
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

21

Integrating Choreography and Orchestration in a

Microservice based Gas Cylinders Tracking Model

Muriithi B. Nyagaki
School of Computing & Informatics

University of Nairobi, Kenya

Agnes N. Wausi
School of Computing & Informatics

University of Nairobi, Kenya

ABSTRACT

Microservice architecture is a style that structures an

application as a composition of small services developed, and

deployed independently. Each service performs a specific

business function. The use of microservice architecture comes

with benefits of scalability, less coupling, interoperability but

also issues of distributed systems such as discovery,

communication and coordination of the services.

In this study, microservice design patterns for decomposing,

deploying and coordinating services are explored.

Choreography and orchestration mechanisms for coordination

of services are looked into and tradeoffs established for an

efficient application.

A gas cylinder tracking model is developed using identified

microservice design patterns. Agile software development

methodology was used as it is light weight with iterative stages;

Requirements analysis, design, development, testing,

deployment and review.

The model performance evaluated using load balancing metrics

show that the system is stable under high loads provides

dynamic provisioning of computing resources creating more

instances of a service distributing the load. A challenge

encountered in the use of different tools for service composition

and testing that increased the complexity of the application.

Adoption of this prototype is recommended for use since it can

track and tracing cylinders in the supply chain across different

platforms.

General Terms

Distributed technology, microservice, choreography, and

orchestration.

 Keywords

Microservice, choreography, orchestration, gas cylinder

tracking

1. INTRODUCTION
Gas cylinders tracking systems have been used world over by

manufacturers, distributors and retailers. The systems are used

for the identification of the cylinders, real time monitoring of

the location of the cylinders while on transit, monitoring stock

level trends for the purpose of restocking and compliance to

regulations and safety of use.

Technologies for identification of the cylinders include Radio

Frequency Identification (RFID), bar code and QR codes.

Global Positioning Systems locate the position of a cylinder in

trucks when on transit [1]. Sensor and RFID based solutions

detect gas cylinder leakage and enable automatic booking of

cylinder when empty. Tracking of cylinders down the supply

chain entails integration of many players such as suppliers,

manufacturers, retailers and customers. [2] Presents the use of

RFID and IoT to track items down the chain.

The systems in use for tracking gas cylinders are mainly built

on monolithic architecture as a single block of code. Modules

in the code are tightly coupled leading to issues of scalability

and deployment and integration with other systems [3]. The

need for autonomy of application has led a move from monolith

to Service Oriented Architecture (SOA) then microservice.

In this study, microservice design patterns applied are domain

driven design for decomposition, database per service deployed

in its own container. Choreography used for service to service

integration and a single entry point for client requests at the

Application Programming Interface (API) gateway. The

patterns were integrated to develop a microservice based gas

cylinders tracking model for application in the Kenyan context.

2. LITERATURE REVIEW
In this chapter, a review is done on microservices based

systems in four areas: design patterns for splitting of a monolith

to a set of functional microservices, services composition

patterns, deployment and evaluation of performance. A

detailed analysis on the integration of composition patterns is

done and how it can improve the performance of microservices.

2.1 Review of Microservice
Microservice is an architectural style for distributed software

that structures an application as a set of small application called

service which runs its own process. Individual services are

developed and deployed in separate environments and

communicate using lightweight mechanisms mainly HTTP or

REST [4].

Each service performs a specific business functionality and the

deployment in environments are mainly containers.

Communication between clients and the services are managed

by use of Application Programming Interface (API) gateways

thereby providing an interface for each client to route requests,

transform protocols, and perform authentication, monitoring,

and static response handling [5].

[6] For communication to take place, services discover each

other through an IP addresses and a port assigned during

registration of the services. It can happen at the client end

where a client identifies location of a service instance from the

registry to send a request, or at server side where client sends a

request through a load balancer responsible for querying a

service registry then routes the request to the available service

instance [4].

2.2 Decomposing microservice application

A monolith is an architectural style where a system is wrapped

up into a single application with functionalities as modules. The

modules are coded using a single technology stack and

communicate through function calls. A module consists of

classes, functions, and namespaces. The application is easy to

develop, deploy and test but as it grows it becomes complex

and hard to maintain. Dependencies between modules makes it

difficult to effect changes without affecting the entire

application [7].

As a solution to the challenges of a monolith, SOA segregates

the functions of a monolith into loosely coupled and coarse-

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

22

grained web services. A web service is self-contained software

performing specific business functionality and is accessible

over a network. An Enterprise Service Bus (ESB) integrates

web services to form a composite service. Microservice is a

case of SOA with fine grained and autonomous application.

Patterns for decomposing a monolith into a set of microservices

patterns are: Domain Driven Design, Business Capability,

Static Analysis or dynamic analysis.

Domain Driven Design approach identifies sub domains of the

business logic and then constitutes a deployable unit called a

bounded context that performs a single business functionality

[8]. Business Capability pattern entails identifying business

functions that can translate into a single responsibility function

which becomes a service. Static Analysis requires project

source code as input and analyzes coupling between software

classes. Dynamic analysis is done at runtime where

functionalities of a system are analyzed using execution traces

to cluster source code entities with similar functionality as a

service [9]. Decomposing based on business capability leads to

stable services with less dependencies easy to develop and scale

independently.

2.2 Service Composition patterns
To combine the independent services into a single application,

two techniques orchestration and choreography are applied.

Orchestration uses a central coordinator known as an

orchestrator. It listens to all the events produced by each service

transaction and triggers a local transaction in a different micro

service. It holds in waiting until it gets a response which is

transformed and routed to the next service. The orchestrator

coordinates communication and workflows between services

[10].

Orchestration patterns are: SAGA where a central coordinator

sends messages instructing each service what to do and the

order of execution; use of an API gateway utilized as an

orchestrator where the clients require a streamlined and

consistent interface for interacting with other services. This

simplifies client interactions by combining responses from

multiple services [4] .

Choreography on the other hand is an event driven approach

for managing the interactions and workflows between

microservice. Each service knows what events to react to since

the logic coordination is built within a service. The events

generated by services are coordinated through an event bus or

a message broker that acts as a dumb pipe as all the resources

and function logic is encapsulated within each service. Other

services can consume the same event, process or publish their

own events back into the event bus. The publisher of the event

does not know anything about consumer service but the

consumer is aware of which event to listen to trigger its local

transaction [10].

In orchestration the central coordinator brings service

dependencies hence less autonomy compared to choreography

and less resilient. An orchestrator must wait for a response to

continue with the next request hence more latency. It manages

the workflows and error detection is easier.

Service coordination in choreography is asynchronous and

requires implementation of models to ensure consistence and

complex. Low interdependency of services enable easy scaling.

Table 1: Comparison of Orchestration and Choreography

 Orchestration Choreography

Autonomy Low High

Complexity Low High

Resilience Low High

Scalability Low High

Latency High Low

Error handling Easier Harder

2.3 . Microservice Deployment
The environment for deploying services in the cloud can be

Virtual Machines (VMs) or containers. These are virtualized

environments in the cloud that allow for isolation of services

and for elasticity in the cloud. The VMs focus on hardware

virtualization that deals with hardware allocation and

management which has the limitation of entangling

executables, configuration, libraries, and other dependencies of

an application with the underlying host operating system.

Containers are packages of software that virtualizes the

operating system and runs applications [11].

An evaluation of VMs and containers by [12] shows that

containers are preferred for microservices deployment. They

run on the host operating system sharing libraries reducing their

image sizes. They are light in weight, occupy less space and

take less time to deploy. Updating services in containers take

less effort and low downtime. Rolling updates require

downloading and installing libraries which takes less time as

containers share libraries. The lightweight nature also enables

many containers to run on a single machine leading to better

resource utilization [13].

In a microservice application, each service instance is a process

that runs on multiple machines or containers. Communication

takes place between a client and a service or between services

using direct calls to services, through a gateway or using a

message or service bus.

2.4 Evaluation of performance
The performance of microservices is assessed using metrics

such as time taken, complexity and load test using

choreography and orchestration, [14] establishes that

choreography is a good approach when there are less micro

services participating in the distributed environment. It is also

appropriate when an application or software requires constant

updates and addition of new features because it does not

interrupt existing events and processes. However, if multiple

events are triggered from a transaction, it becomes complex to

code and handle event choreography. Though slow,

orchestration is suitable when transaction scenarios are

complex.

An analysis of orchestration and choreography performance

using metrics of time, memory and power consumption by [15]

shows that choreography is fast in performance in case of few

events though complex to code if multiple events are triggered

from each microservice.

Load based tests using quantitative analysis done on the

microservices by increasing the frequency of events triggered,

shows that choreography responds slowly to high loads, but an

orchestrator is able to handle the increased load in a better way.

An empirical study on microservices performance done using

tools such as Junit, Jmeter, and Mocha show that load, resource

usage, availability and connections in a database are the most

common metrics of measuring microservices performance. A

systematic Literature Review [16] establishes the frequency of

various metrics used to evaluate the performance of

microservices are Latency, CPU usage, throughput, network,

scalability, memory and input/ output from the highest to the

least frequent respectively.

3. METHODOLOGY

3.1 Research Design
Evaluation research design was used as it aims at assessing the

effectiveness, efficiency, relevance, and impact of programs,

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

23

policies, interventions, or projects, providing evidence-based

insights to support informed decision-making, improve

practices, and enhance outcomes [17]. A case study of Energy

and Petroleum Regulatory Authority (EPRA) done involved

qualitative data collection using questionnaires and document

analysis to gather rich, detailed information.

EPRA is a state corporation established under the Energy Act,

2019 whose mandate is to regulate petroleum, electricity and

renewable energy sectors in Kenya

EPRA has embraced use of technology to perform its mandate

as a regulator. It uses an online portal for application of licenses

for new applicants and renewals of gas cylinder dealers. The

current system in EPRA is monolithic with no module for gas

cylinder tracking. This project demonstrates the use of

microservice architecture applying both the orchestration and

choreography patterns for the EPRA case study guided by the

research question: How to integrate appropriate microservices

design patterns in a gas cylinder tracking system?

3.2 Development Methodology
Agile software development methodology used is a lightweight

approach for software engineering that starts with the planning

phase followed by iterative and incremental interactions till the

deployment phase. [18] Cites that cloud computing relies on

services made up of small parts developed, tested and

maintained separately hence the need for a lightweight

approach and hence the suitability of the agile software

development cycle.

3.3 Requirements analysis
[17] Refers to the target population as a group of individuals

from whom data is to be collected. The population target in this

study included EPRA staff, brand owners, distributors and

retailers of gas cylinders who are part of the primary data

collection.

Simple random sampling used for brand owners, distributors

and retailers of gas cylinders as it gives every individual in the

population an equal chance of being selected [17]. Purposive

sampling was used to select 30 EPRA staff targeting

individuals with knowledge of information systems.

3.3.1 Sample size
Sample size refers to the number of participants to be selected

from the entire population as a sample [17]. A confidence level

of 80% used to calculate the sample with a margin error of

0.05% using the Cochran’s formula:

 𝑛 =
𝑧2𝑝(1−𝑝)

𝑒2

 𝑛 =
1.28220.5(1−0.5)

0.052
 = 164

A confidence level of 80% was used due to resources and

time constraints for this study as it resulted in a small sample

size [19].

3.4 Data Collection Procedure
3.4.1 Questionnaire
A set of questions typed or printed in order to collect data from

the respondents [17]. Questionnaires filled in the sample survey

with brand owners, distributors and retailers and EPRA staff. A

questionnaire was selected as the primary data source as the

respondents were distributed in different geographical

locations.

3.4.2 Document Review
The documents reviewed show an estimated 3,500,000 active

LPG cylinders in circulation in Kenya, an estimate of 70

licensed LPG brand owners, 500 gas cylinder refilling depots

and approximately 7000 retailers.

3.5 Requirements Analysis
The research findings were represented using tables, graphs

and charts. Two sets of questionnaires were developed, one for

EPRA staff and one for players in the supply chain. A total of

164 questionnaires were administered to brand owners,

distributors and retailers selected only from Nairobi County,

out of which 117 responded: 6 brand owners, 10 distributors

and 101 retailers giving a 71 % response rate which is

considered to be an adequate response rate [20]. 30

questionnaires were distributed to EPRA staff and 21

responded. Data analysis was done using tables and graphs to

come up with the most suitable requirements. The functional

requirements were then modeled with system flowchart for the

microservice application.

The respondents identified the major challenges experienced in

the tracking of gas cylinders in the supply chain shown in table

2.

Table 2. Responses on Challenges Faced in Distribution

Gas Cylinders

Challenge Yes No

Loss of gas cylinders 96% 4%

Cross filling of gas 80% 20%

Illegal gas refilling 89% 11%

Unclear cylinder serial numbers 67% 33%

Poor tracking of the cylinders 96% 4%

The respondents agreed that a comprehensive system should

incorporate various technologies for tracking individual

cylinders when on transit as well as when sold to the consumer,

data management and security of the system as shown in table

3.

Table 3. Responses on Technologies for a tracking system

Item Yes No

QR code for tracking a

cylinder
93% 7%

Sensors to monitor delivery 83% 17%

Cloud based for data

management
90% 10%

Block chain for security 84% 16%

An average of 89% respondents suggested that use of cloud

computing would lead to faster data processing and high data

security and enhance accessibility on different platforms due to

integration with other systems as shown in fig 1.

Fig 1: Use of Cloud Based Technology in Gas Tracking

RQ1: Use of cloud computing leads to faster data processing

RQ2: There is security of data since there is controlled access

of data by the users

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

24

RQ3: Enhanced accessibility since it can be used on different

devices such as computer or a Smart phone.

RQ4: Cloud –based systems can be integrated with other

systems.

RQ5: A tracking system will impact customer satisfaction and

service quality.

RQ6: Cloud technology handles data storage and backup

efficiently.

The participants were asked on the effect of microservice

application on gas cylinder tracking in the scale (1- Very little

extent, 2- Little extent, 3- Neutral, 4 – Large extent, 5 –Very

Large extent). An average of 82% agreed to a large extent

table 4.

Table 4. Responses on the Effect of Microservice

Application on Gas cylinder tracking

Effect 1 2 3 4 5

Simplify

development,

deployment and

scaling

4% 6% 8% 58% 24%

Ensure maximum

utilization of

resources under high

load

8% 6% 10% 46% 30%

Integrate new

technology without

affecting entire

system

4% 2% 6% 56% 31%

Isolation of failures 6% 6% 8% 50% 29%

Integrate with other

systems with

minimum downtime

6% 6% 6% 42% 40%

3.6 System Design
Domain driven design technique used to identify the services

required in the application as it defines clear boundary for each

service.

3.6.1 High Level Design
The gas cylinder tracking system is cloud based. New gas

cylinders are passed to the brand owner for serialization and

branding. They are sealed and then passed to the refilling

station. Inspection is done to the cylinder and gas inside either

on premise or out of premise. If the cylinder is ok after

inspection, they are taken back for distribution, then retailer and

finally to consumer. The consumer can scan the details of the

cylinder through a public API in the cloud.

3.6.2 System Architecture
Gas cylinder tracking system is a microservice based

application deployed in the cloud. System is made of entity

manager service and cylinder service Fig 5.

Entity Manager Service: Manages user authentication,

registration, and profile management of brand owners,

distributors and retailers. It exposes RESTful APIs for user-

related operations. It allows the system administrator to create

user accounts and register brand owners, distributors, retailers

and refillers.

Cylinder Service: Handles cylinder and inventory tracking and

pricing. It integrates with the main service through

asynchronous messaging.

Each LPG cylinder registered on this service has a unique serial

number that’s generated during registration of new cylinders.

A cylinder also has a QR code that contains information about

serial number, brand and other information about the cylinder.

With a QR code scanner, anyone can scan and get the cylinder’s

information, for verification of its authenticity.

With the serial number obtained from the QR Code, the

cylinder can be retrieved from the portal using a registered and

an authenticated account. The system then displays detailed

information about the cylinder including all the events that have

taken place against it, and by which registered entities.

RabbitMQ enables choreography by allowing for events

generated cylinder service are consumed by the entity manager

service. It is a message broker providing asynchronous

communication for handling events such as manufacturing,

refilling, cylinder returns and sales updates and notifications.

Users access the application using a client portal coded using

React Js. The LPG Cylinder management portal allows various

parties authorized by EPRA to access LPG cylinder services,

like tracking cylinders, updating cylinders through events like

refill, sale and returns. To achieve this, it limits actions based

on user's accounts which implement access control to the

various services.

The user requests pass through a load balancer that distributes

load and routes the requests to either the entities manager

service or the cylinder service. An API gateway is used to

combine data from several microservices into a single response

for a client request. It translates different protocols and data

formats for user requests and responses. It authenticates tokens,

verify user access rights based on access control policies. The

services are created using Django and REST frameworks.

Database per Service method is used for data management.

Entity manager service has its own database created using

PostgreSQL while the cylinder database is in MySQL.

Docker containers are used to package each microservice for

containerization and deployment.

Security is enforced through user authentication and

authorization using JWT tokens issued by the services.

3.7 System Testing
Load testing was done using locust tool. The test parameters

were user behavior (number of users). Locust tool simulates

users as in a real running environment.

4. RESULT AND DISCUSSION
This research aimed at identifying microservices design

patterns to develop a micro service-based gas cylinder tracking

application. To create a robust microservice application, design

patterns were carefully considered in the decomposition, data

management, service discovery, communication, deployment

and evaluation.

Table 5. Microservice patterns

Process Design Patterns

Decomposition

Domain driven Design [21]

Static Analysis [22]

Dynamic analysis [23]

Data management
Database per service

Shared database [24]

Communication
Synchronous

Asynchronous [25]

Service Composition
Orchestration

Choreography [10]

Service Deployment
Containers

Virtual machines [13]

Evaluation metrics

Load balancing

Use of resources-RAM,

Processor

Latency

Throughput [13], [16], [26]

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

25

Domain driven design pattern was used to decompose the

services based on their functionality as it is appropriate for

defining services through analysis of business logic [27], [10]

The choice of data management pattern is determined by the

performance or data persistence of a system. Database per

service pattern used in this model as it ensures loose coupling

hence autonomy of services [24].

Two microservices Entity manager service and Cylinder

service were deployed using Docker containers because of their

lightweight. They take less effort and low downtime when

updating or rolling. Many containers can run on a single

machine with better resource utilization [15].

Services crated in Django and Django Rest framework due to

its compatibility with React.js for front end user interface Fig

4. Events generated by the services are:

1. Manufacturing <> At the Brand Owners’ domain

 2. Refill <> At the Refiller's domain

 (Implications: Inspection status: Good or Out of service)

 3. Sale <> At Brand owner, Distributor, or Retailer's domain

 * UI is expecting sale event to mark the seal code as invalid

& cylinder empty to allow for returns *

 4. Cylinder Returned (from customers) <> At Brand owner,

Distributor, or Retailer's domain

 Implications: seal bar code should already be invalid &

cylinder should already be empty.

 5. Refilling: Repeat cycle 2-4 for the usable lifetime of the

cylinder.

Orchestration and choreography service composition patterns

can be integrated to achieve the strengths of both [10]. In this

hybrid collaboration pattern, Choreography occurs through

RabbitMQ a message broker for the service. An API gateway

orchestrates the responses of requests from different services

and sends to client.

One of the limitations of a monolith occurs when scaling due

to high load. It requires adding more computing resources by

redeploying the entire codebase increasing the downtime. An

evaluation of this model show that the system is stable with

high loads. Two tests done, at first 1 server node and 1 database

host simulated 100 users making random requests on the

backend service. In the second test, 1 server node, 1 database

host simulated 200 users making random requests on the

backed service. Server started throttling requests because of too

many connections in the database connection pool. Database

engine also complained of too many connections affecting its

performance but after adjusting by increasing the maximum

number of connections allowed, the system stabilized Fig 2.

This means that the system is stable even when the load is high.

Fig 2: Performance handling spike 200 users in 2 minutes

5. CONCLUSION
The study shows that microservices architecture style can be

used to solve problems of monolithic systems such as limited

scalability, complexity as the system grows, adaptability to

changes. The model developed and evaluated enables tracking

of gas cylinders from manufacturer to retailers. It is stable

under high load when being accessed by many users with less

downtime as shown in the load test Fig 2. The public APIs

allow for integration other systems. The system is deployed in

the cloud with less infrastructure implemented on the premise

where payment is made based on demand thus reducing on cost.

Scaling of the system horizontally is possible due to high load

and vertically by adding computing resources. Microservices

dynamic provisioning enables automated deploying and scaling

services based on demand, without manual intervention and

with less downtime.

We envisage for the adoption and use of this system which shall

in the future incorporate other services such as payments using

an orchestrator tool.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

26

Fig 3: Entity Manager Service

Fig 4: LPG Cylinder Management Portal

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

27

Fig 5: System Architecture

6. REFERENCES
[1] T. Rohmat , D. N. Ramadan, H. R. Sugondo and Z.

Rahmana , "Fuel Truck Tracking for Real-Time

Monitoring System Using GPS and Raspberry-Pi.," in

Proceedings of the 1st International Conference on

Electronics, Biomedical Engineering, and Health

Informatics, Surabaya, Indonesia, 2021..

[2] W. C. Tan and M. S. Sidhu, "Review of RFID and IoT

integration in supply chain management," Operations

Research Perspectives, 2022. Fröhlich, B. and Plate, J.

2000. The cubic mouse: a new device for three-

dimensional input. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

[3] F. Ponce, G. Márquez and H. Astudillo, "Migrating from

monolithic architecture to microservices: A Rapid

Review," in 38th International Conference of the Chilean

Computer Science Society (SCCC).

[4] J. Lewis and M. Fowler, "Microservices -a definition of

this new architectural term," March 2014.

[5] P. Valderas, V. Torres and V. Pelechano, "A microservice

composition approach based on the choreography of

BPMN Fragments," in Information and Software

Technology, 2020.

[6] N. Singh, Y. Hamid, S. Juneja, G. Srivastava, G. Dhiman,

T. R. Gadekallu and M. A. Shah, "Load balancing and

service discovery using Docker Swarm for microservice

based big data," Journal of Cloud Computing:Advances,

Systems and Applications, 2023.

[7] S. Baškarada, V. Nguyen and A. Koronios, "Architecting

Microservices: Practical Opportunities and Challenges,"

Journal of Computer Information Systems, vol. 60, no. 5,

pp. 428-436, September 2018.

[8] O. Özkan, Ö. Babur and M. v. d. Brand, "Domain Driven

Design in Software Development: A Systematic Literature

Review on Implementation, Challenges and

Effectiveness," Journal of Systems and Software, 2023.

[9] F. Ponce, G. Márquez and H. Astudillo, "Migrating from

monolithic architecture to microservices: A Rapid

Review," in 38th International Conference of the Chilean

Computer Science, 2019.

[10] A. Megargel, C. M. Poskitt and V. Shankararaman,

Microservices Orchestration vs Choreography: A

Decision Framework, MEGARGEL, Ali MADJELISI;

POSKITT, Christopher M.; Venky,

SHANKARARAMAN: IEEE, 2021.

[11] K. A. Işıl, Ç. Turgay, A. B. Can and T. Bedir,

"Deployment and communication patterns in microservice

architectures: A systematic literature review," Journal of

Systems and Software, vol. 180, October 2021.

[12] G. Liu, H. Bi, Z. Liang, M. Qin, H. Zhou and Z. Li,

"Microservices: architecture, container, and Challenges,"

in IEEE 20th International Conference on Software

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.59, November 2025

28

Quality, Reliability and Security Companion (QRS-C),

2020.

[13] M. Waseem, P. Liang, M. Shahin, A. Di Salle and G.

M´arquez, "Design, monitoring, and testing of

microservices systems: The practitioners’ perspective,"

Journal of Systems and Software, 2021.

[14] C. K. Rudrabhatla, "Comparison of Event Choreography

and Orchestration Techniques in Microservice

Architecture," International Journal of Advanced

Computer Science and Applications, vol. 9, no. 8, 2018.

[15] N. Singhal, U. Sakthivel and P. Raj, "Selection

Mechanism of Micro-services Orchestration vs.

Choreography," International Journal of Web & Semantic

Technology (IJWesT), vol. 10, no. 1, pp. 1-13, 1 January

2019.

[16] N. Bjørndal, M. Mazzara, A. Bucchiarone, N. Dragoni and

S. Dustdar, "Migration from Monolith to Micro services:

Benchmarking a Case Study.," Technical University of

Denmark., 2020.

[17] R. Kothari, Research Methodology - Methods and

Techniques (Second ed.), New Age International

Publishers. 2004.

[18] S. Al-Saqqa, S. Sawalha, and H. Abdelnabi, "Agile

Software development: Discovery from Enterprise

Systems," International Journal of Interactive Mobile

Technologies, vol. 14, no. 11, 10 July 2020.

[19] J. E. Bartlett and C. C. Higgins, "Organizational Research:

Determining Appropriate Sample Size in Survey

Research," Information technology, learning, and

performance, pp. 43-50, 2001.

[20] D. D. Nulty, "The adequacy of response rates to online and

paper surveys: what can be done?," Assessment &

Evaluation in Higher Education vol. 14, no. 11, 10 July

2020.

[21] A. Rahmatulloh, D. W. Sari, R. N. Shof and I. Darmawan,

"Microservices-based IoT Monitoring Application with a

Domain-driven Design Approach," in 2021 International

Conference Advancement in Data Science, E-learning and

Information Systems (ICADEIS), 2021.

[22] V. Bushong, D. Das, A. A. Maruf and T. Cerny, "Using

Static Analysis to Address Microservice Architecture

Reconstruction," in 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

2021.

[23] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga and

D. Krger, "Microservice Decomposition via Static and

Dynamic Analysis of the Monolith," in IEEE International

Conference on Software Architecture Workshops

(ICSAW), 2020.

[24] K. Munonye and P. Martinek, "Evaluation of Data Storage

Patterns in Microservices Archicture," in IEEE 15th

International Conference of System of Systems

Engineering, Budapest, 2020.

[25] B. Shafabakhsh, R. Lagerström and S. Hacks, "Evaluating

the Impact of Inter Process Communication in

Microservice Architectures," in 8th International

Workshop on Quantitative Approaches to Software

Quality (QuASoQ 2020), 2020.

[26] B. Goossens, "Decision Making in a Microservice

Architecture," 2019.

[27] A. N. Fajar, E. Novianti and Firmansyah, "Design and

Implementation of Microservices System Based on

Domain-Driven Design," International Journal of

Emerging Trends in Engineering Research, vol. 8, no. 7,

July 2020.

IJCATM : www.ijcaonline.org

