (>80%). The
interface displayed year-wise summaries, spatial VCI maps,
and insights such as the driest and wettest years, offering an
interactive means to assess drought variability over time.

The analysis revealed distinct temporal variability in vegetation
response, closely linked to rainfall fluctuations, soil moisture
availability, and agricultural productivity across the study
region. Early years such as 2013 and 2016 experienced extreme
drought conditions, with extensive areas exhibiting VCI values
below 20%, indicating severe vegetation stress and widespread
water scarcity. In contrast, the years 2020 to 2025 showed a
progressive improvement in vegetation health, reflecting
enhanced rainfall distribution, soil-moisture recovery, and
improved crop resilience.

Overall, the VCI-based drought analysis demonstrates that the
study area transitioned from severe drought phases (2013—
2016) to favourable vegetation conditions (2020-2025). These
findings validate the effectiveness of the AgroHydro Insight
framework in integrating satellite-based vegetation indices
with climatic variability to monitor, quantify, and visualize
drought dynamics over time.

Following this, the quantitative drought statistics for each year
are summarized in Table 1, which presents the percentage area
under each VCI category and their corresponding
meteorological, agricultural, and hydrological drought
classifications.

Table 1 summarizes the areal extent (%) of each VCI
category—Severe (<20), Moderate (20—40), Normal (40-60),
Favourable (60-80), and Very Good (>80)—along with the
associated ~ drought  classifications (Meteorological,
Agricultural, Hydrological, and Socio-economic).

Trend of Drought Categories (2013-2025)

2014 2016 2018 2020 2022 2024
vear

Figure 4: Trend of Drought Categories (2013-2025)
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Figure 4. This line chart illustrates the temporal variation in
Vegetation Condition Index (VCI) classes across the study area
from 2013 to 2025. The curves represent five drought severity
levels—Severe (<20%), Moderate (20-40%), Normal (40—
60%), Favourable (60-80%), and Very Good (>80%)—derived
from Landsat-8 VCI statistics.

The graph highlights significant interannual fluctuations in
drought severity. The Severe (<20%) category peaked in 2013
and 2016, affecting over 80% of the area, indicating extreme
drought conditions. After 2018, severe and moderate droughts
declined steadily, reflecting gradual climatic recovery. The
Normal (40-60%) and Favourable (60—80%) classes show an
upward trend after 2020, while the Very Good (>80%) category
sharply increased in 2023, marking exceptional vegetation
health. Overall, the figure demonstrates a clear transition from
drought-dominant years (2013-2016) to vegetation recovery
and stability (2020-2025), emphasizing the positive ecological
response to improved rainfall and soil moisture conditions.

severe (<20) -{Fol
Very Good (>80) - & 8
a3

Favourable (60-80)

Figure 5: Heatmap of VCI Classes per Year (2013-2025)

Figure 5. This heatmap depicts the temporal variation of
Vegetation Condition Index (VCI) classes across the study
period (2013-2025). The horizontal axis represents five VCI-
based vegetation health classes—Severe (<20%), Moderate
(20-40%), Normal (40-60%), Favourable (60-80%), and Very
Good (>80%)—while the vertical axis indicates the years. The
color scale from red to green corresponds to the percentage of
area occupied by each class.

The heatmap reveals clear temporal shifts in vegetation health.
In 2013 and 2016, severe drought dominated over 80% of the
area, marking the driest years of the study period. Between
2017 and 2019, moderate drought prevailed, reflecting partial
recovery but continued stress. From 2020 onward, vegetation
conditions improved significantly, with “Normal” and
“Favourable” classes increasing steadily. The year 2023
recorded the healthiest vegetation, with over 60% area under
the “Very Good (>80%)” class. The sustained green shades in
2024-2025 indicate stable vegetation conditions and strong
ecosystem recovery. Overall, the heatmap demonstrates a
distinct transition from severe drought to favourable vegetation
health, highlighting effective climatic recovery and improved
agro-ecological resilience in the region.

3.2 Year-wise Drought Severity Analysis

The results indicate that 2013 was the driest year of the entire
study period, with 92.21 % of the study area under severe
drought and only 0.18 % exhibiting very good vegetation
condition. This suggests a prolonged meteorological deficit that
evolved into an agricultural drought of extreme intensity, as
indicated by the low VCI mean (~54 %) and limited
photosynthetic activity. The lack of green cover during this
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year demonstrates the early onset of a severe water-stress
phase.

The years 20142016 depict a gradual recovery phase. In 2014,
moderate drought conditions (21.76 %) were accompanied by
a mild agricultural drought, while 2016 again reflected a
resurgence of extreme agricultural drought with 80.09 % of
area categorized as severe and only 0.36 % under favorable
vegetation. This aligns with regional reports of erratic monsoon
behavior and reduced soil moisture availability during that
period.

Between 2017 and 2019, vegetation conditions showed a
notable transition toward normalcy. The proportion of severe
drought area dropped from 33.74 % (2017) to 12.58 % (2020),
while the combined “favourable + very good” vegetation class
increased steadily. The year 2018 recorded moderate drought
(28.63 %) with visible agricultural stress, whereas 2019 again
indicated hydrological imbalance due to groundwater
depletion, leading to an “Extreme” classification in the hydro
component.

From 2020 onwards, the region experienced a sustained period
of improvement in vegetation health, reflected by the
dominance of “Normal-to-Very Good” categories exceeding 60
% of the total area. Notably, 2023 emerged as the wettest and
most productive year, with 61.37 % of the area in the “Very
Good” class and only 1.19 % under severe stress. The strong
vegetation recovery corresponds with higher rainfall and
favorable soil moisture, as confirmed by concurrent increases
in SPI/SPEI values during the same period.

The last two years (2024-2025) maintained favorable
conditions, with >55 % of the region classified as Normal—-Very
Good, indicating a post-drought stability phase. These results
suggest the system’s ability to accurately detect both long-term
drought persistence and rapid vegetation recovery phases.

3.3 Drought Typing Results
Using the integrated drought typing approach, the study
identified multi-sectoral drought behavior as follows:

1. Meteorological Droughts: Occurred sporadically in
2016 and 2020, when SPI values fell below —1.0,
indicating below-normal rainfall.

2. Agricultural Droughts: Dominated in 2013, 2016,
and 2018, each marked as “Extreme,” correlating
strongly with severe VCI anomalies.

3. Hydrological Droughts: Limited observations, most
evident in 2019 when sustained water table depletion
followed dry spells.

4. Socio-economic Droughts: None were triggered,
suggesting resilience supported by irrigation and
alternative water management strategies.

The transition of drought categories reflects the strength of the
VCI + SPI/SPEI fusion, demonstrating how vegetation
anomalies respond not only to precipitation deficit but also to
temperature-driven evapotranspiration stress.

3.4 Spatial Pattern of Drought (VCI Maps)

Spatial VCI maps derived from Landsat-8 imagery (Figure 3a—
b) reveal distinct spatial gradients of vegetation stress. In 2013,
most of the central and western zones were colored deep red
(<20 VCI), denoting widespread severe drought. Conversely,
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in 2023, the majority of the area appeared green (>80 VCI),
reflecting favorable vegetation and moisture conditions.

These visual patterns are consistent with time-series NDVI
analysis and highlight the framework’s potential to monitor
drought progression spatially.

3.5 Spatial Pattern of Drought

The GUI-based AgroHydro Insight system automatically
generated drought statistics and trends. The mean VCI trend
demonstrates a steady positive gradient from 2013 to 2023,
suggesting long-term vegetation recovery. The summary panel
identified:

e Driest year: 2013 (Mean VCI = 5.4 %, Severe area =
92.2 %)

e Wettest year: 2023 (Mean VCI=81.1 %, Severe area
=1.2%)

These outputs validate the model’s analytical consistency and
demonstrate how real-time drought dashboards can transform
static satellite data into actionable insights for agricultural
planning.

3.6 Interpretation and Comparison

The observed drought cycles align with findings from previous
studies that identified 2013 and 2016 as major drought years in
semi-arid Maharashtra (Bhuiyan 2004; Patel et al. 2012). The
system’s multi-indicator integration reduces bias caused by
single-index interpretation and provides comprehensive
drought diagnosis.

Compared to conventional NDVI-only approaches, the VCI-
SPI-SPEI fusion used in AgroHydro Insight captures both
vegetation dynamics and climatic variability, improving
reliability for agricultural drought forecasting and hydrological
stress detection.

The temporal sequence of Vegetation Condition Index (VCI)
maps from 2013 to 2025 (Figure 5) illustrates the spatial
progression and recovery of drought conditions across the
study area using Landsat-8 surface reflectance data. Each VCI
map is classified into five vegetation health categories—Severe
(<20), Moderate (20—40), Normal (40-60), Favourable (60—
80), and Very Good (>80)—represented by a color scale
ranging from red to green. The visual interpretation of these
maps reveals significant fluctuations in vegetation stress and
recovery over the 13-year period, highlighting the dynamic
nature of drought cycles in the region.

During the early years (2013 and 2016), the study area
experienced widespread vegetation stress, with a predominance
of red tones indicating severe drought conditions. More than
80% of the total area recorded VCI values below 20,
confirming the occurrence of intense meteorological and
agricultural droughts. The almost complete absence of green
zones suggests crop failure, soil moisture depletion, and
extensive rangeland degradation. The drought intensity
observed during these years corresponds well with historical
rainfall deficits and high potential evapotranspiration rates,
reflecting acute water scarcity conditions.
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VCI 2013 (0-100)

EE Severe (<20%)
BN Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
= Very good (>80%)

VCI 2014 (0-100)

W severe (<20%)
B Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
W Very good (>80%)

VCI 2015 (0-100)

W Severe (<20%)
W Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
W Very good (>80%)

VCI 2016 (0-100)

W Severe (<20%)
W Moderate (20-40%)
Normal (40-60%)
m Favourable (60-80%)
m— Very good (>80%)

VCI 2017 (0-100)

W Severe (<20%)
W Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
. Very good (>80%)

VCI 2018 (0-100)

W Severe (<20%)

BN Moderate (20-40%)
Normal (40-60%)

B Favourable (60-80%)

= Very good (>80%)

VCI 2019 (0-100)

E Severe (<20%)
B Moderate (20-40%)
Normal (40-60%)
N Favourable (60-80%)
N Very good (>80%)

VCI 2020 (0-100)

B Severe (<20%)
W Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
= Very good (>80%)

VCl 2021 (0-100)

B Severe (<20%)
BN Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
B Very good (>80%)

VCI 2022 (0-100)

E Severe (<20%)
W Moderate (20-40%)
Normal (40-60%)
W Favourable (60-80%)
W Very good (>80%)

VCI 2023 (0-100)

W Severe (<20%)
B Moderate (20-40%)
Normal (40-60%)
s Favourable (60-80%)
W Very good (>80%)

VCI 2024 (0-100)

W Severe (<20%)
W Moderate (20-40%)
Normal (40-60%)
e Favourable (60-80%)
mVery good (>80%)

VCI 2025 (0-100)

Il Severe (<20%)
B Moderate (20-40%)

Normal (40-60%)

[ Favourable (60-80%)
I Very good (>80%)

Figure 5: Spatio-temporal distribution of Vegetation Condition Index (VCI) from 2013 to 2025 showing drought progression
(red tones) and recovery phases (green tones) across the study area

Table 1. VCI-Based Drought Classification (2013-2025)

Year | Severe Moderate Normal Favourable Very Meteorological | Agricultural | Hydrological
(<20) (20-40) (40-60) (60-80) Good
(>80)
2013 | 92.21 5.72 1.40 0.49 0.18 None Extreme None
2014 | 10.21 21.76 24.39 19.53 24.10 None Mild None
2015 | 7.73 24.29 26.97 19.70 21.31 None None None
2016 | 80.09 15.38 3.23 0.94 0.36 Mild Extreme Mild
2017 | 33.74 38.28 19.17 6.21 2.60 None Moderate None
2018 | 58.19 28.63 9.05 2.75 1.38 None Severe None
2019 | 65.84 26.02 6.05 1.47 0.63 Mild Extreme None
2020 | 12.58 27.71 29.51 17.75 12.46 None Mild None
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2021 | 12.90 31.12 31.13 16.16 8.69 None Mild None
2022 | 8.73 23.31 30.92 22.15 14.88 None None None
2023 | 1.19 5.23 12.05 20.17 61.37 None None None
2024 | 4.09 16.37 23.77 25.12 30.66 None None None
2025 | 5.13 15.88 22.12 23.37 33.50 None None None

In the subsequent phase between 2017 and 2019, partial
vegetation recovery was observed, marked by the gradual
appearance of yellow and light-green zones. However, this
period still exhibited alternating zones of severe and moderate
drought due to inconsistent monsoon patterns and spatial
variability in rainfall distribution. The central and western
portions of the area remained drought-prone, whereas southern
irrigated tracts showed localized resilience. The 2018 and 2019
maps particularly highlight the transition phase between
drought persistence and gradual recovery, representing
moderate vegetation stress influenced by delayed rainfall onset
and uneven distribution.

From 2020 to 2022, a noticeable improvement in vegetation
health was evident. The dominance of Normal (40-60) and
Favourable (60-80) VCI classes increased, occupying more
than half of the total area. These years correspond to post-
drought stabilization, characterized by improved monsoon
rainfall, enhanced soil moisture retention, and vegetation
regeneration. The consistent yellow-green coloration in these
years indicates that vegetation conditions were returning to
equilibrium, showing a balance between dry and wet phases.
The results suggest a reduction in the spatial extent of severe
droughts and an expansion of healthy vegetation cover.

By 2023, the landscape showed a substantial shift toward green
dominance, indicating a period of high vegetation productivity.
The year 2023 recorded the highest mean VCI value
(approximately 81%) and the lowest percentage of severe
drought area (about 1%), signifying a transition to near-optimal
vegetation conditions. The subsequent years, 2024 and 2025,
maintained this positive trend, with continued expansion of
favourable and very good vegetation classes. These
observations suggest sustained ecosystem resilience, effective
water resource management, and adaptive agricultural
practices within the region.

Spatially, drought intensity during the early period was most
pronounced in the central and northwestern zones, gradually
shifting eastward before subsiding after 2020. The spatial
patterns also indicate a relationship between drought severity
and topography, as low-lying plains exhibited quicker recovery
compared to wupland areas. Overall, the red-to-green
progression across the years effectively captures the temporal
rhythm of drought occurrence and recovery, illustrating both
short-term stress events and long-term climatic resilience. The
sequential VCI analysis confirms that vegetation health
improved substantially after 2020, supporting the utility of VCI
as a reliable indicator for monitoring agricultural and
hydrological drought. When interpreted alongside climatic
indices such as SPI and SPEI, these results provide an
integrated understanding of the interplay between rainfall
variability, vegetation response, and hydrological stability
within the agro-ecological system.

4. CONCLUSION AND FUTURE SCOPE

The developed AgroHydro Insight System successfully
integrates Remote Sensing (RS), Geographic Information
Systems (GIS), and Machine Learning (ML) techniques to
assess drought severity from 2013 to 2025 using the Vegetation

Condition Index (VCI) and meteorological inputs (rainfall,
PET, hydro, and impact data).

The system automates multi-year Landsat-8 image processing,
VCI computation, statistical drought typing, and visualization
through an interactive GUI dashboard.

The analysis clearly indicates 2013 and 2016 as the most severe
drought years, with more than 80 % of the area under the Severe
(<20 %) category. Subsequent years, particularly 2020-2025,
exhibited a gradual recovery, reflected by increasing “Normal”
to “Very Good” vegetation conditions and reduced drought
intensity. The 2023-2025 period demonstrates healthy
vegetation and improved ecosystem resilience, supported by
favourable rainfall and agro-hydrological conditions.

4.1 Future Scope
Future research can extend the capabilities of the current
system in several directions:

1. Integration of Real-Time Satellite Feeds —
Automate daily or weekly ingestion of Sentinel-2 and
MODIS data to achieve near-real-time drought
monitoring.

2. Incorporation of Additional Indices — Include soil
moisture indices (SMI), Temperature Condition
Index (TCI), and Normalized Difference Water
Index (NDWI) for multi-dimensional drought
characterization.

3. Al-Driven Forecasting — Deploy deep learning
models (LSTM, CNN-LSTM hybrids) for predictive
drought mapping based on long-term climatic
patterns.

4. Mobile and Web Deployment — Convert the desktop
GUI into a responsive web or mobile platform for
farmers, researchers, and policymakers.

5. Socio-Economic Impact Mapping — Integrate crop
yield and economic loss data to link vegetation stress
with livelihood vulnerability.

6. Cloud-Based Data Management — Employ cloud
geospatial platforms (Google Earth Engine, AWS
S3) for scalable processing and regional-level
drought analytics.
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