
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.60, November 2025

13

Event-driven Fraud Detection Pipeline: Real-Time
Processing with Kafka, ksqlDB & Apache Flink

Ronak S. Dev
Student

Department of MCA, RV College of Engineering
Bengaluru, India

Usha J.
Professor

Department of MCA, RV College of Engineering
Bengaluru, India

ABSTRACT

In an era dominated by digital transactions and real-time

decision-making, traditional fraud detection systems have

become inadequate due to their reliance on delayed, batch-

based processing. This research presents an event-driven

architecture for real-time fraud detection, leveraging Apache

Kafka for high-throughput data ingestion, ksqlDB for rule-

based stream querying, and Apache Flink for complex event

processing and machine learning inference. The system ingests

transaction, login, and geolocation data streams, applies

immediate filters, and performs stateful anomaly detection to

identify suspicious behaviors such as velocity violations and

improbable access patterns. A fully containerized

implementation validates the architecture’s performance under

simulated load conditions, achieving a true positive rate of

94.2% and sub-second latency. The hybrid approach unifies

rule-based and ML-enhanced detection, offering low false

positives and high adaptability. This work demonstrates how

modern stream processing technologies can transform fraud

detection from a reactive, offline task into a proactive, real-time

analytics pipeline embedded within the data infrastructure. The

architecture is modular, scalable, and production-ready,

making it suitable for deployment in financial and e-commerce

ecosystems.

General Terms

Algorithms, Data Streaming, Machine Learning, Real-Time

Systems, Pattern Recognition, Security, Distributed Systems,

Event-Driven Architecture, Anomaly Detection, Big Data

Processing.

Keywords

Real-time Fraud Detection, Apache Kafka, ksqlDB, Apache

Flink, Stream Processing.

1. INTRODUCTION
In today’s digital-first economy, real-time transaction systems

have become the backbone of financial services, e-commerce,

and online platforms. This ubiquity, however, comes with an

alarming rise in fraudulent activities that exploit system

latencies, protocol vulnerabilities, and the increasing sophisti-

cation of adversaries. Traditional fraud detection systems—

often batch-based or reliant on static rule sets—are inherently

reactive, processing data hours or even days after the fraudulent

activity has occurred. In this delayed window, attackers can

execute high-speed, low-value transactions or simulate

legitimate behaviors across distributed platforms, evading

outdated detection mechanisms entirely.

Recent studies report a dramatic surge in digital fraud.

According to the Reserve Bank of India, there was a 216%

increase in transaction volume and a 10% increase in value

between 2019 and 2022, significantly amplifying the attack

surface for payment fraud and social engineering scams (Yasir

et al., 2025). Furthermore, the evolution of fraud techniques—

such as rapid-fire transactions, cross-device spoofing, and

behavioral mimicry—requires detection mechanisms that are

dynamic, intelligent, and immediate.

To meet this challenge, organizations are increasingly adopting

event-driven streaming architectures. Among these, Apache

Kafka has emerged as a robust and scalable foundation for

ingesting real-time transactional data. It enables low-latency,

high-throughput, and fault-tolerant pipelines that serve as the

backbone of modern fraud detection systems. ksqlDB, Kafka’s

SQL-like stream processing engine, allows declarative and

continuous querying of live data streams, enabling rule-based

logic to be applied in real-time. Complementing this, Apache

Flink offers rich support for complex event processing (CEP),

stateful stream analytics, and the integration of machine

learning models—making it a powerful tool for identifying

fraud patterns that span across time, geography, and user

behavior.

In this study, we present a unified pipeline that integrates

Kafka, ksqlDB, and Apache Flink to build a real-time fraud

detection system. Our architecture leverages Kafka to capture

transactional events; ksqlDB to apply immediate business

logic, filter high-risk patterns, and aggregate features; and

Apache Flink for advanced pattern recognition, dynamic

windowing, and real-time model inference. This hybrid

approach transforms fraud detection from a retrospective batch

task into a proactive, in-stream analysis pipeline capable of

flagging suspicious behavior in milliseconds.

Unlike traditional approaches, which are either rule-heavy or

dependent on offline-trained models, this architecture enables

stream-native detection and decisioning. Recent research has

validated this model: systems using real-time analytics

combined with ML-based scoring have shown over 97% de-

tection accuracy and significantly lower false-positive rates

compared to static rule engines (Singh et al., 2025). Moreover,

the event-driven design enhances scalability and resilience,

enabling organizations to monitor thousands of concurrent

users and detect fraud as it unfolds.

The primary goal of this research is to evaluate the design and

performance of an event-driven fraud detection pipeline using

modern stream processing tools. We compare the roles and

trade-offs of rule-based (ksqlDB) vs. stateful, ML-enhanced

(Flink) detection, analyze system behavior under varying load

conditions, and provide a replicable architecture for practical

deployment in financial or e-commerce ecosystems.

The paper is organized as follows: Section 2 covers related

research and existing systems; Section 3 introduces the

proposed architecture; Section 4 details the system

implementation; Section 5 discusses key findings and

limitations; and Section 6 concludes with future directions.

2. LITERATURE REVIEW
The rising prevalence of online financial fraud has necessitated

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.60, November 2025

14

a shift from traditional detection methods toward real-time,

data-driven architectures. This section reviews the evolution of

fraud detection technologies with a focus on stream processing

tools—specifically Apache Kafka, ksqlDB, and Apache

Flink—as well as the integration of machine learning and

complex event processing (CEP) into fraud analytics.

2.1 Traditional Approaches and Their

Limitations
Traditional fraud detection systems have historically relied on

batch processing and static rule engines, where anomalies were

flagged based on pre-defined thresholds or historical profiles.

While effective for known attack patterns, these methods fall

short in dynamic environments where fraudsters quickly adapt

to detection logic. A review by Malviya (2025) noted that such

systems struggle with high false-positive rates and delayed

response times, especially when dealing with highly

imbalanced datasets typical in credit card fraud detection.

2.2 Rise of Stream Processing with Kafka
Apache Kafka has emerged as a foundational technology for

streaming data pipelines. Its distributed architecture and fault-

tolerant design make it ideal for ingesting and processing high-

velocity event data in real-time. Vankayala (2025)

demonstrated how Kafka, when deployed with Kubernetes,

provides a scalable backbone for time-sensitive applications

such as fraud monitoring and claims processing in insurance

and IoT scenarios (Vankayala, 2025). Kafka’s ability to

partition and replay events enables forensic analysis while

supporting immediate action pipelines.

2.3 ksqlDB for Rule-based Streaming
ksqlDB, built atop Kafka Streams, offers a declarative way to

perform continuous queries on streaming data using SQL-like

syntax. It excels in real-time pattern detection such as

frequency analysis, location mismatch, or velocity rule

violations. However, its limited support for stateful processing

and complex multi-event pattern detection makes it better

suited for simple anomaly filtering rather than dynamic

profiling.

2.4 Flink and Complex Event Processing

(CEP)
Apache Flink advances stream processing by enabling stateful,

low-latency computation with event-time semantics. Its CEP

library supports detection of time-based patterns—such as

repeated transactions across accounts within a defined

window—crucial for modelling fraudulent behavior. Singh et

al. (2025) highlighted the advantage of Flink’s windowing and

dynamic keying for modelling evolving fraud strategies,

particularly in phone call and user impersonation scenarios

(Singh et al., 2025).

2.5 Integration of ML in Stream Pipelines
Recent reviews emphasize the shift toward integrating machine

learning in real-time pipelines for fraud scoring. Hafez et al.

(2025) conducted a comprehensive analysis of AI-enhanced

fraud detection systems, identifying the growing role of deep

learning, ensemble methods, and streaming anomaly detectors

in mitigating evolving threats (Hafez et al., 2025). Such

integration allows fraud detection to adapt dynamically,

reducing dependence on hardcoded rules.

2.6 Gaps and Research Opportunity
Despite progress, a performance and integration gap persist

between rule-based engines and full-fledged ML-enhanced

CEP pipelines. Most implementations focus on either static rule

enforcement or offline ML scoring. Few systems blend Kafka’s

scalability, ksqlDB’s simplicity, and Flink’s analytic power in

a single, production-ready fraud detection pipeline. This

research addresses that gap by designing and evaluating a

hybrid, event-driven fraud detection architecture capable of

handling evolving fraud patterns in real time.

3. SYSTEM ARCHITECTURE
The proposed architecture follows a modular, event-driven

design that facilitates real-time fraud detection by integrating

Apache Kafka, ksqlDB, and Apache Flink. It consists of three

logical layers: data ingestion, stream processing, and anomaly

detection with alerting.

At the base level, Apache Kafka serves as the robust ingestion

and message-queuing backbone. It captures transactional

events from multiple sources such as payment processing

systems, user authentication logs, geolocation trackers, and

device telemetry. Each type of event is published to its own

Kafka topic (e.g., transactions_stream, login_events, and

geo_events) and stored with strong durability guarantees.

Kafka's partitioned, fault-tolerant architecture allows the

system to sustain high throughput, ensure replayability, and

manage evolving schemas via standardized tools like Schema

Registry.

Above Kafka, the first stream-processing layer employs

ksqlDB. This SQL-compatible engine continuously ingests

event streams to execute lightweight rule-checking and feature

extraction. For example, real-time aggregations—such as

rolling counts of transactions per user over a fixed time

window—can help flag suspicious behavioral spikes.

Declarative queries offer convenience and rapid iteration for

business logic like identifying users with more than five

transactions within any ten-minute tumbling window. Once

filtered and enriched, the resulting streams are forwarded to the

next layer for deeper analysis.

The final layer comprises Apache Flink, which enhances the

pipeline with stateful processing, complex event detection, and

optional machine learning model inference. Flink's event-time

semantics support temporal joins and pattern detection across

multiple data streams—such as clustering rapid-fire

transactions across geographically diverse accounts or

identifying improbable location-based login sequences within

small time intervals. In addition, models trained offline (e.g.,

logistic regression or autoencoder-based anomaly detectors)

can be deployed directly within Flink jobs or via lightweight

model-serving interfaces, enabling real-time risk scoring and

contextual decision-making.

Once a suspicious behavior is detected—either via rule-based

logic in ksqlDB or CEP/ML scoring in Flink—the anomaly is

emitted to an alerts_topic within Kafka. Downstream systems

can subscribe to this topic to automatically trigger responses,

ranging from transaction blocking and enhanced verification

prompts to dashboarding and fraud investigation workflows.

Importantly, this architecture emphasizes scalability and fault

tolerance. Kafka scales by partitioning topics, while Flink

scales via task parallelism and checkpoint-based state recovery.

Together, they provide resilience through replayable event logs

and stateful fault recovery, ensuring consistent detection even

under node failures. Moreover, the modular structure promotes

composability: new rules can be added to ksqlDB, and new

scoring models or CEP patterns can be developed in Flink,

without disrupting the core data flow.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.60, November 2025

15

Figure 1: Fraud detection architecture leveraging Apache Kafka and KSQLDB. Events from multiple sources are ingested

into Kafka, processed via KSQLDB for filtering and aggregation, and routed through topics for anomaly detection. Alerts are

published to downstream notification and fraud response systems

4. IMPLEMENTATION DETAILS
The implementation of the proposed fraud detection

architecture was carried out using a fully containerized

environment to simulate real-time transaction flows and

streaming analytics. The system was developed using Apache

Kafka as the core event-streaming platform, with ksqlDB for

declarative stream transformations and Apache Flink for

advanced analytics and anomaly detection. Docker Compose

was used to orchestrate all services locally, ensuring modular

deployment and simplified scaling.

Kafka served as the backbone of the pipeline, capturing events

from multiple simulated sources such as payment gateways,

user authentication systems, and device telemetry feeds. Each

type of data was streamed into a dedicated Kafka topic. For

example, the transactions_topic was designed to carry detailed

payment information, including user identifiers, transaction

amounts, timestamps, and geo-tags. Additional topics such as

user_logins and geo_events were used to log session activities

and device location metadata. These streams were generated

using lightweight Python scripts and Kafka Connect REST

APIs to emulate real-world ingestion rates and payload

structures.

Figure 2: Entity relationships between Kafka topics in the

fraud detection pipeline. Shared fields like User_Id and

Device_Id enable cross-stream joins for detecting

anomalous behaviour

The schema definitions for each Kafka topic were centrally

managed using Confluent’s Schema Registry, ensuring

consistency and compatibility across processing stages. Kafka

was configured with a replication factor of 1 and a partition

count of three to enable concurrent processing and ensure data

availability even during node-level disruptions.

Once the events were ingested into Kafka, they were processed

in real time using ksqlDB, which performed rule-based filtering

and basic aggregation. For instance, ksqlDB was configured to

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.60, November 2025

16

monitor velocity patterns by flagging users who conducted

more than five transactions within a ten-minute window.

Another use case involved detecting geographic

inconsistencies by correlating user locations from separate

event streams over sliding time intervals. These declarative

queries were written in SQL-like syntax, making them easily

maintainable and adaptable to emerging fraud patterns.

While ksqlDB handled rule-driven filtering, the more complex

pattern recognition and contextual scoring were executed using

Apache Flink. Flink consumed the pre-processed streams and

applied stateful windowing, complex event processing (CEP),

and anomaly scoring using lightweight machine learning

models. Models were pre-trained offline using historical

datasets and deployed as microservices that Flink could invoke

during stream execution. This hybrid approach enabled

dynamic profiling—such as recognizing transaction bursts tied

to specific user-device combinations—and improved overall

fraud detection precision.

Detected anomalies were pushed to a Kafka alerts_topic, which

served as the bridge to response systems. Alert consumers

included an email/SMS notification engine and a fraud

resolution dashboard built using Grafana and PostgreSQL for

storage and visualization. This end-to-end setup enabled near-

real-time monitoring of fraudulent behaviour with the ability to

adapt quickly to new threats by reconfiguring queries or

retraining models.

In summary, the implementation closely mirrors the proposed

architecture, emphasizing low-latency data flow, modular

analytics, and real-time responsiveness. The system was

validated under simulated transactional loads to ensure that

each component—from ingestion to decisioning—operated

efficiently and robustly in a production-like environment.

5. RESULTS AND EVALUATION
To evaluate the effectiveness of the proposed real-time fraud

detection pipeline, a series of simulation-based experiments

were conducted using synthetically generated transaction,

login, and geolocation data. The system was deployed in a

containerized environment with Apache Kafka, ksqlDB, and

Apache Flink running as separate services under Docker

Compose. Evaluation was based on three key criteria: detection

accuracy, latency performance, and scalability under varying

data loads.

The synthetic dataset modelled typical user behavior

interspersed with injected fraudulent patterns such as rapid

transaction bursts, geolocation mismatches, and device

inconsistencies. Over 100,000 events were streamed over a 30-

minute window, simulating real-world traffic patterns. Events

were ingested via Kafka topics and processed in real time using

ksqlDB for rule-based filtering and Apache Flink for advanced

CEP and anomaly scoring.

Detection accuracy was measured by comparing flagged events

with known anomalies embedded in the simulation. The

pipeline achieved a true positive rate (TPR) of 94.2% and a

false positive rate (FPR) of 4.8%, showing strong performance

even under high-throughput conditions. The use of ksqlDB for

initial pre-filtering effectively reduced the noise in downstream

Flink processing, improving overall system precision.

In terms of latency, the system maintained sub-second end-to-

end processing delays from ingestion to alert generation.

Average processing latency was measured at 480 ms, with 95th

percentile latency not exceeding 780 ms, even when Kafka

throughput was increased to 5,000 events per second. This

demonstrated the architecture’s suitability for real-time fraud

scenarios where rapid response is critical.

Table 1. Evaluation metrics for real-time fraud detection

pipeline under simulated load conditions

Metric Value Notes

True Positive

Rate (TPR)
94.2%

Correct

detection of

fraud cases

False

Positive Rate

(FPR)

4.8%
Noise in

detection

Avg.

Processing

Latency

480 ms
Ingestion →

Alert

95th

Percentile

Latency

780 ms
Peak load

performance

The Table 1 data is pictured in the Figure 3 and Figure 4.

Figure 3: Detection Accuracy

Figure 4: Latency Metrics

Scalability tests showed that horizontal scaling of Kafka

partitions and Flink processing jobs allowed the pipeline to

handle throughput increases linearly without degradation in

performance. The system remained responsive and stable under

synthetic spikes, validating its ability to operate under bursty or

high-volume transactional loads typical of e-commerce or

fintech platforms.

Overall, the results affirm that the architecture is capable of not

just detecting known fraud patterns but also responding in real

time with minimal latency, high precision, and operational

resilience. These characteristics are vital for deployment in

modern, large-scale fraud prevention systems.

6. CONCLUSION AND FUTURE WORK
This study presents an event-driven, real-time fraud detection

architecture built on Apache Kafka, ksqlDB, and Apache Flink.

By leveraging Kafka's scalable message brokering, ksqlDB's

94.20%

4.80%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

True Positive Rate False Positive Rate

P
ER

C
EN

TA
G

E
(%

)

480

780

0

200

400

600

800

1000

Average Latency 95th Percentile
Latency

LA
TE

N
C

Y
(M

S)

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.60, November 2025

17

declarative stream transformations, and Flink's advanced

analytics capabilities, the system achieves low-latency, high-

accuracy anomaly detection across multiple transactional event

streams.

The results demonstrate that this architecture can detect

complex fraud patterns—such as velocity violations, device

inconsistencies, and geo anomalies—with a true positive rate

exceeding 94%, and aver-age processing latency under 500

milliseconds. The modular and distributed nature of the

pipeline ensures adaptability to new fraud vectors while

maintaining scalability under heavy workloads. Through this

implementation, fraud detection is reframed not as a post-

processing task, but as a continuously evolving, real-time

capability embedded directly within the data pipeline.

For future work, several enhancements can be explored. The

integration of online learning models, such as reinforcement

learning or adaptive anomaly scoring, would enable dynamic

response to evolving attack strategies. Real-time feature stores

and model registries could streamline model deployment and

version control. Additionally, extending this architecture to

support federated detection across multi-tenant platforms—

such as banking networks or e-commerce consortia could yield

collaborative defenses against fraud at scale.

In conclusion, the combination of Kafka, ksqlDB, and Flink

offers a powerful and practical foundation for next-generation

fraud prevention systems, capable of responding to threats as

they unfold in real time.

7. REFERENCES
[1] Venkata Karunakar Uppalapati, “AI In Financial Services:

Real-Time Fraud Detection on Cloud Native GPU

Clusters,” Journal of Computer Science and Technology

Studies, Vol. 7, No. 7, July 2025, pp. 183–190

https://www.jcsts.org/articles/ai-financial-gpu-detection-

2025

[2] Akash Vijayrao Chaudhari, “A Cloud-Native Unified

Platform for Real Time Fraud Detection,” (unpublished),

April 2025

https://www.researchgate.net/publication/378621221

[3] Chen Liu, Hengyu Tang, Zhixiao Yang, Ke Zhou,

Sangwhan Cha, “Big Data Driven Fraud Detection Using

Machine Learning and Real Time Stream Processing,”

arXiv preprint, May 2025

https://arxiv.org/abs/2506.02008

[4] Dyapa S., “Real-Time Fraud Detection: Leveraging

Apache Kafka and Flink,” International Journal on

Science and Technology (IJSAT), Vol. 16, No. 1, 2025

https://www.ijsat.org/papers/2025/1/2654.pdf

[5] Srijan Saket, Vivek Chandela, Md. Danish Kalim, “Real

Time Event Joining in Practice with Kafka and Flink,”

arXiv preprint, October 2024

https://arxiv.org/abs/2410.15533

[6] Md. Kamrul Hasan Chy, “Proactive Fraud Defense:

Machine Learning’s Evolving Role in Protecting Against

Online Fraud,” arXiv preprint, October 2024

https://arxiv.org/abs/2410.06812

[7] Adeyinka Orelaja, Adenike F. Adeyemi, “Developing

Real Time Fraud Detection and Response Mechanisms for

Financial Transactions,” IRE Journals, Vol. 8, No. 1,

August 2024

https://irejournals.com/formatedpaper/1705034.pdf

[8] Parin Patel, “Real Time Fraud Detection Using Apache

Flink and Machine Learning,” Medium, September 2024

https://medium.com/@parinpatel22/real-time-fraud-

detection-using-apache-flink-and-machine-learning-

70b6490a01b6

[9] Adriano Vogel, Sören Henning, Esteban Perez Wohlfeil,

Otmar Ertl, Rick Rabiser, “A Comprehensive

Benchmarking Analysis of Fault Recovery in Stream

Processing Frameworks,” arXiv preprint, April 2024

https://arxiv.org/abs/2404.11949

[10] Kai Waehner, “Real Time Model Inference with Apache

Kafka and Flink for Predictive AI And Genai,” Blog Post,

December 2024 https://www.kai-

waehner.de/blog/2024/10/01/real-time-model-inference-

with-apache-kafka-and-flink-for-predictive-ai-and-genai/

[11] Kai Waehner, “Fraud Detection with Apache Kafka,

Ksqldb and Apache Flink,” Kai Waehner Blog, October

2022 https://kai-waehner.medium.com/fraud-prevention-

in-under-60-seconds-with-apache-kafka-9542224f9ec8

[12] Kai Waehner, “Fraud Detection in Mobility Services

(Ride-Hailing, Food Delivery) With Kafka & Flink,” Kai

Waehner Blog, April 2025 https://www.kai-

waehner.de/blog/2025/04/28/fraud-detection-in-mobility-

services-ride-hailing-food-delivery-with-data-streaming-

using-apache-kafka-and-flink/

[13] Confluent Inc., “Real-Time Fraud Detection – Use Case

Implementation,” White Paper, 2025

https://www.confluent.io/resources/white-paper/real-

time-fraud-detection-use-case-implementation/

[14] International Journal on Multidisciplinary Engineering

(IJMIE), “From Batch Processing to Real-Time Streaming

in Financial Fraud Detection,” Vol. 13, No. 3, March 2025

https://www.ijmra.us/project%20doc/2025/IJME_MARC

H2025/IJMIE7_March2025.pdf

[15] IRJMETS, “Streaming Analytics and Real-Time Decision

Making,” IRJMETS Journal, March 2025

https://www.irjmets.com/uploadedfiles/paper//issue_3_m

arch_2025/70449/final/fin_irjmets1743171816.pdf

[16] Vashisht, B. S. Rekha, “Microservices and Real-Time

Processing in Retail IT,” arXiv preprint, June 2025

https://arxiv.org/abs/2506.09938

[17] P. Singh, “Advanced Techniques in Real-Time

Monitoring for Financial Transactions,” MDRG Journal,

Vol. 3, No. 3, June 2025

https://www.allmultidisciplinaryjournal.com/uploads/arc

hives/20250621125159_MGE-2025-3-305.1.pdf

[18] Sugumar P., “A Poc Approach: Real-Time Fraud

Detection with Kafka, Flink & ML,” Medium Blog,

February 2025 https://medium.com/@sugumarp/real-

time-fraud-detection-using-kafka-flink-machine-

learning-dbd6c1dc80e6

[19] S. Fedulov, “Streaming Machine Learning Pipelines with

Flink SQL,” Ververica Blog, January 2025

https://www.ververica.com/blog/streaming-machine-

learning-pipelines-with-flink-sql

[20] TimePlus, “Proton: An Open-Source Alternative to

ksqlDB for Real-Time Analytics,” TimePlus Blog, 2024

https://www.timeplus.com/post/proton-ksqldb-alternative

[21] ACM Digital Library, “Design and Implementation of a

Real-Time Stream Processing Engine for Financial Risk,”

ACM Conference Proceedings, 2024

https://dl.acm.org/doi/10.1145/3729706.3729765

[22] S. Malviya, “Limitations of Batch Fraud Detection

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.60, November 2025

18

Techniques in Dynamic Financial Networks,” IJFMR,

Vol. 11, No. 1, January 2025

https://www.ijfmr.com/papers/2025/January/IJFMR0112

345.pdf

[23] Yasir, V. J., et al., “Trends in Payment Fraud in Indian

Financial Systems (2019–2022),” Indian Journal of

FinTech Studies, 2025

https://indianfintechjournal.org/articles/2025/trends-in-

payment-fraud

[24] Singh A., Banerjee R., “CEP Strategies in Fraud Detection

Using Apache Flink,” Journal of Streaming Analytics,

2025 https://www.streaminganalyticsjournal.org/cep-

strategies-2025

[25] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann Aël Le

Borgne, Olivier Caelen, Yannis Mazzer, Gianluca

Bontempi, “SCARFF: A Scalable Framework for

Streaming Credit Card Fraud Detection with Spark,”

arXiv preprint, September 2017

https://arxiv.org/abs/1708.08905

IJCATM : www.ijcaonline.org

