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ABSTRACT 

In an era dominated by digital transactions and real-time 

decision-making, traditional fraud detection systems have 

become inadequate due to their reliance on delayed, batch-

based processing. This research presents an event-driven 

architecture for real-time fraud detection, leveraging Apache 

Kafka for high-throughput data ingestion, ksqlDB for rule-

based stream querying, and Apache Flink for complex event 

processing and machine learning inference. The system ingests 

transaction, login, and geolocation data streams, applies 

immediate filters, and performs stateful anomaly detection to 

identify suspicious behaviors such as velocity violations and 

improbable access patterns. A fully containerized 

implementation validates the architecture’s performance under 

simulated load conditions, achieving a true positive rate of 

94.2% and sub-second latency. The hybrid approach unifies 

rule-based and ML-enhanced detection, offering low false 

positives and high adaptability. This work demonstrates how 

modern stream processing technologies can transform fraud 

detection from a reactive, offline task into a proactive, real-time 

analytics pipeline embedded within the data infrastructure. The 

architecture is modular, scalable, and production-ready, 

making it suitable for deployment in financial and e-commerce 

ecosystems.   
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1. INTRODUCTION 
In today’s digital-first economy, real-time transaction systems 

have become the backbone of financial services, e-commerce, 

and online platforms. This ubiquity, however, comes with an 

alarming rise in fraudulent activities that exploit system 

latencies, protocol vulnerabilities, and the increasing sophisti-

cation of adversaries. Traditional fraud detection systems—

often batch-based or reliant on static rule sets—are inherently 

reactive, processing data hours or even days after the fraudulent 

activity has occurred. In this delayed window, attackers can 

execute high-speed, low-value transactions or simulate 

legitimate behaviors across distributed platforms, evading 

outdated detection mechanisms entirely. 

Recent studies report a dramatic surge in digital fraud. 

According to the Reserve Bank of India, there was a 216% 

increase in transaction volume and a 10% increase in value 

between 2019 and 2022, significantly amplifying the attack 

surface for payment fraud and social engineering scams (Yasir 

et al., 2025). Furthermore, the evolution of fraud techniques—

such as rapid-fire transactions, cross-device spoofing, and 

behavioral mimicry—requires detection mechanisms that are 

dynamic, intelligent, and immediate. 

To meet this challenge, organizations are increasingly adopting 

event-driven streaming architectures. Among these, Apache 

Kafka has emerged as a robust and scalable foundation for 

ingesting real-time transactional data. It enables low-latency, 

high-throughput, and fault-tolerant pipelines that serve as the 

backbone of modern fraud detection systems. ksqlDB, Kafka’s 

SQL-like stream processing engine, allows declarative and 

continuous querying of live data streams, enabling rule-based 

logic to be applied in real-time. Complementing this, Apache 

Flink offers rich support for complex event processing (CEP), 

stateful stream analytics, and the integration of machine 

learning models—making it a powerful tool for identifying 

fraud patterns that span across time, geography, and user 

behavior. 

In this study, we present a unified pipeline that integrates 

Kafka, ksqlDB, and Apache Flink to build a real-time fraud 

detection system. Our architecture leverages Kafka to capture 

transactional events; ksqlDB to apply immediate business 

logic, filter high-risk patterns, and aggregate features; and 

Apache Flink for advanced pattern recognition, dynamic 

windowing, and real-time model inference. This hybrid 

approach transforms fraud detection from a retrospective batch 

task into a proactive, in-stream analysis pipeline capable of 

flagging suspicious behavior in milliseconds. 

Unlike traditional approaches, which are either rule-heavy or 

dependent on offline-trained models, this architecture enables 

stream-native detection and decisioning. Recent research has 

validated this model: systems using real-time analytics 

combined with ML-based scoring have shown over 97% de-

tection accuracy and significantly lower false-positive rates 

compared to static rule engines (Singh et al., 2025). Moreover, 

the event-driven design enhances scalability and resilience, 

enabling organizations to monitor thousands of concurrent 

users and detect fraud as it unfolds. 

The primary goal of this research is to evaluate the design and 

performance of an event-driven fraud detection pipeline using 

modern stream processing tools. We compare the roles and 

trade-offs of rule-based (ksqlDB) vs. stateful, ML-enhanced 

(Flink) detection, analyze system behavior under varying load 

conditions, and provide a replicable architecture for practical 

deployment in financial or e-commerce ecosystems. 

The paper is organized as follows: Section 2 covers related 

research and existing systems; Section 3 introduces the 

proposed architecture; Section 4 details the system 

implementation; Section 5 discusses key findings and 

limitations; and Section 6 concludes with future directions.  

2. LITERATURE REVIEW 
The rising prevalence of online financial fraud has necessitated 
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a shift from traditional detection methods toward real-time, 

data-driven architectures. This section reviews the evolution of 

fraud detection technologies with a focus on stream processing 

tools—specifically Apache Kafka, ksqlDB, and Apache 

Flink—as well as the integration of machine learning and 

complex event processing (CEP) into fraud analytics. 

2.1 Traditional Approaches and Their 

Limitations 
Traditional fraud detection systems have historically relied on 

batch processing and static rule engines, where anomalies were 

flagged based on pre-defined thresholds or historical profiles. 

While effective for known attack patterns, these methods fall 

short in dynamic environments where fraudsters quickly adapt 

to detection logic. A review by Malviya (2025) noted that such 

systems struggle with high false-positive rates and delayed 

response times, especially when dealing with highly 

imbalanced datasets typical in credit card fraud detection. 

2.2 Rise of Stream Processing with Kafka 
Apache Kafka has emerged as a foundational technology for 

streaming data pipelines. Its distributed architecture and fault-

tolerant design make it ideal for ingesting and processing high-

velocity event data in real-time. Vankayala (2025) 

demonstrated how Kafka, when deployed with Kubernetes, 

provides a scalable backbone for time-sensitive applications 

such as fraud monitoring and claims processing in insurance 

and IoT scenarios (Vankayala, 2025). Kafka’s ability to 

partition and replay events enables forensic analysis while 

supporting immediate action pipelines.  

2.3 ksqlDB for Rule-based Streaming 
ksqlDB, built atop Kafka Streams, offers a declarative way to 

perform continuous queries on streaming data using SQL-like 

syntax. It excels in real-time pattern detection such as 

frequency analysis, location mismatch, or velocity rule 

violations. However, its limited support for stateful processing 

and complex multi-event pattern detection makes it better 

suited for simple anomaly filtering rather than dynamic 

profiling. 

2.4 Flink and Complex Event Processing 

(CEP) 
Apache Flink advances stream processing by enabling stateful, 

low-latency computation with event-time semantics. Its CEP 

library supports detection of time-based patterns—such as 

repeated transactions across accounts within a defined 

window—crucial for modelling fraudulent behavior. Singh et 

al. (2025) highlighted the advantage of Flink’s windowing and 

dynamic keying for modelling evolving fraud strategies, 

particularly in phone call and user impersonation scenarios 

(Singh et al., 2025). 

2.5 Integration of ML in Stream Pipelines 
Recent reviews emphasize the shift toward integrating machine 

learning in real-time pipelines for fraud scoring. Hafez et al. 

(2025) conducted a comprehensive analysis of AI-enhanced 

fraud detection systems, identifying the growing role of deep 

learning, ensemble methods, and streaming anomaly detectors 

in mitigating evolving threats (Hafez et al., 2025). Such 

integration allows fraud detection to adapt dynamically, 

reducing dependence on hardcoded rules. 

 

2.6 Gaps and Research Opportunity 
Despite progress, a performance and integration gap persist 

between rule-based engines and full-fledged ML-enhanced 

CEP pipelines. Most implementations focus on either static rule 

enforcement or offline ML scoring. Few systems blend Kafka’s 

scalability, ksqlDB’s simplicity, and Flink’s analytic power in 

a single, production-ready fraud detection pipeline. This 

research addresses that gap by designing and evaluating a 

hybrid, event-driven fraud detection architecture capable of 

handling evolving fraud patterns in real time. 

3. SYSTEM ARCHITECTURE 
The proposed architecture follows a modular, event-driven 

design that facilitates real-time fraud detection by integrating 

Apache Kafka, ksqlDB, and Apache Flink. It consists of three 

logical layers: data ingestion, stream processing, and anomaly 

detection with alerting. 

At the base level, Apache Kafka serves as the robust ingestion 

and message-queuing backbone. It captures transactional 

events from multiple sources such as payment processing 

systems, user authentication logs, geolocation trackers, and 

device telemetry. Each type of event is published to its own 

Kafka topic (e.g., transactions_stream, login_events, and 

geo_events) and stored with strong durability guarantees. 

Kafka's partitioned, fault-tolerant architecture allows the 

system to sustain high throughput, ensure replayability, and 

manage evolving schemas via standardized tools like Schema 

Registry. 

Above Kafka, the first stream-processing layer employs 

ksqlDB. This SQL-compatible engine continuously ingests 

event streams to execute lightweight rule-checking and feature 

extraction. For example, real-time aggregations—such as 

rolling counts of transactions per user over a fixed time 

window—can help flag suspicious behavioral spikes. 

Declarative queries offer convenience and rapid iteration for 

business logic like identifying users with more than five 

transactions within any ten-minute tumbling window. Once 

filtered and enriched, the resulting streams are forwarded to the 

next layer for deeper analysis. 

The final layer comprises Apache Flink, which enhances the 

pipeline with stateful processing, complex event detection, and 

optional machine learning model inference. Flink's event-time 

semantics support temporal joins and pattern detection across 

multiple data streams—such as clustering rapid-fire 

transactions across geographically diverse accounts or 

identifying improbable location-based login sequences within 

small time intervals. In addition, models trained offline (e.g., 

logistic regression or autoencoder-based anomaly detectors) 

can be deployed directly within Flink jobs or via lightweight 

model-serving interfaces, enabling real-time risk scoring and 

contextual decision-making. 

Once a suspicious behavior is detected—either via rule-based 

logic in ksqlDB or CEP/ML scoring in Flink—the anomaly is 

emitted to an alerts_topic within Kafka. Downstream systems 

can subscribe to this topic to automatically trigger responses, 

ranging from transaction blocking and enhanced verification 

prompts to dashboarding and fraud investigation workflows. 

Importantly, this architecture emphasizes scalability and fault 

tolerance. Kafka scales by partitioning topics, while Flink 

scales via task parallelism and checkpoint-based state recovery. 

Together, they provide resilience through replayable event logs 

and stateful fault recovery, ensuring consistent detection even 

under node failures. Moreover, the modular structure promotes 

composability: new rules can be added to ksqlDB, and new 

scoring models or CEP patterns can be developed in Flink, 

without disrupting the core data flow.
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Figure 1: Fraud detection architecture leveraging Apache Kafka and KSQLDB. Events from multiple sources are ingested 

into Kafka, processed via KSQLDB for filtering and aggregation, and routed through topics for anomaly detection. Alerts are 

published to downstream notification and fraud response systems 

4. IMPLEMENTATION DETAILS 
The implementation of the proposed fraud detection 

architecture was carried out using a fully containerized 

environment to simulate real-time transaction flows and 

streaming analytics. The system was developed using Apache 

Kafka as the core event-streaming platform, with ksqlDB for 

declarative stream transformations and Apache Flink for 

advanced analytics and anomaly detection. Docker Compose 

was used to orchestrate all services locally, ensuring modular 

deployment and simplified scaling. 

Kafka served as the backbone of the pipeline, capturing events 

from multiple simulated sources such as payment gateways, 

user authentication systems, and device telemetry feeds. Each 

type of data was streamed into a dedicated Kafka topic. For 

example, the transactions_topic was designed to carry detailed 

payment information, including user identifiers, transaction 

amounts, timestamps, and geo-tags. Additional topics such as 

user_logins and geo_events were used to log session activities 

and device location metadata. These streams were generated 

using lightweight Python scripts and Kafka Connect REST 

APIs to emulate real-world ingestion rates and payload 

structures. 

 

Figure 2: Entity relationships between Kafka topics in the 

fraud detection pipeline. Shared fields like User_Id and 

Device_Id enable cross-stream joins for detecting 

anomalous behaviour 

The schema definitions for each Kafka topic were centrally 

managed using Confluent’s Schema Registry, ensuring 

consistency and compatibility across processing stages. Kafka 

was configured with a replication factor of 1 and a partition 

count of three to enable concurrent processing and ensure data 

availability even during node-level disruptions. 

Once the events were ingested into Kafka, they were processed 

in real time using ksqlDB, which performed rule-based filtering 

and basic aggregation. For instance, ksqlDB was configured to 
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monitor velocity patterns by flagging users who conducted 

more than five transactions within a ten-minute window. 

Another use case involved detecting geographic 

inconsistencies by correlating user locations from separate 

event streams over sliding time intervals. These declarative 

queries were written in SQL-like syntax, making them easily 

maintainable and adaptable to emerging fraud patterns. 

While ksqlDB handled rule-driven filtering, the more complex 

pattern recognition and contextual scoring were executed using 

Apache Flink. Flink consumed the pre-processed streams and 

applied stateful windowing, complex event processing (CEP), 

and anomaly scoring using lightweight machine learning 

models. Models were pre-trained offline using historical 

datasets and deployed as microservices that Flink could invoke 

during stream execution. This hybrid approach enabled 

dynamic profiling—such as recognizing transaction bursts tied 

to specific user-device combinations—and improved overall 

fraud detection precision. 

Detected anomalies were pushed to a Kafka alerts_topic, which 

served as the bridge to response systems. Alert consumers 

included an email/SMS notification engine and a fraud 

resolution dashboard built using Grafana and PostgreSQL for 

storage and visualization. This end-to-end setup enabled near-

real-time monitoring of fraudulent behaviour with the ability to 

adapt quickly to new threats by reconfiguring queries or 

retraining models. 

In summary, the implementation closely mirrors the proposed 

architecture, emphasizing low-latency data flow, modular 

analytics, and real-time responsiveness. The system was 

validated under simulated transactional loads to ensure that 

each component—from ingestion to decisioning—operated 

efficiently and robustly in a production-like environment. 

5. RESULTS AND EVALUATION 
To evaluate the effectiveness of the proposed real-time fraud 

detection pipeline, a series of simulation-based experiments 

were conducted using synthetically generated transaction, 

login, and geolocation data. The system was deployed in a 

containerized environment with Apache Kafka, ksqlDB, and 

Apache Flink running as separate services under Docker 

Compose. Evaluation was based on three key criteria: detection 

accuracy, latency performance, and scalability under varying 

data loads. 

The synthetic dataset modelled typical user behavior 

interspersed with injected fraudulent patterns such as rapid 

transaction bursts, geolocation mismatches, and device 

inconsistencies. Over 100,000 events were streamed over a 30-

minute window, simulating real-world traffic patterns. Events 

were ingested via Kafka topics and processed in real time using 

ksqlDB for rule-based filtering and Apache Flink for advanced 

CEP and anomaly scoring. 

Detection accuracy was measured by comparing flagged events 

with known anomalies embedded in the simulation. The 

pipeline achieved a true positive rate (TPR) of 94.2% and a 

false positive rate (FPR) of 4.8%, showing strong performance 

even under high-throughput conditions. The use of ksqlDB for 

initial pre-filtering effectively reduced the noise in downstream 

Flink processing, improving overall system precision. 

In terms of latency, the system maintained sub-second end-to-

end processing delays from ingestion to alert generation. 

Average processing latency was measured at 480 ms, with 95th 

percentile latency not exceeding 780 ms, even when Kafka 

throughput was increased to 5,000 events per second. This 

demonstrated the architecture’s suitability for real-time fraud 

scenarios where rapid response is critical. 

Table 1. Evaluation metrics for real-time fraud detection 

pipeline under simulated load conditions 

Metric Value Notes 

True Positive 

Rate (TPR) 
94.2% 

Correct 

detection of 

fraud cases 

False 

Positive Rate 

(FPR) 

4.8% 
Noise in 

detection 

Avg. 

Processing 

Latency 

480 ms 
Ingestion → 

Alert 

95th 

Percentile 

Latency 

780 ms 
Peak load 

performance 

The Table 1 data is pictured in the Figure 3 and Figure 4. 

 

Figure 3: Detection Accuracy 

 

Figure 4: Latency Metrics 

Scalability tests showed that horizontal scaling of Kafka 

partitions and Flink processing jobs allowed the pipeline to 

handle throughput increases linearly without degradation in 

performance. The system remained responsive and stable under 

synthetic spikes, validating its ability to operate under bursty or 

high-volume transactional loads typical of e-commerce or 

fintech platforms. 

Overall, the results affirm that the architecture is capable of not 

just detecting known fraud patterns but also responding in real 

time with minimal latency, high precision, and operational 

resilience. These characteristics are vital for deployment in 

modern, large-scale fraud prevention systems. 

6. CONCLUSION AND FUTURE WORK 
This study presents an event-driven, real-time fraud detection 

architecture built on Apache Kafka, ksqlDB, and Apache Flink. 

By leveraging Kafka's scalable message brokering, ksqlDB's 
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declarative stream transformations, and Flink's advanced 

analytics capabilities, the system achieves low-latency, high-

accuracy anomaly detection across multiple transactional event 

streams. 

The results demonstrate that this architecture can detect 

complex fraud patterns—such as velocity violations, device 

inconsistencies, and geo anomalies—with a true positive rate 

exceeding 94%, and aver-age processing latency under 500 

milliseconds. The modular and distributed nature of the 

pipeline ensures adaptability to new fraud vectors while 

maintaining scalability under heavy workloads. Through this 

implementation, fraud detection is reframed not as a post-

processing task, but as a continuously evolving, real-time 

capability embedded directly within the data pipeline. 

For future work, several enhancements can be explored. The 

integration of online learning models, such as reinforcement 

learning or adaptive anomaly scoring, would enable dynamic 

response to evolving attack strategies. Real-time feature stores 

and model registries could streamline model deployment and 

version control. Additionally, extending this architecture to 

support federated detection across multi-tenant platforms—

such as banking networks or e-commerce consortia could yield 

collaborative defenses against fraud at scale. 

In conclusion, the combination of Kafka, ksqlDB, and Flink 

offers a powerful and practical foundation for next-generation 

fraud prevention systems, capable of responding to threats as 

they unfold in real time. 
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