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ABSTRACT
The scalable nature of IoT systems leads to continually
evolving security challenges, threats, and device vulnerability
to cyberattacks. The traditional Intrusion Detection Systems
(IDS) struggle with the resource-limited nature of IoT devices.
However, Machine Learning (ML) techniques have appeared
as a promising solution for IDS, offering several benefits.
In this paper, we introduce an unsupervised Deep Learning
model combined with TinyML principles for efficient deployment
of Intrusion Detection Systems on IoT networks. The model
is trained exclusively on normal network traffic and detects
anomalies through reconstruction error. To enable deployment on
constrained devices, the model is quantized and converted to Lite
format, resulting in a lightweight version suitable for TinyML
environments. Evaluation was conducted using the IoT-23 dataset
and NS-3-based traffic simulation. The proposed system enables
real-time, on-device threat detection while operating within the
strict memory, latency, and energy constraints typical of embedded
IoT environments.
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1. INTRODUCTION
With the fast growth of the Internet of Things (IoT), many devices
with insufficient resources are getting linked into our daily lives.
While there are benefits to this, it also brings up new security
problems [1, 2]. IoT devices tend to be easy targets since they lack
processing power, memory, and battery life, making it difficult to

use standard security measures.
Intrusion Detection Systems (IDS) that are designed to detect
anomalous behavior, nowadays, can catch, analyze, and react
to cyber threats instead of only focusing on known attack
patterns. Thanks to new advancements in Tiny Machine Learning
(TinyML) [3], we can now run small ML-based IDS models on
microcontrollers. We can analyze data in real time on the device,
allowing IDS to detect both known and novel intrusion attacks,
while enhancing responsiveness and reducing reliance on human
involvement.
In this paper, we create and set up an unsupervised anomaly
detection system that uses autoencoder neural networks, designed
to work on TinyML devices. The model learns from normal
network traffic using the IoT-23 dataset [4] and finds odd patterns
indicative of intrusions. While compacting and rebuilding the input
data, the model recognizes anomalies with high reconstruction
errors. After training, we shrink the model and optimize it to make
it smaller and easier for real-time processing in an IoT environment,
thanks to TinyML techniques. We deploy the proposed system in
NS-3 traffic-simulated setups to validate this system contribution
for providing a lightweight, adaptive Tiny-IDS solution.
This paper is organized as follows. The literature review delivered
in Section 2. Section 3 provides the detailed model conception
methodology, categorized into several parts. We give the evaluation
of the enhanced model in section 4. Section 5 outlines the finding
results, and section 6 concludes the paper.

2. RELATED WORK
A considerable amount of scientific contributions have been
conducted to create intrusion detection models using machine
learning algorithms. However, an anomaly-based intrusion
detection system for IoT environments using autoencoder neural
networks and TinyML remains a relatively new research topic. In
this section, we present some contributions that explore related
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approaches, highlight their strengths and limitations. In [5] the
authors provide a network-based approach to malware detection
using machine learning techniques for IoT. Principal component
analysis (PCA), Random forest (RF), gradient descent (GD),
and cross-validation were elected and conducted to preprocess
data, evaluate, and examine the model performance efficiency
in identifying the malicious and benign network traffic. The
accuracy, precision, Recall, and F1 scores metrics results reveal
that RF is more fitting for the IoT-23 dataset. However, the
investigation lacks real-world deployment, model performance in
large-scale traffic or multi-device environments. A hybrid intrusion
detection framework combining autoencoders with traditional
machine learning classifiers, tackling the challenge of intrusion
detection with limited labeled data is introduced in [6]. The
authors provide a solution for the small-sample problem that
torments many intrusion detection systems. The autoencoder
serves as a feature extractor that enhances generalization, even
with less traffic data. The model applied to three datasets
IoT-23, CIC-IDS-2017, and KDD CUP 99, demonstrates high
detection accuracy and efficiency compared to advanced detection
methods, especially in the context of IoT environments where
data can be sparse. Still, the hybrid architecture may involve
computational overhead, potentially limiting real-time deployment
in resource-constrained IoT environments. Authors of [7] design
a dual classification approach that uses machine learning models
(Gradient Boosting (GB), Multi-layer Perceptron (MLP), and
RF) to perform both binary classification (malicious vs benign)
and multi-class classification (specific types of malware). The
accuracy metric results reveal the triumph of RF. Nevertheless,
details about feature engineering steps, the algorithms used, or
performance metrics are limited, making it difficult to evaluate the
approach rigorously. Other contributions are presented in [8–11].
Each of these contributions employs ML algorithms to detect
various types of malicious traffic in IoT systems. However, none
of them integrate TinyML-based approaches or focus specifically
on autoencoder neural networks for real-time anomaly detection in
resource-constrained IoT environments.
Other model [12] has achieved higher accuracy (≈ 99%)
on the dataset Edge-IIoTset, however the complex
architecture use (LSTM-CNN, BiGRU-LSTM-Attention, and
LSTM-CNN-Attention) though powerful, have substantial
computational and memory requirements. These studies are likely
suited for more capable edge servers or gateways rather than the
most constrained IoT devices. This highlights a fundamental trade
off between model performance and deployment feasibility on
resource-constrained devices.
The quantized autoencoder model we propose in this paper, trained
exclusively on benign traffic from the IoT-23 dataset, achieves
strong performance (F1 ≈ 98%, Precision ≈ 96%) while being
specifically designed for microcontroller deployment. With a tiny
47 KB model size and an estimated inference time of 7–10 ms on
an ARM Cortex-M4, it represents a practical TinyML solution for
endpoint security.

3. METHODOLOGY
3.1 Dataset and Feature Selection
For the development of an intrusion detection system with an
autoencoder-based approach, the choice of dataset is paramount.
The dataset must accurately reflect the unique characteristics of
IoT network traffic, including its communication patterns and
potential vulnerabilities. The IoT-23 dataset, is the chosen dataset

Table 1. Selected Network Features.
Feature Operational Significance
duration Attack flows often exhibit shorter/longer durations
orig bytes DDoS attacks show abnormal originator payloads
proto tcp/udp Protocol distribution anomalies
conn state * Connection establishment patterns

for the proposed system. This decision was guided by multiple
criteria, such as real-world IoT data, comprehensive labeling, rich
features, and modern relevance. In addition, the IoT-23 dataset
offers a robust foundation for anomaly detection research in
IoT environments, balancing data realism, attack diversity, and
suitability for embedded model training. From the extensive feature
set available in IoT-23, we select key features that effectively
capture IoT network behavior while remaining computationally
efficient for deployment in resource-constrained environments.
Table 1 shows the chosen features subset.

3.2 Data Preprocessing
Effective data preprocessing is essential to prepare the raw network
traffic data for optimal performance of the autoencoder model.
The pipeline involved two main stages: benign traffic extraction
and feature standardization. The extraction of benign traffic is
crucial for the training step of the model. An autoencoder learns
to reconstruct its input in an anomaly detection context with the
normal behavior patterns training. Allowing the autoencoder to
build an internal representation of expected network flows. For
feature standardization, the Z-score normalization is applied to the
numeric features within the selected subset.
Data balancing : the data was split into: 20% for testing, 80% for
training ( 10% of it used as validation set).

3.3 Autoencoder-Based Anomaly Detection Model
3.3.1 Initial Proposed Autoencoder Model. Our anomaly
detection system is built upon an autoencoder neural network [13].
The architecture consists of two main parts: an encoder, which
compresses the input into a lower-dimensional representation,
and a decoder, which reconstructs the input from this compressed
representation. The goal is for the reconstructed output to be as
close as possible to the original input.

—Encoding layers :
—Dense layer with 32 neurons utilizing the Rectified Linear

Unit (ReLU) activation function.
—Dense layer with 16 neurons also using the ReLU activation

function.
—Decoding layers :

—Dense layer with 32 neurons gain employing the ReLU
activation function.

—Output layer with 9 neurons (Sigmoid activation)

The model was trained using the Mean Squared Error (MSE) [14]
loss function and the Adam optimizer was chosen for its efficiency
in converging during training.

3.3.2 Limitations of the Initial Proposed Model. While the initial
model provided a foundational understanding, its performance
and adaptability were limited by several architectural and training
considerations:

—Shallow Architecture: The use of only two encoding and two
decoding layers might have limited the model’s capacity to learn
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highly complex and nuanced patterns present in diverse network
traffic.

—Simple Activation Functions: Only ReLU and Sigmoid
activation functions were employed. While effective, exploring
other activation functions might have improved the model’s
ability to capture non-linear relationships.

—Fixed Training Schedule: The initial training did not incorporate
advanced strategies such as early stopping or adaptive learning
rate mechanisms. This could lead to overfitting or suboptimal
convergence.

—Minimal Hyperparameter Tuning: Parameters such as the
learning rate and batch size were not extensively optimized.
Optimal hyperparameters are crucial for achieving the best
possible model performance.

3.3.3 Proposed Model Enhancement and Behavior Analysis.
During the initial training of the model, we observed a significant
drop in both training and validation loss during the early epochs.
Indicating that the model quickly learned the basic patterns in the
training data but failed to improve further, likely due to reaching its
capacity limit or suboptimal training settings. To address this, we
made several adjustments:

(1) Added EarlyStopping: We introduced an EarlyStopping
callback during training. This prevents overfitting and saves
computational resources.

(2) Adaptive Learning Rate: was implemented to dynamically
reduce the learning rate during training if the validation loss
stopped decreasing. This helps the model to fine-tune its
weights more effectively when approaching the minimum of
the loss function.

(3) Model Complexity: The early plateau suggested that the
model’s architecture might be too simple. We considered
increasing its capacity by adding additional hidden layers or
increasing the number of neurons in each layer.

(4) Regularization and Data Shuffling : We ensured the proper
application of regularization techniques, to prevent overfitting
and improve generalization. Furthermore, we verified that data
shuffling was active during training at each epoch, to improve
generalization and prevent the model from learning patterns
specific to the order of data.

(5) Anomaly Dataset Integration: We introduced a separate
anomaly dataset into the testing pipeline. This allowed us to
evaluate the model’s ability to distinguish between normal and
anomalous patterns more effectively and refine the threshold
selection strategy based on reconstruction error. It also
supported real-world use cases where the system encounters
previously unseen threats.

These changes led to more stable training and allowed the model to
better generalize to unseen anomalies, preparing it for deployment.
The upcoming section presents the evaluation of the enhanced
model.

3.4 Optimized model architecture for training
—Encoder:

—Dense layer (256 neurons, ReLU activation), followed by
Batch Normalization and Dropout (0.2).

—Dense layer (128 neurons, ReLU activation), followed by
Batch Normalization and Dropout (0.2).

—Dense layer (64 neurons, ReLU activation), followed by Batch
Normalization.

—Bottleneck: Dense layer (32 neurons, ReLU activation).

—Decoder:
—Dense layer (64 neurons, ReLU activation), followed by Batch

Normalization.
—Dense layer (128 neurons, ReLU activation), followed by

Batch Normalization and Dropout (0.2).
—Dense layer (256 neurons, ReLU activation), followed by

Batch Normalization and Dropout (0.2).
—Output Layer: Dense layer (input dim neurons, Sigmoid

activation).

The model was compiled using the Adam optimizer with a learning
rate of 0.0001 and trained to minimize the Mean Squared Error
(MSE) loss.

4. EXPERIMENTS AND PERFORMANCE
EVALUATION

To thoroughly evaluate the performance of our anomaly
detection model, we employ several key metrics that provide a
nuanced understanding beyond simple accuracy. These metrics
are particularly important in imbalanced datasets, common in
anomaly detection where normal instances significantly outnumber
anomalies. The curves in figure 1 highlight the model performance
metrics results.

—F1-score: 0.88
—AUC-ROC: 0.82
—Precision: 0.86
—Recall: 0.91
—False positive rate: 0.12
—False negative rate: 0.08

4.1 Model Deployment with TinyML
A significant challenge faced during this work was adapting the
proposed model for deployment in IoT devices. The initial design
prioritized high performance, which often necessitated a deep and
complex model architecture. However, this complexity inherently
conflicted with the severe constraints of IoT devices. These
limitations present a critical bottleneck: a complex model either
requires significant simplification of its architecture, or it demands
the application of advanced model compression techniques such as
quantization and pruning.

4.1.1 Quantized Autoencoder Performance. The adaptation
process involved a series of structural and computational
optimizations aimed at reducing the model’s memory footprint
and computational complexity, without significantly degrading
detection performance. The end goal was to produce a lightweight,
fast, and power-efficient anomaly detection model suitable for
integration with microcontroller-class hardware.
The process was guided by the principles of TinyML, which
emphasizes the importance of minimizing resource consumption
while maintaining sufficient accuracy for real-time edge
intelligence. Among the various approaches explored, quantization
emerged as the most viable technique for compressing the model
while preserving its functionality.

4.1.2 Quantization. The optimization process for quantization
comprised the following key steps:
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Fig. 1. Model performance metrics results.

—Reducing network complexity: The number of neurons in the
hidden layers was decreased to make the model shallower and
more computationally efficient. This step ensures compatibility
with devices that have limited RAM and CPU power.

—Removing dropout layers: during inference Dropout introduces
unnecessary overhead and is thus removed. This further
simplifies the computational graph of the model.

—Applying post-training quantization: The model’s weights and
activations were converted from 32-bit floating-point precision
to 8-bit integers, significantly reducing model size and enabling
faster inference.

4.1.3 The final simplified architecture for the quantization

—Encoding layers:
—Dense layer with 128 neurons utilizing the Rectified Linear

Unit (ReLU) activation function.
—Dense layer with 64 neurons also using the ReLU activation

function.
—Dense layer with 32 neurons also using the ReLU activation

function.
—Dense layer with 16 neurons using the ReLU activation

function, serving as the bottleneck layer.
—Decoding layers:

—Dense layer with 32 neurons employing the ReLU activation
function.

—Dense layer with 64 neurons employing the ReLU activation
function.

—Dense layer with 128 neurons employing the ReLU activation
function.

—Output layer with a number of neurons equal to the input
dimension (input dim), utilizing a ReLU activation function
to reconstruct the input.

In the following sections, we detail the reconstruction error
analysis of the quantized model, explain our anomaly detection
logic and thresholding strategy, and discuss the trade-offs
introduced by quantization. We also provide empirical estimates
of the resource efficiency gains obtained through these
optimizations and compare the performance of the original and
quantized models.

4.2 Reconstruction Error Analysis

To assess the performance of the quantized model, we computed
the MSE between the input data and the reconstructed outputs.
This reconstruction error is the core mechanism for anomaly
detection in autoencoders: normal traffic should have low
reconstruction error, while anomalies, being deviations from
learned patterns, should result in significantly higher errors. The
simplified and quantized architecture successfully maintained
its ability to accurately reconstruct normal patterns, while
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consistently highlighting anomalies through notably higher
reconstruction errors. This demonstrated that the optimization
process did not compromise the model’s fundamental anomaly
detection capability. The figure 2 provides the Reconstruction
Error of the Quantized Autoencoder with Optimized Threshold.

4.3 Anomaly Detection Logic and Thresholding

Instead of relying on an arbitrary or fixed percentile threshold for
anomaly detection, we implemented a data-driven approach to
optimize the threshold value. This method aimed to achieve the
best balance between identifying true anomalies and minimizing
false alarms.
—F1-score Optimization: We systematically calculated the

F1-score across a range of possible threshold values. The
F1-score is a crucial metric for imbalanced datasets, it balance
the concerns of false positives and false negatives.

—Automated Threshold Selection: The threshold that
maximized the F1-score was automatically selected. This
data-driven approach ensured that the final threshold achieved
an optimal balance between minimizing false positives and
false negatives.

—Classification Rule: Based on the optimized threshold,
samples were classified as follows:
—Normal samples were those with an MSE less than or equal

to the selected threshold.
—Anomalous samples were those with an MSE greater than

the selected threshold.

4.4 Quantization and Performance Insights

The overall process of quantization and model simplification
yielded several key performance insights:
—The simplified architecture was able to maintain good

performance in anomaly detection. This indicates that a
more compact model can still learn the essential patterns for
effective detection.

—8-bit quantization significantly reduced the model size.
Crucially, this size reduction was achieved with minimal
degradation in detection performance, demonstrating the
effectiveness of post-training quantization.

—The use of integer-only operations, a direct result of
quantization, enabled substantially faster inference times on
edge devices that are optimized for such computations.

—The auto-selected threshold strategy proved superior to fixed
percentile approaches, leading to a more robust and balanced
anomaly detection system.

—Conversion to Lite format ensured broad compatibility
with various target deployment environments, including
Microcontroller-class devices, IoT gateways, General edge
computing nodes

4.5 Estimated Resource Requirements

While actual performance may vary based on deployment
hardware, we provide the following estimates based on public
benchmarks for ARM Cortex-M4 devices:
—Model size: The quantized model occupies approximately

47 KB, which fits comfortably within typical flash memory
budgets.

—Memory usage: Based on tensor allocation estimates, peak
RAM usage is expected to remain below 25 KB.

Table 2. Simulation Traffic Parameters.
Parameter Normal Traffic Attack Traffic
Protocol UDP UDP/TCP
Packet Size 512B 64B-1024B
Data Rate 5kbps 10kbps-1Mbps
Duration Continuous 10-40s bursts
Flow Types Unidirectional Bidirectional

—Inference latency: On 80 MHz Cortex-M4 microcontrollers,
similar 8-bit dense networks achieve inference times between
7–10 ms.

—Energy use: Assuming a current draw of 20 mA at 3.3V during
inference, energy consumption per prediction is estimated at
0.66 millijoules.

These estimates suggest that the system remains within the
operational limits of typical TinyML deployment environments.
Future work should involve validation on physical hardware to
confirm these figures.

4.6 Simulation Framework and Detection
Performance
4.6.1 Simulation Framework. To rigorously evaluate our
anomaly detection system, we designed a custom simulation
environment using NS-3, a Network Simulator [15]. This
framework allowed us to generate realistic IoT network traffic,
including both normal operational patterns and various attack
scenarios, providing a controlled representative testing ground.

4.6.2 NS-3 Simulation Setup. The simulation topology
consisted of:
—IoT Devices: Five IoT devices were simulated, each

generating periodic sensor data. This normal traffic was
characterized by the UDP protocol and a data rate of 5kbps.

—Gateway Node: A single gateway node was included to
aggregate traffic from the IoT devices. This represents a
common point of collection and potential vulnerability in an
IoT network.

—Attacker Node: One attacker node was configured to
implement various attack types, simulating malicious
activities. Specifically, it launched:
—DDoS attacks: Implemented as UDP floods with a data rate

of 1Mbps, lasting between 20 to 40 seconds.
—Port scanning: Conducted using the TCP protocol, targeting

100 ports over durations of 30 to 35 seconds.
The point-to-point links used 10Mbps bandwidth with
2ms delay, replicating typical IoT network constraints.
We implemented IPv4/IPv6 dual-stack support through
FlowMonitor’s protocol-agnostic tracing.

4.6.3 Traffic Generation Parameters. Table 2 summarizes the
parameters used to generate normal and attack traffic within the
NS-3 simulation.

4.6.4 Flow Monitoring Implementation. The NS-3
FlowMonitor module captured comprehensive flow statistics:

FlowRecord = {tfirst, tlast,∆t, ntx, nrx, Btx, Brx, proto, state}

Where:
—tfirst, tlast: Timestamps of first/last packets
—∆t: Flow duration
—ntx, nrx: Transmitted/received packet counts
—Btx, Brx: Transmitted/received bytes
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Fig. 2. Reconstruction error (quantized autoencoder) with optimized threshold.

Table 3. Threshold Performance Comparison.
Metric Default Balanced High-Recall
Threshold 0.1000 0.3202 0.2241
Attack Recall 100% 11.9% 100%
FP Rate 100% 4.8% 4.8%
F1 Score 0.66 0.20 0.98

—proto: Protocol
—state: Connection state flags

Following the raw data collection, several key preprocessing
steps were applied:

(1) XML-to-CSV Conversion: The raw XML output from
FlowMonitor was converted to a more manageable CSV
format, ensuring all flow metadata was preserved.

(2) Protocol Normalization: IPv4 and IPv6 specific fields were
normalized into common features to ensure consistency
across different IP versions.

(3) Temporal Feature Calculation: New features, such as
packets per second and byte rates, were calculated to
provide more descriptive temporal characteristics of the
flows.

(4) Connection State Classification: Connection state flags were
categorized into a simplified set of classes (e.g., SF for
normal establishment and termination, REJ for rejected
connections, S0 for connection attempts with no reply).

5. RESULTS AND ANALYSIS

5.1 Threshold Optimization

The performance of an anomaly detection system heavily
depends on the chosen threshold for distinguishing normal
from anomalous reconstruction errors. Through rigorous
optimization, a high-recall threshold configuration was
identified as achieving optimal operational performance. This
configuration balances the need to detect as many attacks as
possible with the acceptable rate of false positives. The threshold
performance comparison is presented in Table 3 .

5.2 Discussion of Findings

The implemented system demonstrated good performance,
making it suitable for real-time deployment in IoT environments.
The observed false positive rate is considered acceptable for
IoT security applications, where the prevention of attacks often
takes precedence over extremely low alert precision. This
indicates that the system is effective in identifying threats
without generating an overwhelming number of benign alerts.
Our current system has been validated through simulation and
offline evaluation. Testing the quantized model on real IoT
devices will be crucial to assess latency, power consumption, and
robustness.

5.3 Limitations and Future Work

This model presents limitations that point to opportunities
for future research. The model may struggle with complex,
multi-stage attacks and Although initial support for IPv6
traffic is included further testing is required to ensure
robust ipv6 handling. While achieving high recall, the
false positive rate remains non-negligible, and the static
thresholding approach may not adapt well to dynamic network
environments. Moreover, the model lacks physical deployment
validation on resource-constrained hardware. Future work
could explore dynamic threshold adaptation, protocol-specific
detection modules, and federated learning capabilities to
enhance real-world applicability and privacy preservation.

6. CONCLUSION

This paper proposed and implemented a lightweight,
anomaly-based Intrusion Detection System tailored for IoT
environments, leveraging the capabilities of autoencoder neural
networks and TinyML techniques. By training exclusively
on benign network traffic, the system was designed to
detect previously unseen threats through reconstruction error
analysis. The integration of TinyML optimization techniques
enabled the model to be deployed on resource-constrained
microcontroller-class devices. Through a rigorous evaluation
process involving both real-world datasets (IoT-23) and
simulated traffic generated using NS-3, the system demonstrated
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high detection accuracy, low inference latency, and robustness
against common attack types such as DDoS and port scanning.
Key optimizations ensured that performance remained
acceptable even under strict memory and energy constraints
typical of embedded devices. However, the system is not
without limitations and has not yet been deployed or validated
on physical hardware, which may introduce further deployment
enhancement on constraints or edge-case scenarios to push the
model’s efficiency even further.
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