International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

Integrating Choreography and Orchestration in a
Microservice based Gas Cylinders Tracking Model

Muriithi B. Nyagaki
School of Computing & Informatics
University of Nairobi, Kenya

ABSTRACT

Microservice architecture is a style that structures an
application as a composition of small services developed, and
deployed independently. Each service performs a specific
business function. The use of microservice architecture comes
with benefits of scalability, less coupling, interoperability but
also issues of distributed systems such as discovery,
communication and coordination of the services.

In this study, microservice design patterns for decomposing,
deploying and coordinating services are explored.
Choreography and orchestration mechanisms for coordination
of services are looked into and tradeoffs established for an
efficient application.

A gas cylinder tracking model is developed using identified
microservice design patterns. Agile software development
methodology was used as it is light weight with iterative stages;
Requirements analysis, design, development, testing,
deployment and review.

The model performance evaluated using load balancing metrics
show that the system is stable under high loads provides
dynamic provisioning of computing resources creating more
instances of a service distributing the load. A challenge
encountered in the use of different tools for service composition
and testing that increased the complexity of the application.
Adoption of this prototype is recommended for use since it can
track and tracing cylinders in the supply chain across different
platforms.

General Terms
Distributed technology, microservice, choreography, and
orchestration.

Keywords

Microservice, choreography, orchestration, gas cylinder
tracking

1. INTRODUCTION

Gas cylinders tracking systems have been used world over by
manufacturers, distributors and retailers. The systems are used
for the identification of the cylinders, real time monitoring of
the location of the cylinders while on transit, monitoring stock
level trends for the purpose of restocking and compliance to
regulations and safety of use.

Technologies for identification of the cylinders include Radio
Frequency Identification (RFID), bar code and QR codes.
Global Positioning Systems locate the position of a cylinder in
trucks when on transit [1]. Sensor and RFID based solutions
detect gas cylinder leakage and enable automatic booking of
cylinder when empty. Tracking of cylinders down the supply
chain entails integration of many players such as suppliers,
manufacturers, retailers and customers. [2] Presents the use of
RFID and IoT to track items down the chain.

The systems in use for tracking gas cylinders are mainly built
on monolithic architecture as a single block of code. Modules

Agnes N. Wausi
School of Computing & Informatics
University of Nairobi, Kenya

in the code are tightly coupled leading to issues of scalability
and deployment and integration with other systems [3]. The
need for autonomy of application has led a move from monolith
to Service Oriented Architecture (SOA) then microservice.

In this study, microservice design patterns applied are domain
driven design for decomposition, database per service deployed
in its own container. Choreography used for service to service
integration and a single entry point for client requests at the
Application Programming Interface (API) gateway. The
patterns were integrated to develop a microservice based gas
cylinders tracking model for application in the Kenyan context.

2. LITERATURE REVIEW

In this chapter, a review is done on microservices based
systems in four areas: design patterns for splitting of a monolith
to a set of functional microservices, services composition
patterns, deployment and evaluation of performance. A
detailed analysis on the integration of composition patterns is
done and how it can improve the performance of microservices.

2.1 Review of Microservice

Microservice is an architectural style for distributed software
that structures an application as a set of small application called
service which runs its own process. Individual services are
developed and deployed in separate environments and
communicate using lightweight mechanisms mainly HTTP or
REST [4].

Each service performs a specific business functionality and the
deployment in environments are mainly containers.
Communication between clients and the services are managed
by use of Application Programming Interface (API) gateways
thereby providing an interface for each client to route requests,
transform protocols, and perform authentication, monitoring,
and static response handling [5].

[6] For communication to take place, services discover each
other through an IP addresses and a port assigned during
registration of the services. It can happen at the client end
where a client identifies location of a service instance from the
registry to send a request, or at server side where client sends a
request through a load balancer responsible for querying a
service registry then routes the request to the available service
instance [4].

2.2 Decomposing microservice application

A monolith is an architectural style where a system is wrapped
up into a single application with functionalities as modules. The
modules are coded using a single technology stack and
communicate through function calls. A module consists of
classes, functions, and namespaces. The application is easy to
develop, deploy and test but as it grows it becomes complex
and hard to maintain. Dependencies between modules makes it
difficult to effect changes without affecting the entire
application [7].

As a solution to the challenges of a monolith, SOA segregates
the functions of a monolith into loosely coupled and coarse-

21

grained web services. A web service is self-contained software
performing specific business functionality and is accessible
over a network. An Enterprise Service Bus (ESB) integrates
web services to form a composite service. Microservice is a
case of SOA with fine grained and autonomous application.
Patterns for decomposing a monolith into a set of microservices
patterns are: Domain Driven Design, Business Capability,
Static Analysis or dynamic analysis.

Domain Driven Design approach identifies sub domains of the
business logic and then constitutes a deployable unit called a
bounded context that performs a single business functionality
[8]. Business Capability pattern entails identifying business
functions that can translate into a single responsibility function
which becomes a service. Static Analysis requires project
source code as input and analyzes coupling between software
classes. Dynamic analysis is done at runtime where
functionalities of a system are analyzed using execution traces
to cluster source code entities with similar functionality as a
service [9]. Decomposing based on business capability leads to
stable services with less dependencies easy to develop and scale
independently.

2.2 Service Composition patterns

To combine the independent services into a single application,
two techniques orchestration and choreography are applied.
Orchestration uses a central coordinator known as an
orchestrator. It listens to all the events produced by each service
transaction and triggers a local transaction in a different micro
service. It holds in waiting until it gets a response which is
transformed and routed to the next service. The orchestrator
coordinates communication and workflows between services
[10].

Orchestration patterns are: SAGA where a central coordinator
sends messages instructing each service what to do and the
order of execution; use of an API gateway utilized as an
orchestrator where the clients require a streamlined and
consistent interface for interacting with other services. This
simplifies client interactions by combining responses from
multiple services [4] .

Choreography on the other hand is an event driven approach
for managing the interactions and workflows between
microservice. Each service knows what events to react to since
the logic coordination is built within a service. The events
generated by services are coordinated through an event bus or
a message broker that acts as a dumb pipe as all the resources
and function logic is encapsulated within each service. Other
services can consume the same event, process or publish their
own events back into the event bus. The publisher of the event
does not know anything about consumer service but the
consumer is aware of which event to listen to trigger its local
transaction [10].

In orchestration the central coordinator brings service
dependencies hence less autonomy compared to choreography
and less resilient. An orchestrator must wait for a response to
continue with the next request hence more latency. It manages
the workflows and error detection is easier.

Service coordination in choreography is asynchronous and
requires implementation of models to ensure consistence and
complex. Low interdependency of services enable easy scaling.
Table 1: Comparison of Orchestration and Choreography

Orchestration Choreography
Autonomy Low High
Complexity Low High
Resilience Low High
Scalability Low High

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

Latency High Low

Error handling Easier Harder

2.3 . Microservice Deployment

The environment for deploying services in the cloud can be
Virtual Machines (VMs) or containers. These are virtualized
environments in the cloud that allow for isolation of services
and for elasticity in the cloud. The VMs focus on hardware
virtualization that deals with hardware allocation and
management which has the limitation of entangling
executables, configuration, libraries, and other dependencies of
an application with the underlying host operating system.
Containers are packages of software that virtualizes the
operating system and runs applications [11].

An evaluation of VMs and containers by [12] shows that
containers are preferred for microservices deployment. They
run on the host operating system sharing libraries reducing their
image sizes. They are light in weight, occupy less space and
take less time to deploy. Updating services in containers take
less effort and low downtime. Rolling updates require
downloading and installing libraries which takes less time as
containers share libraries. The lightweight nature also enables
many containers to run on a single machine leading to better
resource utilization [13].

In a microservice application, each service instance is a process
that runs on multiple machines or containers. Communication
takes place between a client and a service or between services
using direct calls to services, through a gateway or using a
message or service bus.

2.4 Evaluation of performance

The performance of microservices is assessed using metrics
such as time taken, complexity and load test using
choreography and orchestration, [14] establishes that
choreography is a good approach when there are less micro
services participating in the distributed environment. It is also
appropriate when an application or software requires constant
updates and addition of new features because it does not
interrupt existing events and processes. However, if multiple
events are triggered from a transaction, it becomes complex to
code and handle event choreography. Though slow,
orchestration is suitable when transaction scenarios are
complex.

An analysis of orchestration and choreography performance
using metrics of time, memory and power consumption by [15]
shows that choreography is fast in performance in case of few
events though complex to code if multiple events are triggered
from each microservice.

Load based tests using quantitative analysis done on the
microservices by increasing the frequency of events triggered,
shows that choreography responds slowly to high loads, but an
orchestrator is able to handle the increased load in a better way.
An empirical study on microservices performance done using
tools such as Junit, Jmeter, and Mocha show that load, resource
usage, availability and connections in a database are the most
common metrics of measuring microservices performance. A
systematic Literature Review [16] establishes the frequency of
various metrics used to evaluate the performance of
microservices are Latency, CPU usage, throughput, network,
scalability, memory and input/ output from the highest to the
least frequent respectively.

3. METHODOLOGY
3.1 Research Design

Evaluation research design was used as it aims at assessing the
effectiveness, efficiency, relevance, and impact of programs,

22

policies, interventions, or projects, providing evidence-based
insights to support informed decision-making, improve
practices, and enhance outcomes [17]. A case study of Energy
and Petroleum Regulatory Authority (EPRA) done involved
qualitative data collection using questionnaires and document
analysis to gather rich, detailed information.

EPRA is a state corporation established under the Energy Act,
2019 whose mandate is to regulate petroleum, electricity and
renewable energy sectors in Kenya

EPRA has embraced use of technology to perform its mandate
as a regulator. It uses an online portal for application of licenses
for new applicants and renewals of gas cylinder dealers. The
current system in EPRA is monolithic with no module for gas
cylinder tracking. This project demonstrates the use of
microservice architecture applying both the orchestration and
choreography patterns for the EPRA case study guided by the
research question: How to integrate appropriate microservices
design patterns in a gas cylinder tracking system?

3.2 Development Methodology

Agile software development methodology used is a lightweight
approach for software engineering that starts with the planning
phase followed by iterative and incremental interactions till the
deployment phase. [18] Cites that cloud computing relies on
services made up of small parts developed, tested and
maintained separately hence the need for a lightweight
approach and hence the suitability of the agile software
development cycle.

3.3 Requirements analysis
[17] Refers to the target population as a group of individuals
from whom data is to be collected. The population target in this
study included EPRA staff, brand owners, distributors and
retailers of gas cylinders who are part of the primary data
collection.
Simple random sampling used for brand owners, distributors
and retailers of gas cylinders as it gives every individual in the
population an equal chance of being selected [17]. Purposive
sampling was used to select 30 EPRA staff targeting
individuals with knowledge of information systems.
3.3.1 Sample size
Sample size refers to the number of participants to be selected
from the entire population as a sample [17]. A confidence level
of 80% used to calculate the sample with a margin error of
0.05% using the Cochran’s formula:
_ z’p(1-p)
82
n= 1.28220.5(1-0.5)

0.052 =164

A confidence level of 80% was used due to resources and
time constraints for this study as it resulted in a small sample
size [19].

3.4 Data Collection Procedure

3.4.1 Questionnaire

A set of questions typed or printed in order to collect data from
the respondents [17]. Questionnaires filled in the sample survey
with brand owners, distributors and retailers and EPRA staff. A
questionnaire was selected as the primary data source as the
respondents were distributed in different geographical
locations.

3.4.2 Document Review

The documents reviewed show an estimated 3,500,000 active
LPG cylinders in circulation in Kenya, an estimate of 70
licensed LPG brand owners, 500 gas cylinder refilling depots
and approximately 7000 retailers.

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

3.5 Requirements Analysis
The research findings were represented using tables, graphs
and charts. Two sets of questionnaires were developed, one for
EPRA staff and one for players in the supply chain. A total of
164 questionnaires were administered to brand owners,
distributors and retailers selected only from Nairobi County,
out of which 117 responded: 6 brand owners, 10 distributors
and 101 retailers giving a 71 % response rate which is
considered to be an adequate response rate [20]. 30
questionnaires were distributed to EPRA staff and 21
responded. Data analysis was done using tables and graphs to
come up with the most suitable requirements. The functional
requirements were then modeled with system flowchart for the
microservice application.
The respondents identified the major challenges experienced in
the tracking of gas cylinders in the supply chain shown in table
2.

Table 2. Responses on Challenges Faced in Distribution

Gas Cylinders
Challenge Yes No
Loss of gas cylinders 96% 4%
Cross filling of gas 80% 20%
Illegal gas refilling 89% 11%
Unclear cylinder serial numbers 67% 33%
Poor tracking of the cylinders 96% 4%

The respondents agreed that a comprehensive system should
incorporate various technologies for tracking individual
cylinders when on transit as well as when sold to the consumer,
data management and security of the system as shown in table
3.

Table 3. Responses on Technologies for a tracking system

Item Yes No
QR code for tracking a 93% 7%
cylinder
Sensors to monitor delivery 83% 17%
Cloud based for data 90% 10%
management
Block chain for security 84% 16%

An average of 89% respondents suggested that use of cloud
computing would lead to faster data processing and high data
security and enhance accessibility on different platforms due to
integration with other systems as shown in fig 1.

100
90
80
70
60 -
50 +
40
30 4
20 +
10
0 A

M Very Little Extent

Little Extent

Neutral

Large Extent

m Very Large Extent

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6

Fig 1: Use of Cloud Based Technology in Gas Tracking

RQ1: Use of cloud computing leads to faster data processing
RQ2: There is security of data since there is controlled access
of data by the users

23

RQ3: Enhanced accessibility since it can be used on different
devices such as computer or a Smart phone.
RQ4: Cloud -based systems can be integrated with other
systems.
RQ5: A tracking system will impact customer satisfaction and
service quality.
RQG6: Cloud technology handles data storage and backup
efficiently.
The participants were asked on the effect of microservice
application on gas cylinder tracking in the scale (1- Very little
extent, 2- Little extent, 3- Neutral, 4 — Large extent, 5 —Very
Large extent). An average of 82% agreed to a large extent
table 4.

Table 4. Responses on the Effect of Microservice

Application on Gas cylinder tracking

Effect 1|2 | 3 4 5
Simplify

development, 4% | 6% | 8% | 58% | 24%
deployment and

scaling

Ensure maximum
utilization of
resources under high
load

8% | 6% | 10% | 46% | 30%

Integrate new
technology without
affecting entire
system

4% | 2% | 6% 56% | 31%

Isolation of failures 6% | 6% | 8% 50% | 29%

Integrate with other
systems with 6% | 6% | 6% 42% | 40%
minimum downtime

3.6 System Design

Domain driven design technique used to identify the services
required in the application as it defines clear boundary for each
service.

3.6.1 High Level Design

The gas cylinder tracking system is cloud based. New gas
cylinders are passed to the brand owner for serialization and
branding. They are sealed and then passed to the refilling
station. Inspection is done to the cylinder and gas inside either
on premise or out of premise. If the cylinder is ok after
inspection, they are taken back for distribution, then retailer and
finally to consumer. The consumer can scan the details of the
cylinder through a public API in the cloud.

3.6.2 System Architecture

Gas cylinder tracking system is a microservice based
application deployed in the cloud. System is made of entity
manager service and cylinder service Fig 5.

Entity Manager Service: Manages user authentication,
registration, and profile management of brand owners,
distributors and retailers. It exposes RESTful APIs for user-
related operations. It allows the system administrator to create
user accounts and register brand owners, distributors, retailers
and refillers.

Cylinder Service: Handles cylinder and inventory tracking and
pricing. It integrates with the main service through
asynchronous messaging.

Each LPG cylinder registered on this service has a unique serial
number that’s generated during registration of new cylinders.
A cylinder also has a QR code that contains information about
serial number, brand and other information about the cylinder.
With a QR code scanner, anyone can scan and get the cylinder’s

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

information, for verification of its authenticity.
With the serial number obtained from the QR Code, the
cylinder can be retrieved from the portal using a registered and
an authenticated account. The system then displays detailed
information about the cylinder including all the events that have
taken place against it, and by which registered entities.
RabbitMQ enables choreography by allowing for events
generated cylinder service are consumed by the entity manager
service. It is a message broker providing asynchronous
communication for handling events such as manufacturing,
refilling, cylinder returns and sales updates and notifications.
Users access the application using a client portal coded using
React Js. The LPG Cylinder management portal allows various
parties authorized by EPRA to access LPG cylinder services,
like tracking cylinders, updating cylinders through events like
refill, sale and returns. To achieve this, it limits actions based
on user's accounts which implement access control to the
various services.

The user requests pass through a load balancer that distributes
load and routes the requests to either the entities manager
service or the cylinder service. An API gateway is used to
combine data from several microservices into a single response
for a client request. It translates different protocols and data
formats for user requests and responses. It authenticates tokens,
verify user access rights based on access control policies. The
services are created using Django and REST frameworks.
Database per Service method is used for data management.
Entity manager service has its own database created using
PostgreSQL while the cylinder database is in MySQL.

Docker containers are used to package each microservice for
containerization and deployment.

Security is enforced through wuser authentication and
authorization using JWT tokens issued by the services.

3.7 System Testing

Load testing was done using locust tool. The test parameters
were user behavior (number of users). Locust tool simulates
users as in a real running environment.

4. RESULT AND DISCUSSION

This research aimed at identifying microservices design
patterns to develop a micro service-based gas cylinder tracking
application. To create a robust microservice application, design
patterns were carefully considered in the decomposition, data
management, service discovery, communication, deployment
and evaluation.

Table 5. Microservice patterns

Process Design Patterns

Domain driven Design [21]
Static Analysis [22]

Decomposition Dynamic analysis [23]

Database per service

Data management Shared database [24]

Communication Synchronous
Asynchronous [25]
Service Composition Orchestration
Choreography [10]
Containers

Service Deployment Virtual machines [13]

Load balancing

Use of resources-RAM,
Processor

Latency

Throughput [13], [16], [26]

Evaluation metrics

24

Domain driven design pattern was used to decompose the
services based on their functionality as it is appropriate for
defining services through analysis of business logic [27], [10]
The choice of data management pattern is determined by the
performance or data persistence of a system. Database per
service pattern used in this model as it ensures loose coupling
hence autonomy of services [24].

Two microservices Entity manager service and Cylinder
service were deployed using Docker containers because of their
lightweight. They take less effort and low downtime when
updating or rolling. Many containers can run on a single
machine with better resource utilization [15].

Services crated in Django and Django Rest framework due to
its compatibility with React.js for front end user interface Fig
4. Events generated by the services are:

1. Manufacturing <> At the Brand Owners’ domain
2. Refill <> At the Refiller's domain

(Implications: Inspection status: Good or Out of service)
3. Sale <> At Brand owner, Distributor, or Retailer's domain

* Ul is expecting sale event to mark the seal code as invalid
& cylinder empty to allow for returns *

4. Cylinder Returned (from customers) <> At Brand owner,

Distributor, or Retailer's domain

Implications: seal bar code should already be invalid &
cylinder should already be empty.

5. Refilling: Repeat cycle 2-4 for the usable lifetime of the

cylinder.
Orchestration and choreography service composition patterns
can be integrated to achieve the strengths of both [10]. In this
hybrid collaboration pattern, Choreography occurs through
RabbitMQ a message broker for the service. An API gateway
orchestrates the responses of requests from different services
and sends to client.
One of the limitations of a monolith occurs when scaling due
to high load. It requires adding more computing resources by
redeploying the entire codebase increasing the downtime. An
evaluation of this model show that the system is stable with
high loads. Two tests done, at first 1 server node and 1 database
host simulated 100 users making random requests on the
backend service. In the second test, 1 server node, 1 database
host simulated 200 users making random requests on the
backed service. Server started throttling requests because of too
many connections in the database connection pool. Database
engine also complained of too many connections affecting its
performance but after adjusting by increasing the maximum

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

number of connections allowed, the system stabilized Fig 2.
This means that the system is stable even when the load is high.

Fig 2: Performance handling spike 200 users in 2 minutes

5. CONCLUSION

The study shows that microservices architecture style can be
used to solve problems of monolithic systems such as limited
scalability, complexity as the system grows, adaptability to
changes. The model developed and evaluated enables tracking
of gas cylinders from manufacturer to retailers. It is stable
under high load when being accessed by many users with less
downtime as shown in the load test Fig 2. The public APIs
allow for integration other systems. The system is deployed in
the cloud with less infrastructure implemented on the premise
where payment is made based on demand thus reducing on cost.
Scaling of the system horizontally is possible due to high load
and vertically by adding computing resources. Microservices
dynamic provisioning enables automated deploying and scaling
services based on demand, without manual intervention and
with less downtime.

We envisage for the adoption and use of this system which shall
in the future incorporate other services such as payments using
an orchestrator tool.

25

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

Django administration

Home Accounts » Accounts » Add account

Start typing to filter...
Add account

Accounts + Add First, enter a username and password. Then, you'll be able to edit more user options.
Email address:]

AUTH TOKEN

Tokens + Add Usernamie:

Required. 150 characters or fewer. Letters, digits and @/./+/-/_only.

NTITI

I, ®
Brand addresss + Add
Brands + Add Confirm Password: ®
Distributor addresss + Add

Distributors + Add
Save and add another Save and continue editing
Rabbit mq events + Add

Fig 3: Entity Manager Service

-
EPRA G ylinder Management

i pessi e
p Apn » Cylinders > 1
admin@example.com
Reailer Saloph . o
o - Cylinder Details

B Cylinders
Owned by Total Gaz-TKL

5] Logout Sarial Number: TKLR2026/6KG/26T045
Inspection status: GOOD
Size: 6 kys
Empty: Yes
CURRENT SEAL COCE

RETURN EMPTY CYLINDER

Cylinder Events Trail ¢®

Cylinder retum
At Retailer: Salophina

!
11/13/2025, Gas sale
4223 P At Distributor: Rwathia Distributors
|
I
l

WYA02S
AL PW

Cylinder filled
At Refiller: Magunas

Cylinder manufactured
At Brand: Total Kenya Limited

111372025,
D 35:18 PM

Fig 4: LPG Cylinder Management Portal

26

@ Public |
B User .=
.’2‘.‘.
@ - WU
Load
External app Address Balancer

SN S —

I I
g3l —pig]
I l1:l !‘. } |11 :

API Gateway 1

Entity Manager

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

EPRA user &
registered
stakeholder user

Internal site Address

API Gateway 2

Service Rabbit MQ Cylinder Service
PostgreSQL MySQL
v v
Reports and Data]:;I;i}ﬁs and Data
Analytics Analytics

v

=

=

Fig 5: System Architecture

6. REFERENCES

T. Rohmat , D. N. Ramadan, H. R. Sugondo and Z.
Rahmana , "Fuel Truck Tracking for Real-Time
Monitoring System Using GPS and Raspberry-Pi.," in
Proceedings of the 1st International Conference on
Electronics, Biomedical Engineering, and Health
Informatics, Surabaya, Indonesia, 2021..

W. C. Tan and M. S. Sidhu, "Review of RFID and IoT
integration in supply chain management," Operations
Research Perspectives, 2022. Frohlich, B. and Plate, J.
2000. The cubic mouse: a new device for three-
dimensional input. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems

—
—
—_—

F. Ponce, G. Marquez and H. Astudillo, "Migrating from
monolithic architecture to microservices: A Rapid
Review," in 38th International Conference of the Chilean
Computer Science Society (SCCC).

J. Lewis and M. Fowler, "Microservices -a definition of
this new architectural term," March 2014.

P. Valderas, V. Torres and V. Pelechano, "A microservice
composition approach based on the choreography of
BPMN Fragments," in Information and Software
Technology, 2020.

N. Singh, Y. Hamid, S. Juneja, G. Srivastava, G. Dhiman,
T. R. Gadekallu and M. A. Shah, "Load balancing and
service discovery using Docker Swarm for microservice

based big data," Journal of Cloud Computing:Advances,
Systems and Applications, 2023.

S. Baskarada, V. Nguyen and A. Koronios, "Architecting
Microservices: Practical Opportunities and Challenges,"
Journal of Computer Information Systems, vol. 60, no. 5,
pp- 428-436, September 2018.

0. Ozkan, O. Babur and M. v. d. Brand, "Domain Driven
Design in Software Development: A Systematic Literature
Review on Implementation, Challenges and
Effectiveness," Journal of Systems and Software, 2023.

F. Ponce, G. Marquez and H. Astudillo, "Migrating from
monolithic architecture to microservices: A Rapid
Review," in 38th International Conference of the Chilean
Computer Science, 2019.

[10] A. Megargel, C. M. Poskitt and V. Shankararaman,
Microservices Orchestration vs Choreography: A
Decision Framework, MEGARGEL, Ali MADJELISI,
POSKITT, Christopher M.; Venky,
SHANKARARAMAN: IEEE, 2021.

[11]K. A. Isi, C. Turgay, A. B. Can and T. Bedir,
"Deployment and communication patterns in microservice
architectures: A systematic literature review," Journal of
Systems and Software, vol. 180, October 2021.

[12] G. Liu, H. Bi, Z. Liang, M. Qin, H. Zhou and Z. Li,
"Microservices: architecture, container, and Challenges,"
in IEEE 20th International Conference on Software

27

Quality, Reliability and Security Companion (QRS-C),
2020.

[13] M. Waseem, P. Liang, M. Shahin, A. Di Salle and G.
M’arquez, "Design, monitoring, and testing of
microservices systems: The practitioners’ perspective,”
Journal of Systems and Software, 2021.

[14] C. K. Rudrabhatla, "Comparison of Event Choreography
and Orchestration Techniques in Microservice
Architecture," International Journal of Advanced
Computer Science and Applications, vol. 9, no. 8, 2018.

[15] N. Singhal, U. Sakthivel and P. Raj, "Selection
Mechanism of Micro-services Orchestration vs.
Choreography," International Journal of Web & Semantic
Technology (IJWesT), vol. 10, no. 1, pp. 1-13, 1 January
2019.

[16] N. Bjerndal, M. Mazzara, A. Bucchiarone, N. Dragoni and
S. Dustdar, "Migration from Monolith to Micro services:
Benchmarking a Case Study.," Technical University of
Denmark., 2020.

[17] R. Kothari, Research Methodology - Methods and
Techniques (Second ed.), New Age International
Publishers. 2004.

[18] S. Al-Saqqa, S. Sawalha, and H. Abdelnabi, "Agile
Software development: Discovery from Enterprise
Systems," International Journal of Interactive Mobile
Technologies, vol. 14, no. 11, 10 July 2020.

[19] J. E. Bartlett and C. C. Higgins, "Organizational Research:
Determining Appropriate Sample Size in Survey
Research," Information technology, learning, and
performance, pp. 43-50, 2001.

[20] D. D. Nulty, "The adequacy of response rates to online and
paper surveys: what can be done?," Assessment &

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 187 — No.59, November 2025

Evaluation in Higher Education vol. 14, no. 11, 10 July
2020.

[21] A. Rahmatulloh, D. W. Sari, R. N. Shof and I. Darmawan,
"Microservices-based IoT Monitoring Application with a
Domain-driven Design Approach," in 2021 International
Conference Advancement in Data Science, E-learning and
Information Systems (ICADEIS), 2021.

[22] V. Bushong, D. Das, A. A. Maruf and T. Cerny, "Using
Static Analysis to Address Microservice Architecture
Reconstruction,” in 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2021.

[23] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga and
D. Krger, "Microservice Decomposition via Static and
Dynamic Analysis of the Monolith," in IEEE International
Conference on Software Architecture Workshops
(ICSAW), 2020.

[24] K. Munonye and P. Martinek, "Evaluation of Data Storage
Patterns in Microservices Archicture," in IEEE 15th
International Conference of System of Systems
Engineering, Budapest, 2020.

[25] B. Shafabakhsh, R. Lagerstrom and S. Hacks, "Evaluating
the Impact of Inter Process Communication in
Microservice Architectures,” in 8th International
Workshop on Quantitative Approaches to Software
Quality (QuASoQ 2020), 2020.

[26] B. Goossens, "Decision Making in a Microservice
Architecture," 2019.

[27] A. N. Fajar, E. Novianti and Firmansyah, "Design and
Implementation of Microservices System Based on
Domain-Driven Design," International Journal of
Emerging Trends in Engineering Research, vol. 8, no. 7,
July 2020.

28

