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Nicéias Silva Vilela
Universidade Federal Rural de Pernambuco

Recife, Pernambuco, Brasil

Kátia Pires Nascimento do Sacramento
Universidade Regional do Cariri
Juazeiro do Norte Ceará, Brasil
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ABSTRACT
Speaker identification has become a crucial component in
various applications, including security systems, virtual assistants,
and personalized user experiences. This paper investigates
the effectiveness of CosFace Loss and ArcFace Loss for
text-independent speaker identification using a Convolutional
Neural Network architecture based on the VGG16 model, modified
to accommodate mel spectrogram inputs of variable sizes generated
from the Voxceleb1 dataset. The approach involves implementing
both loss functions to analyze their effects on model accuracy
and robustness, where the Softmax loss function served as
a comparative baseline. Additionally, the study examines how
the sizes of mel spectrograms and their varying time lengths
influence model performance using 3 seconds as the baseline, with
10 seconds being the maximum time length. The experimental
results demonstrate superior identification accuracy compared to
traditional Softmax loss in the model that was used. Furthermore,
the paper discusses the implications of these findings for future
research.
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1. INTRODUCTION
Speaker Recognition (SR) has become a widely used application
for security systems, virtual assistants, and personalized user
experiences [1, 15]. Traditional methods, such as Mel-Frequency
Cepstral Coefficients (MFCCs) [11, 23], have been widely
used in SR but often struggle with noise sensitivity and
limited discriminative power. With the advent of deep learning,

spectrograms have emerged as an alternative for speaker
identification [27, 3, 2]. Spectrograms provide a time-frequency
representation of speech signals, capturing both temporal and
spectral information. These spectrograms are often combined
with Convolutional Neural Networks (CNNs) where the CNNs
are trained in a supervised process guided by classification loss
functions. Current prevailing classification loss functions for SR
systems are mostly based on the Softmax Loss function. However,
Softmax Loss does not explicitly optimize feature embedding to
enforce higher similarity for intra-class samples and diversity for
inter-class samples. To remedy this, this study approaches the
problem using two different loss functions and compares them to
the traditional Softmax approach, namely Arcface and CosFace
Loss.
SR systems can be modeled either as Text-Dependent or
Text-Independent systems. Text-Dependent SR relies on the user
uttering whatever is being prompted, while text-independent SR
provides a more flexible approach where there is no constraint on
the user of what can be said, and as such, has broader applications.
SR systems are generally categorized into three types:

—Speaker Verification (SV). Verifies whether a speaker’s claimed
identity is true. The system compares the speaker’s voice
to a stored voiceprint of the claimed identity to confirm
their identity [10]. Speaker verification is commonly used in
authentication systems, such as secure access to privileged
information, devices, or accounts;

—Speaker Identification (SI). Determines the identity of an
unknown speaker from a group of known speakers. The system
compares the input voice to a database of voiceprints and
identifies the closest match. SI can then also be split into two
approaches, the closed-set approach and the open-set approach.
In the case of closed-set identification, the speakers are initially
already enrolled in the database, and the system assumes that
the current unknown speaker is already enrolled in the database.
In the case of open-set identification, the speaker is not always

1



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.59, November 2025

enrolled in the database, as such the system needs to be capable
of rejecting a speaker [5]. SI is widely used in applications
such as law enforcement, voice assistants, and call center
analytics [7];

—Speaker Classification (SC). Distinguishes and classifies
speakers based on specific characteristics such as age, gender and
health. It is commonly used in scenarios such as demographic
analysis and targeted marketing [19].

Each category faces unique challenges and applications. For
instance, speaker verification must handle variability in a person’s
voice due to emotional states or background noise, while SI
requires robust matching algorithms to distinguish between similar
voices, often necessitating large and diverse databases to improve
accuracy. SC, on the other hand, requires sophisticated feature
extraction techniques and machine learning models to accurately
capture and analyze subtle vocal traits.
The underlying system for SI works similarly to a fingerprint
matching process. Looking at the spectral content, the system
can analyze the unique features of a person’s voice and match it
against a database. These features are highly distinctive, capturing
the physiological and behavioral characteristics of an individual’s
voice [16].
The present paper makes three main contributions. First, the
study evaluates the comparative effectiveness of the advanced loss
functions ArcFace and CosFace against the traditional Softmax loss
for SI using modified VGG16 architectures with mel-spectrogram
inputs. It is worth noting that the time duration of the voice
sample can influence the mel-spectrograms’ capacity to represent
the speaker. Therefore, the study also investigates two different
sample durations: 3 and 10 seconds. To extend the sample duration,
the paper proposes a new method based on time-loop repetition,
where the original sample is repeated until the desired duration
is reached. Accordingly, the second contribution focuses on the
length of the voice samples. The research demonstrates that audio
looping techniques significantly improve identification accuracy
by extending shorter recordings to optimal lengths for feature
extraction. Finally, the study systematically analyzes how varying
mel-spectrogram image dimensions (224×224×3, 448×448×3,
and 432× 288× 3) affect model performance, identifying optimal
input configurations that balance computational efficiency with
identification accuracy.
The paper is organized as follows. Section 2 presents related
works on SI systems utilizing CNNs with spectrogram inputs
and establishes the context for this paper’s contributions. Section
3 describes the methodology, including preprocessing techniques
applied to the VoxCeleb1 dataset1 [17], the advanced loss functions
employed and their theoretical advantages, and the architectural
modifications made to the VGG16 model. Section 4 presents
experimental results and discusses the impact of audio length and
looping techniques, the comparative effectiveness of different loss
functions, and the effects of varying mel-spectrogram dimensions
on identification accuracy. Section 5 concludes the paper with a
summary of findings and implications for future research.

2. RELATED WORK
This section is to briefly review several related or similar works
in line with this paper. The technique of generating speech-based
spectrograms is implemented during the feature extraction stage,
while CNN are used during the classification stage.

1https://www.robots.ox.ac.uk/˜vgg/data/voxceleb/vox1.html

Nagrani et al. [17] originally introduced and tested the VoxCeleb1
dataset. They randomly selected three second segments from each
speech and generated mel-spectrogram images of size 512×300×
3. For classification, they used a modified VGG CNN, having
changed the final maxpool layer to avgpool. They achieved a top-1
accuracy of 80.5% with the traditional Softmax loss function.
Anand et al. [3] propose a 3-second random selection of each
speech and then convert them to spectrogram images of size 128×
300× 1. In the classification stage, the spectrograms are classified
by different CNNs, such as VGG, ResNet, and CapsuleNet. They
employed a combination of Margin Loss for training the capsule
networks and Prototypical Loss for generalizing under unseen
speakers. The ResNet classifier for 200 classes from the Voxceleb1
dataset has the best result of top-1 = 71.8%.
An et al. [2] improved upon the original SI system’s accuracy
[17] by altering the VGG network, specifically replacing the final
max pooling layer with an average pooling layer and adding a
self-attention layer before this pooling layer. This modification
enabled the system to manage variable-length segments effectively.
The study employed a combination of a penalization term alongside
the traditional cross-entropy loss. For feature extraction, the
researchers utilized mel-spectrograms, extracted from three-second
audio segments, with dimensions of 512 × 300 × 3. The resulting
accuracy on the VoxCeleb1 dataset was a top-1 of = 90.8%.
Similarly, Yadav and Rai [27] extracted mel-spectrograms from
three-second utterances. However, they were generated with size
301 × 161 × 1. One of the methods used in the classification
stage was a VGG13-based CNN by adding a batch normalization
layer after every convolutional layer. The system employs joint
supervision of Softmax and Center Loss, achieving a top-1
accuracy of 89.5% on the VoxCeleb1 dataset.
Sharif et al. [21] initially extracted mel-spectrogram images of size
535 × 678 × 3, resizing them afterwards to 100 × 128 × 3. The
study optimized the VGG-13 architecture for speaker recognition
by reducing the number of convolutional layers from 10 to 5 and
changing the pooling layers from max pooling to average pooling.
They also added batch normalization layers after each average
pooling layer and decreased the dropout layers from 10 to just 1.
Furthermore, the fully connected layers were modified from three
layers to a single layer with 1251 hidden neurons, matching the
number of speakers in the VoxCeleb1 dataset. The study primarily
utilized triple loss, n-pair loss, and angular loss, achieving a top-1
accuracy of 91.17%.
The works discussed in this section demonstrate several
trends. Researchers have consistently modified VGG network
architectures, achieving positive results in SI tasks. They have
employed advanced loss functions, resulting in improved model
generalization capabilities. The reported accuracy ranges from
71.8% to 91.17% across different studies [17, 3, 2, 27,
18]. All studies utilized VoxCeleb1 as their benchmark dataset
while implementing various data augmentation techniques and
experimenting with different spectrogram dimensions. Building
upon these established approaches, this work contributes to
this research landscape by implementing modifications to the
VGG16 architecture, systematically comparing two advanced loss
functions, namely ArcFace and CosFace, and experimenting with
multiple mel-spectrogram dimensions. Additionally, the paper
introduces an audio looping technique as a data augmentation
method for the VoxCeleb1 dataset, achieving a competitive
top-1 accuracy of 83.15% that falls within the established
performance range while providing new insights into optimal input
configurations.
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Table 1. Information about the database used for
experimentation.

Parameters Voxceleb1
Total number of speakers 1251(688 male, 563 female)
Total utterances 153,516
Train utterances 108,018
Validation utterances 23,066
Test utterances 22,432

3. METHODOLOGY
3.1 Dataset
For this study, the VoxCeleb1 dataset [17] was used, a widely used
benchmark for SR and verification tasks. VoxCeleb1 contains over
100, 000 utterances from 1, 251 speakers, collected from publicly
available interview videos on platforms such as YouTube [17].
The audio samples in VoxCeleb1 are recorded at a sample rate of
16kHz, which is standard for speech processing tasks. The dataset
includes recordings in multiple languages, with speakers of diverse
accents, ages, and genders, being made up of 688 males and 563
females.
The utterances are recorded in various environments, from outdoor
stadiums to quiet indoor studios, with almost all of them having
some form of background noise, such as laughter, background
chatter, and overlapping speaking.
For the experiment, a train-validation-test split of 70%, 15%, 15%
was used, as illustrated in Table 1.

3.2 Preprocessing
A lot of the audios start or end with silence. Figure 1 shows an
example where there is a silent situation at the beginning (region
with only purple color). The preprocessing begins by reducing,
ensuring that the system does not waste resources by processing
empty data.

Fig. 1. Spectrogram image of audio before silence removal.

3.2.1 Data Augmentation. After silence removal, recordings that
did not reach the desired duration were extended using an audio
looping technique, as illustrated in Figure 2. This created two
dataset versions: (a) three-second clips and (b) ten-second clips.
Three seconds was chosen as a standard in SI research, while ten
seconds was selected based on observations of diminishing returns
beyond this duration.
Audio looping was applied only to segments shorter than the
target duration. Samples meeting or exceeding the target length
were either used as-is or truncated to the desired duration. Further
investigation is needed to evaluate this method’s effectiveness in
different environments or with alternative looping strategies.

Fig. 2. Visual representation of mel-spectrograms (a) before and (b) after
looping. The looping process extends shorter audio segments to meet the
required duration.

3.2.2 Mel-spectrogram. Spectrograms are a graphical
representation of a signal’s frequencies. When applied to an
audio or voice signal, it generates a visual representation of
signals, depicting the distribution of energy across time and
frequency. They are generated using the Short-Term Fourier
Transform (STFT) [4], which converts raw audio signals into a
two-dimensional representation, where the x-axis represents time,
the y-axis represents frequency, and the color intensity represents
the energy amplitude, as can be seen in Figure 3.
Spectrograms, particularly mel-spectrograms, are robust to noise
and variations in recording conditions, as shown by Nagrani et
al. [17], Lambamo et al. [12], and Saritha et al. [20]. In these works,
the authors showed that spectrograms can mitigate the effects of
background noise by focusing on the frequency patterns that are
most relevant to the characteristics of the speaker. The conversion
of spectrograms into the Mel scale is done because the Mel scale
is designed to mimic the way humans perceive sound, with a
non-linear frequency resolution that assigns more weight to lower
frequencies. Lower frequency components have been shown to be
more distinguishing between speakers in SI systems [14, 28].

Fig. 3. A typical Mel-spectrogram image used to represent a speech
signal.

Using the audio data previously generated, the recordings are
converted into ten-second Mel-spectrograms. These are then
resized into three specific dimensions: 224×224×3, 448×448×3,
and 432 × 288 × 3. The same process is applied to the dataset
of three-second audio recordings. Additionally, mean and variance
normalization is applied on a per-speaker basis to ensure consistent
processing across the dataset [17].
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3.3 Loss functions
Much research has been conducted using the cross-entropy loss
function, commonly known as Softmax loss [17, 2]. The Softmax
loss function for a batch of n samples is mathematically defined as:

LAMS = − 1

n

n∑
i=1

log (P (y = yi|xi;W )) (1)

where (P (y = yi|xi;W )) is the probability of y is the class yi,
given the sample xi and the weight vector W .
While these approaches have yielded positive results, Softmax
presents several limitations for SI. A primary drawback is its failure
to explicitly enforce discriminative margins between different
speaker classes. This can result in learned embeddings for distinct
speakers being too close in the feature space, hindering the model’s
ability to differentiate them, particularly under noisy conditions or
with limited training data. Furthermore, Softmax does not directly
optimize for intra-class compactness; while it pushes embeddings
away from decision boundaries, it doesn’t strongly encourage
embeddings from the same speaker to cluster tightly together as
seen in Figure 4. This can lead to more spread-out representations
for a single speaker, potentially reducing the robustness of the SI
system. An additional concern is that Softmax treats all classes
equally, which can be problematic in SI, where the number
of speakers (classes) can be very large, potentially leading to
imbalanced class distributions and a bias towards more frequent
speakers in the training data.

Fig. 4. Traditional Softmax’s decision boundary meets at P0. D1 and D2

represent class 1 and class 2, respectively.

To address these limitations, this study investigates the
effectiveness of alternative loss functions: CosFace and
ArcFace [26, 6]. These functions are designed to directly
improve class separation and intra-class compactness, which are
crucial for robust SI. The study focuses on enhancing intra-class
similarities by employing these functions, which, although
originally developed for facial recognition, have demonstrated
significant potential for SI tasks. Both CosFace and ArcFace work
by enhancing intra-class similarities through the imposition of
angular or margin-based constraints [26, 25, 6].

3.4 CosFace
CosFace Loss is an enhanced version of the traditional Softmax
loss, designed to improve the discriminative power of deep neural
networks by imposing a fixed angular margin between classes [25].
This is achieved by modifying the target logit through the addition
of a margin to the cosine similarity score of the target class.
The CosFace loss introduces an additive margin to the cosine
similarity score of the target class, formulated as:

ψ(x) = x−m (2)

where x = cos θyi is the cosine similarity between the feature
vector of the target class, and m is the additive margin. This
formulation ensures that the decision boundary is pushed away
from the target class by a fixed margin, thereby improving class
separation.
The geometric interpretation of this concept is illustrated in
Figure 5. While traditional Softmax loss places the decision
boundary at a single hyperplane Po (two-class problem), CosFace
introduces a marginal region, shifting the boundary away from the
target class. This shift is calculated asm = (W1−W2)

TP1. Where
W1 and W2 are the weight vectors of the two classes, and P1 is the
decision boundary for class 1. This fixed angular margin leads to
more discriminative and compact features.

Fig. 5. A comparison between traditional Softmax’s decision boundary
and CosFace’s decision boundary. Softmax’s decision boundary meets at
P0 whereas CosFace’s decision boundary for class 1 is at P1 and for class
2 it is at P2. D1 and D2 represent class 1 and class 2, respectively.

The CosFace loss function for sample xi is mathematically defined
as:

LCF = − log

(
es(cos(θyi )−m)

es(cos(θyi )−m) +
∑

j ̸=yi
es cosθj

)
(3)

where:

—s is the scaling factor, which amplifies the separation between
classes;

—m is the additive margin, which enforces a fixed angular
separation;

—cos(θyi) is the cosine similarity between the features and the
target weights.

For this study, s = 22 andm = 0.2, which were chosen to optimize
the trade-off between class separation and model convergence.
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3.5 ArcFace
The ArcFace loss function, introduced by Deng et al. [6], was
originally used for face verification, but has seen some recent
use in speaker recognition technology [8]. This function is
specifically designed to optimize the geodesic distance margin
on a hypersphere by introducing an additive angular margin that
pushes the decision boundary further from the target class, thereby
enhancing class separation.
ArcFace optimizes speaker embeddings through a dual approach:
maximizing intra-class compactness while simultaneously
increasing inter-class separation as seen in Figure 6. This
optimization strategy has seen some success in improving speaker
distinction, particularly when paired with large-scale datasets
where subtle differences between speakers must be accurately
captured.

Fig. 6. A comparison between traditional Softmax’s decision boundary
and ArcFace’s decision boundary. Softmax’s decision boundary meets at
P0, whereas ArcFace’s decision boundary for class 1 is at P1 and for class
2 it is at P2. D1 and D2 represent class 1 and class 2, respectively.

The integration of ArcFace with SincNet architectures [8] has
enabled direct feature extraction from raw speech signals. When
combined with dual attention mechanisms, this approach delivers
performance improvements, especially in short-utterance scenarios
where limited audio data is available for SI.
ArcFace demonstrates the capability to effectively handle
difficult operational conditions, including short utterances and
cross-domain mismatches. In far-field speaker verification
applications, the loss function has been successfully adapted
to address domain mismatches [13], with optimized margin
penalties during training significantly enhancing overall system
performance.
The practical advantages of ArcFace extend to various challenging
environments. Models incorporating ArcFace have shown
reduced error rates in short speech scenarios, making them
effective for real-world applications where audio samples are
typically brief. Additionally, the enhanced feature extraction
and classification capabilities contribute to superior performance
in noisy environments, addressing one of the most common
challenges in SI systems.
Comparative studies have demonstrated that ArcFace-based models
consistently achieve lower error rates than traditional methods
[24], underscoring their effectiveness in SI tasks. Furthermore, the
loss function’s inherent ability to stabilize training processes and

Table 2. Original VGG16 Architecture. This table details the
sequential layers, kernel sizes, strides, and activation functions

characteristic of the VGG16 network as described by Simonyan and
Zisserman[22].

Original VGG16
Layer Feature Map Size Kernel Size Stride Activation
Image 1 224 x 224 x3 - - -

2 X Convolution 64 224 x 224 x 64 3x3 1 relu
Max Pooling 64 112 x 112 x 64 3x3 2 relu

2 X Convolution 128 112 x 112 x 128 3x3 1 relu
Max Pooling 128 56 x 56 x 128 3x3 2 relu

2 X Convolution 256 56 x 56 x 256 3x3 1 relu
Max Pooling 256 28 x 28 x 256 3x3 2 relu

3 X Convolution 512 28 x 28 x 512 3x3 1 relu
Max Pooling 512 14 x 14 x 512 3x3 2 relu

3 X Convolution 512 14 x 14 x 512 3x3 1 relu
Max Pooling 512 7 x 7 x 512 3x3 2 relu

Dense - 25088 - - relu
Dense - 4096 - - relu
Dense - 4096 - - relu
Dense - 1000 - - Softmax

enhance feature learning establishes it as an invaluable tool in deep
learning-based speaker recognition systems [24].
For a sample (xi, yi), where xi is the input sample and yi is
the target label, the mathematical formulation of the ArcFace loss
function is as follows:

LAF(xi) = −log

(
es(cos(θi+m))

es(cos(θi+m)) +
∑

j ̸=yi
es(cos(θj))

)
(4)

where:

—s is the scaling factor;
—m is the additive angular margin;
—cos(θyi) is the angle between the feature vector and the target

weights.

In this implementation, the initial scaling factor swas set to s = 22.
The additive angular margin m was set to 0.2. This configuration
was chosen to ensure more compact and discriminative features.

3.6 Recognition Model
3.6.1 VGG16. The VGG16 model is a CNN comprising 16
weight layers: 13 convolutional layers and 3 fully connected layers.
These layers are organized into five blocks, each followed by a
max-pooling layer to progressively reduce the spatial dimensions
of the feature maps [22] as can be seen in Table 2. The core of the
architecture can be broken down as follows:

—Convolutional Layers: The first two blocks contain two
convolutional layers each, while the last three blocks contain
three convolutional layers each. Each convolutional layer applies
a 3 × 3 filter with stride 1 and padding to preserve spatial
resolution, followed by a ReLU activation function;

—Pooling Layers: A max-pooling layer with a 2×2 filter and stride
2 is applied after each block to downsample the feature maps.

3.6.2 Modified VGG16. To enhance the model’s performance
and adaptability for SI, we proposed the following modifications
using PyTorch, as seen in Table 3:

(1) First, the fixed size average pooling layer was replaced with a
global average pooling layer to handle inputs of varying spatial
dimensions.
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Table 3. Proposed Modified VGG16 Architecture.
Modified VGG16

Layer Feature Map Size Kernel Size Stride Activation
Image 1 Any Height x Any Width x 3 - - -

2 X Convolution 64 224 x 224 x 64 3x3 1 relu
Max Pooling 64 112 x 112 x 64 3x3 2 relu

2 X Convolution 128 112 x 112 x 128 3x3 1 relu
Max Pooling 128 56 x 56 x 128 3x3 2 relu

2 X Convolution 256 56 x 56 x 256 3x3 1 relu
Max Pooling 256 28 x 28 x 256 3x3 2 relu

3 X Convolution 512 28 x 28 x 512 3x3 1 relu
Max Pooling 512 14 x 14 x 512 3x3 2 relu

3 X Convolution 512 14 x 14 x 512 3x3 1 relu
Global Avg Pooling 2D - 512 N/A N/A -

Dense - 1024 - - relu
Dropout (0.3) - 1024 - - -

Dense - 256, followed by L2 normalization - - relu
Dense - 1251 (num speakers) - - Softmax

(2) The fully connected classifier was replaced with a custom
classifier designed to output embeddings of a specified
dimension. The output of the convolutional layers is first
flattened and passed through a fully connected layer with 1024
units, followed by a ReLU activation and dropout of 0.3 for
regularization. Finally, it outputs the optimal 256-dimensional
embeddings through another fully connected layer [9];

(3) A classification head was added. This head is a fully connected
layer that maps the embeddings to the number of classes, in this
case, 1251;

(4) To ensure the embeddings are normalized to unit vectors,
the model is wrapped in a custom class. During the forward
pass, the embeddings are normalized using L2 normalization
(||x||2 = 1), because cosine similarity is used to compare
embeddings.

The model parameters were optimized using Stochastic Gradient
Descent (SGD) with an initial learning rate of 0.001, momentum
of 0.9, and weight decay of 1 × 10−4. To adapt the learning rate
during training, a ReduceLROnPlateau scheduler was employed
that monitored validation loss. The scheduler reduced the learning
rate by a factor of 0.1 when no improvement in validation loss was
observed for 5 consecutive epochs, with a minimum improvement
threshold of 1 × 10−4 to qualify as meaningful progress. An early
stopping mechanism was also incorporated with a patience of 15
epochs of no improvement, while also enforcing a minimum of
30 epochs to ensure that the model had sufficient opportunity to
converge, even if progress was initially slow.

4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1 Impact of audio length and looping technique
The experimental results presented in Table 4 indicate that
ten-second audio clips, which utilized the looping technique,
consistently achieved higher top-1 accuracy compared to
three-second clips, with improvements ranging from 8.65% to
19.64% depending on the specific configuration. For example,
ten-second clips achieved up to a top-1 accuracy of 80.79% when
using the ArcFace loss function and 83.15% with the CosFace
loss function, the traditional Softmax achieved the lowest results
of the three, obtaining a top-1 accuracy of 76.41%. In contrast,
the three-second clips achieved lower accuracies, ranging from
66.28% to 69.82%. This significant difference underscores the
impact of audio length in capturing speaker-specific features
effectively.
The superior performance aligns with previous studies that
emphasize the importance of sufficient audio duration for accurate
SI [17, 9]. However, in this case, the duration of the clips can be
attributed to the looping technique, which allowed the model to
process a more extended segment of the audio signal.

Table 4. Results of speaker identification accuracy for different loss
functions, mel-spectrogram dimensions, and audio lengths. The best

accuracy result is highlighted in boldface.

Loss function
Mel-Spectrogram

Audio length Top-1 accuracy
Image Dimensions

Softmax

224× 224× 3
3 seconds 65.76%

10 seconds 75.41%

432× 288× 3
3 seconds 67.58%
10 seconds 76.41%76.41%76.41%

448× 448× 3
3 seconds 67.62%
10 seconds 75.37%

CosFace

224× 224× 3
3 seconds 66, 51%
10 seconds 79, 42%

432× 288× 3
3 seconds 69, 82%

10 seconds 83, 15%83, 15%83, 15%

448× 448× 3
3 seconds 64, 93%

10 seconds 79, 56%

ArcFace

224× 224× 3
3 seconds 66, 28%

10 seconds 81, 33%81, 33%81, 33%

432× 288× 3
3 seconds 68, 05%

10 seconds 80, 79%

448× 448× 3
3 seconds 64, 15%
10 seconds 79, 32%

4.2 Effect of Mel-Spectrogram dimensions
The experimental results demonstrate that mel-spectrogram
dimensions significantly influence top-1 accuracy in SI. The 432×
288×3 configuration consistently achieved the highest accuracy at
83.15%, followed by 224× 224× 3 and 448× 448× 3.
This performance variation suggests that both resolution and aspect
ratio are critical for capturing spectral and temporal characteristics
that distinguish speakers. The 432 × 288 × 3 configuration likely
provides an optimal balance for the CNN to learn speaker-specific
patterns. Notably, larger dimensions do not guarantee better
performance; rather, dimensions must be optimized to suit the data
structure for maximum accuracy.

4.3 Impact of loss functions
CosFace demonstrated clear superiority over both ArcFace and
traditional Softmax across most configurations. CosFace achieved
the highest identification accuracy of 83.15%, representing a 2.36
percentage point improvement over ArcFace’s best performance
(80.79%) and a 6.74 percentage point advantage over traditional
Softmax (76.41%) when using optimal conditions.
The superior performance of CosFace can be attributed to its ability
to enforce a fixed angular margin combined with a scaling factor,
which creates more discriminative decision boundaries and pushes
speaker embeddings further apart in the feature space.
Unlike traditional Softmax that fails to explicitly optimize for class
separation, CosFace addresses fundamental limitations by directly
enhancing intra-class compactness while increasing inter-class
diversity.
While ArcFace also incorporates margin-based constraints through
geodesic distance optimization, it demonstrated more variability
across configurations. Notably, ArcFace achieved its peak
performance of 81.33% with 244 × 244 × 3 dimensions and
ten-second clips, but consistently underperformed compared to
CosFace when using the optimal 432× 288× 3 configuration.
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5. CONCLUSION
The study comprehensively achieved all stated objectives.

—The study successfully evaluated the comparative effectiveness
of the ArcFace and CosFace loss functions against traditional
Softmax loss and identified their superior performance when
used with the modified VGG16 architecture.

—An audio looping technique was developed and validated that
effectively extends shorter audio samples, proving that temporal
information enhancement can overcome duration limitations in
practical applications.

—Optimal mel-spectrogram dimensions (432×288×3) were
systematically identified that balance computational efficiency
with identification accuracy.

5.1 Practical Implications and Applications
The enhanced accuracy and robustness achieved through this
approach could benefit security systems requiring reliable
voice authentication, improve virtual assistant personalization
capabilities, and support forensic voice analysis applications. The
audio looping technique particularly addresses practical challenges
where only short utterances are available, making the system more
applicable to real-world scenarios where extended speech samples
are not always obtainable.

5.2 Study Limitations and Considerations
It is important to contextualize objectives and findings of the
present study within its intended research scope. This investigation
was not designed as an attempt to achieve state-of-the-art
performance on the VoxCeleb1 dataset, but rather as a systematic
exploration of audio looping behavior across different system
configurations. The primary research objective centered on
understanding how temporal augmentation through audio looping
interacts with various loss functions and input dimensions,
providing foundational insights for future optimization efforts.
The experimental design prioritized comprehensive configuration
space exploration over performance maximization. By
systematically evaluating audio looping across three distinct loss
functions (Softmax, ArcFace, CosFace), multiple mel-spectrogram
dimensions (224 × 224 × 3, 448 × 448 × 3, 432 × 288 × 3),
and two temporal durations (3-second, 10-second), the study
established a controlled framework for understanding the
behavioral characteristics of the proposed augmentation method.
This systematic approach enables reliable conclusions about the
relative effectiveness of different configurations and provides
guidance for practitioners considering similar approaches.
The choice to maintain consistent architectural and preprocessing
approaches across all experiments, while potentially limiting
absolute performance, ensures that observed differences can be
attributed to the specific variables under investigation rather than
confounding factors.
The comparison with existing literature serves as a contextual
framework for understanding where audio looping fits within
the broader spectrum of augmentation strategies. The competitive
performance achieved relative to some established methods
(notably matching Yadav and Rai’s 83.5% within 0.35% [27])
demonstrates that audio looping represents a viable augmentation
approach worthy of further development.
The identification of optimal input dimensions (432 × 288 ×
3) and the superior performance of CosFace over ArcFace in
this context represent practical contributions that can inform

future system design decisions, even as absolute performance
optimization remains a goal for subsequent research phases.

5.3 Future Research Directions
The audio looping technique warrants systematic investigation
to establish optimal operational parameters. Questions include
determining the minimum viable audio duration for effective
looping and the maximum extension length before performance
plateaus. Future research should explore alternative looping
strategies beyond simple repetition, such as partial overlap looping
or intelligent looping that prioritizes high-energy audio segments.
Additionally, adaptive algorithms that adjust looping patterns based
on spectral content analysis could yield superior results compared
to full-segment repetition.
Combining audio looping with established techniques could
address multiple system limitations simultaneously. Research
should investigate optimal combinations of audio looping with
random sampling for class balancing, noise injection for
robustness, and other modifications. Adaptive systems that select
augmentation strategies based on per-speaker data availability
represent a particularly promising direction for addressing
both class imbalance and temporal constraints within unified
frameworks.
The findings regarding network depth suggest systematic
architectural investigation could yield improvements. Future
research should explore modern architectures—including
transformers and efficient convolutional designs—specifically
combined with audio looping. Additionally, developing networks
explicitly designed to leverage the temporal patterns created by
looping could achieve superior performance compared to standard
architectures applied to extended inputs.
Systematic evaluation across datasets featuring different languages,
acoustic conditions, and speaker demographics would establish
the method’s robustness and identify potential limitations.
Cross-linguistic studies examining effectiveness across different
phonetic structures and prosodic patterns are particularly important
for understanding universal applicability.
Extension to open-set SI scenarios would broaden practical
applicability, though this requires investigating how temporal
extension affects unknown speaker rejection capabilities. The
development of threshold optimization strategies and uncertainty
quantification techniques specifically designed for looped audio
inputs could address deployment challenges while maintaining
identification benefits.

5.4 Concluding Remarks
In conclusion, this research provides a systematic evaluation of
margin-based loss functions in conjunction with an audio looping
data augmentation strategy, within the framework of CNN-based
SI. Achieving a top-1 accuracy of 83.15% on the VoxCeleb1
dataset, the system delivers competitive performance within the
existing literature range. The primary value of this work lies in
the proposed audio looping technique which, despite its simplicity,
offers a practical and easily implementable solution for extending
limited audio samples. This method is particularly well-suited
for resource-constrained applications, and its integration with
advanced loss functions demonstrates a viable pathway for
improving SI accuracy in scenarios with short-duration recordings.
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