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ABSTRACT

In an era dominated by digital transactions and real-time
decision-making, traditional fraud detection systems have
become inadequate due to their reliance on delayed, batch-
based processing. This research presents an event-driven
architecture for real-time fraud detection, leveraging Apache
Kafka for high-throughput data ingestion, ksqIDB for rule-
based stream querying, and Apache Flink for complex event
processing and machine learning inference. The system ingests
transaction, login, and geolocation data streams, applies
immediate filters, and performs stateful anomaly detection to
identify suspicious behaviors such as velocity violations and
improbable access patterns. A fully containerized
implementation validates the architecture’s performance under
simulated load conditions, achieving a true positive rate of
94.2% and sub-second latency. The hybrid approach unifies
rule-based and ML-enhanced detection, offering low false
positives and high adaptability. This work demonstrates how
modern stream processing technologies can transform fraud
detection from a reactive, offline task into a proactive, real-time
analytics pipeline embedded within the data infrastructure. The
architecture is modular, scalable, and production-ready,
making it suitable for deployment in financial and e-commerce
ecosystems.
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1. INTRODUCTION

In today’s digital-first economy, real-time transaction systems
have become the backbone of financial services, e-commerce,
and online platforms. This ubiquity, however, comes with an
alarming rise in fraudulent activities that exploit system
latencies, protocol vulnerabilities, and the increasing sophisti-
cation of adversaries. Traditional fraud detection systems—
often batch-based or reliant on static rule sets—are inherently
reactive, processing data hours or even days after the fraudulent
activity has occurred. In this delayed window, attackers can
execute high-speed, low-value transactions or simulate
legitimate behaviors across distributed platforms, evading
outdated detection mechanisms entirely.

Recent studies report a dramatic surge in digital fraud.
According to the Reserve Bank of India, there was a 216%
increase in transaction volume and a 10% increase in value
between 2019 and 2022, significantly amplifying the attack
surface for payment fraud and social engineering scams (Yasir
et al., 2025). Furthermore, the evolution of fraud techniques—
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such as rapid-fire transactions, cross-device spoofing, and
behavioral mimicry—requires detection mechanisms that are
dynamic, intelligent, and immediate.

To meet this challenge, organizations are increasingly adopting
event-driven streaming architectures. Among these, Apache
Kafka has emerged as a robust and scalable foundation for
ingesting real-time transactional data. It enables low-latency,
high-throughput, and fault-tolerant pipelines that serve as the
backbone of modern fraud detection systems. ksqlDB, Kafka’s
SQL-like stream processing engine, allows declarative and
continuous querying of live data streams, enabling rule-based
logic to be applied in real-time. Complementing this, Apache
Flink offers rich support for complex event processing (CEP),
stateful stream analytics, and the integration of machine
learning models—making it a powerful tool for identifying
fraud patterns that span across time, geography, and user
behavior.

In this study, we present a unified pipeline that integrates
Kafka, ksqlDB, and Apache Flink to build a real-time fraud
detection system. Our architecture leverages Kafka to capture
transactional events; ksqlDB to apply immediate business
logic, filter high-risk patterns, and aggregate features; and
Apache Flink for advanced pattern recognition, dynamic
windowing, and real-time model inference. This hybrid
approach transforms fraud detection from a retrospective batch
task into a proactive, in-stream analysis pipeline capable of
flagging suspicious behavior in milliseconds.

Unlike traditional approaches, which are either rule-heavy or
dependent on offline-trained models, this architecture enables
stream-native detection and decisioning. Recent research has
validated this model: systems using real-time analytics
combined with ML-based scoring have shown over 97% de-
tection accuracy and significantly lower false-positive rates
compared to static rule engines (Singh et al., 2025). Moreover,
the event-driven design enhances scalability and resilience,
enabling organizations to monitor thousands of concurrent
users and detect fraud as it unfolds.

The primary goal of this research is to evaluate the design and
performance of an event-driven fraud detection pipeline using
modern stream processing tools. We compare the roles and
trade-offs of rule-based (ksqlDB) vs. stateful, ML-enhanced
(Flink) detection, analyze system behavior under varying load
conditions, and provide a replicable architecture for practical
deployment in financial or e-commerce ecosystems.

The paper is organized as follows: Section 2 covers related
research and existing systems; Section 3 introduces the
proposed architecture; Section 4 details the system
implementation; Section 5 discusses key findings and
limitations; and Section 6 concludes with future directions.

2. LITERATURE REVIEW

The rising prevalence of online financial fraud has necessitated
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a shift from traditional detection methods toward real-time,
data-driven architectures. This section reviews the evolution of
fraud detection technologies with a focus on stream processing
tools—specifically Apache Kafka, ksqlDB, and Apache
Flink—as well as the integration of machine learning and
complex event processing (CEP) into fraud analytics.

2.1 Traditional Approaches and Their

Limitations

Traditional fraud detection systems have historically relied on
batch processing and static rule engines, where anomalies were
flagged based on pre-defined thresholds or historical profiles.
While effective for known attack patterns, these methods fall
short in dynamic environments where fraudsters quickly adapt
to detection logic. A review by Malviya (2025) noted that such
systems struggle with high false-positive rates and delayed
response times, especially when dealing with highly
imbalanced datasets typical in credit card fraud detection.

2.2 Rise of Stream Processing with Kafka
Apache Kafka has emerged as a foundational technology for
streaming data pipelines. Its distributed architecture and fault-
tolerant design make it ideal for ingesting and processing high-
velocity event data in real-time. Vankayala (2025)
demonstrated how Kafka, when deployed with Kubernetes,
provides a scalable backbone for time-sensitive applications
such as fraud monitoring and claims processing in insurance
and IoT scenarios (Vankayala, 2025). Kafka’s ability to
partition and replay events enables forensic analysis while
supporting immediate action pipelines.

2.3 ksqIlDB for Rule-based Streaming

ksqlDB, built atop Kafka Streams, offers a declarative way to
perform continuous queries on streaming data using SQL-like
syntax. It excels in real-time pattern detection such as
frequency analysis, location mismatch, or velocity rule
violations. However, its limited support for stateful processing
and complex multi-event pattern detection makes it better
suited for simple anomaly filtering rather than dynamic
profiling.

2.4 Flink and Complex Event Processing
(CEP)

Apache Flink advances stream processing by enabling stateful,
low-latency computation with event-time semantics. Its CEP
library supports detection of time-based patterns—such as
repeated transactions across accounts within a defined
window—crucial for modelling fraudulent behavior. Singh et
al. (2025) highlighted the advantage of Flink’s windowing and
dynamic keying for modelling evolving fraud strategies,
particularly in phone call and user impersonation scenarios
(Singh et al., 2025).

2.5 Integration of ML in Stream Pipelines
Recent reviews emphasize the shift toward integrating machine
learning in real-time pipelines for fraud scoring. Hafez et al.
(2025) conducted a comprehensive analysis of Al-enhanced
fraud detection systems, identifying the growing role of deep
learning, ensemble methods, and streaming anomaly detectors
in mitigating evolving threats (Hafez et al., 2025). Such
integration allows fraud detection to adapt dynamically,
reducing dependence on hardcoded rules.

2.6 Gaps and Research Opportunity

Despite progress, a performance and integration gap persist
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between rule-based engines and full-fledged ML-enhanced
CEP pipelines. Most implementations focus on either static rule
enforcement or offline ML scoring. Few systems blend Kafka’s
scalability, ksqIDB’s simplicity, and Flink’s analytic power in
a single, production-ready fraud detection pipeline. This
research addresses that gap by designing and evaluating a
hybrid, event-driven fraud detection architecture capable of
handling evolving fraud patterns in real time.

3. SYSTEM ARCHITECTURE

The proposed architecture follows a modular, event-driven
design that facilitates real-time fraud detection by integrating
Apache Kafka, ksqlDB, and Apache Flink. It consists of three
logical layers: data ingestion, stream processing, and anomaly
detection with alerting.

At the base level, Apache Kafka serves as the robust ingestion
and message-queuing backbone. It captures transactional
events from multiple sources such as payment processing
systems, user authentication logs, geolocation trackers, and
device telemetry. Each type of event is published to its own
Kafka topic (e.g., transactions stream, login events, and
geo_events) and stored with strong durability guarantees.
Kafka's partitioned, fault-tolerant architecture allows the
system to sustain high throughput, ensure replayability, and
manage evolving schemas via standardized tools like Schema
Registry.

Above Kafka, the first stream-processing layer employs
ksqIDB. This SQL-compatible engine continuously ingests
event streams to execute lightweight rule-checking and feature
extraction. For example, real-time aggregations—such as
rolling counts of transactions per user over a fixed time
window—can help flag suspicious behavioral spikes.
Declarative queries offer convenience and rapid iteration for
business logic like identifying users with more than five
transactions within any ten-minute tumbling window. Once
filtered and enriched, the resulting streams are forwarded to the
next layer for deeper analysis.

The final layer comprises Apache Flink, which enhances the
pipeline with stateful processing, complex event detection, and
optional machine learning model inference. Flink's event-time
semantics support temporal joins and pattern detection across
multiple data streams—such as clustering rapid-fire
transactions across geographically diverse accounts or
identifying improbable location-based login sequences within
small time intervals. In addition, models trained oftline (e.g.,
logistic regression or autoencoder-based anomaly detectors)
can be deployed directly within Flink jobs or via lightweight
model-serving interfaces, enabling real-time risk scoring and
contextual decision-making.

Once a suspicious behavior is detected—either via rule-based
logic in ksqlDB or CEP/ML scoring in Flink—the anomaly is
emitted to an alerts_topic within Kafka. Downstream systems
can subscribe to this topic to automatically trigger responses,
ranging from transaction blocking and enhanced verification
prompts to dashboarding and fraud investigation workflows.

Importantly, this architecture emphasizes scalability and fault
tolerance. Kafka scales by partitioning topics, while Flink
scales via task parallelism and checkpoint-based state recovery.
Together, they provide resilience through replayable event logs
and stateful fault recovery, ensuring consistent detection even
under node failures. Moreover, the modular structure promotes
composability: new rules can be added to ksqlDB, and new
scoring models or CEP patterns can be developed in Flink,
without disrupting the core data flow.

14



International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.60, November 2025

Apache Kafka

Payment Gateways

L r

Web / Mobile Applications

. >

Filtering and Aggregation

Transactions Topic

kSQL DB

— Alerts Topic

'" B
I
User LDgiHS Matification
™ / System
Authentication Logs
~
' ' ) _J
[ Apache Kafka ("
| | 0)
v

Device Telemetry

Fraud Respondent Service

Figure 1: Fraud detection architecture leveraging Apache Kafka and KSQLDB. Events from multiple sources are ingested
into Kafka, processed via KSQLDB for filtering and aggregation, and routed through topics for anomaly detection. Alerts are
published to downstream notification and fraud response systems

4. IMPLEMENTATION DETAILS

The implementation of the proposed fraud detection
architecture was carried out using a fully containerized
environment to simulate real-time transaction flows and
streaming analytics. The system was developed using Apache
Kafka as the core event-streaming platform, with ksqlDB for
declarative stream transformations and Apache Flink for
advanced analytics and anomaly detection. Docker Compose
was used to orchestrate all services locally, ensuring modular
deployment and simplified scaling.

Kafka served as the backbone of the pipeline, capturing events
from multiple simulated sources such as payment gateways,
user authentication systems, and device telemetry feeds. Each
type of data was streamed into a dedicated Kafka topic. For
example, the transactions_topic was designed to carry detailed
payment information, including user identifiers, transaction
amounts, timestamps, and geo-tags. Additional topics such as
user_logins and geo_events were used to log session activities
and device location metadata. These streams were generated
using lightweight Python scripts and Kafka Connect REST
APIs to emulate real-world ingestion rates and payload
structures.

transactions_topic [ geo_events
transaction_id (PK) |string N event_id [string
- user_id (FK} string user_id string

amount double - < device_id string

timestamp datetime location string

channel string event time datetime

gea_location string

user_logins alerts_topic

login_id (PK) |string 11 alertid (PK)  |string
<| user_id (FK) string —t 1 < user_id (FK) string
device_id (FK) |string — 4 event_type string
ip_address string risk_score string
login_time datetime |timestamp datetime

auth_method  [string

Figure 2: Entity relationships between Kafka topics in the
fraud detection pipeline. Shared fields like User_Id and
Device_Id enable cross-stream joins for detecting
anomalous behaviour

The schema definitions for each Kafka topic were centrally
managed using Confluent’s Schema Registry, ensuring
consistency and compatibility across processing stages. Kafka
was configured with a replication factor of 1 and a partition
count of three to enable concurrent processing and ensure data
availability even during node-level disruptions.

Once the events were ingested into Kafka, they were processed
in real time using ksqlDB, which performed rule-based filtering
and basic aggregation. For instance, ksqlDB was configured to
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monitor velocity patterns by flagging users who conducted
more than five transactions within a ten-minute window.
Another use case involved detecting geographic
inconsistencies by correlating user locations from separate
event streams over sliding time intervals. These declarative
queries were written in SQL-like syntax, making them easily
maintainable and adaptable to emerging fraud patterns.

While ksqlDB handled rule-driven filtering, the more complex
pattern recognition and contextual scoring were executed using
Apache Flink. Flink consumed the pre-processed streams and
applied stateful windowing, complex event processing (CEP),
and anomaly scoring using lightweight machine learning
models. Models were pre-trained offline using historical
datasets and deployed as microservices that Flink could invoke
during stream execution. This hybrid approach enabled
dynamic profiling—such as recognizing transaction bursts tied
to specific user-device combinations—and improved overall
fraud detection precision.

Detected anomalies were pushed to a Kafka alerts topic, which
served as the bridge to response systems. Alert consumers
included an email/SMS notification engine and a fraud
resolution dashboard built using Grafana and PostgreSQL for
storage and visualization. This end-to-end setup enabled near-
real-time monitoring of fraudulent behaviour with the ability to
adapt quickly to new threats by reconfiguring queries or
retraining models.

In summary, the implementation closely mirrors the proposed
architecture, emphasizing low-latency data flow, modular
analytics, and real-time responsiveness. The system was
validated under simulated transactional loads to ensure that
each component—from ingestion to decisioning—operated
efficiently and robustly in a production-like environment.

5. RESULTS AND EVALUATION

To evaluate the effectiveness of the proposed real-time fraud
detection pipeline, a series of simulation-based experiments
were conducted using synthetically generated transaction,
login, and geolocation data. The system was deployed in a
containerized environment with Apache Kafka, ksqlDB, and
Apache Flink running as separate services under Docker
Compose. Evaluation was based on three key criteria: detection
accuracy, latency performance, and scalability under varying
data loads.

The synthetic dataset modelled typical user behavior
interspersed with injected fraudulent patterns such as rapid
transaction bursts, geolocation mismatches, and device
inconsistencies. Over 100,000 events were streamed over a 30-
minute window, simulating real-world traffic patterns. Events
were ingested via Kafka topics and processed in real time using
ksqlDB for rule-based filtering and Apache Flink for advanced
CEP and anomaly scoring.

Detection accuracy was measured by comparing flagged events
with known anomalies embedded in the simulation. The
pipeline achieved a true positive rate (TPR) of 94.2% and a
false positive rate (FPR) of 4.8%, showing strong performance
even under high-throughput conditions. The use of ksqIDB for
initial pre-filtering effectively reduced the noise in downstream
Flink processing, improving overall system precision.

In terms of latency, the system maintained sub-second end-to-
end processing delays from ingestion to alert generation.
Average processing latency was measured at 480 ms, with 95th
percentile latency not exceeding 780 ms, even when Kafka
throughput was increased to 5,000 events per second. This
demonstrated the architecture’s suitability for real-time fraud
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scenarios where rapid response is critical.

Table 1. Evaluation metrics for real-time fraud detection
pipeline under simulated load conditions

Metric Value Notes
.. Correct
True Positive .
94.2% detection of
Rate (TPR) fraud cases
False Noise in
Positive Rate | 4.8% detection
(FPR)
Avg. .
Processing 480 ms Ingestion —
Alert
Latency
95th
Percentile 780 ms Peak load
performance
Latency

The Table 1 data is pictured in the Figure 3 and Figure 4.

100.00% 94.20%
< 80.00%
g 60.00%
. (v
=
w  40.00%
[@]
o
& 20.00%
' 4.80%
0.00%
True Positive Rate False Positive Rate
Figure 3: Detection Accuracy
1000
780
— 800
wv
=
= 600 480
@)
Z 400
'_
<
— 200

95th Percentile
Latency

Average Latency

Figure 4: Latency Metrics

Scalability tests showed that horizontal scaling of Kafka
partitions and Flink processing jobs allowed the pipeline to
handle throughput increases linearly without degradation in
performance. The system remained responsive and stable under
synthetic spikes, validating its ability to operate under bursty or
high-volume transactional loads typical of e-commerce or
fintech platforms.

Opverall, the results affirm that the architecture is capable of not
just detecting known fraud patterns but also responding in real
time with minimal latency, high precision, and operational
resilience. These characteristics are vital for deployment in
modern, large-scale fraud prevention systems.

6. CONCLUSION AND FUTURE WORK

This study presents an event-driven, real-time fraud detection
architecture built on Apache Kafka, ksqIDB, and Apache Flink.
By leveraging Kafka's scalable message brokering, ksqlDB's
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declarative stream transformations, and Flink's advanced
analytics capabilities, the system achieves low-latency, high-
accuracy anomaly detection across multiple transactional event
streams.

The results demonstrate that this architecture can detect
complex fraud patterns—such as velocity violations, device
inconsistencies, and geo anomalies—with a true positive rate
exceeding 94%, and aver-age processing latency under 500
milliseconds. The modular and distributed nature of the
pipeline ensures adaptability to new fraud vectors while
maintaining scalability under heavy workloads. Through this
implementation, fraud detection is reframed not as a post-
processing task, but as a continuously evolving, real-time
capability embedded directly within the data pipeline.

For future work, several enhancements can be explored. The
integration of online learning models, such as reinforcement
learning or adaptive anomaly scoring, would enable dynamic
response to evolving attack strategies. Real-time feature stores
and model registries could streamline model deployment and
version control. Additionally, extending this architecture to
support federated detection across multi-tenant platforms—
such as banking networks or e-commerce consortia could yield
collaborative defenses against fraud at scale.

In conclusion, the combination of Kafka, ksqlDB, and Flink
offers a powerful and practical foundation for next-generation
fraud prevention systems, capable of responding to threats as
they unfold in real time.
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